-
1Academic Journal
Συγγραφείς: Singh S., Jain S., Sharma S., Vasundhara V.
Πηγή: Russian Journal of Infection and Immunity; Vol 15, No 4 (2025); 635-648 ; Инфекция и иммунитет; Vol 15, No 4 (2025); 635-648 ; 2313-7398 ; 2220-7619
Θεματικοί όροι: molecular mechanisms, transmission electron microscopy, virus, imaging techniques, cryo-electron tomography, microorganisms, молекулярные механизмы, просвечивающая электронная микроскопия, вирус, методы визуализации, криоэлектронная томография, микроорганизмы
Περιγραφή αρχείου: application/pdf
Relation: https://iimmun.ru/iimm/article/view/17917/2227; https://iimmun.ru/iimm/article/view/17917/2330; https://iimmun.ru/iimm/article/downloadSuppFile/17917/139281; https://iimmun.ru/iimm/article/downloadSuppFile/17917/139559; https://iimmun.ru/iimm/article/downloadSuppFile/17917/140636; https://iimmun.ru/iimm/article/view/17917
-
2Academic Journal
-
3
-
4
-
5Academic Journal
-
6Academic Journal
Συγγραφείς: Latypova, Y. A., Gavrilov, D. S., Латыпова, Я. А., Гаврилов, Д. С.
Πηγή: Сборник статей
Θεματικοί όροι: AGING, GENETICS, EPIGENETICS, AGING GENES, MOLECULAR MECHANISMS OF AGING, СТАРЕНИЕ, ГЕНЕТИКА, ЭПИГЕНЕТИКА, ГЕНЫ СТАРЕНИЯ, МОЛЕКУЛЯРНЫЕ МЕХАНИЗМЫ СТАРЕНИЯ
Περιγραφή αρχείου: application/pdf
Relation: Актуальные вопросы современной медицинской науки и здравоохранения : Сборник статей IX Международной научно-практической конференции молодых ученых и студентов, 17-18 апреля 2024 г. Т. 1.; http://elib.usma.ru/handle/usma/21220
Διαθεσιμότητα: http://elib.usma.ru/handle/usma/21220
-
7Academic Journal
Συγγραφείς: O. G. Sarkisyan, V. A. Razdorov, E. V. Andreev, G. Sh. Gafiyatullina, О. Г. Саркисян, В. А. Раздоров, Е. В. Андреев, Г. Ш. Гафиятуллина
Συνεισφορές: Исследование не имело спонсорской поддержки
Πηγή: Medical Herald of the South of Russia; Том 15, № 2 (2024); 69-75 ; Медицинский вестник Юга России; Том 15, № 2 (2024); 69-75 ; 2618-7876 ; 2219-8075 ; 10.21886/2219-8075-2024-15-2
Θεματικοί όροι: молекулярные механизмы, wound healing, molecular mechanisms, заживление ран
Περιγραφή αρχείου: application/pdf
Relation: https://www.medicalherald.ru/jour/article/view/1841/1026; Дедов И.И., Шестакова М.В., Майоров А.Ю., Мокрышева Н.Г., Викулова О.К., и др. «Алгоритмы специализированной медицинской помощи больным сахарным диабетом». Под редакцией И.И. Дедова, М.В. Шестаковой, А.Ю. Майорова. 10-й выпуск. Сахарный диабет. 2021;24(1S):1-148. https://doi.org/10.14341/DM12802; Jones NJ, Harding K. 2015 International Working Group on the Diabetic Foot Guidance on the prevention and management of foot problems in diabetes. Int Wound J. 2015;12(4):373-374. https://doi.org/10.1111/iwj.12475; Tuttolomondo A, Maida C, Pinto A. Diabetic foot syndrome: Immune-inflammatory features as possible cardiovascular markers in diabetes. World J Orthop. 2015;6(1):62-76. https://doi.org/10.5312/wjo.v6.i1.62; Baltzis D, Eleftheriadou I, Veves A. Pathogenesis and treatment of impaired wound healing in diabetes mellitus: new insights. Adv Ther. 2014;31(8):817-836. https://doi.org/10.1007/s12325-014-0140-x; Hajhosseini B, Gurtner GC, Sen CK. Abstract 48: And at last, the Wound is Healed… or, is it?! In Search of an Objective Way to Predict the Recurrence of Diabetic Foot Ulcers. Plast Reconstr Surg Glob Open. 2019;7(4 Suppl):34-35. https://doi.org/10.1097/01.GOX.0000558322.25327.77; Chang M, Nguyen TT. Strategy for Treatment of Infected Diabetic Foot Ulcers. Acc Chem Res. 2021;54(5):1080-1093. https://doi.org/10.1021/acs.accounts.0c00864; Burgess JL, Wyant WA, Abdo Abujamra B, Kirsner RS, Jozic I. Diabetic Wound-Healing Science. Medicina (Kaunas). 2021;57(10):1072. https://doi.org/10.3390/medicina57101072; Boireau-Adamezyk E, Baillet-Guffroy A, Stamatas GN. The stratum corneum water content and natural moisturization factor composition evolve with age and depend on body site. Int J Dermatol. 