Εμφανίζονται 1 - 20 Αποτελέσματα από 456 για την αναζήτηση '"моноклональные антитела"', χρόνος αναζήτησης: 0,77δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
    Academic Journal

    Πηγή: IX Всероссийская Пущинская конференция «Биохимия, физиология и биосферная роль микроорганизмов».

  5. 5
    Academic Journal

    Πηγή: Школа-конференция молодых ученых, аспирантов и студентов «Генетические технологии в микробиологии и микробное разнообразие».

  6. 6
  7. 7
    Academic Journal

    Πηγή: Safety and Risk of Pharmacotherapy; Том 13, № 3 (2025); 313-323 ; Безопасность и риск фармакотерапии; Том 13, № 3 (2025); 313-323 ; 2619-1164 ; 2312-7821 ; 10.30895/2312-7821-2025-13-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.risksafety.ru/jour/article/view/481/1366; https://www.risksafety.ru/jour/article/view/481/1370; https://www.risksafety.ru/jour/article/view/481/1379; https://www.risksafety.ru/jour/article/view/481/1382; https://www.risksafety.ru/jour/article/view/481/1386; https://www.risksafety.ru/jour/article/view/481/1388; https://www.risksafety.ru/jour/article/view/481/1397; https://www.risksafety.ru/jour/article/view/481/1407; https://www.risksafety.ru/jour/article/view/481/1447; https://www.risksafety.ru/jour/article/view/481/1561; https://www.risksafety.ru/jour/article/downloadSuppFile/481/602; https://www.risksafety.ru/jour/article/downloadSuppFile/481/655; Doña I, Torres MJ, Celik G, Phillips E, Tanno LK, Castells M. Changing patterns in the epidemiology of drug allergy. Allergy. 2024;79(3):613–28. https://doi.org/10.1111/all.15970; Kong X, Tao X, Li L, Zhao X, Ren J, Yang S, et al. Global trends and partial forecast of adverse effects of medical treatment from 1990 to 2019: An epidemiological analysis based on the Global Burden of Disease Study 2019. BMC Public Health. 2024;24(1):295. https://doi.org/10.1186/s12889-023-17560-0; Durand M, Castelli C, Roux-Marson C, Kinowski JM, Leguelinel-Blache G. Evaluating the costs of adverse drug events in hospitalized patients: A systematic review. Health Econ Rev. 2024;14(1):11. https://doi.org/10.1186/s13561-024-00481-y; Johansson ML, Hägg S, Wallerstedt SM. Impact of information letters on the reporting rate of adverse drug reactions and the quality of the reports: A randomized controlled study. BMC Clin Pharmacol. 2011;11:14. https://doi.org/10.1186/1472-6904-11-14; Журавлева МВ, Сереброва СЮ, Кузнецова ЕВ, Каменева ТР, Власова АВ, Прокофьев АБ, Демченкова ЕЮ. Совершенствование системы фармаконадзора в медицинских организациях как возможность повышения качества фармакотерапии. Безопасность и риск фармакотерапии. 2025;13(1): 94–107. https://doi.org/10.30895/2312-7821-2025-13-1-94-107; Moraes SM, Ferrari TCA, Beleigoli A. The accuracy of the Glo­ bal Trigger Tool is higher for the identification of adverse events of greater harm: A diagnostic test study. Int J Qual Health Care. 2023;34(1):mzad005. https://doi.org/10.1093/intqhc/mzad005; Kiechle ES, McKenna CM, Carter H, Zeymo A, Gelfand BW, DeGeorge LM, et al. Medication allergy and adverse drug reaction documentation discrepancies in an urban, academic emergency department. J Med Toxicol. 2018;14(4):272–7. https://doi.org/10.1007/s13181-018-0671-7; Arnold A, Coventry LL, Foster MJ, Koplin JJ, Lucas M. The burden of self-reported antibiotic allergies in health care and how to address it: A systematic review of the evidence. J Allergy Clin Immunol Pract. 2023;11(10):3133-3145.e3. https://doi.org/10.1016/j.jaip.2023.06.025; Park CS, Yang MS, Kang DY, Park HJ, Park SY, Nam YH, et al. Drug Allergy Work Group of KAAACI. Risk factors of beta-lactam anaphylaxis in Korea: A 6-year multicenter retrospective adult case-control study. World Allergy Organ J. 2021;14(9):100580. https://doi.org/10.1016/j.waojou.2021.100580; Miller MA. Gender-based differences in the toxicity of pharmaceuticals — the Food and Drug Administration’s perspective. Int J Toxicol. 2001;20(3):149–52. https://doi.org/10.1080/109158101317097728; Thong BY, Tan TC. Epidemiology and risk factors for drug allergy. Br J Clin Pharmacol. 2011;71(5):684–700. https://doi.org/10.1111/j.1365-2125; Macy E. Addressing the epidemic of antibiotic “allergy” over-diagnosis. Ann Allergy Asthma Immunol. 2020;124(6):550–7. https://doi.org/10.1016/j.anai.2019.12.016; Скрябина АА, Терешкин НА, Никифоров ВВ, Каширин ВИ, Антипят НА, Застрожин МС, Сычев ДА. Применение метода глобальных триггеров для выявления нежелательных лекарственных реакций у пациентов стационара инфекционного профиля. Медицина. 2023;11(2):42–55. https://doi.org/10.29234/2308-9113-2023-11-2-42-55; Pandya AD, Patel K, Rana D, Gupta SD, Malhotra SD, Patel P. Global Trigger Tool: Proficient adverse drug reaction autodetection method in critical care patient units. Indian J Crit Care Med. 2020;24(3):172–8. https://doi.org/10.5005/jp-journals-10071-23367; Pallardy M, Bechara R, Whritenour J, Mitchell-Ryan S, Herzyk D, Lebrec H, et al. Drug hypersensitivity reactions: Review of the state of the science for prediction and diagnosis. Toxicol Sci. 2024;200(1):11–30. https://doi.org/10.1093/toxsci/kfae046; Rodríguez-Pérez R, de las Vecillas L, Cabañas R, Bellón T. Tools for etiologic diagnosis of drug-induced allergic conditions. Int J Mole­ cular Sciences. 2023;24(16):12577. https://doi.org/10.3390/ijms241612577; Lee EY, Copaescu AM, Trubiano JA, Phillips EJ, Wolfson AR, Ramsey A. Drug allergy in women. J Allergy Clin Immunol Pract. 2023;11(12):3615–23. https://doi.org/10.1016/j.jaip.2023.09.031; Сабанцева ЕГ, Иванова ЕВ, Рабинович ИМ. Проявления аллергических реакций, возникающих на стоматологическом приеме. Стоматология. 2021;100(6–2):29–32. https://doi.org/10.17116/stomat202110006229; de Vries ST, Denig P, Ekhart C, Burgers JS, Kleefstra N, Mol PGM, et al. Sex differences in adverse drug reactions reported to the National Pharmacovigilance Centre in the Netherlands: An explorative observational study. Br J Clin Pharmacol. 2019;85(7):1507–15. https://doi.org/10.1111/bcp.13923; Voelker DH, Gonzalez-Estrada A, Park MA. Female sex as a risk factor for penicillin drug allergy in the inpatient setting. Allergy Asthma Proc. 2022;43(2):163–7. https://doi.org/10.2500/aap.2022.43.210002; Mizukawa Y, Hama N, Miyagawa F, Takahashi H, Ogawa Y, Kurata M, et al. Drug-induced hypersensitivity syndrome/drug reaction with eosinophilia and systemic symptoms: Predictive score and outcomes. J Allergy Clin Immunol Pract. 2023;11(10):3169-3178.e7. https://doi.org/10.1016/j.jaip.2023.06.065; Li D, Gou J, Zhu J, Zhang T, Liu F, Zhang D, et al. Severe cutaneous adverse reactions to drugs: A real-world pharmacovigilance study using the FDA Adverse Event Reporting System database. Front Pharmacol. 2023;14:1117391. https://doi.org/10.3389/fphar.2023.1117391; Сычев ДА, Отделенов ВА, Краснова НМ, Ильина ЕС. Полипрагмазия: взгляд клинического фармаколога. Терапевтический архив. 2016;88(12):94–102. Sychev DA, Otdelеnov VA, Krasnova NM, Ilyina ES. Polypragmasy: A clinical pharmacologist’s view. Therapeutic Archive. 2016;88(12):94–102 (In Russ.). https://doi.org/10.17116/terarkh2016881294-102; Osanlou R, Walker L, Hughes DA, Burnside G, Pirmohamed M. Adverse drug reactions, multimorbidity and polypharmacy: A prospective analysis of 1 month of medical admissions. BMJ Open. 2022;12(7):e055551. https://doi.org/10.1136/bmjopen-2021-055551; Ferranti J, Horvath M, Cozart H, Whitehurst J, Eckstrand J, Pietrobon R, et al. A multifaceted approach to safety: The synergistic detection of adverse drug events in adult inpatients. J Patient Saf. 2008;4(3):184–190. https://doi.org/10.1097/PTS.0b013e318184a9d5; Reeve J, Maden M, Hill R, Turk A, Mahtani K, Wong G, et al. Deprescribing medicines in older people living with multimorbidity and polypharmacy: The TAILOR evidence synthesis. Health Technol Assess. 2022;26(32):1–148. https://doi.org/10.3310/AAFO2475; Patel TK, Patel PB, Bhalla HL, Dwivedi P, Bajpai V, Kishore S. Impact of suspected adverse drug reactions on mortality and length of hospital stay in the hospitalised patients: A meta-analysis. Eur J Clin Pharmacol. 2023;79(1):99–116. https://doi.org/10.1007/s00228-022-03419-7; Sandoval T, Martínez M, Miranda F, Jirón M. Incident adverse drug reactions and their effect on the length of hospital stay in older inpatients. Int J Clin Pharm. 2021;43(4):839–46. https://doi.org/10.1007/s11096-020-01181-3; Крысанова ВС, Крысанов ИС, Журавлева МВ, Гуревич КГ, Ермакова ВЮ. Оценка экономических затрат на нежелательные лекарственные реакции при проведении терапии. Фармация. 2018;67(8):44–50. https://doi.org/10.29296/25419218-2018-08-07; Buffone B, Lin YC, Grant J. β-lactam exposure outcome among patients with a documented allergy to penicillins post-implementation of a new electronic medical record system and alerting rules. J Assoc Med Microbiol Infect Dis Can. 2021;6(2):104–13. https://doi.org/10.3138/jammi-2020-0050; Butranova O, Zyryanov S, Gorbacheva A, Asetskaya I, Polivanov V. Drug-induced anaphylaxis: National database analysis. Pharmaceuticals. 2024;17(1):90. https://doi.org/10.3390/ph17010090; Zyryanov S, Asetskaya I, Butranova O, Terekhina E, Polivanov V, Yudin A, et al. Stevens–Johnson syndrome and toxic epidermal necro­ lysis: Analysis of the Russian database of spontaneous reports. Pharmaceuticals. 2024;17(6):675. https://doi.org/10.3390/ph17060675; Yu RJ, Krantz MS, Phillips EJ, Stone CA Jr. Emerging causes of drug-induced anaphylaxis: A review of anaphylaxis-associated reports in the FDA Adverse Event Reporting System (FAERS). J Allergy Clin Immunol Pract. 2021;9(2):819–29.e2. https://doi.org/10.1016/j.jaip.2020.09.021; Fei W, Shen J, Cai H. Causes of drug-induced severe cutaneous adverse reaction epidermal necrolysis (EN): An analysis using FDA Adverse Event Reporting System (FAERS) database. Clin Cosmet Investig Dermatol. 2023;16:2249–57. https://doi.org/10.2147/CCID.S422928; Kang SY, Seo J, Kang HR. Desensitization for the prevention of drug hypersensitivity reactions. Korean J Intern Med. 2022;37(2):261–70. https://doi.org/10.3904/kjim.2021.438; https://www.risksafety.ru/jour/article/view/481

  8. 8
    Academic Journal

    Πηγή: Obstetrics, Gynecology and Reproduction; Online First ; Акушерство, Гинекология и Репродукция; Online First ; 2500-3194 ; 2313-7347

