Εμφανίζονται 1 - 20 Αποτελέσματα από 89 για την αναζήτηση '"морозоустойчивость"', χρόνος αναζήτησης: 0,70δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
    Academic Journal

    Συνεισφορές: The work was supported by the BRFFR (contract no. Б20ГРМГ-001). The authors also express their sincere gratitude to Ph. D. (Biology), Associate Professor S. I. Gordey – Head of the Department of winter grain crops in RUE “Scientific and Practical Center of the National Academy of Sciences of Belarus for Agriculture” for providing seeds of winter wheat varieties, Работа выполнена при финансовой поддержке БРФФИ (договор № Б20ГРМГ-001). Авторы также выражают благодарность канд. биол. наук, доценту С. И. Гордею – руководителю отдела озимых зерновых культур в РУП «Научно-практический центр НАН Беларуси по земледелию» за предоставление семян сортов озимой пшеницы

    Πηγή: Doklady of the National Academy of Sciences of Belarus; Том 68, № 1 (2024); 46-54 ; Доклады Национальной академии наук Беларуси; Том 68, № 1 (2024); 46-54 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2024-68-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/1174/1175; Peer, W. A. Flavonoids as Signal Molecules: Targets of Flavonoid Action / W. A. Peer, A. S. Murphy // The Science of Flavonoids. – 2008. – P. 239–268. https://doi.org/10.1007/978-0-387-28822-2_9; Zhao, H. J. Protective effects of exogenous antioxidants and phenolic compounds on photosynthesis of wheat leaves under high irradiance and oxidative stress / H. J. Zhao, Q. Zou // Photosynthetica. – 2002. – Vol. 40, N 4. – P. 523–527. https://doi.org/10.1023/a:1024339716382; 5-Aminolevulinic acid affects fruit coloration, growth, and nutrition quality of Litchi chinensis Sonn. cv. Feizixiao in Hainan, tropical China / S. Feng [et al.] // Sci. Hortic. – 2015. – Vol. 193. – P. 188–194. https://doi.org/10.1016/j.scienta.2015.07.010; Zhang, Zh. Effects of 5-aminolevulinic acid on Anthocyanin synthesis in Vitis Vinifera ‘Crimson Seedless’ grapes at the transcriptomics level / Zh. Zhang // J. Horticultural Sci. Biotechnol. – 2021. – Vol. 96, N 6. – P. 797–807. https://doi.org/10.1080/14620316.2021.1930589; Молекулярно-генетические механизмы регуляции дигидрофлавонол редуктазы и транскрипционного фактора HY5 экзогенной 5-аминолевулиновой кислотой в проростках озимого рапса / Н. Г. Аверина [и др.] // Докл. Нац. акад. наук Беларуси. – 2020. – Т. 64, № 3. – С. 317–324. https://doi.org/10.29235/1561-8323-2020-64-3-317-324; Молекулярно-генетические механизмы формирования окраски плодов и семян растений / В. Ф. Аджиева [и др.] // Вавиловский журн. генетики и селекции. – 2015. – Т. 19, № 5. – С. 561–573. https://doi.org/10.18699/vj15.073; Shoeva, O. Yu. Anthocyanins participate in the protection of wheat seedlings against cadmium stress / O. Yu. Shoeva, E. K. Khlestkina // Cereal Research Communications. – 2018. – Vol. 46, N 2. – P. 242–252. https://doi.org/10.1556/0806.45.2017.070; Anthocyanins participate in protection of wheat seedlings from osmotic stress / O. Yu. Shoeva [et al.] // Cereal Research Communications. – 2017. – Vol. 45, N 1. – P. 47–56. https://doi.org/10.1556/0806.44.2016.044; Mabry, T. J. The systematic identification of flavonoids / T. J. Mabry, K. R. Markham, M. B. Thomas. – Berlin: Heidelberg, 1970. – P. 261–266. https://doi.org/10.1007/978-3-642-88458-0; Шлык, А. А. О спектрофотометрическом определении хлорофиллов а и b / А. А. Шлык // Биохимия. – 1968. – Т. 33, вып. 2. – С. 275–285.; Misra, N. Effect of Salt Stress on Proline Metabolism in Two High Yielding Genotypes of Green Gram / N. Misra, A. K. Gupta // Plant Sci. – 2005. – Vol. 169, N 2. – P. 331–339. https://doi.org/10.1016/j.plantsci.2005.02.013; Kruse E., Mock H.-P., Grimm B. Coproporphyrinogen III oxidase from barley and tobacco – sequence analysis and initial expression studies / E. Kruse, H.-P. Mock, B. Grimm // Planta. – 1995. – Vol. 196. – P. 796–803. https://doi.org/10.1007/bf01106776; Shemin, D. Delta-aminolevulinic acid degydrase from Rhodopseudomonas sphaeroides / D. Shemin // Methods in Enzymology / eds. S. P. Colowick, N. O. Koplan. – Academic Press, 1962. – Vol. 5. – P. 883–884. https://doi.org/10.1016/s00766879(62)05333-1; Аверина, Н. Г. Метаболические перестройки и регуляция биосинтеза антоцианов в растениях озимого рапса (Brassica napus L.) под действием 5-аминолевулиновой кислоты / Н. Г. Аверина, А. В. Емельянова // Сб. тез. конф. «Молекулярные, мембранные и клеточные основы функционирования биосистем». – Минск, 2022. – С. 49.; The genomes uncoupled – dependent signaling pathway coordinates plastid biogenesis with the synthesis of anthocyanins / A. S. Richter [et al.] // Phil. Trans. R. Soc. B. – 2020. – Vol. 375, N 1801. – P. 1–13. https://doi.org/10.1098/rstb.2019.0403; https://doklady.belnauka.by/jour/article/view/1174