2021;60(7):834-839. https://doi.org/10.1111/ijd.15417; Rigal A, Michael-Jubeli R, Nkengne A, Baillet-Guffroy A, Bigouret A, Tfayli A. Raman confocal microscopy and biophysics multiparametric characterization of the skin barrier evolution with age. J Biophotonics. 2021;14(9):e202100107. https://doi.org/10.1002/jbio.202100107; Lai CCK, Md Nor N, Kamaruddin NA, Jamil A, Safian N. Comparison of transepidermal water loss and skin hydration in diabetics and nondiabetics. Clin Exp Dermatol. 2021;46(1):58-64. https://doi.org/10.1111/ced.14363; Ibuki A, Kuriyama S, Toyosaki Y, Aiba M, Hidaka M, et al. Aging-like physiological changes in the skin of Japanese obese diabetic patients. SAGE Open Med. 2018;6:2050312118756662. https://doi.org/10.1177/2050312118756662; Han SH, Park JW. Diabetic and sympathetic influences on the water permeability barrier function of human skin as measured using transepidermal water loss: A case-control study. Medicine (Baltimore). 2017;96(45):e8611. https://doi.org/10.1097/MD.0000000000008611; Namgoong S, Yang JP, Han SK, Lee YN, Dhong ES. Influence of Peripheral Neuropathy and Microangiopathy on Skin Hydration in the Feet of Patients With Diabetes Mellitus. Wounds. 2019;31(7):173-178. PMID: 31184593; Lee TY, Kim KB, Han SK, Jeong SH, Dhong ES. Skin Hydration Level as a Predictor for Diabetic Wound Healing: A Retrospective Study. Plast Reconstr Surg. 2019;143(4):848e-856e. https://doi.org/10.1097/PRS.0000000000005474; Okano J, Kojima H, Katagi M, Nakagawa T, Nakae Y, et al. Hyperglycemia Induces Skin Barrier Dysfunctions with Impairment of Epidermal Integrity in Non-Wounded Skin of Type 1 Diabetic Mice. PLoS One. 2016;11(11):e0166215. https://doi.org/10.1371/journal.pone.0166215; Dörr S, Holland-Letz AK, Weisser G, Chatzitomaris A, Lobmann R. Bacterial Diversity, Antibiotic Resistance, and the Risk of Lower Limb Amputation in Younger and Older Individuals With Diabetic Foot Infection. Int J Low Extrem Wounds. 2023;22(1):63-71. https://doi.org/10.1177/1534734621992290; Sumitomo T, Mori Y, Nakamura Y, Honda-Ogawa M, Nakagawa S, et al. Streptococcal Cysteine Protease-Mediated Cleavage of Desmogleins Is Involved in the Pathogenesis of Cutaneous Infection. Front Cell Infect Microbiol. 2018;8:10. https://doi.org/10.3389/fcimb.2018.00010; Greener B, Hughes AA, Bannister NP, Douglass J. Proteases and pH in chronic wounds. J Wound Care. 2005;14(2):59-61. https://doi.org/10.12968/jowc.2005.14.2.26739; McArdle CD, Lagan KM, McDowell DA. Effects of pH on the Antibiotic Resistance of Bacteria Recovered from Diabetic Foot Ulcer Fluid An In Vitro Study. J Am Podiatr Med Assoc. 2018;108(1):6-11. https://doi.org/10.7547/16-033; Christman AL, Selvin E, Margolis DJ, Lazarus GS, Garza LA. Hemoglobin A1c predicts healing rate in diabetic wounds. J Invest Dermatol. 2011;131(10):2121-2127. https://doi.org/10.1038/jid.2011.176; Mieczkowski M, Mrozikiewicz-Rakowska B, Kowara M, Kleibert M, Czupryniak L. The Problem of Wound Healing in Diabetes-From Molecular Pathways to the Design of an Animal Model. Int J Mol Sci. 2022;23(14):7930. https://doi.org/10.3390/ijms23147930; Максимова Н.В., Люндуп А.В., Любимов Р.О., Мельниченко Г.А., Николенко В.Н. Патофизиологические аспекты процесса заживления ран в норме и при синдроме диабетической стопы. Вестник Российской академии медицинских наук. 2014;69(11-12):110-117. https://doi.org/10.15690/vramn.v69i11-12.1192; Машкова М.А., Мохорт Т.В. Патофизиологические аспекты заживления язв при синдроме диабетической стопы. Здравоохранение (Минск). 2018;(12):29-37. eLIBRARY ID: 37142399 EDN: ZAFZAL; Boniakowski AE, Kimball AS, Jacobs BN, Kunkel SL, Gallagher KA. Macrophage-Mediated Inflammation in Normal and Diabetic Wound Healing. J Immunol. 2017;199(1):17-24. https://doi.org/10.4049/jimmunol.1700223; Баринов Э.Ф., Лях Ю.Е., Баринова М.Э., Гурьянов В.Г. Цитокиновый ответ при синдроме диабетической стопы: возможности прогнозирования нарушения заживления ран. Патологія. 