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2442/1332; Аверченко Р.Р. Медико-социальные риск-факторы возникновения онкогинекологической патологии. Современные проблемы здравоохранения и медицинской статистики. 2024;(1):561–77. https://doi.org/10.24412/2312-2935-2024-1-561-577.; Сабанцев М.А., Шрамко С.В., Жилина Н.М. и др. Рак эндометрия: динамика заболеваемости и распространенности за период 2004-2021 гг. в России и Новокузнецке. Бюллетень медицинской науки. 2023;1(29):16–23.; Саевец В.В., Важенин А.В., Ульрих Е.А. и др. Диагностика и лечение распространенных форм рака яичников III–IV стадии. Злокачественные опухоли. 2020;10(3s1):15–20. https://doi.org/10.18027/2224-5057-2019-10-3s1-15-20.; Кулиева Г.З., Мкртчян Л.С., Крикунова Л.И. и др. Эпидемиологические аспекты заболеваемости раком шейки матки и смертности от него (обзор литературы). Опухоли женской репродуктивной системы. 2023;19(3):77–84. https://doi.org/10.17650/1994-4098-2023-19-3-77-84.; Сафронова К.В., Артемьева А.С., Нюганен А.О. и др. Саркомы нижнего женского полового тракта (вульвы, влагалища и шейки матки): обзор литературы и собственные наблюдения. Опухоли женской репродуктивной системы. 2019;15(3):54–63. https://doi.org/10.17650/1994-4098-2019-15-3-54-63.; Клюкина Л.А., Соснова Е.А., Ищенко А.А., Давыдов М.М. Возможности прогнозирования индивидуального риска развития рака шейки матки у женщин репродуктивного возраста с помощью математического моделирования. Опухоли женской репродуктивной системы. 2024;20(2):90–8. https://doi.org/10.17650/1994-4098-2024-16-2-90-98.; Садовая Н.Д., Безменко А.А. Стратегии скрининга и профилактики рака шейки матки. Известия Российской военно-медицинской академии. 2024;43(1):77–85. https://doi.org/10.17816/rmmar623153.; Семенкин А.А., Сапроненко В.С., Логинова Е.Н., Надей Е.В. Таргетная терапия в онкологии. Экспериментальная и клиническая гастроэнтерология. 2022;9(205):222–8. https://doi.org/10.31146/1682-8658-ecg-205-9-222-228.; Боденко В.В., Ларькина М.С., Прач А.А. и др. Молекулярные мишени таргетной терапии злокачественных новообразований. Бюллетень сибирской медицины. 2024;23(2):101–13. https://doi.org/10.20538/1682-0363-2024-2-101-113.; Pavlova N.N., Pallasch C., Elia A.E. et al. A role for PVRL4-driven cell-cell interactions in tumorigenesis. Elife. 2013;2:e00358. https://doi.org/10.7554/eLife.00358.; Шевлюк Н.Н., Халикова Л.В., Халиков А.А. и др. Участие молекул адгезии в изменении взаимодействий клеток при развитии метастазирования. Гены и Клетки. 2020;15(4):27–32. https://doi.org/10.23868/202012004.; Samanta D., Almo S.C. Nectin family of cell-adhesion molecules: structural and molecular aspects of function and specificity. Cell Mol Life Sci. 2015;72(4):645–58. https://doi.org/10.1007/s00018-014-1763-4.; Miyoshi J., Takai Y. Nectin and nectin-like molecules: biology and pathology. Am J Nephrol. 2007;27(6):590–604. https://doi.org/10.1159/000108103.; Derycke M.S., Pambuccian S.E., Gilks C.B. et al. Nectin 4 overexpression in ovarian cancer tissues and serum: potential role as a serum biomarker. Am J Clin Pathol. 2010;134(5):835–45. https://doi.org/10.1309/AJCPGXK0FR4MHIHB.; Takai Y., Ikeda W., Ogita H., Rikitake Y. The immunoglobulin-like cell adhesion molecule nectin and its associated protein afadin. Annu Rev Cell Dev Biol. 2008;24:309–42. https://doi.org/10.1146/annurev.cellbio.24.110707.175339.; Liu Y., Han X., Li L. et al. Wang G. Role of Nectin-4 protein in cancer (Review). Int J Oncol. 2021;59(5):93. https://doi.org/10.3892/ijo.2021.5273.; Chatterjee S., Sinha S., Kundu C.N. Nectin cell adhesion molecule-4 (NECTIN-4): A potential target for cancer therapy. Eur J Pharmacol. 2021;911:174516. https://doi.org/10.1016/j.ejphar.2021.174516.; Fabre-Lafay S., Monville F., Garrido-Urbani S. et al. Nectin-4 is a new histological and serological tumor associated marker for breast cancer. BMC Cancer. 2007;7:73. https://doi.org/10.1186/1471-2407-7-73.; Liu Y., Li G., Zhang Y. et al. Nectin-4 promotes osteosarcoma progression and metastasis through activating PI3K/AKT/NF-κB signaling by down-regulation of miR-520c-3p. Cancer Cell Int. 2022;22(1):252. https://doi.org/10.1186/s12935-022-02669-w.; Deng H., Shi H., Chen L. et al. Over-expression of Nectin-4 promotes progression of esophageal cancer and correlates with poor prognosis of the patients. Cancer Cell Int. 2019;19:106. https://doi.org/10.1186/s12935-019-0824-z.; Takano A., Ishikawa N., Nishino R. et al. Identification of nectin-4 oncoprotein as a diagnostic and therapeutic target for lung cancer. Cancer Res. 2009;69(16):6694–703. https://doi.org/10.1158/0008-5472.CAN-09-0016.; Nishiwada S., Sho M., Yasuda S. et al. Nectin-4 expression contributes to tumor proliferation, angiogenesis and patient prognosis in human pancreatic cancer. J Exp Clin Cancer Res. 2015;34(1):30. https://doi.org/10.1186/s13046-015-0144-7.; Challita-Eid P.M., Satpayev D., Yang P. et al. Enfortumab vedotin antibody-drug conjugate targeting nectin-4 is a highly potent therapeutic agent in multiple preclinical cancer models. Cancer Res. 2016;76(10):3003–13. https://doi.org/10.1158/0008-5472.CAN-15-1313.; Boylan K.L.M., Manion R.D., Shah H. et al. Inhibition of ovarian cancer cell spheroid formation by synthetic peptides derived from nectin-4. Int J Mol Sci. 2020;21(13):4637. https://doi.org/10.3390/ijms21134637.; Chatterjee S., Kundu C.N. Nanoformulated quinacrine regulates NECTIN-4 domain specific functions in cervical cancer stem cells. Eur J Pharmacol. 2020;883:173308. https://doi.org/10.1016/j.ejphar.2020.173308.; Hoffman-Censits J., Maldonado L. Targeted treatment of locally advanced and metastatic urothelial cancer: enfortumab vedotin in context. Onco Targets Ther. 2022;15:1519–29. https://doi.org/10.2147/OTT.S370900.; Wu Y., Zhu M., Sun B. et al. A humanized trivalent Nectin-4-targeting nanobody drug conjugate displays potent antitumor activity in gastric cancer. J Nanobiotechnology. 2024;22(1):256. https://doi.org/10.1186/s12951-024-02521-5.; Пожарисский К.М., Раскин Г.А., Винокуров В.Л. и др. Иммуногистохимические особенности клеток серозной аденокарциномы яичников, определяющие клиническое течение заболевания и выживаемость больных. Архив патологии. 2015;77(1):38–40. https://doi.org/10.17116/patol201577138.; Bekos C., Muqaku B., Dekan S. et al. NECTIN4 (PVRL4) as putative therapeutic target for a specific subtype of high grade serous ovarian cancer – an integrative multi-omics approach. Cancers (Basel). 2019;11(5):698. https://doi.org/10.3390/cancers11050698.; Klymenko Y., Nephew K.P. Epigenetic crosstalk between the tumor microenvironment and ovarian cancer cells: a therapeutic road less traveled. Cancers (Basel). 2018;10(9):295. https://doi.org/10.3390/cancers10090295.; Gong W., Liu Y., Diamandis E.P. et al. Prognostic value of kallikrein-related peptidase 7 (KLK7) mRNA expression in advanced high-grade serous ovarian cancer. J Ovarian Res. 2020;13(1):125. https://doi.org/10.1186/s13048-020-00725-5.; Dong Y., Loessner D., Irving-Rodgers H. et al. Metastasis of ovarian cancer is mediated by kallikrein related peptidases. Clin Exp Metastasis. 2014;31(1):135–47. https://doi.org/10.1007/s10585-013-9615-4.; Boylan K.L., Buchanan P.C., Manion R.D. et al. The expression of Nectin-4 on the surface of ovarian cancer cells alters their ability to adhere, migrate, aggregate, and proliferate. Oncotarget. 2017;8(6):9717–38. https://doi.org/10.18632/oncotarget.14206.; Nabih E.S., Motaleb F.I.A., Salama F.A. The diagnostic efficacy of nectin 4 expression in ovarian cancer patients. Biomarkers. 2014;19(6):498–504. https://doi.org/10.3109/1354750X.2014.940503.; Klinkebiel D., Zhang W., Akers S.N. et al. DNA methylome analyses implicate fallopian tube epithelia as the origin for high-grade serous ovarian cancer. Mol Cancer Res. 2016;14(9):787–94. https://doi.org/10.1158/1541-7786.MCR-16-0097.; Giancontieri P., Turetta C., Barchiesi G. et al. High-grade serous carcinoma of unknown primary origin associated with STIC clinically presented as isolated inguinal lymphadenopathy: a case report. Front Oncol. 2024;13:1307573. https://doi.org/10.3389/fonc.2023.1307573.; Rogmans C., Feuerborn J., Treeck L. et al. Nectin-4 as blood-based biomarker enables detection of early ovarian cancer stages. Cancers (Basel). 2022;14(23):5867. https://doi.org/10.3390/cancers14235867.; Nayak A., Das S., Nayak D. et al. Nanoquinacrine sensitizes 5-FU-resistant cervical cancer stem-like cells by down-regulating Nectin-4 via ADAM-17 mediated NOTCH deregulation. Cell Oncol (Dordr). 2019;42(2):157–71. https://doi.org/10.1007/s13402-018-0417-1.; Satapathy S.R., Siddharth S., Das D. et al. Enhancement of cytotoxicity and inhibition of angiogenesis in oral cancer stem cells by a hybrid nanoparticle of bioactive quinacrine and silver: implication of base excision repair cascade. Mol Pharm. 2015;12(11):4011–25. https://doi.org/10.1021/acs.molpharmaceut.5b00461.; Das D., Satapathy S.R., Siddharth S. et al. NECTIN-4 increased the 5-FU resistance in colon cancer cells by inducing the PI3K-AKT cascade. Cancer Chemother Pharmacol. 2015;76(3):471–9. https://doi.org/10.1007/s00280-015-2794-8.; Nayak A., Satapathy S.R., Das D. et al. Nanoquinacrine induced apoptosis in cervical cancer stem cells through the inhibition of hedgehog-GLI1 cascade: role of GLI-1. Sci Rep. 2016;6:20600. https://doi.org/10.1038/srep20600.; Fang P., You M., Cao Y. et al. Development and validation of bioanalytical assays for the quantification of 9MW2821, a nectin-4-targeting antibody-drug conjugate. J Pharm Biomed Anal. 2024;248:116318. https://doi.org/10.1016/j.jpba.2024.116318.; Zhou W., Fang P., Yu D. et al. Preclinical evaluation of 9MW2821, a site-specific monomethyl auristatin E-based antibody-drug conjugate for treatment of Nectin-4-expressing cancers. Mol Cancer Ther. 2023;22(8):913–25. https://doi.org/10.1158/1535-7163.MCT-22-0743.; A phase 1a/b study ADRX-0706 in subjects with select advanced solid tumors. 2024. Режим доступа: https://clinicaltrials.gov/study/NCT06036121. [Дата доступа: 23.02.2025].; Cancer Genome Atlas Research Network; Kandoth C., Schultz N., Cherniack A.D. et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497(7447):67–73. https://doi.org/10.1038/nature12113.; Mahdy H., Vadakekut E.S., Crotzer D. Endometrial cancer. 2024 Apr 20. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2025 Jan. 2024 Apr 20.; Brianso-Llort L., Saéz-Lopez C., Alvarez-Guaita A. et al. Recent advances on sex hormone-binding globulin regulation by nutritional factors: clinical implications. Mol Nutr Food Res. 2024;68(14):e2400020. https://doi.org/10.1002/mnfr.202400020.; Huang-Doran I., Kinzer A.B., Jimenez-Linan M. et al. Ovarian hyperandrogenism and response to gonadotropin-releasing hormone analogues in primary severe insulin resistance. J Clin Endocrinol Metab. 2021;106(8):2367–83. https://doi.org/10.1210/clinem/dgab275.; Wang L., Yang M., Guo X. et al. Estrogen-related receptor-α promotes gallbladder cancer development by enhancing the transcription of Nectin-4. Cancer Sci. 2020;111(5):1514–27. https://doi.org/10.1111/cas.14344.; Chen L., Mao X., Huang M. et al. PGC-1α and ERRα in patients with endometrial cancer: a translational study for predicting myometrial invasion. Aging (Albany NY). 2020;12(17):16963–80. https://doi.org/10.18632/aging.103611.; Chang H.K., Park Y.H., Choi J.A. et al. Nectin-4 as a predictive marker for poor prognosis of endometrial cancer with mismatch repair impairment. Cancers (Basel). 2023;15(10):2865. https://doi.org/10.3390/cancers15102865.; Bell D.W., Ellenson L.H. Molecular genetics of endometrial carcinoma. Annu Rev Pathol. 2019;14:339–67. https://doi.org/10.1146/annurev-pathol-020117-043609.; Calandrella M.L., Francesconi S., Caprera C. et al. Nectin-4 and DNA mismatch repair proteins expression in upper urinary tract urothelial carcinoma (UTUC) as a model for tumor targeting approaches: an ImGO pilot study. BMC Cancer. 2022;22(1):168. https://doi.org/10.1186/s12885-022-09259-z.; Dixit G., Gonzalez-Bosquet J., Skurski J. et al. FGFR2 mutations promote endometrial cancer progression through dual engagement of EGFR and Notch signalling pathways. Clin Transl Med. 2023;13(5):e1223. https://doi.org/10.1002/ctm2.1223.; Левченко Н.Е., Муштенко С.В., Савостикова М.В., Захарова Т.И. Проблемы диагностики и лечения рака маточной трубы (клинический случай). Опухоли женской репродуктивной системы. 2016;12(3):80–6. https://doi.org/10.17650/1994-4098-2016-12-3-80-86.; Лушникова П.А., Сухих Е.С., Старцева Ж.А. Рак вульвы. Вклад лучевой терапии в лечение заболевания. Сибирский онкологический журнал. 2024;23(3):150–8. https://doi.org/10.21294/1814-4861-2024-23-3-150-158.; Kaltenecker B., Dunton C.J., Tikaria R. Vaginal Cancer. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2025 Jan. 2023 Mar 1.; Gandhi T., Zubair M., Bhatt H. Cancer Antigen 125. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2025 Jan. 2024 May 2.; Адамян Л.В., Андреева Е.Н. Эндометриоз и его глобальное влияние на организм женщины. Проблемы репродукции. 2022;28(1):54–64. https://doi.org/10.17116/repro20222801154.; Bedir R., Sehitoglu I., Balik G. et al. The role of the adhesion molecule Nectin-4 in the pathogenesis of endometriosis. Clin Exp Obstet Gynecol. 2016;43(3):463–6.; Ballester M., Gonin J., Rodenas A. et al. Eutopic endometrium and peritoneal, ovarian and colorectal endometriotic tissues express a different profile of nectin-1, -3, -4 and nectin-like molecule 2. Hum Reprod. 2012;27(11):3179–86. https://doi.org/10.1093/humrep/des304.; Ito M., Nishizawa H., Tsutsumi M. et al. Potential role for nectin-4 in the pathogenesis of pre-eclampsia: a molecular genetic study. BMC Med Genet. 2018;19(1):166. https://doi.org/10.1186/s12881-018-0681-y.; Yoshizawa H., Nishizawa H., Ito M. et al. Increased levels of nectin-4 as a serological marker for pre-eclampsia. Fujita Med J. 2023;9(3):200–5. https://doi.org/10.20407/fmj.2022-027.; Грекова Ю.Н., Зильберберг Н.В., Кузнецова Е.И. Экстрамаммарная болезнь Педжета. Акушерство и гинекология. 2022;(6):176–9. https://doi.org/10.18565/aig.2022.6.176-179.; Murata M., Ito T., Tanaka Y. et al. NECTIN4 expression in extramammary Paget's disease: implication of a new therapeutic target. Int J Mol Sci. 2020;21(16):5891. https://doi.org/10.3390/ijms21165891.; https://www.gynecology.su/jour/article/view/2442

  9. 9
    Academic Journal

    Συνεισφορές: This study was conducted by the Scientific Centre for Expert Evaluation of Medicinal Products as part of the applied research funded under State Assignment No. 056-00001-25-00 (R&D Registry No. 124022300127-0), Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00001-25-00 на проведение прикладных научных исследований (номер государственного учета НИР 124022300127-0)