  4. 4
    Academic Journal

    Συγγραφείς: Малюков, Н. А.

    Πηγή: Проблемы изучения растительного покрова Сибири : труды VIII Международной научной конференции, посвященной 140-летию Гербария имени П. Н. Крылова, 145-летию Сибирского ботанического сада и 175-летию со дня рождения П. Н. Крылова (Томск, 24-27 сентября 2025 г.). Томск, 2025. С. 139-141

    Περιγραφή αρχείου: application/pdf

    Relation: http_koha001267228. Проблемы изучения растительного покрова Сибири : труды VIII Международной научной конференции, посвященной 140-летию Гербария имени П. Н. Крылова, 145-летию Сибирского ботанического сада и 175-летию со дня рождения П. Н. Крылова (Томск, 24-27 сентября 2025 г.); koha:001268120; https://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001268120

  5. 5
    Academic Journal

    Πηγή: Odesa National University Herald. Biology; Vol. 9 No. 1 (2004); 120-125
    Вестник Одесского национального университета. Биология; Том 9 № 1 (2004); 120-125
    Вісник Одеського національного університету. Біологія; Том 9 № 1 (2004); 120-125

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: http://visbio.onu.edu.ua/article/view/263208

  6. 6
    Academic Journal
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
    Academic Journal

    Συνεισφορές: This work was supported by the Russian Science Foundation, project 18-76-10001.

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 23, № 8 (2019); 958-963 ; Вавиловский журнал генетики и селекции; Том 23, № 8 (2019); 958-963 ; 2500-3259