2011;8(2):30-32. eLIBRARY ID: 20868716 EDN: RORKVF; Bainbridge P. Wound healing and the role of fibroblasts. J Wound Care. 2013;22(8):407-408. 410-412. https://doi.org/10.12968/jowc.2013.22.8.407; Силина Е.В., Ступин В.А., Габитов Р.Б. Роль коллагена в механизмах заживления хронических ран при синдроме диабетической стопы. Клиническая медицина. 2018;96(2):106–115. eLIBRARY ID: 32837331 EDN: YWSTKK; Schramm J.C., Dinh T., Veves A. The Diabetic Foot: Medical and Surgical Management. 4th ed. New Illust. Humana Press; Towota, NJ, USA; 2018. https://doi.org/10.1177/1534734606292; Колобова О.И. Патогенетические особенности поражения дистальных артерий нижних конечностей у больных диабетической стопой. Политравма. 2013;(4):41-45. eLIBRARY ID: 20959589 EDN: RQRDCJ; Robson R, Kundur AR, Singh I. Oxidative stress biomarkers in type 2 diabetes mellitus for assessment of cardiovascular disease risk. Diabetes Metab Syndr. 2018;12(3):455-462. https://doi.org/10.1016/j.dsx.2017.12.029; Lankin VZ, Tikhaze AK, Kapel'ko VI, Shepel'kova GS, Shumaev KB, et al. Mechanisms of oxidative modification of low density lipoproteins under conditions of oxidative and carbonyl stress. Biochemistry (Mosc). 2007;72(10):1081-1090. https://doi.org/10.1134/s0006297907100069; Mey JT, Blackburn BK, Miranda ER, Chaves AB, Briller J, et al. Dicarbonyl stress and glyoxalase enzyme system regulation in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2018;314(2):R181-R190. https://doi.org/10.1152/ajpregu.00159.2017; Zemva J, Pfaff D, Groener JB, Fleming T, Herzig S, et al. Effects of the Reactive Metabolite Methylglyoxal on Cellular Signalling, Insulin Action and Metabolism - What We Know in Mammals and What We Can Learn From Yeast. Exp Clin Endocrinol Diabetes. 2019;127(4):203-214. https://doi.org/10.1055/s-0043-122382; Mihoub M, Abdallah J, Richarme G. Protein Repair from Glycation by Glyoxals by the DJ-1 Family Maillard Deglycases. Adv Exp Med Biol. 2017;1037:133-147. https://doi.org/10.1007/978-981-10-6583-5_9; Nobécourt E, Tabet F, Lambert G, Puranik R, Bao S, et al. Nonenzymatic glycation impairs the antiinflammatory properties of apolipoprotein A-I. Arterioscler Thromb Vasc Biol. 2010;30(4):766-772. https://doi.org/10.1161/ATVBAHA.109.201715; Иванникова Е.В., Калашников В.Ю., Смирнова О.М., Кононенко И.В., Кузнецов А.Б., Терехин С.А. Факторы роста и конечные продукты гликирования у больных с различными формами ишемической болезни сердца и сахарным диабетом 2-го типа. Терапевтический архив. 2015;87(10):19‑25. https://doi.org/10.17116/terarkh2015871019-25; Queisser MA, Yao D, Geisler S, Hammes HP, Lochnit G, et al. Hyperglycemia impairs proteasome function by methylglyoxal. Diabetes. 2010;59(3):670-678. https://doi.org/10.2337/db08-1565; Набиев М.Х., Сафаров Н.С., Шонасурдинов Ш.Ш. Диагностика и лечение синдрома эндогенной интоксикации у больных с осложнёнными формами синдрома диабетической стопы. Здравоохранение Таджикистана. 2018;(1):49-54. eLIBRARY ID: 40835796 EDN: MSEDZS; Hong WX, Hu MS, Esquivel M, Liang GY, Rennert RC, et al. The Role of Hypoxia-Inducible Factor in Wound Healing. Adv Wound Care (New Rochelle). 2014;3(5):390-399. https://doi.org/10.1089/wound.2013.0520; Ayuk SM, Abrahamse H, Houreld NN. The Role of Matrix Metalloproteinases in Diabetic Wound Healing in relation to Photobiomodulation. J Diabetes Res. 2016;2016:2897656. https://doi.org/10.1155/2016/2897656; Isidori AM, Venneri MA, Fiore D. Angiopoietin-1 and Angiopoietin-2 in metabolic disorders: therapeutic strategies to restore the highs and lows of angiogenesis in diabetes. J Endocrinol Invest. 2016;39(11):1235-1246. https://doi.org/10.1007/s40618-016-0502-0; Потекаев Н.Н., Фриго Н.В., Миченко А.В., Львов А.Н., Пантелеев А.А., Китаева Н.В. Хронические, длительно не заживающие язвы и раны кожи и подкожной клетчатки. Клиническая дерматология и венерология. 2018;17(6):7-12. https://doi.org/10.17116/klinderma2018170617; https://www.medicalherald.ru/jour/article/view/1841