    Πηγή: Safety and Risk of Pharmacotherapy; Том 13, № 1 (2025); 7-19 ; Безопасность и риск фармакотерапии; Том 13, № 1 (2025); 7-19 ; 2619-1164 ; 2312-7821 ; 10.30895/2312-7821-2025-13-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.risksafety.ru/jour/article/view/489/1362; Chen S, Cao Z, Nandi A, Counts N, Jiao L, Prettner K, et al. The global macroeconomic burden of Alzheimer’s disease and other dementias: Estimates and projections for 152 countries or territories. Lancet Glob Health. 2024;12(9):e1534–43. https://doi.org/10.1016/S2214-109X(24)00264-X; Cummings J, Zhou Y, Lee G, Zhong K, Fonseca J, Cheng F. Alzheimer’s disease drug development pipeline: 2023. Alzheimers Dement (NY). 2023;9(2):e12385. https://doi.org/10.1002/trc2.12385; Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics. Int J Nanomedicine. 2019;14:5541–54. https://doi.org/10.2147/IJN.S200490; Braak H, Thal DR, Ghebremedhin E, Del Tredici K. Stages of the pathologic process in Alzheimer disease: Age categories from 1 to 100 years. J Neuropathol Exp Neurol. 2011;70(11):960–9. https://doi.org/10.1097/NEN.0b013e318232a379; Hardy JA, Higgins GA. Alzheimer’s disease: The amyloid cascade hypothesis. Science. 1992;256(5054):184–5. https://doi.org/10.1126/science.1566067; Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med. 2016;8(6):595. https://doi.org/10.15252/emmm.201606210; Aschenbrenner AJ, Gordon BA, Benzinger TLS, Morris JC, Hassenstab JJ. Influence of tau PET, amyloid PET, and hippocampal volume on cognition in Alzheimer disease. Neurology. 2018;91(9):e859–66. https://doi.org/10.1212/WNL.0000000000006075; Hanseeuw BJ, Betensky RA, Jacobs HIL, Schultz AP, Sepulcre J, Becker JA, et al. Association of amyloid and tau with cognition in preclinical Alzheimer disease: A longitudinal study. JAMA Neurol. 2019;76(8):915–24. https://doi.org/10.1001/jamaneurol.2019.1424; Park S, Lee JH, Jeon JH, Lee MJ. Degradation or aggregation: The ramifications of post-translational modifications on tau. BMB Rep. 2018;51(6):265–73. https://doi.org/10.5483/bmbrep.2018.51.6.077; Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, et al. Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science. 2010;330(6012):1774. https://doi.org/10.1126/science.1197623; Haass C, Kaether C, Thinakaran G, Sisodia S. Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med. 2012;2(5):a006270. https://doi.org/10.1101/cshperspect.a006270; Liu L, Ding L, Rovere M, Wolfe MS, Selkoe DJ. A cellular complex of BACE1 and γ-secretase sequentially generates Aβ from its full-length precursor. J Cell Biol. 2019;218(2):644–63. https://doi.org/10.1083/jcb.201806205; Gremer L, Schölzel D, Schenk C, Reinartz E, Labahn J, Ravelli RBG, et al. Fibril structure of amyloid-β(1-42) by cryo-electron microscopy. Science. 2017;358(6359):116–9. https://doi.org/10.1126/science.aao2825; O’Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci. 2011;34:185–204. https://doi.org/10.1146/annurev-neuro-061010-113613; Ludewig S, Korte M. Novel insights into the physiological function of the APP (gene) family and its proteolytic fragments in synaptic plasticity. Front Mol Neurosci. 2017;9:161. https://doi.org/10.3389/fnmol.2016.00161; Azargoonjahromi, A. The duality of amyloid-β: Its role in normal and Alzheimer’s disease states. Mol Brain. 2024;17(1):44. https://doi.org/10.1186/s13041-024-01118-1; Eggert S, Thomas C, Kins S, Hermey G. Trafficking in Alzheimer’s disease: Modulation of APP transport and processing by the transmembrane proteins LRP1, SorLA, SorCS1c, sortilin, and calsyntenin. Mol Neurobiol. 2018;55(7):5809–29. https://doi.org/10.1007/s12035-017-0806-x; Huang TY, Zhao Y, Li X, Wang X, Tseng IC, Thompson R, et al. SNX27 and SORLA interact to reduce amyloidogenic subcellular distribution and processing of amyloid precursor protein. J Neurosci. 2016;36(30):7996–8011. https://doi.org/10.1523/JNEUROSCI.0206-16.2016; Kim W, Ma L, Lomoio S, Willen R, Lombardo S, Dong J, et al. BACE1 elevation engendered by GGA3 deletion increases β-amyloid pathology in association with APP elevation and decreased CHL1 processing in 5XFAD mice. Mol Neurodegener. 2018;13(1):6. https://doi.org/10.1186/s13024-018-0239-7; Kang EL, Cameron AN, Piazza F, Walker KR, Tesco G. Ubiquitin regulates GGA3-mediated degradation of BACE1. J Biol Chem. 2010;285(31):24108–19. https://doi.org/10.1074/jbc.M109.092742; Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol Neurodegener. 2020;15(1):40. https://doi.org/10.1186/s13024-020-00391-7; Guo X, Shi D, Liu J, Ning Z, Zhang Y, Liu M, Wei Y. Mitochondrial autophagy in Alzheimer’s disease. Panminerva Med. 2024. https://doi.org/10.23736/S0031-0808.24.05183-8; Kadavath H, Hofele RV, Biernat J, Kumar S, Tepper K, Urlaub H, et al. Tau stabilizes microtubules by binding at the interface between tubulin heterodimers. Proc Natl Acad Sci USA. 2015;112(24):7501–6. https://doi.org/10.1073/pnas.1504081112; Hong XP, Peng CX, Wei W, Tian Q, Liu YH, Yao XQ, et al. Essential role of tau phosphorylation in adult hippocampal neurogenesis. Hippocampus. 2010;20(12):1339–49. https://doi.org/10.1002/hipo.20712; Lei P, Ayton S, Finkelstein DI, Spoerri L, Ciccotosto GD, Wright DK, et al. Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export. Nat Med. 2012;18(2):291–5. https://doi.org/10.1038/nm.2613; Kimura T, Whitcomb DJ, Jo J, Regan P, Piers T, Heo S, et al. Microtubule-associated protein tau is essential for long-term depression in the hippocampus. Philos Trans R Soc Lond B Biol Sci. 2013;369(1633):20130144. https://doi.org/10.1098/rstb.2013.0144; Kalyaanamoorthy S, Opare SK, Xu X, Ganesan A, Rao PPN. Post-translational modifications in tau and their roles in Alzheimer’s pathology. Curr Alzheimer Res. 2024;21(1):24–49. https://doi.org/10.2174/0115672050301407240408033046; Iqbal K, Liu F, Gong CX, Alonso Adel C, Grundke-Iqbal I. Mechanisms of tau-induced neurodegeneration. Acta Neuropathol. 2009;118(1):53–69. https://doi.org/10.1007/s00401-009-0486-3; Liu F, Iqbal K, Grundke-Iqbal I, Rossie S, Gong CX. Dephosphory­lation of tau by protein phosphatase 5: Impairment in Alzheimer’s disease. J Biol Chem. 2005;280(3):1790–6. https://doi.org/10.1074/jbc.M410775200; Maitra S, Vincent B. Cdk5-p25 as a key element linking amyloid and tau pathologies in Alzheimer’s disease: Mechanisms and possible therapeutic interventions. Life Sci. 2022;308:120986. https://doi.org/10.1016/j.lfs.2022.120986; Ginsberg SD, Che S, Counts SE, Mufson EJ. Shift in the ratio of three-repeat tau and four-repeat tau mRNAs in individual cholinergic basal forebrain neurons in mild cognitive impairment and Alzheimer’s disease. J Neurochem. 2006;96(5):1401–8. https://doi.org/10.1111/j.1471-4159.2005.03641.x; Wegmann S, Eftekharzadeh B, Tepper K, Zoltowska KM, Bennett RE, Dujardin S, et al. Tau protein liquid–liquid phase separation can initiate tau aggregation. EMBO J. 2018;37(7):e98049. https://doi.org/10.15252/embj.201798049; DeVos SL, Corjuc BT, Oakley DH, Nobuhara CK, Bannon RN, Chase A, et al. Synaptic tau seeding precedes tau pathology in human Alzheimer’s disease brain. Front Neurosci. 2018;12:267. https://doi.org/10.3389/fnins.2018.00267; Bloom GS. Amyloid-β and tau: The trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014;71(4):505–8. https://doi.org/10.1001/jamaneurol.2013.5847; Sebastián-Serrano Á, de Diego-García L, Díaz-Hernández M. The neurotoxic role of extracellular tau protein. Int J Mol Sci. 2018;19(4):998. https://doi.org/10.3390/ijms19040998; Jagust WJ, Landau SM; Alzheimer’s Disease Neuroimaging Initiative. Temporal dynamics of β-amyloid accumulation in aging and Alzheimer disease. Neurology. 2021;96(9):e1347–57. https://doi.org/10.1212/WNL.0000000000011524; Lanoiselée HM, Nicolas G, Wallon D, Rovelet-Lecrux A, Lacour M, Rousseau S, et al. APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: A genetic screening study of familial and sporadic cases. PLoS Med. 2017;14(3):e1002270. https://doi.org/10.1371/journal.pmed.1002270; Rostagno AA. Pathogenesis of Alzheimer’s disease. Int J Mol Sci. 2022 Dec 21;24(1):107. https://doi.org/10.3390/ijms2401010738; Hooli BV, Mohapatra G, Mattheisen M, Parrado AR, Roehr JT, Shen Y, et al. Role of common and rare APP DNA sequence variants in Alzheimer disease. Neurology. 2012;78(16):1250–7. https://doi.org/10.1212/WNL.0b013e3182515972; Di Fede G, Catania M, Morbin M, Giaccone G, Moro ML, Ghidoni R, et al. Good gene, bad gene: New APP variant may be both. Prog Neurobiol. 2012;99(3):281–92. https://doi.org/10.1016/j.pneurobio.2012.06.004; Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson PV, Bjornsson S, et al. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature. 2012;488(7409):96–9. https://doi.org/10.1038/nature11283; Roses AD. Apolipoprotein E alleles as risk factors in Alzheimer’s disease. Annu Rev Med. 1996;47:387–400. https://doi.org/10.1146/annurev.med.47.1.387; Bussy A, Snider BJ, Coble D, Xiong C, Fagan AM, Cruchaga C, et al. Effect of apolipoprotein E4 on clinical, neuroimaging, and biomarker measures in noncarrier participants in the Dominantly Inherited Alzheimer Network. Neurobiol Aging. 2019;75:42–50. https://doi.org/10.1016/j.neurobiolaging.2018.10.011; Almeida PGC, Nani JV, Oses JP, Brietzke E, Hayashi MAF. Neuroinflammation and glial cell activation in mental disorders. Brain Behav Immun Health. 2019;2:100034. https://doi.org/10.1016/j.bbih.2019.100034; Deczkowska A, Keren-Shaul H, Weiner A, Colonna M, Schwartz M, Amit I. Disease-associated microglia: A universal immune sensor of neurodegeneration. Cell. 2018;173(5):1073–81. https://doi.org/10.1016/j.cell.2018.05.003; Schubert JJ, Veronese M, Marchitelli L, Bodini B, Tonietto M, Stankoff B, et al. Dynamic 11C-PiB PET shows cerebrospinal fluid flow alterations in Alzheimer disease and multiple sclerosis. J Nucl Med. 2019;60(10):1452–60. https://doi.org/10.2967/jnumed.118.223834; Zhang X, Wang Y, Jiao B, Wang Z, Shi J, Zhang Y, et al. Glympha­tic system impairment in Alzheimer’s disease: Associations with perivascular space volume and cognitive function. Eur Radiol. 2024;34(2):1314–23. https://doi.org/10.1007/s00330-023-10122-3; Cummings J. The National Institute on Aging—Alzheimer’s Association Framework on Alzheimer’s disease: Application to clinical trials. Alzheimers Dement. 2019;15(1):172–8. https://doi.org/10.1016/j.jalz.2018.05.006; Janelidze S, Mattsson N, Palmqvist S, Smith R, Beach TG, Serrano GE, et al. Plasma P-tau181 in Alzheimer’s disease: Relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat Med. 2020;26(3):379–86. https://doi.org/10.1038/s41591-020-0755-1; Lantero Rodriguez J, Karikari TK, Suárez-Calvet M, Troakes C, King A, Emersic A, et al. Plasma p-tau181 accurately predicts Alzheimer’s disease pathology at least 8 years prior to post-mortem and improves the clinical characterisation of cognitive decline. Acta Neuropathol. 2020;140(3):267–78. https://doi.org/10.1007/s00401-020-02195-x; Palmqvist S, Janelidze S, Quiroz YT, Zetterberg H, Lopera F, Stomrud E, et al. Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neurodegenerative disorders. JAMA. 2020;324(8):772–81. https://doi.org/10.1001/jama.2020.12134; Thijssen EH, La Joie R, Wolf A, Strom A, Wang P, Iaccarino L, et al. Diagnostic value of plasma phosphorylated tau181 in Alzhei­mer’s disease and frontotemporal lobar degeneration. Nat Med. 2020;26(3):387–97. https://doi.org/10.1038/s41591-020-0762-2; Ashton NJ, Pascoal TA, Karikari TK, et al. Plasma p-tau231: A new biomarker for incipient Alzheimer’s disease pathology. Acta Neuropathol. 2021;141(5):709–24. https://doi.org/10.1007/s00401-021-02275-6; Mielke MM, Hagen CE, Xu J, Chai X, Vemuri P, Lowe VJ, et al. Plasma phospho-tau181 increases with Alzheimer’s disease clinical severity and is associated with tau- and amyloid-positron emission tomography. Alzheimers Dement. 2018;14(8):989–97. https://doi.org/10.1016/j.jalz.2018.02.013; Lee EH, Kwon HS, Koh SH, Choi SH, Jin JH, Jeong JH, Jang JW, Park KW, Kim EJ, Kim HJ, Hong JY, Yoon SJ, Yoon B, Kang JH, Lee JM, Park HH, Ha J. Serum neurofilament light chain level as a predictor of cognitive stage transition. Alzheimers Res Ther. 2022;14(1):6. https://doi.org/10.1186/s13195-021-00953-x; Kim KY, Shin KY, Chang KA. GFAP as a potential biomarker for Alzheimer’s disease: A systematic review and meta-analysis. Cells. 2023 May 4;12(9):1309. https://doi.org/10.3390/cells12091309; Hansson O, Edelmayer RM, Boxer AL, Carrillo MC, Mielke MM, Rabinovici GD, et al. The Alzheimer’s Association appropriate use recommendations for blood biomarkers in Alzheimer’s disease. Alzheimers Dement. 2022;18(12):2669–86. https://doi.org/10.1002/alz.12756; Söderberg L, Johannesson M, Nygren P, Laudon H, Eriksson F, Osswald G, et al. Lecanemab, aducanumab, and gantenerumab — binding profiles to different forms of amyloid-beta might explain efficacy and side effects in clinical trials for Alzheimer’s disease. Neurotherapeutics. 2023;20(1):195–206. https://doi.org/10.1007/s13311-022-01308-6; Budd Haeberlein S, Aisen PS, Barkhof F, Chalkias S, Chen T, Cohen S, et al. Two randomized phase 3 studies of aducanumab in early Alzheimer’s disease. J Prev Alzheimers Dis. 2022;9(2):197–210. https://doi.org/10.14283/jpad.2022.30; Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams L, Maier M, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature. 2016;537(7618):50–6. https://doi.org/10.1038/nature19323; van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, et al. Lecanemab in early Alzheimer’s disease. N Engl J Med. 2023;388(1):9–21. https://doi.org/10.1056/NEJMoa2212948; Mintun MA, Lo AC, Duggan Evans C, Wessels AM, Ardayfio PA, Andersen SW, et al. Donanemab in early Alzheimer’s disease. N Engl J Med. 2021;384(18):1691–704. https://doi.org/10.1056/NEJMoa2100708; Sims JR, Zimmer JA, Evans CD, Lu M, Ardayfio P, Sparks J, et al. Donanemab in early symptomatic Alzheimer disease: The ­TRAILBLAZER-ALZ 2 randomized clinical trial. JAMA. 2023;330(6):512–27. https://doi.org/10.1001/jama.2023.13239; Lansdall CJ, McDougall F, Butler LM, Delmar P, Pross N, Qin S, et al. Establishing clinically meaningful change on outcome assessments frequently used in trials of mild cognitive impairment due to Alzheimer’s disease. J Prev Alzheimers Dis. 2023;10(1):9–18. https://doi.org/10.14283/jpad.2022.102; Dickson SP, Wessels AM, Dowsett SA, Mallinckrodt C, Sparks JD, Chatterjee S, Hendrix S. “Time saved” as a demonstration of cli­nical meaningfulness and illustrated using the donane­mab ­TRAILBLAZER-ALZ study findings. J Prev Alzheimers Dis. 2023;10(3):595–9. https://doi.org/10.14283/jpad.2023.50; Farrell ME, Jiang S, Schultz AP, Properzi MJ, Price JC, Becker JA, et al. Alzheimer’s Disease Neuroimaging Initiative and the Harvard Aging Brain Study. Defining the lowest threshold for amyloid-PET to predict future cognitive decline and amyloid accumulation. Neurology. 2021;96(4):e619–31. https://doi.org/10.1212/WNL.0000000000011214; Hampel H, Elhage A, Cho M, Apostolova LG, Nicoll JAR, Atri A. Amyloid-related imaging abnormalities (ARIA): Radiological, biological and clinical characteristics. Brain. 2023;146(11):4414–24. https://doi.org/10.1093/brain/awad188; Filippi M, Cecchetti G, Spinelli EG, Vezzulli P, Falini A, Agosta F. Amyloid-related imaging abnormalities and β-amyloid-targeting antibodies: A systematic review. JAMA Neurol. 2022;79(3):291–304. https://doi.org/10.1001/jamaneurol.2021.5205; Vernooij MW, van der Lugt A, Ikram MA, Wielopolski PA, Niessen WJ, Hofman A, et al. Prevalence and risk factors of cerebral micro­bleeds: The Rotterdam Scan Study. Neurology. 2008;70(14):1208–14. https://doi.org/10.1212/01.wnl.0000307750.41970.d9; Honig LS, Sabbagh MN, van Dyck CH, Sperling RA, Hersch S, Matta A, et al. Updated safety results from phase 3 lecanemab study in early Alzheimer’s disease. Alzheimers Res Ther. 2024;16(1):105. https://doi.org/10.1186/s13195-024-01441-8; Alves F, Kalinowski P, Ayton S. Accelerated brain volume loss caused by anti-β-amyloid drugs: A systematic review and meta-analysis. Neurology. 2023;100(20):e2114–24. https://doi.org/10.1212/WNL.0000000000207156; Sinha P, Barocas JA. Cost-effectiveness of aducanumab to prevent Alzheimer’s disease progression at current list price. Alzheimers Dement (NY). 2022;8(1):e12256. https://doi.org/10.1002/trc2.12256; Arbanas JC, Damberg CL, Leng M, Harawa N, Sarkisian CA, Landon BE, Mafi JN. Estimated annual spending on lecanemab and its ancillary costs in the US Medicare Program. JAMA Intern Med. 2023;183(8):885–9. https://doi.org/10.1001/jamainternmed.2023.1749; Cummings J, Osse AML, Cammann D, Powell J, Chen J. Anti-amyloid monoclonal antibodies for the treatment of Alzheimer’s disease. BioDrugs. 2024;38(1):5–22. https://doi.org/10.1007/s40259-023-00633-2; Boess F, Sakaoka S, Abi-Saab D, Scelsi M, Delmar P, Hofmann C, Klein G, et al. Graduation study design: Evaluation of once-weekly subcutaneous administration of gantenerumab on brain amyloid load. Alzheimers Dement (NY). 2021;17(S9):e052060. https://doi.org/10.1002/alz.052060; https://www.risksafety.ru/jour/article/view/489

  10. 10
    Academic Journal

    Πηγή: Russian Journal of Pediatric Hematology and Oncology; Том 11, № 4 (2024); 11-19 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 11, № 4 (2024); 11-19 ; 2413-5496 ; 2311-1267

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.nodgo.org/jour/article/view/1093/951; Schengrund C. The Ying and Yang of Ganglioside Function in Cancer. Cancers. 2023;15:5362. doi:10.3390/cancers15225362.; Furukawa K., Hamamura K., Ohkawa Y., Ohmi Y., Furukawa K. Disialyl gangliosides enhance tumor phenotypes with differential modalities. Glycoconj J. 2012;29(8–9):579–84. doi:10.1007/s10719-012-9423-0.; Nazha B., Inal C., Owonikoko T.K. Disialoganglioside GD2 Expression in Solid Tumors and Role as a Target for Cancer Therapy. Front. Oncol. 2020;10:1000. doi:10.3389/fonc.2020.01000.; Slatnick L., Jimeno A., Gore L., Macy M. Naxitamab: A humanized anti-glycolipid disialoganglioside (anti-GD2) monoclonal antibody for treatment of neuroblastoma. Drugs Today. 2021;57:677–88. doi:10.1358/dot.2021.57.11.3343691.; Balis F.M., Busch C.M., Desai A.V., Hibbitts E., Naranjo A., Bagatell R., Irwin M., Fox E. The Ganglioside GD2 as a Circulating Tumor Biomarker for Neuroblastoma. Pediatr. Blood Cancer. 2020;67:e28031. doi:10.1002/pbc.28031.; Desai A.V., Gilman A.L., Ozkaynak M.F., Naranjo A., London W.B., Tenney S.C., Diccianni M., Hank J.A., Parisi M.T., Shulkin B.L. Outcomes Following GD2-Directed Postconsolidation Therapy for Neuroblastoma After Cessation of Random Assignment on ANBL0032: A Report from the Children’s Oncology Group. J Clin Oncol. 2022;40:4107–18. doi:10.1200/JCO.21.02478.; Bitton R.J., Guthmann M.D., Gabri M.R., Carnero A.J., Alonso D.F., Fainboim L., Gomez D.E. Cancer vaccines: an update with special focus on ganglioside antigens. Oncol Rep. 2002;9(2):267–76. PMID: 11836591.; Wingerter A., El Malki K., Sandhoff R., Seidmann L., Wagner D.-C., Lehmann N., Vewinger N., Frauenknecht K., Sommer C., Traub F. Exploiting Gangliosides for the Therapy of Ewing’s Sarcoma and H3K27M-Mutant Diffuse Midline Glioma. Cancers. 2021;13:520. doi:10.3390/cancers13030520.; Groux-Degroote S., Delannoy P. Cancer-Associated Glycosphingolipids as Tumor Markers and Targets for Cancer Immunotherapy. Int J Mol Sci. 2021;22:6145. doi:10.3390/ijms22116145.; Кулева С.А., Варфоломеева С.Р., Киргизов К.И., Просекина Е.А., Романцова О.М., Горбунова Т.В. Многоцентровое открытое исследование III фазы по использованию динутуксимаба бета без/с химиотерапией по выбору исследователя у пациентов до 18 лет с костными и мягкотканными саркомами с положительным уровнем экспрессии GD2 и прогрессированием заболевания на фоне 1-й линии полихимиотерапии. Российский журнал детской гематологии и онкологии (РЖДГиО). 2024;11(2):12–20. doi:10.21682/2311-1267-2024-11-2-12-20.; https://journal.nodgo.org/jour/article/view/1093

  11. 11
    Academic Journal

    Συνεισφορές: The article is sponsored by Novartis., Статья спонсируется компанией «Новартис»