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/2388/1320; Achard P., Gong F., Cheminant S., Alioua M., Hedden P., Genschik P. The cold­inducible CBF1 factor­dependent signaling pathway modulates the accumulation of the growth­repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell. 2008;20:2117­2129.; Ban Q., Wang X., Pan C., Wang Y., Kong L., Jiang H., Xu Y., Wang W., Pan Y., Li Y., Jiang Ch. Comparative analysis of the response and gene regulation in cold resistant and susceptible tea plants. PLoS One. 2017;12(12):e0188514. DOI 10.1371/journal.pone.0188514.; Cao H., Wang L., Yue C., Hao X., Wang X., Yang Y. Isolation and expression analysis of 18 CsbZIP genes implicated in abiotic stress responses in the tea plant (Camellia sinensis). Plant Physiol. Biochem. 2015;97:432­442.; Chen J., Gao T., Wan S., Zhang Y., Yang J., Yu Y., Wang W. Genome­wide identification, classification and expression analysis of the HSP gene superfamily in tea plant (Camellia sinensis). Int. J. Mol. Sci. 2018;19:2633. DOI 10.3390/ijms19092633.; Chinnusamy V., Ohta M., Kanrar S., Lee B.H., Hong X., Agarwal M., Zhu J.K. ICE1: a regulator of cold­induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev. 2003;17:1043­1054.; Ding Z., Li C., Shi H., Wang H., Wang Y. Pattern of CsICE1 expression under cold or drought treatment and functional verification through analysis of transgenic Arabidopsis. Genet. Mol. Res. 2015;14:11259­11270.; El Kayal W., Navarro M., Marque G., Keller G., Marque C., Teulieres C. Expression profile of CBF­like transcriptional factor genes from Eucalyptus in response to cold. J. Exp. Bot. 2006;57:2455­2469.; Eriksson M.E., Webb A.A.R. Plant cell responses to cold are all about timing. Curr. Opin. Plant Biol. 2011;14:731­737.; Gao S.Q., Chen M., Xu Z.S. The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants. Plant Mol. Biol. 2011;75:537­553.; Hua J. Defining roles of tandemly arrayed CBF genes in freezing tolerance with new genome editing tools. New Phytol. 2016;212: 301­302.; Jia Y., Ding Y., Shi Y., Zhang X., Gong Z., Yang S. The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis. New Phytol. 2016;212:345­353.; Kargiotidou A., Deli D., Galanopoulou D., Tsaftaris A., Farmaki T. Low temperature and light regulate delta 12 fatty acid desaturases (FAD2) at a transcriptional level in cotton (Gossypium hirsutum). J. Exp. Bot. 2008;59:2043­2056. DOI 10.1093/jxb/ern065.; Kim J., Kang J.Y., Kim S.Y. Over­expression of a transcription factor regulating ABA­responsive gene expression confers multiple stress tolerance. Plant Biotechnol. J. 2004;2:459­466.; Kitashiba H., Ishizaka T., Isuzugawa K., Nishimura K., Suzuki T. Expression of a sweet cherry DREB1/CBF ortholog in Arabidopsis confers salt and freezing tolerance. J. Plant Physiol. 2004;161: 1171­1176.; Li L., Lu X., Ma H., Lyu D. Jasmonic acid regulates the ascorbate–glutathione cycle in Malus baccata Borkh. roots under low root­zone temperature. Acta Physiol. Plant. 