Εμφανίζονται 1 - 20 Αποτελέσματα από 280 για την αναζήτηση '"молекулярные маркеры"', χρόνος αναζήτησης: 0,76δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Πηγή: Obstetrics, Gynecology and Reproduction; Vol 19, No 4 (2025); 575-589 ; Акушерство, Гинекология и Репродукция; Vol 19, No 4 (2025); 575-589 ; 2500-3194 ; 2313-7347

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2481/1376; Злокачественные новообразования в России в 2023 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2024. 276 с.; Kim D.H., Lee K.E. Discovering breast cancer biomarkers candidates through mRNA expression analysis based on The Cancer Genome Atlas Database. J Pers Med. 2022;12(10):1753. https://doi.org/10.3390/jpm12101753.; Venetis K., Pepe F., Pescia C. et al. ESR1 mutations in HR+/HER2-metastatic breast cancer: enhancing the accuracy of ctDNA testing. Cancer Treat Rev. 2023:121:102642. https://doi.org/10.1016/j.ctrv.2023.102642.; Guerini-Rocco E., Venetis K., Cursano G. et al. Standardized molecular pathology workflow for ctDNA-based ESR1 testing in HR+/HER2-metastatic breast cancer. Review Crit Rev Oncol Hematol. 2024:201:104427. https://doi.org/10.1016/j.critrevonc.2024.104427.; Мехтиева Н.И. Современные тенденции в диагностике и лечении первично операбельного рака молочной железы (обзор литературы). Опухоли женской репродуктивной системы. 2018;14(4):24–34. https://doi.org/10.17650/1994-4098-2018-14-4-24-34.; Tzanikou E., Markou A., Politaki E. et al. PIK3CA hotspot mutations in circulating tumor cells and paired circulating tumor DNA in breast cancer: a direct comparison study. Mol Oncol. 2019;13(12):2515–30. https://doi.org/10.1002/1878-0261.12540.; Bonacho T., Rodrigues F., J Liberal J. Immunohistochemistry for diagnosis and prognosis of breast cancer: a review. Biotech Histochem. 2020;95(2):71–91. https://doi.org/10.1080/10520295.2019.1651901.; Ravelli A., Reuben J.M., Lanza F. et al. Breast cancer circulating biomarkers: advantages, drawbacks, and new insights. Tumour Biol. 2015;36(9):6653–65. https://doi.org/10.1007/s13277-015-3944-7.; Stergiopoulou D., Georgoulias V., Markou A. et al. Development and validation of a multi-marker liquid bead array assay for the simultaneous detection of PIK3CA and ESR1 hotspot mutations in single circulating tumor cells (CTCs). Heliyon. 2024;10(19):e37873. https://doi.org/10.1016/j.heliyon.2024.e37873.; Dieci M.V., Tsvetkova V., Gaia Griguolo G. et al. Integration of tumour infiltrating lymphocytes, programmed cell-death ligand-1, CD8 and FOXP3 in prognostic models for triple-negative breast cancer: Analysis of 244 stage I-III patients treated with standard therapy. Eur J Cancer. 2020:136:7–15. https://doi.org/10.1016/j.ejca.2020.05.014.; Клинические рекомендации – Рак молочной железы – 2021-2022-2023 (20.01.2023). М.: Министерство здравоохранения Российской Федерации, 2023. 94 с. Режим доступа: https://cr.minzdrav.gov.ru/preview-cr/379_4. [Дата обращения: 15.01.2025].; Loibl S., Poortmans P., Morrow M. et al. Breast cancer. Lancet. 2021;397(10286):1750–69. https://doi.org/10.1016/S0140-6736(20)32381-3.; Зикиряходжаев А.Д., Сарибекян Э.К., Сухотько А.С., Трегубова А.В. Генетически-ассоциированный рак молочной железы. Профилактика и лечение. Медицинская генетика. 2019;18(10):3–9. https://doi.org/10.25557/2073-7998.2019.10.3-9.; Lin C.