    Πηγή: Neurology, Neuropsychiatry, Psychosomatics; Vol 17, No 1 (2025); 72-77 ; Неврология, нейропсихиатрия, психосоматика; Vol 17, No 1 (2025); 72-77 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2025-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://nnp.ima-press.net/nnp/article/view/2450/1776; Ghezzi A. Old and New Strategies in the Treatment of Pediatric Multiple Sclerosis: A Personal View for a New Treatment Approach. Neurol Ther. 2024 Aug;13(4):949-63. doi:10.1007/s40120-024-00633-6. Epub 2024 Jun 1.; Jeong A, Oleske DM, Holman J. Epidemiology of Pediatric-Onset Multiple Sclerosis: A Systematic Review of the Literature. J Child Neurol. 2019 Oct;34(12):705- 12. doi:10.1177/0883073819845827. Epub 2019 Jun 11.; Koch-Henriksen N, Sorensen PS. The changing demographic pattern of multiple sclerosis epidemiology. Lancet Neurol. 2010 May;9(5):520-32. doi:10.1016/S1474-4422(10)70064-8; Клинические рекомендации «Рассеянный склероз» 2022. Доступно по ссылке: https://cr.minzdrav.gov.ru/recomend/739_1 (дата обращения 20.08.2024).; Ghezzi A, Amato MP, Makhani N, et al. Pediatric multiple sclerosis: Conventional first-line treatment and general management. Neurology. 2016 Aug 30;87(9 Suppl 2):S97- S102. doi:10.1212/WNL.0000000000002823. Erratum in: Neurology. 2016 Nov 8;87(19):2068. doi:10.1212/WNL.0000000000003369; Benallegue N, Rollot F, Wiertlewski S, et al; OFSEP (Observatoire Francais de la Sclerose en Plaques) Investigators. Highly Effective Therapies as First-Line Treatment for PediatricOnset Multiple Sclerosis. JAMA Neurol. 2024 Mar 1;81(3):273-82. doi:10.1001/jamaneurol.2023.5566; Yearwood C, Wilbur C. Trends in the Epidemiology and Treatment of Pediatric-Onset Multiple Sclerosis in Alberta, Canada. J Child Neurol. 2023 Apr;38(5):321-8. doi:10.1177/08830738231176588; Pröbstel AK, Hauser SL. Multiple Sclerosis: B Cells Take Center Stage. J Neuroophthalmol. 2018 Jun;38(2):251-8. doi:10.1097/WNO.0000000000000642; Delgado SR, Faissner S, Linker RA, Rammohan K. Key characteristics of antiCD20 monoclonal antibodies and clinical implications for multiple sclerosis treatment. J Neurol. 2024 Apr;271(4):1515-35. doi:10.1007/s00415-023-12007-3; Voge NV, Alvarez E. Monoclonal Antibodies in Multiple Sclerosis: Present and Future. Biomedicines. 2019 Mar 14;7(1):20. doi:10.3390/biomedicines7010020; Mayrhofer P, Kunert R. Nomenclature of humanized mAbs: Early concepts, current challenges and future perspectives. Hum Antibodies. 2019;27(1):37-51. doi:10.3233/HAB-180347; Torres JB, Roodselaar J, Sealey M, et al. Distribution and efficacy of ofatumumab and ocrelizumab in humanized CD20 mice following subcutaneous or intravenous administration. Front Immunol. 2022 Jul 28;13:814064. doi:10.3389/fimmu.2022.814064; Инструкция по применению лекарственного препарата Бонспри® (ОХЛП) ЛП-№(001332)-(РГ-RU)-251022. Доступно по ссылке: https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=7979032db214-4fa5-b9f2-f1731148f509 (дата обращения 20.11.2024).; Skataric M, Savelieva M, Pigeolet E, Leppert D. Ofatumumab Dose Selection in Pediatric Population with Relapsing Multiple Sclerosis. Abstract Т-090 for the Ninth American Conference on Pharmacometrics (ACoP9). J Pharmacokinet Pharmacodyn. 2018;45(Suppl 1):3-134. doi:10.1007/s10928-018-9606-9; ClinicalTrials.gov Identifier: NCT04926818. Available at: https://clinicaltrials.gov/ct2/show/NCT04926818; Gärtner J, Deiva K, Graves J, et al. Innovative Phase 3 NEOS Study Design Evaluating Efficacy and Safety of Ofatumumab and Siponimod Versus Fingolimod in Paediatric Multiple Sclerosis. Poster 102. Poster presented at the 37th Congress of the European Committee for Treatment and Research in Multiple Sclerosis, 13–15 October 2021. Available at: https://www.medcommshydhosting.com/MSKnowledgecenter/ectrims/2021/posters/P102_E CTRIMS2021.pdf (accessed 20.09.2024).; National Multiple Sclerosis Society Pediatric MS. Available at: https://www.nationalmssociety.org/For-Professionals/ClinicalCare/Managing-MS/Pediatric-MS; Margoni M, Rinaldi F, Perini P, Gallo P. Therapy of Pediatric-Onset Multiple Sclerosis: State of the Art, Challenges, and Opportunities. Front Neurol. 2021 May 17;12:676095. doi:10.3389/fneur.2021.676095; Проект Клинических рекомендаций «Рассеянный склероз» от 2024 (МАВРС). Доступно по ссылке: https://mapcms.ru/projects/recommendations/proekty-klinicheskikhrekomendatsiy/ (дата обращения 20.08.2024).; Maillart E, Renaldo F, Papeix C, et al. Dramatic efficacy of ofatumumab in refractory pediatric-onset AQP4-IgG neuromyelitis optica spectrum disorder. Neurol Neuroimmunol Neuroinflamm. 2020 Feb 25;7(3):e683. doi:10.1212%2FNXI.0000000000000683; Sedani S, Absoud M, Milford D, et al. Good response to Ofatumumab in a child with severe relapsing Neuromyelitis Optica. P675. Mult Scler J. 2012;18:(S4):279-508. doi:10.1177/1352458512459021; Gou B, Yang P, Feng J, et al. The case report of AQP4 and MOG IgG double positive NMOSD treated with subcutaneous Ofatumumab. J Neuroimmunol. 2023 Mar 15;376:578035. doi:10.1016/j.jneuroim.2023.578035; Hiya S, Yoshimura H, Kawamoto M. Successful treatment with subcutaneous ofatumumab in an adolescent patient with refractory myelin oligodendrocyte glycoproteinimmunoglobulin G-associated disease (MOGAD). eNeurologicalSci. 2023 Apr 6;31:100461. doi:10.1007/s10928-018-9606-9; Bar-Or A, Wiendl H, Montalban X, et al. Rapid and sustained B-cell depletion with subcutaneous ofatumumab in relapsing multiple sclerosis: APLIOS, a randomized phase-2 study. Mult Scler. 2022;28(6):910-24. doi:10.1177/13524585211044479; Hauser SL, Bar-Or A, Cohen JA, et al.; ASCLEPIOS I and ASCLEPIOS II Trial Groups. Ofatumumab versus Teriflunomide in Multiple Sclerosis. N Engl J Med. 2020;383(6):546-57. doi:10.1056/NEJMoa1917246.

  12. 12
    Academic Journal

    Συνεισφορές: The work was performed as a part of the basic scientific topic 125020501434-1, Работа выполнена в рамках фундаментальной темы 125020501434-1

    Πηγή: Modern Rheumatology Journal; Том 19, № 2 (2025); 7-17 ; Современная ревматология; Том 19, № 2 (2025); 7-17 ; 2310-158X ; 1996-7012