-
8Academic Journal
Συγγραφείς: Natalia V. Gulyaeva
Πηγή: Интегративная физиология, Vol 1, Iss 4 (2020)
Θεματικοί όροι: 0301 basic medicine, 0303 health sciences, 03 medical and health sciences, нейропластичность, интегративная физиология, патология, Physiology, молекулярные механизмы, мозг, QP1-981, гиппокамп
Σύνδεσμος πρόσβασης: https://intphysiology.ru/index.php/main/article/download/60/56
https://doaj.org/article/a8f604fafc624708b991ec2ea518b29c
https://cyberleninka.ru/article/n/fiziologicheskiy-kontinuum-plastichnosti-i-patologii-nervnoy-sistemy
https://www.intphysiology.ru/index.php/main/article/download/60/56
https://www.intphysiology.ru/index.php/main/article/view/60 -
9
-
10Report
Θεματικοί όροι: therapeutic resistance, dutasteride, molecular mechanisms, двойные ингибиторы, андрогенная алопеция, молекулярные механизмы, 5-альфа-редуктаза, дигидротестостерон, терапевтическая резистентность, androgenetic alopecia, dual inhibitors, dihydrotestosterone, дутастерид, 5-alpha-reductase
-
11Academic Journal
Συγγραφείς: Dmitriy P. Markov
Πηγή: Вестник Научно-исследовательского института железнодорожного транспорта, Vol 78, Iss 5, Pp 303-312 (2019)
Θεματικοί όροι: когезия, Railroad engineering and operation, dehesion, friction, atomic-molecular friction mechanism, TF1-1620, friction and wear-out theory, адгезия, adhesion, cohesion, атомарно-молекулярные механизмы трения, теории трения и изнашивания, трение, дегезия
-
12Academic Journal
Συγγραφείς: Luneva, Oksana G., Novozhilova, T. S., Alekseeva, Natalya V., Rodnenkov, Oleg V., Deev, Leonid I., Maksimov, Georgy V., Grygorczyk, Ryszard, Orlov, Sergei N., Sidorenko, Svetlana V.
Πηγή: Biochemistry (Moscow), supplement series A : membrane and cell biology. 2018. Vol. 12, № 2. P. 114-120
Θεματικοί όροι: 0301 basic medicine, эритроциты, 0303 health sciences, 03 medical and health sciences, аденозинтрифосфорная кислота, гемолиз, молекулярные механизмы, экто-АТФаза, 6. Clean water, 3. Good health
Περιγραφή αρχείου: application/pdf
-
13Academic Journal
Συγγραφείς: E. V. Chetina, G. A. Markova, A. M. Lila, Е. В. Четина, Г. А. Маркова, А. М. Лила
Πηγή: Modern Rheumatology Journal; Том 15, № 4 (2021); 7-12 ; Современная ревматология; Том 15, № 4 (2021); 7-12 ; 2310-158X ; 1996-7012
Θεματικοί όροι: миметики, therapy, molecular mechanisms, stem cells, mimetics, терапия, молекулярные механизмы, стволовые клетки
Περιγραφή αρχείου: application/pdf
Relation: https://mrj.ima-press.net/mrj/article/view/1165/1122; Лила АМ, Алексеева ЛИ, Таскина ЕА. Современные подходы к терапии остеоартрита с учетом обновленных международных рекомендаций. Русский медицинский журнал. Медицинское обозрение. 2019;3(11-2):48-52.; Mithoefer K, McAdams T, Williams RJ, et al. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis. Am J Sports Med. 2009 Oct;37(10):2053-63. doi:10.1177/0363546508328414. Epub 2009 Feb 26.; Martincic D, Radosavljevic D, Drobnic M. Ten-year clinical and radiographic outcomes after autologous chondrocyte implantation of femoral condyles. Knee Surg Sports Traumatol Arthrosc. 2014 Jun;22(6):1277-83. doi:10.1007/s00167-013-2778-3. Epub 2013 Nov 21.; Jo CH, Lee YG, Shin WH, et al. Intraarticular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells. 2014 May;32(5):1254-66. doi:10.1002/stem.1634.; Freitag J, Bates D, Boyd R, et al. Mesenchymal stem cell therapy in the treatment of osteoarthritis: reparative pathways, safety and efficacy. A review. BMC Musculoskelet Disord. 2016 May 26;17:230. doi:10.1186/s12891-016-1085-9.; Barry F, Murphy M. Mesenchymal stem cells in joint disease and repair. Nat Rev Rheumatol. 