Showing 1 - 17 results of 17 for search '"моторные вызванные потенциалы"', query time: 0.63s Refine Results
  1. 1
    Academic Journal

    Source: Ukrainian Neurosurgical Journal, Vol 26, Iss 3, Pp 22-27 (2020)
    Ukrainian Neurosurgical Journal; Том 26, № 3 (2020); 22-27

    File Description: application/pdf

  2. 2
    Academic Journal

    Source: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 74, № 3 (2019); 229-235 ; Вестник Московского университета. Серия 16. Биология; Том 74, № 3 (2019); 229-235 ; 0137-0952

    File Description: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/774/483; Pfurtscheller G., Neuper C. Motor imagery activates primary sensorimotor area in humans // Neurosci. Lett. 1997. Vol. 239. N 2–3. P. 65–68.; Lotze M., Halsband U. Motor imagery // J. Physiol. Paris. 2006. Vol. 99. N. 4–6. P. 386–395.; Mizuguchi N., Nakata, H., Uchida, Y., Kanosue, K. Motor imagery and sport performance // Jpn. J. Phys. Fit. Sport. 2012. Vol. 1. N. 1. P. 103–111.; Walsh N.E., Jones L., McCabe C.S. The mechanisms and actions of motor imagery within the clinical setting // Textbook of neuromodulation / Eds. H. Knotkova and D. Rasche. N.Y.: Springer, 2015. P. 151–158.; Guerra Z.F., Lucchetti A.L.G., Lucchetti G. Motor imagery training after stroke: a systematic review and meta-analysis of randomized controlled trials // J. Neurol. Phys. Ther. 2017. Vol. 41. N 4. P. 205–214.; Li R.Q., Li Z.M., Tan J.Y., Chen G.L., Lin W.Y. Effects of motor imagery on walking function and balance in patients after stroke: a quantitative synthesis of randomized controlled trials // Complement. Ther. Clin. 2017. Vol. 28. P. 75–84.; Kaplan A.Ya. Neurophysiological foundations and practical realizations of the brain– machine interfaces in the technology in neurological rehabilitation // Human Physiology. 2016. Vol. 42. N 1. P. 103–110.; Kaneko F., Hayami T., Aoyama T., Kizuka T. Motor imagery and electrical stimulation reproduce corticospinal excitability at levels similar to voluntary muscle contraction // J. Neuroeng. Rehabil. 2014. Vol. 11. N. 1: 94.; Vogt S., Di Rienzo F., Collet C., Collins A., Guillot A. Multiple roles of motor imagery during action observation // Front. Hum. Neurosci. 2013. Vol. 7: 807.; Reynolds C., Osuagwu B.A., Vuckovic A. Influence of motor imagination on cortical activation during functional electrical stimulation // Clin. Neurophysiol. 2015. Vol. 126. N 7. P. 1360– 1369.; Kurumadani H., Yoshimura M., Fukae A., Onishi K., Hayashi J., Shinomiya R., Sunagawa T. Long-term disuse of the hand affects motor imagery ability in patients with complete brachial plexus palsy // Neuroreport. 2019. Vol. 30. N 6. P. 452– 456.; Saito K., Yamaguchi T., Yoshida N., Tanabe S., Kondo K., Sugawara K. Combined effect of motor imagery and peripheral nerve electrical stimulation on the motor cortex // Exp. Brain Res. 2013. Vol. 227. N. 3. P. 333–342.; Kaplan A., Vasilyev A., Liburkina S., Yakovlev L. Poor BCI performers still could benefit from motor imagery training // Foundations of augmented cognition: neuroergonomics and operational neuroscience. AC 2016. Lecture Notes in Computer Science, vol. 9743 / Eds. D. Schmorrow and C. Fidopiastis. Cham: Springer, 2016. P. 46–56; Vasilyev A., Liburkina S., Yakovlev L., Perepelkina O., Kaplan A. Assessing motor imagery in brain-computer interface training: psychological and neurophysiological correlates // Neuropsychologia. 2017. Vol. 97. P. 56–65.; Liburkina S.P., Vasilyev A.N., Yakovlev L.V., Gordleeva S.Y., Kaplan A.Y. A motor imagerybased brain–computer interface with vibrotactile stimuli // Neurosci. Behav. Physiol. 2018. Vol. 48. N 9. P. 1067–1077.; Васильев А.Н., Либуркина С.П., Каплан А.Я. Латерализация паттернов ЭЭГ у человека при представлении движений руками в интерфейсе мозг–компьютер // Ж. высш. нервн. деят. им. И.П. Павлова. 2016. Т. 66. № 3. С. 302.; Schalk G., McFarland D.J., Hinterberger T., Birbaumer N., Wolpaw J.R. BCI2000: a generalpurpose brain-computer interface (BCI) system // IEEE T. Biomed. Eng. 2004. Vol. 51. N 6. P. 1034–1043.; Hashimoto R., Rothwell J.C. Dynamic changes in corticospinal excitability during motor imagery // Exp. Brain Res. 1999. Vol. 125. N 1. P. 75–81.; Mokienko O., Chervyakov A., Kulikova S., Bobrov P., Chernikova L., Frolov A., Piradov M. Increased motor cortex excitability during motor imagery in brain-computer interface trained subjects // Front. Comput. Neurosci. 2013. Vol. 7: 168.