    Περιγραφή αρχείου: application/pdf

    Relation: https://mrj.ima-press.net/mrj/article/view/1734/1578; Насонов ЕЛ. Перспективы анти-В-клеточной терапии в ревматологии. Научно-практическая ревматология 2018;56(5): 539-548.; Pouw JN, Leijten EFA, van Laar JM, Boes M. Revisiting B cell tolerance and autoantibodies in seropositive and seronegative autoimmune rheumatic disease (AIRD). Clin Exp Immunol. 2021 Feb;203(2):160-173. doi:10.1111/cei.13542. Epub 2020 Nov 15.; Maschmeyer P, Chang HD, Cheng Q, et al. Immunological memory in rheumatic inflammation – a roadblock to tolerance induction. Nat Rev Rheumatol. 2021 May;17(5):291-305. doi:10.1038/s41584-021-00601-6. Epub 2021 Apr 6.; Khader Y, Beran A, Ghazaleh S, et al. Predictors of remission in rheumatoid arthritis patients treated with biologics: a systematic review and meta-analysis. Clin Rheumatol. 2022 Dec;41(12):3615-3627. doi:10.1007/s10067-022-06307-8. Epub 2022 Aug 16.; Ugarte-Gil MF, Mendoza-Pinto C, Reategui-Sokolova C, et al. Achieving remission or low disease activity is associated with better outcomes in patients with systemic lupus erythematosus: a systematic literature review. Lupus Sci Med. 2021 Sep;8(1):e000542. doi:10.1136/lupus-2021-000542.; Smolen JS, Breedveld FC, Burmester GR, et al. Treating rheumatoid arthritis to target: 2014 update of the recommendations of an international task force. Ann Rheum Dis. 2016 Jan;75(1):3-15. doi:10.1136/annrheumdis-2015-207524. Epub 2015 May 12.; Konzett V, Aletaha D. Management strategies in rheumatoid arthritis. Nat Rev Rheumatol. 2024 Dec;20(12):760-769. doi:10.1038/s41584-024-01169-7. Epub 2024 Oct 24.; Riley TR, George MD. Risk for infections with glucocorticoids and DMARDs in pati ents with rheumatoid arthritis. RMD Open. 2021 Feb;7(1):e001235. doi:10.1136/rmdopen-2020-001235.; Nguyen Y, Costedoat-Chalumeau N. Serious infections in patients with systemic lupus erythematosus: how can we prevent them? Lancet Rheumatol. 2023 May;5(5):e245-e246. doi:10.1016/S2665-9913(23)00096-6.; Ramirez-Valle F, Maranville JC, Roy S, Plenge RM. Sequential immunotherapy: towards cures for autoimmunity. Nat Rev Drug Discov. 2024 Jul;23(7):501-524. doi:10.1038/s41573-024-00959-8. Epub 2024 Jun 5.; Alexander T, Greco R. Hematopoietic stem cell transplantation and cellular therapies for autoimmune diseases: overview and future considerations from the Autoimmune Diseases Working Party (ADWP) of the European Society for Blood and Marrow Transplantation (EBMT). Bone Marrow Transplant. 2022 Jul;57(7):1055-1062. doi:10.1038/s41409-022-01702-w. Epub 2022 May 16.; Schett G, Mackensen A, Mougiakakos D. CAR T-cell therapy in autoimmune diseases. Lancet. 2023 Nov 25;402(10416):2034-2044. doi:10.1016/S0140-6736(23)01126-1. Epub 2023 Sep 22.; Sorensen PS, Sellebjerg F. Pulsed immune reconstitution therapy in multiple sclerosis. Ther Adv Neurol Disord. 2019 Mar 28:12: 1756286419836913. doi:10.1177/1756286419836913. e Collection 2019.; Hecker M, Fitzner B, Boxberger N, et al. Transcriptome alterations in peripheral blood B cells of patients with multiple sclerosis receiving immune reconstitution therapy. J Neuroinflammation. 2023 Aug 2;20(1):181. doi:10.1186/s12974-023-02859-x.; Muthu S, Jeyaraman M, Ranjan R, Jha SK. Remission is not maintained over 2 years with hematopoietic stem cell transplantation for rheumatoid arthritis: A systematic review with meta-analysis. World J Biol Chem. 2021 Nov 27;12(6):114-130. doi:10.4331/wjbc.v12.i6.114.; Bagnato G, Versace AG, La Rosa D, et al. Autologous Haematopoietic Stem Cell Transplantation and Systemic Sclerosis: Focus on Interstitial Lung Disease. Cells. 2022 Mar 1; 11(5):843. doi:10.3390/cells11050843.; Насонов ЕЛ, Румянцев АГ, Самсонов МЮ. Фармакотерапия аутоиммунных ревматических заболеваний – от моноклональных антител к CAR-T-клеткам: 20 лет спустя. Научно-практическая ревматология 2024;62(3):262-279.; Маслянский АЛ, Мазуров ВИ, Зоткин ЕГ и др. Анти-В-клеточная терапия аутоиммунных заболеваний. Медицинская иммунология. 2007;9(1):15-34.; Nishimura K, Sugiyama D, Kogata Y, et al. Meta-analysis: diagnostic accuracy of anti-cyclic citrullinated peptide antibody and rheumatoid factor for rheumatoid arthritis. Ann Intern Med. 2007 Jun 5;146(11):797-808. doi:10.7326/0003-4819-146-11-200706050-00008.; Маслянский АЛ, Лапин СВ, Мазинг АВ и др. Диагностическая значимость серологических маркеров ревматоидного артрита. Научно-практическая ревматология. 2012;50(5):20-24.; Насонов ЕЛ. Проблемы иммунопатологии ревматоидного артрита: эволюция болезни. Научно-практическая ревматология. 2017;55(3):277-294.; Kerkman PF, Fabre E, van der Voort EI, et al. Identification and characterisation of citrullinated antigen-specific B cells in peripheral blood of patients with rheumatoid arthritis. Ann Rheum Dis. 2016 Jun;75(6): 1170-6. doi:10.1136/annrheumdis-2014-207182. Epub 2015 Jun 1.; Kerkman PF, Rombouts Y, van der Voort EI, et al. Circulating plasmablasts/plasmacells as a source of anticitrullinated protein antibodies in patients with rheumatoid arthritis. Ann Rheum Dis. 2013 Jul;72(7):1259-63. doi:10.1136/annrheumdis-2012-202893. Epub 2013 Apr 26.; Humby F, Bombardieri M, Manzo A, et al. Ectopic lymphoid structures support on-going production of class-switched autoantibodies in rheumatoid synovium. PLoS Med. 2009 Jan 13;6(1):e1. doi:10.1371/journal.pmed.0060001.; Corsiero E, Bombardieri M, Carlotti E, et al. Single cell cloning and recombinant monoclonal antibodies generation from RA synovial B cells reveal frequent targeting of citrullinated histones of NETs. Ann Rheum Dis. 2016 Oct;75(10):1866-75. doi:10.1136/annrheumdis-2015-208356. Epub 2015 Dec 9.; Kerkman PF, Kempers AC, van der Voort EI, et al. Synovial fluid mononuclear cells provide an environment for long-term survival of antibody-secreting cells and promote the spontaneous production of anti-citrullinated protein antibodies. Ann Rheum Dis. 2016 Dec;75(12): 2201-2207. doi:10.1136/annrheumdis-2015-208554. Epub 2016 Apr 11.; Volkov M, van Schie KA, van der Woude D. Autoantibodies and B Cells: The ABC of rheumatoid arthritis pathophysiology. Immunol Rev. 2020 Mar;294(1):148-163. doi:10.1111/imr.12829. Epub 2019 Dec 16.; Steffen U, Schett G, Bozec A. How Autoantibodies Regulate Osteoclast Induced Bone Loss in Rheumatoid Arthritis. Front Immunol. 2019 Jul 3:10:1483. doi:10.3389/fimmu.2019.01483 .e Collection 2019.; Nie Y, Zhao L, Zhang X. B Cell Aberrance in Lupus: the Ringleader and the Solution. Clin Rev Allergy Immunol. 2022 Apr;62(2): 301-323. doi:10.1007/s12016-020-08820-7. Epub 2021 Feb 3.; Yung S, Chan TM. Mechanisms of Kidney Injury in Lupus Nephritis – the Role of AntidsDNA Antibodies. Front Immunol. 2015 Sep 15:6:475. doi:10.3389/fimmu.2015.00475. e Collection 2015.; Fayyaz A, Igoe A, Kurien BT, et al. Haematological manifestations of lupus. Lupus Sci Med. 2015 Mar 3;2(1):e000078. doi:10.1136/lupus-2014-000078. E Collection 2015.; Насонов ЕЛ, Решетняк ТМ, Соловь ев СК, Попкова ТВ. Системная красная волчанка и антифосфолипидный синдром: вчера, сегодня, завтра. Терапевтический архив 2023;95(5):367-374.; Lovgren T, Eloranta ML, Kastner B, et al. Induction of interferon-alpha by immune complexes or liposomes containing systemic lupus erythematosus autoantigen- and Sjogren's syndrome autoantigen-associated RNA. Arthritis Rheum. 2006 Jun;54(6):1917-27. doi:10.1002/art.21893.; Melissaropoulos K, Iliopoulos G, Sakkas LI, Daoussis D. Pathogenetic Aspects of Systemic Sclerosis: A View Through the Prism of B Cells. Front Immunol. 2022 Jun 23:13:925741. doi:10.3389/fimmu.2022.925741. e Collection 2022.; Fleischmajer R, Perlish JS, Reeves JR. Cellular infiltrates in scleroderma skin. Arthritis Rheum. 1977 May;20(4):975-84. doi:10.1002/art.1780200410.; Lafyatis R, O'Hara C, Feghali-Bostwick CA, Matteson E. B cell infiltration in systemic sclerosis-associated interstitial lung disease. Arthritis Rheum. 2007 Sep;56(9):3167-8. doi:10.1002/art.22847.; Roumm AD, Whiteside TL, Meds ger TA Jr, Rodnan GP. Lymphocytes in the skin of patients with progressive systemic sclerosis. Quantification, subtyping, and clinical correlations. Arthritis Rheum. 1984 Jun;27(6): 645-53. doi:10.1002/art.1780270607.; De Santis M, Bosello SL, Peluso G, et al. Bronchoalveolar lavage fluid and progression of scleroderma interstitial lung disease. Clin Respir J. 2012 Jan;6(1):9-17. doi:10.1111/j.1752-699X.2010.00228.x. Epub 2010 Nov 25.; Sato S, Hasegawa M, Fujimoto M, et alK. Quantitative genetic variation in CD19 expression correlates with autoimmunity. J Immunol. 2000 Dec 1;165(11):6635-43. doi:10.4049/jimmunol.165.11.6635.; Лазарева НМ, Лапин СВ, Мазинг АВ, et al. Оптимизация комплекса серологических методов диагностики системных заболеваний соединительной ткани. Клиническая лабораторная диагностика. 2011; (12):12-17.; Dumoitier N, Chaigne B, Regent A, et al. Scleroderma Peripheral B Lymphocytes Secrete Interleukin-6 and Transforming Growth Factor beta and Activate Fibroblasts. Arthritis Rheumatol. 2017 May;69(5):1078-1089. doi:10.1002/art.40016.; Francois A, Chatelus E, Wachsmann D, et al. B lymphocytes and B-cell activating factor promote collagen and profibrotic markers expression by dermal fibroblasts in systemic sclerosis. Arthritis Res Ther. 2013 Oct 28;15(5): R168. doi:10.1186/ar4352.; Numajiri H, Kuzumi A, Fukasawa T, et al. B Cell Depletion Inhibits Fibrosis via Suppression of Profibrotic Macrophage Differentiation in a Mouse Model of Systemic Sclerosis. Arthritis Rheumatol. 2021 Nov;73(11): 2086-2095. doi:10.1002/art.41798. Epub 2021 Sep 28.; Насонов ЕЛ, редактор. Российские клинические рекомендации. Ревматология. Москва: ГЭОТАР-Медиа; 2020.; Fassbinder T, Saunders U, Mickholz E, et al. Differential effects of cyclophosphamide and mycophenolate mofetil on cellular and serological parameters in patients with systemic lupus erythematosus. Arthritis Res Ther. 2015 Apr 3;17(1):92. doi:10.1186/s13075-015-0603-8.; Lee YH, Bae SC, Song GG. The efficacy and safety of rituximab for the treatment of active rheumatoid arthritis: a systematic review and meta-analysis of randomized controlled trials. Rheumatol Int. 2011 Nov;31(11): 1493-9. doi:10.1007/s00296-010-1526-y. Epub 2010 May 16.; Habibi MA, Alesaeidi S, Zahedi M, et al. The Efficacy and Safety of Rituximab in ANCA-Associated Vasculitis: A Systematic Review. Biology (Basel). 2022 Dec 6;11(12): 1767. doi:10.3390/biology11121767.; Kaegi C, Wuest B, Schreiner J, et al. Systematic Review of Safety and Efficacy of Rituximab in Treating Immune-Mediated Disorders. Front Immunol. 2019 Sep 6:10: 1990. doi:10.3389/fimmu.2019.01990. e Collection 2019.; Isaacs JD, Cohen SB, Emery P, et al. Effect of baseline rheumatoid factor and anticitrullinated peptide antibody serotype on rituximab clinical response: a meta-analysis. Ann Rheum Dis. 2013 Mar;72(3):329-36. doi:10.1136/annrheumdis-2011-201117. Epub 2012 Jun 11.; Chatzidionysiou K, Lie E, Nasonov E, et al. Highest clinical effectiveness of rituxi mab in autoantibody-positive patients with rheumatoid arthritis and in those for whom no more than one previous TNF antagonist has failed: pooled data from 10 European regist ries. Ann Rheum Dis. 2011 Sep;70(9):1575-80. doi:10.1136/ard.2010.148759. Epub 2011 May 12.; Pugliesi A, de Oliveira AB, Oliveira AB, et al. Compared efficacy of rituximab, abatacept, and tocilizumab in patients with rheumatoid arthritis refractory to methotrexa te or TNF inhibitors agents: a systematic review and network meta-analysis. Adv Rheumatol. 2023 Jul 6;63(1):30. doi:10.1186/s42358-023-00298-z.; Авдеева АС, Сатыбалдыев АМ, Демидова НВ и др. Оценка терапии ритуксимабом в реальной клинической практике (по данным регистра больных ревматоидным артритом ОРЕЛ). Научно-практическая ревматология 2019;57(3):274-279.; De Keyser F, Hoffman I, Durez P, et al. Longterm followup of rituximab therapy in patients with rheumatoid arthritis: results from the Belgian MabThera in Rheumatoid Arthritis registry. J Rheumatol. 2014 Sep; 41(9):1761-5. doi:10.3899/jrheum.131279. Epub 2014 Aug 15.; Harrold LR, Reed GW, Shewade A, et al. Effectiveness of Rituximab for the Treatment of Rheumatoid Arthritis in Patients with Prior Exposure to Anti-TNF: Results from the CORRONA Registry. J Rheumatol. 2015 Jul;42(7):1090-8. doi:10.3899/jrheum.141043. Epub 2015 May 1.; Wendler J, Burmester GR, Sorensen H, et al. Rituximab in patients with rheumatoid arthritis in routine practice (GERINIS): six-year results from a prospective, multicentre, non-interventional study in 2,484 pati ents. Arthritis Res Ther. 2014 Mar 26;16(2): R80. doi:10.1186/ar4521.; Shah K, Cragg M, Leandro M, Reddy V. Anti-CD20 monoclonal antibodies in Systemic Lupus Erythematosus. Biologicals. 2021 Jan:69:1-14. doi:10.1016/j.biologicals.2020.11.002. Epub 2020 Dec 4.; Roveta A, Parodi EL, Brezzi B, et al. Lupus Nephritis from Pathogenesis to New Therapies: An Update. Int J Mol Sci. 2024 Aug 18;25(16):8981. doi:10.3390/ijms25168981.; Tanaka Y, Nakayamada S, Yamaoka K, et al. Rituximab in the real-world treatment of lupus nephritis: A retrospective cohort study in Japan. Mod Rheumatol. 2023 Jan 3;33(1): 145-153. doi:10.1093/mr/roac007.; Li K, Yu Y, Gao Y, et al. Comparative Effectiveness of Rituximab and Common Induction Therapies for Lupus Nephritis: A Systema tic Review and Network Meta-Analysis. Front Immunol. 2022 Apr 4:13:859380. doi:10.3389/fimmu.2022.859380. e Collection 2022.; Rovin BH, Furie R, Latinis K, et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum. 2012 Apr;64(4):1215-26. doi:10.1002/art.34359. Epub 2012 Jan 9.; Merrill JT, Neuwelt CM, Wallace DJ, et al. Efficacy and safety of rituximab in mode rately-to-severely active systemic lupus erythematosus: the randomized, double-blind, phase II/III systemic lupus erythematosus evaluation of rituximab trial. Arthritis Rheum. 2010 Jan;62(1):222-33. doi:10.1002/art.27233.; Гарзанова ЛА. Ритуксимаб в лечении системной склеродермии. Научно-практическая ревматология 2023;61(4):466-474.; Goswami RP, Ray A, Chatterjee M, et al. Rituximab in the treatment of systemic sclerosis-related interstitial lung disease: a systematic review and meta-analysis. Rheumatology (Oxford). 2021 Feb 1;60(2):557-567. doi:10.1093/rheumatology/keaa550.; Maher TM, Tudor VA, Saunders P, et al. Rituximab versus intravenous cyclophosphamide in patients with connective tissue disease-associated interstitial lung disease in the UK (RECITAL): a double-blind, doubledummy, randomised, controlled, phase 2b trial. Lancet Respir Med. 2023 Jan;11(1):45-54. doi:10.1016/S2213-2600(22)00359-9. Epub 2022 Nov 11.; Lindenberg L, Spengler L, Bang H, et al. Restrictive IgG antibody response against mutated citrullinated vimentin predicts response to rituximab in patients with rheumatoid arthritis. Arthritis Res Ther. 2015 Aug 13; 17(1):206. doi:10.1186/s13075-015-0717-z.; Pirone C, Mendoza-Pinto C, van der Windt DA, et al. Predictive and prognostic factors influencing outcomes of rituximab therapy in systemic lupus erythematosus (SLE): A systematic review. Semin Arthritis Rheum. 2017 Dec;47(3):384-396. doi:10.1016/j.semarthrit.2017.04.010. Epub 2017 May 5.; Youkhana K, Heiling H, Deal A, Moll S. The Effect of Rituximab on Antiphospholipid Titers in Patients with Antiphospholipid Syndrome. TH Open. 2023 Jul 5;7(3):e191-e194. doi:10.1055/s-0043-1770784. E Collection 2023 Jul.; Tomita A. Genetic and Epigenetic Modulation of CD20 Expression in B-Cell Malignancies: Molecular Mechanisms and Significance to Rituximab Resistance. J Clin Exp Hematop. 2016;56(2):89-99. doi:10.3960/jslrt.56.89.; Hiraga J, Tomita A, Sugimoto T, et al. Down-regulation of CD20 expression in B-cell lymphoma cells after treatment with rituximab-containing combination chemo therapies: its prevalence and clinical significance. Blood. 2009 May 14;113(20):4885-93. doi:10.1182/blood-2008-08-175208. Epub 2009 Feb 26.; Ramwadhdoebe TH, van Baarsen LGM, Boumans MJH, et al. Effect of rituximab treatment on T and B cell subsets in lymph node biopsies of patients with rheumatoid arthritis. Rheumatology (Oxford). 2019 Jun 1;58(6):1075-1085. doi:10.1093/rheumatology/key428.; Kamburova EG, Koenen HJ, Borgman KJ, et al. A single dose of rituximab does not deplete B cells in secondary lymphoid organs but alters phenotype and function. Am J Transplant. 2013 Jun;13(6):1503-11. doi:10.1111/ajt.12220. Epub 2013 Apr 9.; Rehnberg M, Amu S, Tarkowski A, et al. Short- and long-term effects of anti-CD20 treatment on B cell ontogeny in bone marrow of patients with rheumatoid arthritis. Arthritis Res Ther. 2009;11(4):R123. doi:10.1186/ar2789. Epub 2009 Aug 17.; Teng YK, Levarht EW, Toes RE, et al. Residual inflammation after rituximab treatment is associated with sustained synovial plasma cell infiltration and enhanced B cell repopulation. Ann Rheum Dis. 2009 Jun;68(6): 1011-6. doi:10.1136/ard.2008.092791. Epub 2008 Jul 22.; Thurlings RM, Vos K, Wijbrandts CA, et al. Synovial tissue response to rituximab: mechanism of action and identification of biomarkers of response. Ann Rheum Dis. 2008 Jul;67(7):917-25. doi:10.1136/ard.2007.080960. Epub 2007 Oct 26.; Kennedy AD, Beum PV, Solga MD, et al. Rituximab infusion promotes rapid complement depletion and acute CD20 loss in chronic lymphocytic leukemia. J Immunol. 2004 Mar 1;172(5):3280-8. doi:10.4049/jimmunol.172.5.3280.; Golay J, Zaffaroni L, Vaccari T, et al. Biologic response of B lymphoma cells to anti-CD20 monoclonal antibody rituximab in vitro: CD55 and CD59 regulate complementmediated cell lysis. Blood. 2000 Jun 15; 95(12):3900-8.; Furie RA, Aroca G, Cascino MD, et al. B-cell depletion with obinutuzumab for the treatment of proliferative lupus nephritis: a randomised, double-blind, placebo-controlled trial. Ann Rheum Dis. 2022 Jan;81(1):100-107. doi:10.1136/annrheumdis-2021-220920. Epub 2021 Oct 6; Mossner E, Brunker P, Moser S, et al. Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity. Blood. 2010 Jun 3;115(22):4393-402. doi:10.1182/blood-2009-06-225979. Epub 2010 Mar 1.; Tobinai K, Klein C, Oya N, Fingerle-Rowson G. A Review of Obinutuzumab (GA101), a Novel Type II Anti-CD20 Monoclonal Antibody, for the Treatment of Patients with B-Cell Malignancies. Adv Ther. 2017 Feb;34(2):324-356. doi:10.1007/s12325-016-0451-1. Epub 2016 Dec 21.; Rubin SJS, Bloom MS, Robinson WH. B cell checkpoints in autoimmune rheumatic diseases. Nat Rev Rheumatol. 2019 May;15(5): 303-315. doi:10.1038/s41584-019-0211-0.; Wingerchuk DM, Lennon VA, et al. Revised diagnostic criteria for neuromyelitis optica. Neurology. 2006 May 23;66(10):1485-9. doi:10.1212/01.wnl.0000216139.44259.74.; Cree BAC, Bennett JL, Kim HJ, et al. Inebilizumab for the treatment of neuro myelitis optica spectrum disorder (N-MO-mentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet. 2019 Oct 12;394(10206):1352-1363. doi:10.1016/S0140-6736(19)31817-3. Epub 2019 Sep 5.; Flanagan EP, Levy M, Katz E, et al. Inebilizumab for treatment of neuromyelitis optica spectrum disorder in patients with prior rituximab use from the N-MOmentum Study. Mult Scler Relat Disord. 2022 Jan:57:103352. doi:10.1016/j.msard.2021.103352. Epub 2021 Oct 26.; Schiopu E, Chatterjee S, Hsu V, et al. Safety and tolerability of an anti-CD19 monoclonal antibody, MEDI-551, in subjects with systemic sclerosis: a phase I, randomized, placebo-controlled, escalating single-dose study. Arthritis Res Ther. 2016 Jun 7;18(1): 131. doi:10.1186/s13075-016-1021-2.; Stone JH, Khosroshahi A, Zhang W, et al. Inebilizumab for Treatment of IgG4-Related Disease. N Engl J Med. 2024 Nov 14. doi:10.1056/NEJMoa2409712. Online ahead of print.; Malavasi F, Deaglio S, Funaro A, et al. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev. 2008 Jul;88(3):841-86. doi:10.1152/physrev.00035.2007.; Wardowska A, Komorniczak M, Skoniecka A, et al. Alterations in peripheral blood B cells in systemic lupus erythematosus patients with renal insufficiency. Int Immunopharmacol. 2020 Jun:83:106451. doi:10.1016/j.intimp.2020.106451. Epub 2020 Apr 2.; Lugar PL, Love C, Grammer AC, et al. Molecular characterization of circulating plasma cells in patients with active systemic lupus erythematosus. PLoS One. 2012;7(9): e44362. doi:10.1371/journal.pone.0044362. Epub 2012 Sep 21.; Cole S, Walsh A, Yin X, et al. Integrative analysis reveals CD38 as a therapeutic target for plasma cell-rich pre-disease and established rheumatoid arthritis and systemic lupus erythematosus. Arthritis Res Ther. 2018 May 2; 20(1):85. doi:10.1186/s13075-018-1578-z.; Chang X, Yue L, Liu W, et al. CD38 and E2F transcription factor 2 have uniquely increased expression in rheumatoid arthritis synovial tissues. Clin Exp Immunol. 2014 May; 176(2):222-31. doi:10.1111/cei.12268.; Sanchez L, Wang Y, Siegel DS, Wang ML. Daratumumab: a first-in-class CD38 monoclonal antibody for the treatment of multiple myeloma. J Hematol Oncol. 2016 Jun 30;9(1):51. doi:10.1186/s13045-016-0283-0.; Alexander T, Ostendorf L, Zernicke J, et al. LBA0007 Safety and efficacy of daratumumab in systemic lupus erythematosus – a single-center phase 2 open-label trial. Ann Rheum Dis. 2024;83(Suppl 1):237-238. doi:10.1136/annrheumdis-2024-eular.LBA26.; Roccatello D, Fenoglio R, Caniggia I, et al. Daratumumab monotherapy for refractory lupus nephritis. Nat Med. 2023 Aug;29(8): 2041-2047. doi:10.1038/s41591-023-02479-1. Epub 2023 Aug 10.; Ostendorf L, Burns M, Durek P, et al. Targeting CD38 with Daratumumab in Refractory Systemic Lupus Erythematosus. N Engl J Med. 2020 Sep 17;383(12):1149-1155. doi:10.1056/NEJMoa2023325.; Katsuyama E, Humbel M, Suarez- Fueyo A, et al. CD38 in SLE CD4 T cells promotes Ca(2+) flux and suppresses interleukin-2 production by enhancing the expression of GM2 on the surface membrane. Nat Commun. 2024 Sep 27;15(1):8304. doi:10.1038/s41467-024-52617-7.; Carpenter RO, Evbuomwan MO, Pittaluga S, et al. B-cell maturation antigen is a promising target for adoptive T-cell therapy of ultiple myeloma. Clin Cancer Res. 2013 Apr 15;19(8):2048-60. doi:10.1158/1078-0432.CCR-12-2422. Epub 2013 Jan 23.; Salazar-Camarena DC, Palafox-Sanchez CA, Cruz A, et al. Analysis of the receptor BCMA as a biomarker in systemic lupus erythematosus patients. Sci Rep. 2020 Apr 10;10(1):6236. doi:10.1038/s41598-020-63390-0.; Rodriguez-Carrio J, Alperi-Lopez M, Lopez P, et al. Profiling of B-Cell Factors and Their Decoy Receptors in Rheumatoid Arthritis: Association With Clinical Features and Treatment Outcomes. Front Immunol. 2018 Oct 11:9:2351. doi:10.3389/fimmu.2018.02351. e Collection 2018.; Nagatani K, Itoh K, Nakajima K, et al. Rheumatoid arthritis fibroblast-like synoviocytes express BCMA and are stimulated by APRIL. Arthritis Rheum. 2007 Nov;56(11): 3554-63. doi:10.1002/art.22929.; Verdun N, Marks P. Secondary Cancers after Chimeric Antigen Receptor T-Cell Therapy. N Engl J Med. 2024 Feb 15;390(7): 584-586. doi:10.1056/NEJMp2400209. Epub 2024 Jan 24.; Shah K, Leandro M, Cragg M, et al. Disrupting B and T-cell collaboration in autoimmune disease: T-cell engagers versus CAR T-cell therapy? Clin Exp Immunol 2024; 217(1):15-30. doi:10.1093/cei/uxae031