2013 Oct;9(10):584-94. doi:10.1038/nrrheum.2013.109. Epub 2013 Jul 23.; Kim GB, Shon OJ. Current perspectives in stem cell therapies for osteoarthritis of the knee. Yeungnam Univ J Med. 2020 Jul;37(3): 149-58. doi:10.12701/yujm.2020.00157. Epub 2020 Apr 13.; Buzhor E, Leshansky L, Blumenthal J, et al. Cell-based therapy approaches: the hope for incurable diseases. Regen Med. 2014;9(5):649-72. doi:10.2217/rme.14.35.; Johnson MH, McConnell JM. Lineage allocation and cell polarity during mouse embryogenesis. Semin Cell Dev Biol. 2004 Oct;15(5):583-97. doi:10.1016/j.semcdb.2004.04.002.; Airenne KJ, Hu YC, Kost TA, et al. Baculovirus: an insect-derived vector for diverse gene transfer applications. Mol Ther. 2013 Apr;21(4):739-49. doi:10.1038/mt.2012.286. Epub 2013 Feb 26.; Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999 Apr 2;284(5411):143-7. doi:10.1126/science.284.5411.143.; Vezina Audette R, Lavoie-Lamoureux A, Lavoie JP, Laverty S. Inflammatory stimuli differentially modulate the transcription of paracrine signaling molecules of equine bone marrow multipotent mesenchymal stromal cells. Osteoarthritis Cartilage. 2013 Aug; 21(8):1116-24. doi:10.1016/j.joca.2013.05.004. Epub 2013 May 14.; Orozco L, Munar A, Soler R, et al. Treatment of knee osteoarthritis with autologous mesenchymal stem cells: a pilot study. Transplantation. 2013 Jun 27;95(12):1535-41. doi:10.1097/TP.0b013e318291a2da.; Wong KL, Lee KB, Tai BC, et al. Injectable cultured bone marrow-derived mesenchymal stem cells in varus knees with cartilage defects undergoing high tibial osteotomy: a prospective, randomized controlled clinical trial with 2 years' follow-up. Arthroscopy. 2013 Dec;29(12):2020-8. doi:10.1016/j.arthro.2013.09.074.; Wakitani S, Okabe T, Horibe S, et al. Safety of autologous bone marrow-derived mesenchymal stem cell transplantation for cartilage repair in 41 patients with 45 joints followed for up to 11 years and 5 months. J Tissue Eng Regen Med. 2011 Feb;5(2): 146-50. doi:10.1002/term.299.; Davatchi F, Abdollahi BS, Mohyeddin M, et al. Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. Int J Rheum Dis. 2011 May;14(2): 211-5. doi:10.1111/j.1756-185X.2011.01599.x. Epub 2011 Mar 4.; Davatchi F, Sadeghi Abdollahi B, Mohyeddin M, Nikbin B. Mesenchymal stem cell therapy for knee osteoarthritis: 5 years follow-up of three patients. Int J Rheum Dis. 2016 Mar;19(3):219-25. doi:10.1111/1756-185X.12670. Epub 2015 May 20.; Medical Advisory Secretariat. Osteogenic protein-1 for long bone nonunion: an evidence-based analysis. Ont Health Technol Assess Ser. 2005;5(6):1-57. Epub 2005 Apr 1.; Shapiro SA, Kazmerchak SE, Heckman MG, et al. A prospective, single-blind, placebo-controlled trial of bone marrow aspirate concentrate for knee osteoarthritis. Am J Sports Med. 2017 Jan;45(1):82-90. doi:10.1177/0363546516662455. Epub 2016 Sep 30.; Lee WS, Kim HJ, Kim KI, et al. Intraarticular injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of knee osteoarthritis: a phase IIb, randomized, placebo-controlled clinical trial. Stem Cells Transl Med. 2019 Jun;8(6):504-11. doi:10.1002/sctm.18-0122. Epub 2019 Mar 5.; Filardo G, Madry H, Jelic M, et al. Mesenchymal stem cells for the treatment of cartilage lesions: from preclinical findings to clinical application in orthopaedics. Knee Surg Sports Traumatol Arthrosc. 2013 Aug;21(8): 1717-29. doi:10.1007/s00167-012-2329-3. Epub 2013 Jan 11.; Kubosch EJ, Lang G, Furst D, et al. The potential for synovium-derived stem cells in cartilage repair. Curr Stem Cell Res Ther. 2018 Feb 23;13(3):174-84. doi:10.2174/1574888X12666171002111026.; Sasaki A, Mizuno M, Ozeki N, et al. Canine mesenchymal stem cells from synovium have a higher chondrogenic potential than those from infrapatellar fat pad, adipose tissue, and bone marrow. PLoS One. 2018 Aug 23;13(8):e0202922. doi:10.1371/journal.pone.0202922. eCollection 2018.; Koga H, Muneta T, Ju YJ, et al. Synovial stem cells are regionally specified according to local microenvironments after implantation for cartilage regeneration. Stem Cells. 