2017;39:174.; Li Q., Lei S., Du K., Li L., Pang X., Wang Zh., Wei M., Fu S., Hu L., Xu L. RNA­seq based transcriptomic analysis uncovers α­linolenic acid and jasmonic acid biosynthesis pathways respond to cold acclimation in Camellia japonica. Sci. Rep. 2016;7(6):36463. DOI 10.1038/srep36463.; Li W.Q., Li M.Y., Zhang W.H., Welti R., Wang X.M. The plasma membrane­bound phospholipase D delta enhances freezing tolerance in Аrabidopsis thaliana. Nat. Biotechnol. 2004;22:427­433. DOI 10.1038/nbt949.; Li W.Q., Wang R.P., Li M.Y., Li L.X., Wang C.M., Welti R., Wang X. Differential degradation of extraplastidic and plastidic lipids during freezing and post­freezing recovery in Arabidopsis thaliana. J. Biol. Chem. 2008;283:461­468. DOI 10.1074/jbc.M706692200.; Li Y.Y., Zhou Y.Q., Xie X.F., Shu X.T., Deng W.W., Jiang C.J. Cloning and transcription analysis of dehydrin gene (CsDHN) in tea plant (Camellia sinensis). J. Agric. Biotechnol. 2016;24:332­341.; Megha S., Basu U., Kav N.N.V. Regulation of low temperature stress in plants by microRNAs. Plant Cell Environ. 2018;41:1­15.; Park S., Lee C.M., Doherty C.J., Gilmour S.J., Kim Y., Thomashow M.F. Regulation of the Arabidopsis CBF regulon by a complex low­temperature regulatory network. Plant J. 2015;82:193­207.; Paul A., Kumar S. Dehydrin2 is a stress­inducible, whereas Dehyd rin1 is constitutively expressed but up­regulated gene under varied cues in tea [Camellia sinensis (L.) O. Kuntze]. Mol. Biol. Rep. 2013;40: 3859­3863. DOI 10.1007/s11033­012­2466­2.; Pennycooke J.C., Cheng H., Stockinger E.J. Comparative genomic sequence and expression analyses of Medicago truncatula and alfalfa subspecies falcata COLD-ACCLIMATION-SPECIFIC genes. Plant Physiol. 2008;146:1242­1254. DOI 10.1104/pp.107.108779.; Sharabi­Schwager M., Samach A., Porat R. Overexpression of the CBF2 transcriptional activator in Arabidopsis counteracts hormone activation of leaf senescence. Plant Signal Behav. 2010;5(3):296­309.; Shen W., Li H., Teng R., Wang Y., Wang W., Zhuang J. Genomic and transcriptomic analyses of HD-Zip family transcription factors and their responses to abiotic stress in tea plant (Camellia sinensis). Genomics. 2018. DOI 10.1016/j.ygeno.2018.07.009.; Thomashow M.F. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999;50:571­599.; Vogel J.T., Zarka D.G., Van Buskirk H.A., Fowler S.G., Thomashow M.F. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J. 2005;41:195­211.; Vyas D., Kumar S. Tea (Camellia sinensis (L.) O. Kuntze) clone with lower period of winter dormancy exhibits lesser cellular damage in response to low temperature. Plant Physiol. Biochem. 2005;43: 383­388.; Wang L., Cao H., Qian W., Yao L., Hao X., Li N., Yang Y., Wang X. Identification of a novel bZIP transcription factor in Camellia sinensis as a negative regulator of freezing tolerance in transgenic Arabidopsis. Ann. Bot. 2017;119:1195­1209.; Wang L., Li X., Zhao Q., Jing Sh., Chen Sh., Yuan H. Identification of genes induced in response to low­temperature treatment in tea leaves. Plant Mol. Biol. Rep. 2009;27:257­265. DOI 10.1007/s11105­008­0079­7.; Wang W., Gao T., Chen J., Yang J., Huang H., Yu Y. The late embryogenesis abundant gene family in tea plant (Camellia sinensis): Genome­wide characterization and expression analysis in response to cold and dehydration stress. Plant Physiol. Biochem. 