  13. 13
    Academic Journal

    Πηγή: Journal Infectology; Том 16, № 4 (2024); 60-67 ; Журнал инфектологии; Том 16, № 4 (2024); 60-67 ; 2072-6732 ; undefined

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.niidi.ru/jofin/article/view/1710/1170; Колоцей, Л.В. Алгоритмы медикаментозной терапии коронавирусной инфекции (COVID-19) у пациентов с удлинением интервала QT / Л.В. Колоцей, В.А. Снежицкий, А.В. Ардашев // Журнал Гродненского государственного медицинского университета. – 2020. – Т. 18, № 2. – С. 203–210.; Шестакова, М.В. Сахарный диабет и COVID-19: анализ клинических исходов по данным регистра сахарного диабета Российской Федерации / М.В. Шестакова [и др.] // Проблемы эндокринологии. – 2020. – Т. 66, № 1. – С. 35–46.; Зинченко, А.В. СOVID-19 в гематологическом стационаре, течение и исходы / А.В. Зинченко [и др.] // Гематология. Трансфузиология. Восточная Европа. – 2021. – Т. 7, № 2. – С. 131–141.; Фомина, Д.C. Вируснейтрализующие моноклональные антитела при COVID-19: механизм действия и результаты исследований / Д.С. Фомина [и др.] // Pediatriya named after GN Speransky. – 2022. – № 3.; Балыкова, Л.А. Изучение клинико-патогенетических эффектов противовирусного препарата на основе фавипиравира у коморбидных пациентов с COVID-19 на амбулаторном этапе лечения / Л.А. Балыкова [и др.] // Фармация и фармакология. – 2021. – Т. 9, № 6. – С. 454–464.; Клыпа, Т.В. Клиническая характеристика пациентов с COVID-19, поступающих в отделение интенсивной терапии. Предикторы тяжелого течения / Т.В. Клыпа [и др.] // Клиническая практика. – 2020. – Т. 11, № 2. – С. 6–20.; Иванова, М.З. Предикторы тяжелого течения заболевания и высокой летальности у пациентов с COVID-19 и сахарным диабетом / М.З. Иванова [и др.] // Фарматека. – 2021. – Т. 28, №. 4. – С. 10–15.; Мазуров, В.И. Особенности течения и факторы неблагоприятного прогноза коронавирусной инфекции COVID-19 у пациентов с иммуновоспалительными заболеваниями / В.И. Мазуров [и др.] // РМЖ. – 2020. – Т. 28, №. 11. – С. 4–8.; Аронова, Е.С. Противоревматические препараты и COVID-19: разочарования и надежды / Е.С. Аронова, Б.С. Белов //Медицинский совет. – 2021, № 10. – С. 134–139.; Балыкова, Л.А. Новые возможности направленной противовирусной терапии COVID-19: результаты многоцентрового клинического исследования эффективности и безопасности применения препарата Арепливир / Л.А. Балыкова [и др.] // Инфекционные болезни: Новости. Мнения. Обучение. – 2020. – Т. 9, № 3 (34). – С. 16–29.; Маркина У.А. Эффективность и безопасность регданвимаба у пациентов с легким/среднетяжелым течением COVID-19 и высоким риском прогрессирования заболевания: ретроспективное исследование в условиях стационара кратковременного пребывания / У.А. Маркина [и др.] // Терапевтический архив. – 2022. – Т. 94, № 5. – С. 675–682.; Хайтович, А.Б. Коронавирусные инфекции (мутации, генотипы) / А.Б. Хайтович, П.А. Ермачкова // Крымский журнал экспериментальной и клинической медицины. – 2021. – Т. 11, № 1. – С. 61–75.; Капуста, А.А. Молекулярно-генетические особенности коронавирусной инфекции COVID-19 (литературный обзор) / А.А. Капуста // Новые импульсы развития: вопросы научных исследований. – 2021. – № 1. – С. 17-30.; Мишина А.В. Новая коронавирусная инфекция (COVID-19), сочетанная с туберкулезом, у больных на поздних стадиях ВИЧ-инфекции с иммунодефицитом / А.В. Мишина [и др.] // ВИЧ-инфекция и иммуносупрессии. – 2021. – Т. 13, № 1. – С. 80–87.; Сахоненко, Л.В. Клинические особенности поражения желудочно-кишечного тракта при новой коронавирусной инфекции (COVID-19) / Л.В. Сахоненко, М.В. Мокшина // Тихоокеанский медицинский журнал. – 2021. – № 2 (84). – С. 99–100.; Баклаушев, В.П. Предварительные итоги исследования безопасности и эффективности плазмы реконвалесцентов в терапии COVID-19 / В.П. Баклушев [и др.] // Клиническая практика. – 2020. – Т. 11, № 2. – С. 38–50.; Крюков, А.В. Безопасность фармакотерапии у пациентов с COVID-19: обзор литературы / А.В. Крюков [и др.] // Безопасность и риск фармакотерапии. – 2022. – Т. 10, № 4. – С. 326–344.; Лебедкина, М.С. Применение комбинации вируснейтрализующих моноклональных антител касиривимаба и имдевимаба при легком и среднетяжелом течении COVID-19 у пациентов с высоким риском прогрессии. Результаты неинтервенционного наблюдательного исследования / М.С. Лебедкина [и др.] //Терапевтический архив. – 2023. – Т. 95, № 6. – С. 494–499.; Abani O, Abbas A, Abbas F, et al. Casirivimab and imdevimab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet. 2022;399:665-76. DOI:10.1016/S0140-6736(22)00163-5.; https://journal.niidi.ru/jofin/article/view/1710

  14. 14
  15. 15
  16. 16
    Academic Journal

    Συνεισφορές: The work was carried out under the Thematic Government Order 23/21 of the Plan of Main Activities of the State Research Center of Virology and Biotechnology “VECTOR” for 2024. Acknowledgements.The authors would like to express their sincere gratitude to the Head of the Department of Molecular Immunology, Doctor of Sciences in Biology, Alexander Vladimirovich Taranin, Senior Researchers, PhD Nikolay Andreevich Chikaev and PhD Alexander Matveevich Nayakshin, for their consultations during the work with phage libraries.

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 28, № 2 (2024); 249-257 ; Вавиловский журнал генетики и селекции; Том 28, № 2 (2024); 249-257 ; 2500-3259 ; 10.18699/vjgb-24-15

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/4095/1832; Barbas C.F., Kang A.S., Lerner R.A., Benkovic S.J. Assembly of combinatorial antibody libraries on phage surfaces: the gene-III site. Proc. Natl. Acad. Sci. USA. 1991;88(18):7978-7982. DOI 10.1073/pnas.88.18.7978; Bass S., Greene R., Wells J.A. Hormone phage: an enrichment method for variant proteins with altered binding-properties. Proteins. 1990;8(4):309-314. DOI 10.1002/prot.340080405; Brigati J.R., Petrenko V.A. Thermostability of landscape phage probes. Anal. Bioanal. Chem. 2005;382(6):1346-1350. DOI 10.1007/s00216-005-3289-y; Chai D., Wang G., Fang L., Li H., Liu S., Zhu H., Zheng J. The optimization system for preparation of TG1 competent cells and electrotransformation. MicrobiologyOpen. 2020;9(7):e1043. DOI 10.1002/mbo3.1043; Chasteen L., Ayriss J., Pavlik P., Bradbury A.R. Eliminating helper phage from phage display. Nucleic Acids Res. 2006;34(21):e145. DOI 10.1093/nar/gkl772; Chung W.J., Oh J.W., Kwak K., Lee B.Y., Meyer J., Wang E., Hexemer A., Lee S.W. Biomimetic self-templating supramolec ular structures. Nature. 2011;478(7369):364-368. DOI 10.1038/nature10513; Dotto G.F., Enea V., Zinder N.D. Functional analysis of bacteriophage f1 intergenic region. Virology. 1981;114(2):463-473. DOI 10.1016/0042-6822(81)90226-9; Du D., Zhang R. Application and progress of helper phage in phage display. Microbiology. 2009;36(2):261-266; Gao C., Mao S., Lo C.H., Wirsching P., Lerner R.A., Janda K.D. Making artificial antibodies: a format for phage display of combinatorial heterodimeric arrays. Proc. Natl. Acad. Sci. USA. 1999;96(11):6025-6030. DOI 10.1073/pnas.96.11.6025; Gao C.S., Mao S.L., Kaufmann G., Wirsching P., Lerner R.A., Janda K.D. A method for the generation of combinatorial antibody libraries using pIX phage display. Proc. Natl. Acad. Sci. USA. 2002;99(20):12612-12616. DOI 10.1073/pnas.192467999; Hoogenboom H.R., Griffiths A.D., Johnson K.S., Chiswell D.J., Hudson P., Winter G. Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res. 1991;19(15):41334137. DOI 10.1093/nar/19.15.4133; Ilyichev A.A., Minenkova O.O., Tatkov S.I., Karpishev N.N., Eroshkin A.M., Petrenko V.A., Sandakchiev L.S. Creation of a viable variant of phage M13 by inserting foreign peptide in major coat protein. Doklady AN SSSR = Doklady Biological Sciences. 1989;307(2):481-483 (in Russian); Ishina I.A., Filimonova I.N., Zakharova M.Y., Ovchinnikova L.A., Mamedov A.E., Lomakin Y.A., Belogurov A.A., Jr. Exhaustive search of the receptor ligands by the CyCLOPS (Cytometry Cell-Labeling Operable Phage Screening) technique. Int. J. Mol. Sci. 2020;21(17):6258. DOI 10.3390/ijms 21176258; Kay B., Winter J., McCafferty J. (Eds.). Phage Display of Peptides and Proteins: A Laboratory Manual. N.Y.: Acad. Press, 1996. DOI 10.1016/B978-0-12-402380-2.X5000-X; Krebber A., Bornhauser S., Burmester J., Honegger A., Willuda J., Bosshard H.R., Pluckthun A. Reliable cloning of functional antibody variable domains from hybridomas and spleen cell repertoires employing a reengineered phage display system. J. Immunol. Methods. 1997;201(1):35-55. DOI 10.1016/s00221759(96)00208-6; Larocca D., Burg M.A., Jensen-Pergakes K., Ravey E.P., Gonzalez A.M., Baird A. Evolving phage vectors for cell targeted gene delivery. Curr. Pharm. Biotechnol. 2002;3(1):45-57. DOI 10.2174/1389201023378490; Ledsgaard L., Kilstrup M., Karatt-Vellatt A., McCafferty J., Laustsen A.H. Basics of antibody phage display technology. Toxins. 2018;10(6):236. DOI 10.3390/toxins10060236; Lund P.E., Hunt R.C., Gottesman M.M., Kimchi-Sarfaty C. Pseudovirions as vehicles for the delivery of siRNA. Pharm Res. 2010;27(3):400-420. DOI 10.1007/s11095-009-0012-2; Maniatis T., Frisch E., Sambrook J. Molecular Cloning. Cold Spring Harbor Laboratory Press, 1982; McCafferty J., Griffiths A.D., Winter G., Chiswell D.J. Phage antibodies: filamentous phage displaying antibody variable domains. Nature. 1990;348(6301):552-554. DOI 10.1038/348552a0; Näkelä O., Kaartinen M., Pelkonen J.L., Karjalainen K. Inheritance of antibody specificity V. Anti-2-phenyloxazolone in the mouse. J. Exp. Med. 1978;148(6):1644-1660. DOI 10.1084/jem.148.6.1644; O’Callaghan R., Bradley R., Paranchych W. The effect of M13 phage infection upon the F pili of E. coli. Virology. 1973;54(1): 220-229. DOI 10.1016/0042-6822(73)90131-1; Pardon E., Laeremans T., Triest S., Rasmussen S.G.F., Wohlkönig A., Ruf A., Muyldermans S., Hol W.G.J., Kobilka B.K., Steyaert J. A general protocol for the generation of Nanobodies for structural biology. Nat. Protoc. 2014;9(3):674-693. DOI 10.1038/nprot.2014.039; Parmley S.F., Smith G.P. Antibody-selectable filamentous FD phage vectors: affinity purification of target genes. Gene. 1988; 73(2):305-318. DOI 10.1016/0378-1119(88)90495-7; Qi H., Lu H., Qiu H.J., Petrenko V., Liu A. Phagemid vectors for phage display: properties, characteristics and construction. J. Mol. Biol. 2012;417(3):129-143. DOI 10.1016/j.jmb.2012.01.038; Rasched I., Oberer E. Ff coliphages: structural and functional relationships. Microbiol. Rev. 1986;50(4):401-427. DOI 10.1128/mr.50.4.401-427.1986; Rondot S., Koch J., Breitling F., Dübel S. A helper phage to improve single-chain antibody presentation in phage display. Nat. Biotechnol. 2001;19(1):75-78. DOI 10.1038/83567; Russel M., Kidd S., Kelley M.R. An improved filamentous helper phage for generating single-stranded plasmid DNA. Gene. 1986; 45(3):333-338. DOI 10.1016/0378-1119(86)90032-6; Smith G.P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 1985; 228(4705):1315-1317. DOI 10.1126/science.4001944; Smith G.P. Preface (Surface display and peptide libraries. Cold Spring Harbor Laboratory, April 4–7, 1992. Proceedings). Gene. 1993;128(1):1-2. DOI 10.1016/0378-1119(93)90145-s; Sokullu E., Soleymani Abyaneh H., Gauthier A.M. Plant/bacterial virus-based drug discovery, drug delivery, and therapeutics. Pharmaceutics. 2019;11(5):211. DOI 10.3390/pharmaceutics11050211; Tu Z., He G., Li K.X., Chen M.J., Chang J., Chen L., Yao Q., Dongping P., Ye H., Shi J., Wu X. An improved system for competent cell preparation and high efficiency plasmid transformation using diff erent Escherichia coli strains. Electron. J. Biotechnol. 2005;8(1):113-120. DOI 10.2225/vol8-issue1-fulltext-8; Veronese F.D.M., Willis A.E., Boyerthompson C., Appella E., Perham R.N. Structural mimicry and enhanced immunogenicity of peptide epitopes displayed on filamentous bacteriophage. The V3 loop of HIV-1 gp120. J. Mol. Biol. 1994;243(2):167-172. DOI 10.1006/jmbi.1994.1643; Vieira J., Messing J. Production of single-stranded plasmid DNA. Me thods Enzymol. 1987;153:3-11. DOI 10.1016/00766879(87)53044-0; https://vavilov.elpub.ru/jour/article/view/4095

  17. 17
    Academic Journal

    Συνεισφορές: The authors of this article confirmed the lack of conflict of interest and financial support, which should be reported, Авторы данной статьи подтвердили отсутствие конфликта интересов и финансовой поддержки, о которых необходимо сообщить

    Πηγή: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 69, № 4 (2024); 11-15 ; Российский вестник перинатологии и педиатрии; Том 69, № 4 (2024); 11-15 ; 2500-2228 ; 1027-4065