  3. 3
  4. 4
  5. 5
    Academic Journal

    Source: Neuromuscular Diseases; № 2 (2014); 36-41 ; Нервно-мышечные болезни; № 2 (2014); 36-41 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2014-0-2

    File Description: application/pdf

    Relation: https://nmb.abvpress.ru/jour/article/view/21/17; Diab M., Smith A.R., Kuklo T.R. et al. The Spinal Deformity Study Group. Neural complications in the surgical treatment of adolescent idiopathic scoliosis. Spine 2007;32:2759–63.; Qiu Y., Wang S., Wang B. et al. Incidence, risk factors of neurological deficits of surgical correction for scoliosis. Analysis of 1373 cases at one Chinese institution. Spine. 2008;33:519–26.; Vauzelle C., Stagnara P., Jouvinroux P. Functional monitoring of spinal cord activity during spinal surgery. Clin Orthop 1973;93:173–8.; Mostegl A., Bauer R., Eichenbauer M. Intraoperative somatosensory potential monitoring: a clinical analysis of 127 surgical procedures. Spine 1988;13(4): 396–400.; Tamaki T., Noguchi T., Takano H. et al. Spinal cord monitoring as a clinical utilization of the spinal evoked potential. Clin Orthop Relat Res 1984;184:58–64.; Padberg A.M., Wilson-Holden T.J., Lenke L.G., Bridwell K.H. Somatosensory and motor evoked potential monitoring without a wakeup test during idiopathic scoliosis surgery. Spine 1992;23:1392–1400.; Nuwer M.R., Dawson E.G., Carlson L.G. et al. Somatosensory evoked potential spinal cord monitoring reduces neurologic deficits after scoliosis surgery: results of a large multicenter survey. Electroencephalogr Clin Neurophysiol 1995;96:6–11.; Position statement: Somatosensory evoked potential monitoring of neurologic spinal cord function during spinal surgery. Scoliosis Research Society. 1992.; Luk K.D.K., Hu Y., Wong Y.W., Cheung K.M.C. Evaluation of various evoked potenial techniques for spinal cord monitoring during scoliosis surgery. Spine 2001;26(16):1772–7.; Sutter M., Deletis V., Dvorak J. et al. Current opinions and recommendations on multimodal intraoperative monitoring during spine surgeries. Eur Spine J 2007;16(2):232–7.; Pajewski T.N., Arlet V., Phillips L.H. Current approach on spinal cord monitoring: the point of view of the neurologist, the anesthesiologist and the spine surgeon. Eur Spine J 2007;16(2):115–29.; Schwartz D.M., Sestokas A.K. A systemsbased algorithmic approach to intraoperative neurophysiological monitoring during spinal surgery. Semin Spine Surg 2002;14:136–45.; https://nmb.abvpress.ru/jour/article/view/21

  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
    Electronic Resource

    Additional Titles: Опыт применения интраоперационного нейрофизиологического мониторирования при оперативных вмешательствах на позвоночнике

    Source: Pediatric Traumatology, Orthopaedics and Reconstructive Surgery; Vol 4, No 4 (2016); 33-40; Ортопедия, травматология и восстановительная хирургия детского возраста; Vol 4, No 4 (2016); 33-40; 2410-8731; 2309-3994; 10.17816/PTORS44