2018;135:277­286. DOI 10.1016/j.plaphy.2018.12.009.; Wang Y., Jiang C.J., Li Y.Y., Wei C.L., Deng W.W. CsICE1 and CsCBF1: two transcription factors involved in cold responses in Camellia sinensis. Plant Cell Rep. 2012;31:27­34. DOI 10.1007/s00299­011­1136­5.; Wang Y.­X., Liu Z.­W., Wu Z.­J., Li H., Zhuang J. Transcriptome­wide identification and expression analysis of the NAC gene family in tea plant [Camellia sinensis (L.) O. Kuntze] PLoS One. 2016a; 11(11):e0166727. DOI 10.1371/journal.pone.0166727.; Wang Y., Shu Z., Wang W., Jiang X., Li D., Pan J., Li X. CsWRKY2, a novel WRKY gene from Camellia sinensis, is involved in cold and drought stress responses. Biol. Plant. 2016b;60:443­451. DOI 10.1007/s10535­016­0618­2.; Welling A., Palva E.T. Molecular control of cold acclimation in trees. Physiol. Plant. 2006;127:167­181.; Wu Zh., Li X., Liu Zh., Li H., Wang Y., Zhuang J. Transcriptome­based discovery of AP2/ERF transcription factors related to temperature stress in tea plant (Camellia sinensis) Funct. Integr. Genomics. 2015; 15(6):741­752. DOI 10.1007/s10142­015­0457­9.; Yin Y., Ma Q., Zhu Z., Cui Q., Chen Ch., Chen X., Fang W., Li X. Functional analysis of CsCBF3 transcription factor in tea plant (Camellia sinensis) under cold stress. Plant Growth Regul. 2016;80:335. DOI 10.1007/s10725­016­0172­0.; Yuan H.Y., Zhu X.P., Zeng W., Yang H.M., Sun N., Xie S.X., Cheng L. Isolation and transcription activation analysis of the CsCBF1 gene from Camellia sinensis. Acta Botanica Boreali­Occidentalia Sinica. 2013;110:147­151.; Yue C., Cao H.L., Wang L., Zhou Y.H., Huang Y.T., Hao X.Y., Wang Y.C., Wang B., Yang Y.J., Wang X.C. Effects of CA on sugar metabolism and sugar­related gene expression in tea plant during the winter season. Plant Mol. Biol. 2015;88:591­608. DOI 10.1007/s11103­015­0345­7.; Zhang L.L., Zhao M.G., Tian Q.Y., Zhang W.H. Comparative studies on tolerance of Medicago truncatula and Medicago falcata to freezing. Planta. 2011;234:445­457. DOI 10.1007/s00425­011­1416­x.; Zhao Ch., Zhang Zh., Xie Sh., Si T., Li Y., Zhu J. Mutational evidence for the critical role of CBF transcription factors in cold acclimation in Arabidopsis. Plant Physiol. 2016;171:2744­2759.; Zhao Ch., Zhu J. The broad roles of CBF genes: From development to abiotic stress. Plant Signal. Behav. 2016;11:8. DOI 10.1080/15592324.2016.1215794.; Zheng C., Zhao L., Wang Y., Shen J., Zhang Y., Jia S., Li Y., Ding Z. Integrated RNA­Seq and sRNA­Seq analysis identifies chilling and freezing responsive key molecular players and pathways in tea plant (Camellia sinensis). PLoS One. 2015;10(4):e0125031. DOI 10.1371/journal.pone.0125031.; Zhu J., Wang X., Guo L., Xu Q., Zhao S., Li F., Yan X., Liu Sh., Wei Ch. Characterization and alternative splicing profiles of the lipoxygenase gene family in tea plant (Camellia sinensis). Plant Cell Physiol. 2018;59(9):1765­1781. DOI 10.1093/pcp/pcy091.; https://vavilov.elpub.ru/jour/article/view/2388