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/2023/1507; Пискунов Г.З., Моисеева Ю.П. Полипозный риносинусит, 2-е изд., доп. М.: МЕДпрессинформ 2021; 136 с.; Рязанцев С.В. Клинические рекомендации «Полипозный риносинусит». Москва—Санкт-Петербург, 2014; 20 с.; Fokkens W.J., Lund V.J., Hopkins C., Hellings P.W., Kern R., Reitsma S. et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinology 2020; 58(Suppl S29): 1–464. DOI:10.4193/Rhin20.600; Dunican E.M., Fahy J.V. The role of type 2 inflammation in the pathogenesis of asthma exacerbations. Ann Am ThoracSoc 2015; 12 (Suppl 2): 144–149. DOI:10.1513/AnnalsATS.201506-377AW; Gevaert P., Wong K., Millette L.A., Carr T.F. The Role of IgE in Upper and Lower Airway Disease: More Than Just Allergy! Clinic Rev Allerg Immunol 2022; 62: 200–215. DOI:10.1007/S12016–021–08901–1; Пискунов Г.З. Клинические рекомендации «Полипозный риносинусит». Российское общество ринологов 2022–2025; 57. http://rhinology.ru/wp-content/uploads/2022/10/ПРС-Клинические_рекомендации_финал.pdf / Ссылка активна на 18. 07. 2024.; Li T., Yin J., Yang Y., Wang G., Zhang Y., Song X. Dupilumab in chronic rhinosinusitis with nasal polyposis: current status, challenges, and future perspectives. Expert Rev Clin Immunol 2023; 19(8): 939–948. DOI:10.1080/1744666x.2023.2231150; Schmale I., Poulakis A., Abend A., Luitje M., Man L. Chronic Rhinosinusitis With Nasal Polyposis Treated With Dupilumab: Real-World Use and Outcomes. J Allergy Clin Immunol Pract 2023; 11(10): 3203–3210. DOI:10.1016/j.jaip.2023.07.038; Wu Q., Zhang Y., Kong W., Wang X., Yuan L., Zheng R. et al. Which Is the Best Biologic for Nasal Polyps: Dupilumab, Omalizumab, or Mepolizumab? A Network Meta-Analysis. Int Arch Allergy Immunol 2022; 183(3): 279–288. DOI:10.1159/000519228; Meltzer E., Szwarcberg J., Pill M. Allergic rhinitis, asthma, and rhinosinusitis: diseases of the integrated airway. J Manag Care Pharm 2004; 10(4): 310–317. DOI:10.18553/jmcp.2004.10.4.310; Samitas K., Carter A., Kariyawasam H., Xanthou G. Upper and lower airway remodelling mechanisms in asthma, allergic rhinitis and chronic rhinosinusitis: the one airway concept revisited. Allergy 2018; 73(5): 993–1002. DOI:10.1111/all.13373; Matucci A., Vultaggio A., Maggi E., Kasujee I. Is IgE or eosinophils the key player in allergic asthma pathogenesis? Are we asking the right question? Respir Res 2018; 19: 113. DOI:10.1186/s12931–018–0813–0; Busse W., Corren J., Lanier B., McAlary M., Fowler-Taylor A., Cioppa G.D. et al. Omalizumab, anti-IgE recombinant humanized monoclonal antibody, for the treatment of severe allergic asthma. J Allergy Clin Immunol 2001; 108(2): 184–190. DOI:10.1067/mai.2001.117880; Gevaert P., Omachi T., Corren J., Mullol J., Han J., Lee S. et al. Efficacy and safety of omalizumab in nasal polyposis: 2 randomized phase 3 trials. J Allergy Clin Immunol 2020; 146(3): 595–605. DOI:10.1016/j.jaci.2020.05.032.; Okubo K., Okano M., Sato N., Tamaki Y., Suzuki H., Uddin A., Fogel R. Add-on omalizumab for inadequately controlled severe pollinosis despite standard-of-care: a randomized study. J Allergy Clin Immunol Pract 2020; 8(9): 3130–3140. DOI:10.1016/j.jaip.2020.04.068; Aldinger J., Dobyns T., Lam K., Han J. The role of omalizumab in the treatment of chronic rhinosinusitis with nasal polyposis. Expert Opin Biol Ther 2021; 21(9): 1143–1149. DOI:10.1080/14712598.2021.1962282; Miglani A., Soler Z., Smith T., Mace J., Schlosser R. A comparative analysis of endoscopic sinus surgery versus biologics for treatment of chronic rhinosinusitis with nasal polyposis. Int Forum Allergy Rhinol 2023; 13(2): 116–128. DOI:10.1002/alr.23059; Hong H., Chen T., Yang Q., Sun Y., Chen F., Lou H. et al. Chinese Expert Consensus on the Use of Biologics in Patients with Chronic Rhinosinusitis (2022, Zhuhai). ORL J Otorhinolaryngol Relat Spec 2023; 85(3): 128–140. DOI:10.1159/000529918; Fokkens W., Viskens An-S., Backer V., Conti D., de Corso E., Gevaert P. et al. EPOS/EUFOREA update on indication and evaluation of Biologics in Chronic Rhinosinusitis with Nasal Polyps. Rhinology 2023; 61 (3): 194–202. DOI:10.4193/Rhin22.489; Laidlaw T.M., Menzies-Gow A., Caveney S., Han J.K., Martin N., Israel E. et al. Tezepelumab Efficacy in Patients with Severe, Uncontrolled Asthma with Comorbid Nasal Polyps in NAVIGATOR. J Asthma Allergy 2023; 16: 915–932. DOI:10.2147/JAA.S413064; Gould H., Sutton B., Beavil A., Beavil R.L., McCloskey N., Coker H.A. et al. The biology of IgE and the basis of allergic disease. Annu Rev Immunol 2003; 21: 579–628. DOI:10.1146/annurev.immunol.21.120601.141103; Dullaers M., De Bruyne R., Ramadani F., Gould H., Gevaert P., Lambrecht B. The who, where, and when of IgE in allergic airway disease. J Allergy Clin Immunol 2012; 129(3): 635–645. DOI:10.1016/j.jaci.2011.10.029; Gevaert P., Nouri-Aria K., Wu H., Harper C.E., Takhar P., Fear D.J. et al. Local receptor revision and class switching to IgE in chronic rhinosinusitis with nasal polyps. Allergy 2013; 68(1): 55–63. DOI:10.1111/all.12054; Gatto D., Brink R. The germinal center reaction. J Allergy ClinImmunol 2010; 126(5): 898–907. DOI:10.1016/j.jaci.2010.09.007; De Schryver E., Devuyst L., Derycke L., Dullaers M., Van Zele T., Bachert C. et al. Local Immunoglobulin E in the Nasal Mucosa: Clinical Implications. Allergy Asthma Immunol Res 2015; 7(4): 321–331. DOI:10.4168/aair.2015.7.4.321

  18. 18
    Academic Journal

    Πηγή: Rheumatology Science and Practice; Vol 62, No 5 (2024); 465-473 ; Научно-практическая ревматология; Vol 62, No 5 (2024); 465-473 ; 1995-4492 ; 1995-4484

    Περιγραφή αρχείου: application/pdf

    Relation: https://rsp.mediar-press.net/rsp/article/view/3632/2400; Keating SM, Higgins BW. New technologies in therapeutic antibody development: The next frontier for treating infectious diseases. Antiviral Res. 2024;227:105902. doi:10.1016/j.antiviral.2024.105902; Насонов ЕЛ. Пандемия коронавирусной болезни 2019 (COVID-19) и аутоиммунные ревматические заболевания: итоги и перспективы. Научно-практическая ревматология. 2024;62(1):32-54.; Venkat R, Wallace ZS, Sparks JA. Considerations for pharmacologic management of rheumatoid arthritis in the COVID-19 era: A narrative review. Curr Rheumatol Rep. 2023;25(11):236-245. doi:10.1007/s11926-023-01111-y; Singson JRC, Kirley PD, Pham H, Rothrock G, Armistead I, Meek J, et al. Factors associated with severe outcomes among immunocompromised adults hospitalized for COVID-19 – COVID-NET, 10 states, March 2020–February 2022. MMWR Morb Mortal Wkly Rep. 2022;71(27):878-884. doi:10.15585/mmwr.mm7127a3; Spiera R, Jinich S, Jannat-Khah D. Rituximab, but not other antirheumatic therapies, is associated with impaired serological response to SARS- CoV-2 vaccination in patients with rheumatic diseases. Ann Rheum Dis. 2021;80(10):1357-1359. doi:10.1136/annrheumdis-2021-220604; Насонов ЕЛ, Авдеева АС. Деплеция В-клеток при иммуново-спалительных ревматических заболеваниях и коронавирусная болезнь 2019 (COVID-19). Научно-практическая ревматология. 2021;59(4):384-393.; Куликов АН, Муравьева НВ, Белов БС. Факторы риска тяжелого течения COVID-19 у больных ревматическими заболеваниями. Научно-практическая ревматология. 2024;62(1):24-31.; Spelman T, Forsberg L, McKay K, Glaser A, Hillert J. Increased rate of hospitalisation for COVID-19 among rituximab-treated multiple sclerosis patients: A study of the Swedish multiple sclerosis registry. Mult Scler. 2022;28:1051-1059. doi:10.1177/13524585211026272; Singh N, Madhira V, Hu C, Olex AL, Bergquist T, Fitzgerald KC, et al. Rituximab is associated with worse COVID-19 outcomes in patients with rheumatoid arthritis: A retrospective, nationally sampled cohort study from the U.S. National COVID Cohort Collaborative (N3C). Semin Arthritis Rheum. 2023;58:152149. doi:10.1016/j.semarthrit.2022.152149; Meijer SE, Paran Y, Belkin A, Ben-Ami R, Maor Y, Nesher L, et al. Persistent COVID-19 in immunocompromised patients-Israeli society of infectious diseases consensus statement on diagnosis and management. Clin Microbiol Infect. 2024;30(8):1012-1017. doi:10.1016/j.cmi.2024.04.009; Feng S, Reid GE, Clark NM, Harrington A, Uprichard SL, Baker SC. Evidence of SARS-CoV-2 convergent evolution in immunosuppressed patients treated with antiviral therapies. Virol J. 2024;21(1):105. doi:10.1186/s12985-024-02378-y; US Food and Drug Administration. Fact sheet for healthcare providers: Emergency use authorization for Evusheld (tixagevimab copackaged with cilgavimab). 2023. URL: https://www.fda.gov/media/154701/download (Accessed: 15th June 2024); Временные методические рекомендации по профилактике, диагностике и лечению новой коронавирусной инфекции (COVID-19), версия 17. 2021.; Loo YM, McTamney PM, Arends RH, Abram ME, Aksyuk AA, Diallo S, et al. The SARS-CoV-2 monoclonal antibody combination, AZD7442, is protective in nonhuman primates and has an extended half-life in humans. Sci Transl Med. 2022;14(635):eabl8124. doi:10.1126/scitranslmed.abl8124; Levin MJ, Ustianowski A, De Wit S, Launay O, Avila M, Templeton A, et al.; PROVENT Study Group. Intramuscular AZD7442 (Tixagevimab-Cilgavimab) for prevention of Covid-19. N Engl J Med. 2022;386(23):2188-2200. doi:10.1056/NEJMoa2116620; Forte-Soto P, Albayaty M, Brooks D, Arends RH, Tillinghast J, Aksyuk AA, et al. Safety, tolerability and pharmacokinetics of halflife extended severe acute respiratory syndrome coronavirus 2 neutralizing monoclonal antibodies AZD7442 (Tixagevimab-Cilgavimab) in healthy adults. J Infect Dis. 2023;227(10):1153-1163. doi:10.1093/infdis/jiad014; Cox M, Peacock TP, Harvey WT, Hughes J, Wright DW; COVID-19 Genomics UK (COG-UK) Consortium, et al. SARSCoV-2 variant evasion of monoclonal antibodies based on in vitro studies. Nat Rev Microbiol. 2023;21(2):112-124. doi:10.1038/s41579-022-00809-7; Насонов ЕЛ, Бекетова ТВ, Решетняк ТМ, Лила АМ, Ананьева ЛП, Лисицина ТА, и др. Коронавирусная болезнь 2019 (COVID-19) и иммуновоспалительные ревматические заболевания: на перекрестке проблем тромбовоспаления и аутоиммунитета. Научно-практическая ревматология. 2020;58(4):353-367.; Бекетова ТВ, Левина НО, Дубинская МВ, Ускова ЮА, Розанова ИВ, Бабак ВВ, и др. Опыт применения тиксагевимаба и цилгавимаба (Эвушелд) у 86 ревматологических пациентов, получающих анти-В-клеточную терапию ритуксимабом. Научно-практическая ревматология. 2023;61(2):158-164.; Бекетова ТВ, Бабак ВВ, Супрун МД. Течение и исходы COVID-19 у пациентов с АНЦА-ассоциированными системными васкулитами, получающих лечение генно-инженерными биологическими препаратами (ритуксимаб, меполизумаб): итоги первых 8 месяцев пандемии. Научно-практическая ревматология. 2021;59(1):37-46.; Роппельт АА, Лебедкина МС, Чернов АА, Круглова ТС, Мухина ОА, Юхновская ЮД, и др. Доконтактная профилактика новой коронавирусной инфекции COVID-19 препаратом тиксагевимаб/цилгавимаб у взрослых московских пациентов с первичными иммунодефицитами. Терапевтический архив. 2023;95(1):78-84.; Najjar-Debbiny R, Gronich N, Weber G, Stein N, Saliba W. Effectiveness of Evusheld in immunocompromised patients: Propensity score-matched analysis. Clin Infect Dis. 2023;76(6):1067-1073. doi:10.1093/cid/ciac855; Литвинова МА, Буланов НМ, Новиков ПИ, Филатова ЕЕ, Скворцов АВ, Климкина ИС, и др. Применение тиксагевимаба и цилгавимаба (Эвушелд) для доконтактной профилактики COVID-19 у пациентов с АНЦА-ассоциированными васкулитами: проспективное исследование. Клиническая фармакология и терапия. 2023;32(4):24-29.; Sciascia S, Rilat MLA, Fenoglio R, Foddai SG, Radin M, Cecchi I, et al. Safety and efficacy of pre-exposure prophylaxis with tixagevimab/cilgavimab (Evusheld) in patients with glomerular diseases who received rituximab. Clin Kidney J. 2023;16(9):1465-1468. doi:10.1093/ckj/sfad111; Jakimovski D, Eckert SP, Mirmosayyeb O, Thapa S, Pennington P, Hojnacki D, et al. Tixagevimab and Cilgavimab (Evusheld ™) prophylaxis prevents breakthrough COVID-19 infections in immunosuppressed population: 6-month prospective study. Vaccines (Basel). 2023;11(2):350. doi:10.3390/vaccines11020350; Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: Major findings, mechanisms and recommendations. Nat Rev Microbiol. 2023;21(3):133-146. doi:10.1038/s41579-022-00846-2; Nalbandian A, Desai AD, Wan EY. Post-COVID-19 condition. Annu Rev Med. 2023;74:55-64. doi:10.1146/annurevmed-043021-030635; Бекетова МФ, Бабак ВВ, Супрун МД, Бекетова ТВ, Георгинова ОА. К вопросу поздних осложнений COVID-19 у пациентов с ревматическими заболеваниями. Научно-практическая ревматология. 2022;60(2):162-164.; McCarthy MW. Paxlovid as a potential treatment for long COVID. Expert Opin Pharmacother. 2023;24(17):1839-1843. doi:10.1080/14656566.2023.2262387; McCarthy MW. Intravenous immunoglobulin as a potential treatment for long COVID. Expert Opin Biol Ther. 2023;23(12):1211-1217. doi:10.1080/14712598.2023.2296569

  19. 19
    Academic Journal

    Συνεισφορές: The study was not sponsored, Спонсорская поддержка отсутствовала

    Πηγή: PULMONOLOGIYA; Том 34, № 6 (2024); 887-895 ; Пульмонология; Том 34, № 6 (2024); 887-895 ; 2541-9617 ; 0869-0189