2007 Mar;25(3):689-96. doi:10.1634/stem-cells.2006-0281. Epub 2006 Nov 30.; Shimomura K, Yasui Y, Koizumi K, et al. First-in-human pilot study of implantation of a scaffold-free tissue-engineered construct generated from autologous synovial mesenchymal stem cells for repair of knee chondral lesions. Am J Sports Med. 2018 Aug;46(10): 2384-93. doi:10.1177/0363546518781825. Epub 2018 Jul 3.; Jin YZ, Lee JH. Mesenchymal stem cell therapy for bone regeneration. Clin Orthop Surg. 2018 Sep;10(3):271-8. doi:10.4055/cios.2018.10.3.271. Epub 2018 Aug 22.; Klontzas ME, Kenanidis EI, Heliotis M, et al. Bone and cartilage regeneration with the use of umbilical cord mesenchymal stem cells. Expert Opin Biol Ther. 2015;15(11): 1541-52. doi:10.1517/14712598.2015.1068755. Epub 2015 Jul 15.; Ha CW, Park YB, Chung JY, Park YG. Cartilage repair using composites of human umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel in a minipig model. Stem Cells Transl Med. 2015 Sep;4(9):1044-51. doi:10.5966/sctm.2014-0264. Epub 2015 Aug 3.; Packer M. The Alchemist’s Nightmare: Might Mesenchymal Stem Cells That Are Recruited to Repair the Injured Heart Be Transformed Into Fibroblasts Rather Than Cardiomyocytes? Circulation. 2018 May 8; 137(19):2068-73. doi:10.1161/CIRCULATIONAHA.117.032190.; Felsenfeld GA. Brief history of epigenetics. Cold Spring Harb Perspect Biol. 2014 Jan 1;6(1):a018200. doi:10.1101/cshperspect.a018200.; Kristensen LS, Andersen MS, Stagsted LVW, et al. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019 Nov;20(11):675-91. doi:10.1038/s41576-019-0158-7. Epub 2019 Aug 8.; Patop IL, Wü st S, Kadener S. Past, present, and future of circRNAs. EMBO J. 2019 Aug 15;38(16):e100836. doi:10.15252/embj.2018100836. Epub 2019 Jul 25.; Zaiou M. circRNAs Signature as Potential Diagnostic and Prognostic Biomarker for Diabetes Mellitus and Related Cardiovascular Complications. Cells. 2020 Mar 9;9(3):659. doi:10.3390/cells9030659.; Abbaszadeh-Goudarzi K, Radbakhsh S, Pourhanifeh MH, et al. Circular RNA and Diabetes: Epigenetic Regulator with Diagnostic role. Curr Mol Med. 2020; 20(7):516-26. doi:10.2174/1566524020666200129142106.; Salzman J, Gawad C, Wang PL, et al. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One. 2012;7(2): e30733. doi:10.1371/journal.pone.0030733. Epub 2012 Feb 1.; Liu Q, Zhang X, Hu X, et al. Circular RNA Related to the Chondrocyte ECM Regulates MMP13 Expression by Functioning as a MiR-136 'Sponge' in Human Cartilage Degradation. Sci Rep. 2016 Mar 2;6:22572. doi:10.1038/srep22572.; Liu Q, Zhang X, Hu X, et al. Emerging roles of circRNA related to the mechanical stress in human cartilage degradation of osteoarthritis. Mol Ther Nucleic Acids. 2017 Jun 16;7:223-30. doi:10.1016/j.omtn.2017.04.004. Epub 2017 Apr 12.; Yu CX, Sun S. An Emerging Role for Circular RNAs in Osteoarthritis. Yonsei Med J. 2018 May;59(3):349-55. doi:10.3349/ymj.2018.59.3.349.; Liu B, Li J, Cairns MJ. Identifying miRNAs, targets and functions. Brief Bioinform. 2014 Jan;15(1):1-19. doi:10.1093/bib/bbs075. Epub 2012 Nov 22.; Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013 Mar 21;495(7441):384-8. doi:10.1038/nature11993. Epub 2013 Feb 27.; Chen LL. The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol. 2016 Apr;17(4):205-11. doi:10.1038/nrm.2015.32. Epub 2016 Feb 24.; Barata P, Sood AK, Hong DS. RNA-targeted therapeutics in cancer clinical trials: current status and future directions. Cancer Treat Rev. 2016 Nov;50:35-47. doi:10.1016/j.ctrv.2016.08.004. Epub 2016 Aug 28.; Mianehsaz E, Mirzaei HR, MahjoubinTehran M, et al. Mesenchymal stem cellderived exosomes: a new therapeutic approach to osteoarthritis? Stem Cell Res Ther. 2019 Nov 21;10(1):340. doi:10.1186/s13287-019-1445-0.; Mirzaei H, Sahebkar A, Jaafari MR, et al. Diagnostic and therapeutic potential of exosomes in cancer: the beginning of a new tale? J Cell Physiol. 