  15. 15
    Academic Journal

    Συνεισφορές: This work was supported by the Russian Foundation for Basic Research and Krasnodar Kray Ministry of Education, Science, and Youth, project r_mol_a 19-416-233033. Plant material was provided under project 0683-2019-0002 for gene pool preservation, Ministry of Science and Higher Education of the Russian Federation.

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 24, № 6 (2020); 598-604 ; Вавиловский журнал генетики и селекции; Том 24, № 6 (2020); 598-604 ; 2500-3259 ; 10.18699/VJ20.647

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/2774/1420; Гвасалия М.В. Спонтанные и индуцированные сорта и формы чая (Camellia sinensis (L.) Kuntze) во влажных субтропиках России и Абхазии, перспективы их размножения и сохранения в культуре in vitro. Краснодар, 2015. [Gvasaliya M.V. Spontaneous and Induced Cultivars and Forms of Tea (Camellia sinensis (L.) Kuntze) in Humid Subtropics of Russia and Georgia: Prospects for their Cultivation and in vitro Conservation. Krasnodar, 2015. (in Russian)]; Самарина Л.С., Малюкова Л.С., Гвасалия М.В., Ефремов А.М., Маляровская В.И., Лошкарёва С.В., Туов М.Т. Генетические механизмы акклиматизации чайного растения (Camellia sinensis (L.) Kuntze) к холодовому стрессу. Вавиловский журнал генетики и селекции. 2019;23(8):958­963. DOI 10.18699/VJ19.572. [Samarina L.S., Malyukova L.S., Gvasaliya M.V., Efremov A.M., Malyarovskaya V.I., Loshkareva S.V., Tuov M.T. Genes underlying cold acclimation in the tea plant (Camellia sinensis (L.) Kuntze). Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2019;23(8):958­963. DOI 10.18699/VJ19.572. (in Russian)]; Туов М.Т., Рындин А.В. Итоги изучения перспективных гибридов чая в субтропиках Российской Федерации. Субтропическое и декоративное садоводство. 2011;44:101­109. [Tuov M.T., Ryndin A.V. The results of studying prospective hybrids of tea plant in subtropics of the Russian Federation. Subtropicheskoye i Dekorativnoye Sadovodstvo = Subtropical and Ornamental Horticulture. 2011;44:101­109. (in Russian)]; Bajji M., Kinet J.­M., Lutts S. The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regul. 2002;36:61­70. https://doi.org/10.1023/A:1014732714549.; Ban Q., Wang X., Pan C., Wang Y., Kong L., Jiang H., Xu Y., Wang W., Pan Y., Li Y., Jiang Ch. Comparative analysis of the response and gene regulation in cold resistant and susceptible tea plants. PLoS One. 2017;12(12):e0188514. DOI 10.1371/journal.pone.0188514.; Chen J., Gao T., Wan S., Zhang Y., Yang J., Yu Y., Wang W. Genomewide identification, classification and expression analysis of the HSP gene superfamily in tea plant (Camellia sinensis). Int. J. Mol. Sci. 2018;19:2633. DOI 10.3390/ijms19092633.; Cui X., Wang Y.­X., Liu Z.­W., Wang W.­L., Li H., Zhuang J. Transcriptome­wide identification and expression profile analysis of the bHLH family genes in Camellia sinensis. Funct. Integr. Genomics. 2018;18:489­503. https://doi.org/10.1007/s10142-018-0608-x.; Dubouzet J.G., Sakuma Y., Ito Y., Kasuga M., Dubouzet E.G., Miura S., Seki M., Shinozaki K., Yamaguchi­Shinozaki K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought­, high­salt­ and coldresponsive gene expression. Plant J. 2003;33:751e763.; Hanin M., Brini F., Ebel Ch., Toda Y., Takeda Sh., Masmoudi K. Plant dehydrins and stress tolerance. Plant Signal. Behav. 2011;6(10): 1503­1509. DOI 10.4161/psb.6.10.17088.; Hao X., Horvath D.P., Chao W.S., Yang Y., Wang X., Xiao B. Identification and evaluation of reliable reference genes for quantitative real­time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze). Int. J. Mol. Sci. 2014;15:22155­22172. DOI 10.3390/ijms151 222155.; Hao X., Wang L., Zeng J., Yang Y., Wang X. Response and adaptation mechanisms of tea plant to low­temperature stress. In: Han W.Y., Li X., Ahammed G. (Eds.) Stress Physiology of Tea in the Face of Climate Change. Singapore: Springer, 2018:39­61. https://doi.org/10.1007/978-981-13-2140-5_3.; Li L., Lu X., Ma H., Lyu D. Jasmonic acid regulates the ascorbateglutathione cycle in Malus baccata Borkh. roots under low rootzone temperature. Acta Physiol. Plant. 