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/4326/3724; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4326/2072; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4326/2073; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4326/2074; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4326/2075; Humbert M., Kovacs G., Hoeper M.M. et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: Developed by the task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS). Endorsed by the International Society for Heart and Lung Transplantation (ISHLT) and the European Reference Network on rare respiratory diseases (ERN-LUNG). Eur. Heart J. 2022; 43 (38): 3618–3731. DOI:10.1093/eurheartj/ehac237.; Xiao Y., Chen P.P., Zhou R.L. et al. Pathological mechanisms and potential therapeutic targets of pulmonary arterial hypertension: a review. Aging. Dis. 2020; 11 (6): 1623–1639. DOI:10.14336/AD.2020.0111.; Qaiser K.N., Tonelli A.R. Novel treatment pathways in pulmonary arterial hypertension. Methodist Debakey Cardiovasc. J. 2021; 17 (2): 106–114. DOI:10.14797/CBHS2234.; Guignabert C., Humbert M. Targeting transforming growth factor-β receptors in pulmonary hypertension. Eur. Respir. J. 2021; 57 (2): 2002341. DOI:10.1183/13993003.02341-2020.; Sherman M.L., Borgstein N.G., Mook L. et al. Multiple-dose, safety, pharmacokinetic, and pharmacodynamic study of sotatercept (ActRIIA-IgG1), a novel erythropoietic agent, in healthy postmenopausal women. J. Clin. Pharmacol. 2013; 53 (11): 1121–1130. DOI:10.1002/jcph.160.; Yung L.M., Yang P., Joshi S. et al. ACTRIIA-Fc rebalances activin/GDF versus BMP signaling in pulmonary hypertension. Sci. Transl. Med. 2020; 12 (543): eaaz5660. DOI:10.1126/scitranslmed.aaz5660.; Hoeper M.M., Badesch D.B., Ghofrani H.A. et al. Phase 3 trial of sotatercept for treatment of pulmonary arterial hypertension. N. Engl. J. Med. 2023; 388 (16): 1478–1490. DOI:10.1056/NEJMoa2213558.; Araya A.A., Tasnif Y. Tacrolimus. Treasure Island (FL): StatPearls Publishing; 2023. Available at: https://www.ncbi.nlm.nih.gov/books/NBK544318/; Spiekerkoetter E., Tian X., Cai J. et al. FK506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension. J. Clin. Invest. 2013; 123 (8): 3600–3613. DOI:10.1172/JCI65592.; Spiekerkoetter E., Sung Y.K., Sudheendra D. et al. Randomised placebo-controlled safety and tolerability trial of FK506 (tacrolimus) for pulmonary arterial hypertension. Eur. Respir. J. 2017; 50 (3): 1602449. DOI:10.1183/13993003.02449-2016.; Perros F., Montani D., Dorfmüller P. et al. Platelet-derived growth factor expression and function in idiopathic pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 2008; 178 (1): 81–88. DOI:10.1164/rccm.200707-1037OC.; Medarametla V., Festin S., Sugarragchaa C. et al. PK10453, a nonselective platelet-derived growth factor receptor inhibitor, prevents the progression of pulmonary arterial hypertension. Pulm. Circ. 2014; 4 (1): 82–102. DOI:10.1086/674881.; Schermuly R.T., Dony E., Ghofrani H.A. et al. Reversal of experimental pulmonary hypertension by PDGF inhibition. J. Clin. Invest. 2005; 115 (10): 2811–2821. DOI:10.1172/JCI24838.; Hoeper M.M., Barst R.J., Bourge R.C. et al. Imatinib mesylate as add-on therapy for pulmonary arterial hypertension: results of the randomized IMPRES study. Circulation. 2013; 127 (10): 1128–1138. DOI:10.1161/CIRCULATIONAHA.112.000765.; Shah A.M., Campbell P., Rocha G.Q. et al. Effect of imatinib as add-on therapy on echocardiographic measures of right ventricular function in patients with significant pulmonary arterial hypertension. Eur. Heart J. 2015; 36 (10): 623–632. DOI:10.1093/eurheartj/ehu035.; Frantz R.P., Benza R.L., Channick R.N. et al. TORREY, a Phase 2 study to evaluate the efficacy and safety of inhaled seralutinib for the treatment of pulmonary arterial hypertension. Pulm. Circ. 2021; 11 (4): 20458940211057071. DOI:10.1177/20458940211057071.; Gossamer Bio. Gossamer Bio announces seralutinib meets primary endpoint in phase 2 torrey study in pah. Available at: https://ir.gossamerbio.com/news-releases/news-release-details/gossamer-bio-announces-seralutinib-meets-primary-endpoint-phase/; Archer S.L. Acquired mitochondrial abnormalities, including epigenetic inhibition of superoxide dismutase 2, in pulmonary hypertension and cancer: therapeutic implications. Adv. Exp. Med. Biol. 2016; 903: 29–53. DOI:10.1007/978-1-4899-7678-9_3.; Stephen Y. Chan, Lewis J. Rubin. Metabolic dysfunction in pulmonary hypertension: from basic science to clinical practice. Eur. Respir. Rev. 2017, 26 (146): 170094. DOI:10.1183/16000617.0094-2017.; Michelakis E.D., McMurtry M.S., Wu X.C. et al. Dichloroacetate, a metabolic modulator, prevents and reverses chronic hypoxic pulmonary hypertension in rats: role of increased expression and activity of voltage-gated potassium channels. Circulation. 2002; 105 (2): 244–250. DOI:10.1161/hc0202.101974.; Michelakis E.D., Gurtu V., Webster L. et al. Inhibition of pyruvate dehydrogenase kinase improves pulmonary arterial hypertension in genetically susceptible patients. Sci. Transl. Med. 2017; 9 (413): eaao4583. DOI:10.1126/scitranslmed.aao4583.; Rouhana S., Virsolvy A., Fares N. et al. Ranolazine: an old drug with emerging potential; Lessons from pre-clinical and clinical investigations for possible repositioning. Pharmaceuticals (Basel). 2021; 15 (1): 31. DOI:10.3390/ph15010031.; Han Y., Forfia P., Vaidya A. et al. Ranolazine improves right ventricular function in patients with precapillary pulmonary hypertension: results from a double-blind, randomized, placebo-controlled trial. J. Card. Fail. 2021; 27 (2): 253–257. DOI:10.1016/j.cardfail.2020.10.006.; Zolty R. Novel experimental therapies for treatment of pulmonary arterial hypertension. J. Exp. Pharmacol. 2021; 13: 817–857. DOI:10.2147/JEP.S236743.; Fukumoto Y., Yamada N., Matsubara H. et al. Double-blind, placebo-controlled clinical trial with a rho-kinase inhibitor in pulmonary arterial hypertension. Circ. J. 2013; 77 (10): 2619–2625. DOI:10.1253/circj.cj-13-0443.; ClinicalTrials.gov. Phase 2 study to assess safety, tolerability and efficacy of once weekly SC pemziviptadil (PB1046) in subjects with symptomatic PAH (VIP). 2022; No.NCT03556020. Available at: https://clinicaltrials.gov/study/NCT03556020; Liu Y., Fanburg B.L. Serotonin-induced growth of pulmonary artery smooth muscle requires activation of phosphatidylinositol 3-kinase/serine-threonine protein kinase B/mammalian target of rapamycin/p70 ribosomal S6 kinase 1. Am. J. Respir. Cell Mol. Biol. 2006; 34 (2): 182–191. DOI:10.1165/rcmb.2005-0163OC.; Hervé P., Launay J.M., Scrobohaci M.L. et al. Increased plasma serotonin in primary pulmonary hypertension. Am. J. Med. 1995; 99 (3): 249–254. DOI:10.1016/s0002-9343(99)80156-9.; Lazarus H.M., Denning J., Wring S. et al. A trial design to maximize knowledge of the effects of rodatristat ethyl in the treatment of pulmonary arterial hypertension (ELEVATE 2). Pulm. Circ. 2022; 12 (2): e12088. DOI:10.1002/pul2.12088.; Cassady S.J., Soldin D., Ramani G.V. Novel and emerging therapies in pulmonary arterial hypertension. Front. Drug Dis. 2022; 2. DOI:10.3389/fddsv.2022.1022971.; Kawut S.M., Archer-Chicko C.L., DeMichele A. et al. Anastrozole in pulmonary arterial hypertension: a randomized, double-blind, placebo-controlled trial. Am. J. Respir. Crit. Care Med. 2017; 195 (3): 360–368. DOI:10.1164/rccm.201605-1024OC.; Sitbon O., Gomberg-Maitland M., Granton J. et al. Clinical trial design and new therapies for pulmonary arterial hypertension. Eur. Respir. J. 2019; 53 (1): 1801908. DOI:10.1183/13993003.01908-2018.; ClinicalTrials.gov. Austin E. Tamoxifen Therapy to Treat Pulmonary Arterial Hypertension (T3PAH). 2022; No.NCT03528902. Available at: https://clinicaltrials.gov/study/NCT03528902; Haryono A.; Ramadhiani R.; Ryanto G.R.T. Emoto N. Endothelin and the cardiovascular system: the long journey and where we are going. Biology (Basel). 2022; 11 (5): 759. DOI:10.3390/biology11050759.; Zhang C., Jing S. Therapeutic antibody approach for pulmonary arterial hypertension. Int. J. Cardiol. Cardiovasc. Dis. 2021; 1 (1): 15–19. DOI:10.46439/cardiology.1.002.; Christman B.W., McPherson C.D., Newman J.H. et al. An imbalance between the excretion of thromboxane and prostacyclin metabolites in pulmonary hypertension. N. Engl. J. Med. 1992; 327 (2): 70–75. DOI:10.1056/NEJM199207093270202.; Katugampola S.D., Davenport A.P. Thromboxane receptor density is increased in human cardiovascular disease with evidence for inhibition at therapeutic concentrations by the AT(1) receptor antagonist losartan. Br. J. Pharmacol. 2001; 134 (7): 1385–1392. DOI:10.1038/sj.bjp.0704416.; Mulvaney E.P., Reid H.M., Bialesova L. et al. NTP42, a novel antagonist of the thromboxane receptor, attenuates experimentally induced pulmonary arterial hypertension. BMC Pulm. Med. 2020; 20 (1): 85. DOI:10.1186/s12890-020-1113-2.; Savai R., Pullamsetti S.S., Kolbe J. et al. Immune and inflammatory cell involvement in the pathology of idiopathic pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 2012; 186 (9): 897–908. DOI:10.1164/rccm.201202-0335OC.; Liang S., Desai A.A., Black S.M., Tang H. Cytokines, chemokines, and inflammation in pulmonary arterial hypertension. Adv. Exp. Med. Biol. 2021; 1303: 275–303. DOI:10.1007/978-3-030-63046-1_15.; Prins K.W., Archer S.L., Pritzker M. et al. Interleukin-6 is independently associated with right ventricular function in pulmonary arterial hypertension. J. Heart Lung Transplant. 2018; 37 (3): 376–384. DOI:10.1016/j.healun.2017.08.011.; Toshner M., Rothman A. IL-6 in pulmonary hypertension: why novel is not always best. Eur. Respir. J. 2020; 55 (4): 2000314. DOI:10.1183/13993003.00314-2020.; Trankle C.R., Canada J.M., Kadariya D. et al. IL-1 blockade reduces inflammation in pulmonary arterial hypertension and right ventricular failure: a single-arm, open-label, phase IB/II pilot study. Am. J. Respir. Crit. Care Med. 2019; 199 (3): 381–384. DOI:10.1164/rccm.201809-1631LE.; Bell R.D., White R.J., Garcia-Hernandez M.L. et al. Tumor necrosis factor induces obliterative pulmonary vascular disease in a novel model of connective tissue disease-associated pulmonary arterial hypertension. Arthritis Rheumatol. 2020; 72 (10): 1759–1770. DOI:10.1002/art.41309.; O'Brien J., Hayder H., Zayed Y., Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. (Lausanne). 2018; 9: 402. DOI:10.3389/fendo.2018.00402.; Sindi H.A., Russomanno G., Satta S. et al. Therapeutic potential of KLF2-induced exosomal microRNAs in pulmonary hypertension. Nat. Commun. 2020; 11 (1): 1185. DOI:10.1038/s41467-020-14966-x.; Dhoble S., Patravale V., Weaver E. et al. Comprehensive review on novel targets and emerging therapeutic modalities for pulmonary arterial Hypertension. Int. J. Pharm. 2022; 621: 121792. DOI:10.1016/j.ijpharm.2022.121792.; https://journal.pulmonology.ru/pulm/article/view/4326

  20. 20
    Academic Journal

    Συνεισφορές: The work was carried out within the framework of state R&D assignment 3.1.3., Работа выполнена в рамках государственного задания НИОКР 3.1.3.

    Πηγή: Problems of Particularly Dangerous Infections; № 3 (2024); 111-117 ; Проблемы особо опасных инфекций; № 3 (2024); 111-117 ; 2658-719X ; 0370-1069

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.microbe.ru/jour/article/view/2048/1507; Тришкин Д.В., Крюков Е.В., Салухов В.В., Котив Б.Н., Садовников П.С., Андрейчук Ю.В., Чугунов А.А. Особенности формирования и продолжительность сохранения нейтрализующих антител к S-белку SARS-CoV-2 у лиц, перенесших новую коронавирусную инфекцию (COVID-19) легкого или бессимптомного течения. Вестник РАМН. 2021; 76(4):361–7. DOI:10.15690/vramn1582.; Балахонов С.В., Дубровина В.И., Чеснокова М.В., Войткова В.В., Пятидесятникова А.Б., Брюхова Д.Д., Киселева Н.О., Корытов К.М., Кузнецова Т.Г., Маркевич Ж.В. Изучение гуморального иммунного ответа при лёгкой и бессимптомной формах проявления COVID-19. Acta Biomedica Scientifica. 2020; 5(5):26–30. DOI:10.29413/ABS.2020-5.5.3.; Zhou Y., Zhi H., Teng Y. The outbreak of SARS-CoV-2 Omicron lineages, immune escape, and vaccine effectivity. J. Med. Virol. 2023; 95(1):e28138. DOI:10.1002/jmv.28138.; Faria N.R., Mellan T.A., Whittaker C., Claro I.M., Candido D.D.S., Mishra S., Crispim M.A.E., Sales F.C.S., Hawryluk I., McCrone J.T., Hulswit R.J.G., Franco L.A.M., Ramundo M.S., de Jesus J.G, Andrade P.S., Coletti T.M., Ferreira G.M., Silva C.A.M., Manuli E.R., Pereira R.H.M., Peixoto P.S., Kraemer M.U.G., Gaburo N. Jr, Camilo C.D.C., Hoeltgebaum H., Souza W.M., Rocha E.C., de Souza L.M., de Pinho M.C., Araujo L.J.T., Malta F.S.V., de Lima A.B., Silva J.D.P., Zauli D.A.G., Ferreira A.C.S., Schnekenberg R.P., Laydon D.J., Walker P.G.T., Schlüter H.M., Dos Santos A.L.P., Vidal M.S., Del Caro V.S., Filho R.M.F., Dos Santos H.M., Aguiar R.S., Proença-Modena J.L., Nelson B., Hay J.A., Monod M., Miscouridou X., Coupland H., Sonabend R., Vollmer M., Gandy A., Prete C.A. Jr, Nascimento V.H., Suchard M.A., Bowden T.A., Pond S.L.K., Wu C.H., Ratmann O., Ferguson N.M., Dye C., Loman N.J., Lemey P., Rambaut A., Fraiji N.A., Carvalho M.D.P.S.S., Pybus O.G., Flaxman S., Bhatt S., Sabino E.C. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science. 2021; 372(6544):815–21. DOI:10.1126/science.abh2644.; Singh J., Rahman S.A., Ehtesham N.Z., Hira S., Hasnain S.E. SARS-CoV-2 variants of concern are emerging in India. Nat. Med. 2021; 27(7):1131–3. DOI:10.1038/s41591-021-01397-4.; Hwang Y.C., Lu R.M., Su S.C., Chiang P.Y., Ko S.H., Ke F.Y., Liang K.H., Hsieh T.Y., Wu H.C. Monoclonal antibodies for COVID-19 therapy and SARS-CoV-2 detection. J. Biomed. Sci. 2022; 29(1):1. DOI:10.1186/s12929-021-00784-w.; Kumar S., Chandele A., Sharma A. Current status of therapeutic monoclonal antibodies against SARS-CoV-2. PLoS Pathog. 2021; 17(9):e1009885. DOI:10.1371/journal.ppat.1009885.; Kim C., Ryu D.K., Lee J., Kim Y.I., Seo J.M., Kim Y.G., Jeong J.H., Kim M., Kim J.I., Kim P., Bae J.S., Shim E.Y., Lee M.S., Kim M.S., Noh H., Park G.S., Park J.S., Son D., An Y., Lee J.N., Kwon K.S., Lee J.Y., Lee H., Yang J.S., Kim K.C., Kim S.S., Woo H.M., Kim J.W., Park M.S., Yu K.M., Kim S.M., Kim E.H., Park S.J., Jeong S.T., Yu C.H., Song Y., Gu S.H., Oh H., Koo B.S., Hong J.J., Ryu C.M., Park W.B., Oh M.D., Choi Y.K., Lee S.Y. A therapeutic neutralizing antibody targeting receptor binding domain of SARSCoV-2 spike protein. Nat. Commun. 2021; 12(1):288. DOI:10.1038/s41467-020-20602-5.; Баклаушев В.П., Самойлова Е.М., Кузнецова С.М., Ермолаева Е.В., Юсубалиева Г.М., Кальсин В.А., Троицкий А.В. Технологии создания вируснейтрализующих антител человека на примере SARS-CoV-2. Медицина экстремальных ситуаций. 2022; 24(4):5–13. DOI:10.47183/mes.2022.049.; Taylor P.C., Adams A.C., Hufford M.M., de la Torre I., Winthrop K., Gottlieb R.L. Neutralizing monoclonal antibodies for treatment of COVID-19. Nat. Rev. Immunol. 2021; 21(6):382–93. DOI:10.1038/s41577-021-00542-x.; Huang Y., Yang C., Xu X.F., Xu W., Liu S.W. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol. Sin. 2020; 41(9):1141–9. DOI:10.1038/s41401-020-0485-4.; Liu L. Pharmacokinetics of monoclonal antibodies and Fc-fusion proteins. Protein Cell. 2018; 9(1):15–32. DOI:10.1007/s13238-017-0408-4.; Иващенко Т.А., Романенко Я.О., Марьин М.А., Карцева А.С., Силкина М.В., Зенинская Н.А., Шемякин И.Г., Фирстова В.В. Оценка эффективности различных адъювантов при получении мышиных моноклональных антител к рецептор-связывающему домену S-белка SARS-CоV-2. Иммунология. 2023; 44(4):481–90. DOI:10.33029/1816-2134-2023-44-4-481-490.; Силкина М.В., Карцева А.С., Рябко А.К., Марьин М.А., Романенко Я.О., Калмантаева О.В., Хлынцева А.Е., Шемякин И.Г., Дятлов И.А., Фирстова В.В. Оптимизация условий электрослияния для получения гибридом, синтезирующих человеческие моноклональные антитела. Биотехнология. 2021; 37(2):65–75. DOI:10.21519/0234-2758-2021-37-2-65-75.; Куклина Г.В., Ипатов С.С., Горшков А.С., Печенкин Д.В., Еремкин А.В., Кузнецовский А.В., Туманов А.С., Дармов И.В. Получение и характеристика гибридом-продуцентов моноклональных антител к антигенам коронавируса SARS-CоV-2. Проблемы особо опасных инфекций. 2023; 1:105–10. DOI:10.21055/0370-1069-2023-1-105-110.; Mariotti S., Capocefalo A., Chiantore M.V., Iacobino A., Teloni R., De Angelis M.L., Gallinaro A., Pirillo M.F., Borghi M., Canitano A., Michelini Z., Baggieri M., Marchi A., Bucci P., McKay P.F., Acchioni C., Sandini S., Sgarbanti M., Tosini F., Di Virgilio A., Venturi G., Marino F., Esposito V., Di Bonito P., Magurano F., Cara A., Negri D., Nisini R. Isolation and characterization of mouse monoclonal antibodies that neutralize SARS-CoV-2 and its variants of concern Alpha, Beta, Gamma and Delta by binding conformational epitopes of glycosylated RBD with high potency. Front. Immunol. 2021; 12:750386. DOI:10.3389/fimmu.2021.750386.; Володина Е.В., Фролова Н.Ф., Лысенко М.А., Ким И.Г., Ушакова А.И., Виноградов В.Е., Усатюк С.С., Никитина А.М., Маркина У.А., Червинко В.И., Крюков Е.В., Зубкин М.Л. Применение нейтрализующих моноклональных антител при SARS-CoV-2-инфекции у больных, получающих лечение гемодиализом. Инфекционные болезни: новости, мнения, обучение. 2022; 11(4):38–46. DOI:10.33029/2305-3496-2022-11-4-38-46.; Li D., Sempowski G.D., Saunders K.O., Acharya P., Haynes B.F. SARS-CoV-2 neutralizing antibodies for COVID-19 prevention and treatment. Annu. Rev. Med. 2022; 73:1–16. DOI:10.1146/annurev-med-042420-113838.; Zhou D., Ren J., Fry E.E., Stuart D.I. Broadly neutralizing antibodies against COVID-19. Curr. Opin. Virol. 2023; 61:101332. DOI:10.1016/j.coviro.2023.101332.; Meng L., Zha J., Zhou B., Cao L., Jiang C., Zhu Y., Li T., Lu L., Zhang J., Yang H., Feng J., Gu Z., Tang H., Jiang L., Li D., Lavillette D., Zhang X. A Spike-destructing human antibody effectively neutralizes Omicron-included SARS-CoV-2 variants with therapeutic efficacy. PLoS Pathog. 2023; 19(1):e1011085. DOI:10.1371/journal.ppat.1011085.; https://journal.microbe.ru/jour/article/view/2048