2017 Dec;232(12):3251-60. doi:10.1002/jcp.25739. Epub 2017 Apr 25.; Toh WS, Lai RC, Hui JHP, Lim SK. MSC exosome as a cell-free MSC therapy for cartilage regeneration: implications for osteoarthritis treatment. Semin Cell Dev Biol. 2017 Jul;67:56-64. doi:10.1016/j.semcdb.2016.11.008. Epub 2016 Nov 18.; Zhang S, Chu W, Lai R, et al. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthritis Cartilage. 2016 Dec; 24(12):2135-40. doi:10.1016/j.joca.2016.06.022. Epub 2016 Jul 5.; Shipin Zhang, Kristeen Ye Wen Teo, et al. MSC Exosomes Alleviate Temporomandibular Joint Osteoarthritis by Attenuating Inflammation and Restoring Matrix Homeostasis. Biomaterials. 2019 Apr;200:35-47. doi:10.1016/j.biomaterials.2019.02.006. Epub 2019 Feb 8.; Mohammadi Ayenehdeh J, Niknam B, Rasouli S, et al. Immunomodulatory and protective effects of adipose tissue-derived mesenchymal stem cells in an allograft islet composite transplantation for experimental autoimmune type 1 diabetes. Immunol Lett. 2017 Aug;188:21-31. doi:10.1016/j.imlet.2017.05.006. Epub 2017 May 12.; Saeedi Borujeni MJ, Esfandiary E, Taheripak G, et al. Molecular aspects of diabetes mellitus: Resistin, microRNA, and exosome. J Cell Biochem. 2018 Feb;119(2): 1257-72. doi:10.1002/jcb.26271. Epub 2017 Aug 23.; Tao SC, Yuan T, Zhang YL, et al. Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics. 2017 Jan 1;7(1):180-95. doi:10.7150/thno.17133. eCollection 2017.; Heldring N, Mäger I, Wood MJ, et al. Therapeutic potential of multipotent mesenchymal stromal cells and their extracellular vesicles. Hum Gene Ther. 2015 Aug;26(8): 506-17. doi:10.1089/hum.2015.072. Epub 2015 Aug 3.; Nemirov D, Nakagawa Y, Sun Z, et al. Effect of Lubricin Mimetics on the Inhibition of Osteoarthritis in a Rat Anterior Cruciate Ligament Transection Model. Am J Sports Med. 2020 Mar;48(3):624-34. doi:10.1177/0363546519898691. Epub 2020 Jan 31.; Gibor G, Ilan N, Journo S, et al. Heparanase is expressed in adult human osteoarthritic cartilage and drives catabolic responses in primary chondrocytes. Osteoarthritis Cartilage. 2018 Aug;26(8):1110-17. doi:10.1016/j.joca.2018.05.013. Epub 2018 May 24.; Weksler-Zangen S, Mizrahi T, Raz I, Mirsky N. Glucose tolerance factor extracted from yeast: oral insulin-mimetic and insulinpotentiating agent: in vivo and in vitro studies. Br J Nutr. 2012 Sep;108(5):875-82. doi:10.1017/S0007114511006167. Epub 2011 Dec 15.; Peansukmanee S, Vaughan-Thomas A, Carter SD, et al. Effects of hypoxia on glucose transport in primary equine chondrocytes in vitro and evidence of reduced GLUT1 gene expression in pathologic cartilage in vivo. J Orthop Res. 2009 Apr;27(4): 529-35. doi:10.1002/jor.20772.; Afonso V, Champy R, Mitrovic D, et al. Reactive oxygen species and superoxide dismutases: role in joint diseases. Joint Bone Spine. 2007 Jul;74(4):324-9. doi:10.1016/j.jbspin.2007.02.002. Epub 2007 May 24.; Coleman MC, Brouillette MJ, Andresen NS, et al. Differential Effects of Superoxide Dismutase Mimetics after Mechanical Overload of Articular Cartilage. Antioxidants (Basel). 2017 Nov 30;6(4):98. doi:10.3390/antiox6040098.; Terkeltaub R, Johnson K, Murphy A, Ghosh S. Invited review: The mitochondrion in osteoarthritis. Mitochondrion. 2002 Feb; 1(4):301-19. doi:10.1016/s1567-7249(01)00037-x.; Wolff KJ, Ramakrishnan PS, Brouillette MJ, et al. Mechanical stress and ATP synthesis are coupled by mitochondrial oxidants in articular cartilage. J Orthop Res. 2013 Feb;31(2):191-6. doi:10.1002/jor.22223. Epub 2012 Aug 28.; Goodwin W, McCabe D, Sauter E, et al. Rotenone prevents impact-induced chondrocyte death. J Orthop Res. 2010 Aug;28(8): 1057-63. doi:10.1002/jor.21091.; Gavriilidis C, Miwa S, von Zglinicki T, et al. Mitochondrial dysfunction in osteoarthritis is associated with down-regulation of superoxide dismutase 2. Arthritis Rheum. 2013 Feb;65(2):378-87. doi:10.1002/art.37782.