-L., Jin X., Ma D. et al. Genetic interactions reveal distinct biological and therapeutic implications in breast cancer. Cancer Cell. 2024;42(4):701–719.e12. https://doi.org/10.1016/j.ccell.2024.03.006.; De Talhouet S., Peron J., Vuilleumier A. et al. Clinical outcome of breast cancer in carriers of BRCA1 and BRCA2 mutations according to molecular subtypes. Sci Rep. 2020;10(1):7073. https://doi.org/10.1038/s41598-020-63759-1.; Loi S., Drubay D., Adams S. et al. Tumor-infiltrating lymphocytes and prognosis: a pooled individual patient analysis of early-stage triple-negative breast cancers. J Clin Oncol. 2019;37(7):559–69. https://doi.org/10.1200/JCO.18.01010.; André F., Ciruelos E., Rubovszky G. et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N Engl J Med. 2019;380(20):1929–40. https://doi.org/10.1056/NEJMoa1813904.; Pohl-Rescigno E., Hauke J., Loibl S. et al. Association of germline variant status with therapy response in high-risk early-stage breast cancer: a secondary analysis of the GeparOcto Randomized Clinical Trial. JAMA Oncol. 2020;6(5):744–8. https://doi.org/10.1001/jamaoncol.2020.0007.; Herzog S.K., Fuqua S.A.W. ESR1 mutations and therapeutic resistance in metastatic breast cancer: progress and remaining challenges. Br J Cancer. 2022;126(2):174–86. https://doi.org/10.1038/s41416-021-01564-x.; Najim O., Seghers S., Sergoynne L. et al. The association between type of endocrine therapy and development of estrogen receptor-1 mutation(s) in patients with hormone-sensitive advanced breast cancer: a systematic review and meta-analysis of randomized and non-randomized trials. Biochim Biophys Acta Rev Cancer. 2019;1872(2):188315. https://doi.org/10.1016/j.bbcan.2019.188315.; Tokat U.M., Bilgiç S.N., Aydın E. et al. Elacestrant plus alpelisib in an ESR1 and PIK3CA co-mutated and heavily pretreated metastatic breast cancer: the first case report for combination efficacy and safety. Ther Adv Med Oncol. 2024:16:17588359241297101. https://doi.org/10.1177/17588359241297101.; Gelsomino L., Caruso A., Tasan E. et al. Evidence that CRISPR-Cas9 Y537S-mutant expressing breast cancer cells activate Yes-associated protein 1 to driving the conversion of normal fibroblasts into cancer-associated fibroblasts. Cell Commun Signal. 2024;22(1):545. https://doi.org/10.1186/s12964-024-01918-x.; Wang M.-H., Liu Z.-H., Zhang H.-X. et al. Hsa_circRNA_000166 accelerates breast cancer progression via the regulation of the miR-326/ ELK1 and miR-330-5p/ELK1 axes. Ann Med. 2024;56(1):2424515. https://doi.org/10.1080/07853890.2024.2424515.; Angelico G., Broggi G., Tinnirello G. et al. Tumor infiltrating lymphocytes (TILS) and PD-L1 expression in breast cancer: a review of current evidence and prognostic implications from pathologist's perspective. Cancers (Basel). 2023;15(18):4479. https://doi.org/10.3390/cancers15184479.; van den Ende N.S., Nguyen A.H., Jager A. et al. Triple-negative breast cancer and predictive markers of response to neoadjuvant chemotherapy: a systematic review. Int J Mol Sci. 2023;24(3):2969. https://doi.org/10.3390/ijms24032969.; The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70. https://doi.org/10.1038/nature11412.; Barzaman K., Karami J., Zarei Z. et al. Breast cancer: biology, biomarkers, and treatments. Int Immunopharmacol. 2020:84:106535. https://doi.org/10.1016/j.2020.106535.; Grüntkemeier L., Khurana A., Bischoff F.Z. et al. Single HER2-positive tumor cells are detected in initially HER2-negative breast carcinomas using the DEPArray™-HER2-FISH workflow. Breast Cancer. 2022;29(3):487–97. https://doi.org/10.1007/s12282-022-01330-8.; Zhang L., Chen W., Liu S. et al. Targeting breast cancer stem cells. Int J Biol Sci. 2023;19(2):552–70. https://doi.org/10.7150/ijbs.76187.; Gonzalez-Ericsson P.I., Stovgaard E.S., Sua L.F. et al. The path to a better biomarker: application of a risk management framework for the implementation of PD-L1 and TILs as immuno-oncology biomarkers in breast cancer clinical trials and daily practice. J Pathol. 