2017;39:174.; Li Y., Wang X., Ban Q., Zhu X., Jiang Ch., Wei Ch., Bennetzen J.L. Comparative transcriptomic analysis reveals gene expression associated with cold adaptation in the tea plant Camellia sinensis. BMC Genomics. 2019;20(1):624. DOI 10.1186/s12864-019-5988-3.; Megha S., Basu U., Kav N.N.V. Regulation of low temperature stress in plants by microRNAs. Plant Cell Environ. 2018;41:1­15.; Morsy M.R., Almutairi A.M., Gibbons J., Yun S.J., de Los Reyes B.G. The OsLti6 genes encoding low­molecular­weight membrane proteins are differentially expressed in rice cultivars with contrasting sensitivity to low temperature. Gene. 2005;344:171e180.; Shen W., Li H., Teng R., Wang Y., Wang W., Zhuang J. Genomic and transcriptomic analyses of HD-Zip family transcription factors and their responses to abiotic stress in tea plant (Camellia sinensis). Genomics. 2018. DOI 10.1016/j.ygeno.2018.07.009.; Somerville C. Direct tests of the role of membrane lipid composition in low temperature­induced photoinhibition and chilling sensitivity in plants and cyanobacteria. Proc. Natl. Acad. Sci. USA. 1995; 92:6215e6218.; Szekely G., Abraham E., Cseplo A., Rigó G., Zsigmond L., Csiszár J., Ayaydin F., Strizhov N., Jásik J., Schmelzer E., Koncz C., Szabados L. Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J. 2008;53(1):11­28. https://doi.org/10.1111/j.1365-313X.2007.03318.x.; Thomashow M.F. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999;50:571­599.; Wang Y., Jiang C.J., Li Y.Y., Wei C.L., Deng W.W. CsICE1 and CsCBF1: two transcription factors involved in cold responses in Camellia sinensis. Plant Cell Rep. 2012;31:27­34. DOI 10.1007/s00299-011-1136-5.; Wang Y.­X., Liu Z.­W., Wu Z.­J., Li H., Zhuang J. Transcriptomewide identification and expression analysis of the NAC gene family in tea plant [Camellia sinensis (L.) O. Kuntze]. PLoS One. 2016a; 11(11):e0166727. DOI 10.1371/journal.pone.0166727.; Wang Y., Shu Z., Wang W., Jiang X., Li D., Pan J., Li X. CsWRKY2, a novel WRKY gene from Camellia sinensis, is involved in cold and drought stress responses. Biol. Plant. 2016b;60:443­451. DOI 10.1007/s10535-016-0618-2.; Yuan H.Y., Zhu X.P., Zeng W., Yang H.M., Sun N., Xie S.X., Cheng L. Isolation and transcription activation analysis of the CsCBF1 gene from Camellia sinensis. Acta Botanica Boreali-Occidentalia Sinica. 2013;110:147­151.; Yue C., Cao H.L., Wang L., Zhou Y.H., Huang Y.T., Hao X.Y., Wang Y.C., Wang B., Yang Y.J., Wang X.C. Effects of CA on sugar metabolism and sugar­related gene expression in tea plant during the winter season. Plant Mol. Biol. 2015;88:591­608. DOI 10.1007/s11103-015-0345-7.; Zhu J., Wang X., Guo L., Xu Q., Zhao S., Li F., Yan X., Liu Sh., Wei Ch. Characterization and alternative splicing profiles of the lipoxygenase gene family in tea plant (Camellia sinensis). Plant Cell Physiol. 2018;59(9):1765­1781. DOI 10.1093/pcp/pcy091.; https://vavilov.elpub.ru/jour/article/view/2774

  16. 16
  17. 17
  18. 18
  19. 19
    Academic Journal

    Συνεισφορές: Томский государственный университет НИИ биологии и биофизики Научные подразделения НИИ ББ

    Πηγή: International journal of environmental studies. 2014. Vol. 71, № 5. P. 749-754

    Περιγραφή αρχείου: application/pdf

  20. 20
    Academic Journal

    Πηγή: Scientific Bulletin of UNFU; Том 26 № 1 (2016): Науковий вісник НЛТУ України; 133-139 ; Научный вестник НЛТУ Украины; Том 26 № 1 (2016): Научный Вестник НЛТУ Украины; 133-139 ; Scientific Bulletin of UNFU; Vol 26 No 1 (2016): Scientific Bulletin of UNFU; 133-139 ; 2519-2477 ; 1994-7836 ; 10.15421/402601