-
14Academic Journal
Συγγραφείς: Андреев, А. А., Лаптиева, А. Ю., Глухов, А. А., Коняшин, Д. А., Коновалов, П. А.
Θεματικοί όροι: медицина, хирургия, химия, неорганическая химия, молекулярный водород, окислительный стресс, раны мягких тканей, молекулярные механизмы
Διαθεσιμότητα: http://dspace.bsu.edu.ru/handle/123456789/45979
-
15Academic Journal
Θεματικοί όροι: магистратура, биосигнализация, вторая ступень обучения, высшая школа, биология, молекулярные механизмы биосигнализации
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://lib.vsu.by/xmlui/handle/123456789/27124
-
16Academic Journal
Θεματικοί όροι: магистратура, биосигнализация, вторая ступень обучения, высшая школа, биология, молекулярные механизмы биосигнализации
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://rep.vsu.by/handle/123456789/27124
-
17Report
-
18Academic Journal
Συγγραφείς: В. С. Шелковский, М. В. Косевич, О. А. Боряк, В. Г. Зобнина, А. М. Плохотниченко
Πηγή: Біофізичний вісник, Vol 1, Iss 37, Pp 30-41 (2017)
Θεματικοί όροι: молекулярные механизмы, метиленовый синий, цистеин, цистин, дисуль-фидные мостики, Тау-белки, болезнь Альцгеймера, вторично-эмиссионная масс-спектрометрия, Medical physics. Medical radiology. Nuclear medicine, R895-920
Περιγραφή αρχείου: electronic resource
Relation: http://periodicals.karazin.ua/biophysvisnyk/article/view/9266; https://doaj.org/toc/2075-3810; https://doaj.org/toc/2075-3829
Σύνδεσμος πρόσβασης: https://doaj.org/article/79dd6877fd4e40e19c43d4502aa4eeed
-
19Academic Journal
Συγγραφείς: Mintser, O.P., Zaliskyi, V.Z.
Πηγή: Medical Informatics and Engineering; No 2 (2019); 4-24 ; Медицинская информатика и инженерия; № 2 (2019); 4-24 ; Медична інформатика та інженерія; № 2 (2019); 4-24 ; 1997-7468 ; 1996-1960 ; 10.11603/mie.1996-1960.2019.2
Θεματικοί όροι: systems biology, aging, molecular mechanisms, mathematic modeling, системная биология, старение, молекулярные механизмы, математическое моделирование, системна біологія, старіння, молекулярні механізми, математичне моделювання
Περιγραφή αρχείου: application/pdf
Relation: https://ojs.tdmu.edu.ua/index.php/here/article/view/10314/9898; https://ojs.tdmu.edu.ua/index.php/here/article/view/10314; https://repository.tdmu.edu.ua//handle/123456789/11369
-
20Academic Journal
Συγγραφείς: E. I. Lebedeva, O. D. Myadelets
Πηγή: Гепатология и гастроэнтерология, Vol 3, Iss 2, Pp 119-126 (2019)
Θεματικοί όροι: печень, фиброгенез, клеточно-молекулярные механизмы, звездчатая клетка, Diseases of the digestive system. Gastroenterology, RC799-869
Relation: http://hepatogastro.grsmu.by/index.php/journalHandG/article/view/110; https://doaj.org/toc/2616-5546; https://doaj.org/toc/2708-5309; https://doaj.org/article/5f10f299139e48f6afd0962922a21226