2020;250(5):667–84. https://doi.org/10.1002/path.5406.; Loi S., Michiels S., Adams S. et al. The journey of tumor-infiltrating lymphocytes as a biomarker in breast cancer: clinical utility in an era of checkpoint inhibition. Ann Oncol. 2021;32(10):1236–44. https://doi.org/10.1016/j.annonc.2021.07.007.; Abdelrahman A.E., Rashed H.E., Toam M. et al. Clinicopathological significance of the immunologic signature (PDL1, FOXP3+ Tregs, TILs) in early stage triple-negative breast cancer treated with neoadjuvant chemotherapy. Ann Diagn Pathol. 2021:51:151676. https://doi.org/10.1016/j.anndiagpath.2020.151676.; Тюляндин С.А., Артамонова Е.В., Жукова Л.Г. и др. Практические рекомендации по лекарственному лечению рака молочной железы. Злокачественные опухоли. 2022;12(3s2–1):155–197. https://doi.org/10.18027/2224-5057-2022-12-3s2-155-197.; Liu Y. HER2-low breast cancer: insights on pathological testing. Transl Breast Cancer Res. 2023:4:15. https://doi.org/10.21037/tbcr-23-15.; Horisawa N., Adachi Y., Takatsuka D. et al. The frequency of low HER2 expression in breast cancer and a comparison of prognosis between patients with HER2-low and HER2-negative breast cancer by HR status. Breast Cancer. 2022;29(2):234–41. https://doi.org/10.1007/s12282-021-01303-3.; Denkert C., Lambertini C., Fasching P.A. et al. Biomarker data from the phase III KATHERINE study of adjuvant T-DM1 versus trastuzumab for residual invasive disease after neoadjuvant therapy for HER2-positive breast cancer. Clin Cancer Res. 2023;29(8):1569–81. https://doi.org/10.1158/1078-0432.CCR-22-1989.; Takada M., Toi M. Neoadjuvant treatment for HER2-positive breast cancer. Chin Clin Oncol. 2020;9(3):32. https://doi.org/10.21037/cco-20-123.; Takano T., Masuda N., Ito M. et al. Long-term outcomes of neoadjuvant trastuzumab emtansine + pertuzumab (T-DM1 + P) and docetaxel + carboplatin + trastuzumab + pertuzumab (TCbHP) for HER2-positive primary breast cancer: results of the randomized phase 2 JBCRG20 study (Neo-peaks). Breast Cancer Res Treat. 2024;207(1):33–48. https://doi.org/10.1007/s10549-024-07333-7.; Masuda N., Ohtani S., Takano T. et al. A randomized, 3-arm, neoadjuvant, phase 2 study comparing docetaxel + carboplatin + trastuzumab + pertuzumab (TCbHP), TCbHP followed by trastuzumab emtansine and pertuzumab (T-DM1+P), and T-DM1+P in HER2-positive primary breast cancer. Breast Cancer Res Treat. 2020;180(1):135–46. https://doi.org/10.1007/s10549-020-05524-6.; https://www.gynecology.su/jour/article/view/2481

  3. 3
    Academic Journal

    Πηγή: Proceedings of the National Academy of Sciences of Belarus. Agrarian Series; Том 63, № 1 (2025); 35–44 ; Известия Национальной академии наук Беларуси. Серия аграрных наук; Том 63, № 1 (2025); 35–44 ; 1817-7239 ; 1817-7204 ; 10.29235/1817-7204-2025-63-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestiagr.belnauka.by/jour/article/view/784/647; Folta, K. M. Strawberry genes and genomics / K. M. Folta, T. M. Davis // Critical Reviews in Plant Sciences. – 2006. – Vol. 25, № 5. – P. 399–415. https://doi.org/10.1080/07352680600824831; Лукъянчук, И. В. Комплексная устойчивость земляники к белой и бурой пятнистостям / И. В. Лукъянчук // Плодоводство и ягодоводство России. – 2013. – Т. 36, № 1. – С. 366–369.; Холод, Н. А. Болезни земляники на Юге России / Н. А. Холод // Защита и карантин растений. – 2013. – № 10. – С. 28–30.; Ahmed, M. F. A. Effect of biological control of root rot diseases of strawberry using Trichoderma spp. / M. F. A. Ahmed, I. A. I. El-Fiki // Middle East Journal of Applied Sciences. – 2017. – Vol. 7, № 3. – P. 482–492.; Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea / S. Petrasch, S. J. Knapp, J. A. L. van Kan, B. Blanco-Ulate // Molecular Plant Pathology. – 2019. – Vol. 20, № 6. – P. 877–892. https://doi.org/10.1111/mpp.12794; Smith, B. J. Epidemiology and pathology of strawberry anthracnose: a North American perspective / B. J. Smith // HortScience. – 2008. – Vol. 43, № 1. – P. 69–73.; The Colletotrichum acutatum species complex / U. Damm, P. F. Cannon, J. H. C. Woudenberg, P. W. Crous // Studies in Mycology. – 2012. – Vol. 73, № 1. – P. 37–113. https://doi.org/10.3114/sim0010; Karimi, K. Weeds as potential inoculum reservoir for Colletotrichum nymphaeae causing strawberry anthracnose in Iran and Rep-PCR fingerprinting as useful marker to differentiate C. acutatum complex on strawberry / K. Karimi, M. Arzanlou, I. Pertot // Frontiers in Microbiology. – 2019. – Vol. 10. – Art. 129. https://doi.org/10.3389/fmicb.2019.00129; Кузнецова, А. А. Антракноз земляники, классические и современные методы диагностики / А. А. Кузнецова, И. П. Дудченко, М. Б. Копина // Современные подходы и методы в защите растений: материалы Всерос. науч.-практ. конф. с междунар. участием, Екатеринбург, 12–14 нояб. 2018 г. / Урал. федер. ун-т; редкол.: Т. В. Глухарева, Ю. И. Нейн. – Екатеринбург, 2018. – С. 78–81.; Chung, P.-C. Diversity and pathogenicity of Colletotrichum species causing strawberry anthracnose in Taiwan and description of a new species, Colletotrichum miaoliense sp. nov. / P.-C. Chung, H.-Y. Wu, Y.-W. Wang [et al.] // Scientific Reports. – 2020. – Vol. 10, № 1. – Art. 14664. https://doi.org/10.1038/s41598-020-70878-2; FaRCa1 confers moderate resistance to the root necrosis form of strawberry anthracnose caused by Colletotrichum acutatum / N. Salinas, Z. Fan, N. Peres [et al.] // HortScience. – 2020. – Vol. 55, № 5. – P. 693–698. https://doi.org/10.21273/HORTSCI14807-20; Оценка устойчивости сортов земляники садовой к антракнозной черной гнили в южном регионе / Н. А. Хо- лод, Ю. П. Кащиц, Е. А. Добренков, Л. Г. Семенова // Плодоводство и виноградарство Юга России. – 2018. – № 51 (3). – С. 137–145. https://doi.org/10.30679/2219-5335-2018-3-51-137-145; A novel strain of endophytic Streptomyces for the biocontrol of strawberry anthracnose caused by Glomerella cingulate / M. Marian, T. Ohno, H. Suzuki [et al.] // Microbiological Research. – 2020. – Vol. 234. – Art. 126428. https://doi.org/10.1016/j.micres.2020.126428; Validation of a Florida strawberry anthracnose fruit rot (AFR) warning system in Iowa / X. Zhang, J. C. Batzer, X. Li [et al.] // Plant Disease. – 2019. – Vol. 103, № 1. – P. 28–33. https://doi.org/10.1094/PDIS-11-17-1762-RE; Fitness, competitive ability, and mutation stability of isolates of Colletotrichum acutatum from strawberry resistant to QoI fungicides / B. B. Forcelini, C. S. Rebello, N.-Y. Wang, N. A. Peres // Phytopathology. – 2018. – Vol. 108, № 4. – P. 462–468. https://doi.org/10.1094/PHYTO-09-17-0296-R; Biocontrol potential of Bacillus amyloliquefaciens Bc2 and Trichoderma harzianum TR against strawberry anthracnose under laboratory and field conditions / R. Es-Soufi, H. Tahiri, L. Azaroual [et al.] // Agricultural Sciences. – 2020. – Vol. 11, № 3. – P. 260–277. https://doi.org/10.4236/as.2020.113017; Preharvest and postharvest application of garlic and rosemary essential oils for controlling anthracnose and quality assessment of strawberry fruit during cold storage / S. Hosseini, J. Amini, M. K. Saba [et al.] // Frontiers in Microbiology. – 2020. – Vol. 11. – Art. 1855. https://doi.org/10.3389/fmicb.2020.01855; Жученко, А. А. Биологизация и экологизация интенсификационных процессов в сельском хозяйстве / А. А. Жу- ченко // Вестник ОрелГАУ. – 2009. – № 3 (18). – С. 8–12.; The use of molecular markers for durable resistance breeding in the cultivated strawberry (Fragaria × ananassa) / E. Lerceteau-Köhler, P. Roudeillac, M. Markocic [et al.] // Acta Horticulturae – 2002. – № 567. – P. 615–618. https://doi.org/10.17660/ActaHortic.2002.567.132; Lerceteau-Köhler, E. Identification of SCAR markers linked to Rca2 anthracnose resistance gene and their assessment in strawberry germplasm / E. Lerceteau-Köhler, G. Guérin, B. Denoyes-Rothan // Theoretical and Applied Genetics. – 2005. – Vol. 111, № 5. – P. 862–870. https://doi.org/10.1007/s00122-005-0008-1; Assessing some strawberry genotypes used in breeding programme for increasing resistance to diseases / M. Sturzeanu, M. Calinescu, L. Fralova [et al.] // Fruit Growing Research. – 2017. – Vol. 33. – P. 29–34.; Use of RAPD and SCAR markers for identification of strawberry genotypes with red stele resistance genes Rpf1 and fruit rot resistance genes Rca2 in the hybrid progenies / M. Sturzeanu, M. Ciuca, D. Cristina A. G. Turcu // Acta Horticulturae. – 2021. – № 1309. – P. 93–100. https://doi.org/10.17660/ActaHortic.2021.1309.15; DNA-screening of strawberry cultivars and hybrids (Fragaria ananassa Duch.) for resistance to fungal diseases / M. Keldibekova, E. Bezlepkina, M. Zubkova, M. Dolzhikova // Pakistan Journal of Botany. – 2024. – Vol. 56, № 2. – P. 751– 757. https://doi.org/10.30848/PJB2024-2(29); Лыжин, А. С. Наследование устойчивости к антракнозу, детерминируемой доминантным геном Rca2, в гибридном потомстве земляники садовой / А. С. Лыжин, И. В. Лукъянчук // Таврический вестник аграрной науки. – 2023. – № 3 (35). – С. 137–144. https://doi.org/10.5281/zenodo.10141405; Лукъянчук, И. В. Анализ генетической коллекции земляники (Fragaria L.) по генам Rca2 и Rpf1 с использованием молекулярных маркеров / И. В. Лукъянчук, А. С. Лыжин, И. И. Козлова // Вавиловский журнал генетики и селекции. – 2018. – Т. 22, № 7. – С. 795–799. https://doi.org/10.18699/VJ18.423; Development of microsatellite markers in Fragaria, their use in genetic diversity analysis, and their potential for genetic linkage mapping / A. M. Hadonou, D. J. Sargent, F. Wilson [et al.] // Genome. – 2004. – Vol. 47, № 3. – P. 429–438. https://doi.org/10.1139/g03-142; Лыжин, А. С. Полиморфизм сортов земляники (Fragaria × ananassa) по гену устойчивости к антракнозу Rca2 / А. С. Лыжин, И. В. Лукъянчук, Е. В. Жбанова // Труды по прикладной ботанике, генетике и селекции. – 2019. – Т. 180, № 1. – С. 73–77. https://doi.org/10.30901/2227-8834-2019-1-73-77; Лыжин, А. С. Анализ сортов земляники садовой по устойчивости к антракнозу с использованием диагностических ДНК-маркеров / А. С. Лыжин, И. В. Лукъянчук // Аграрная Россия. – 2022. – № 9. – С. 16–20. https://doi.org/10.30906/1999-5636-2022-9-16-20; Molecular characterization of allelic status of the Rpf1 and Rca2 genes in six cultivars of strawberries / M. Sturzeanu, M. Coman, M. Ciuca [et al.] // Acta Horticulturae. – 2016. – № 1139. – P. 107–112. https://doi.org/10.17660/ActaHortic.2016.1139.19; Comparison of anthracnose resistance with the presence of two SCAR markers associated with the Rca2 gene in strawberry / M. A. Miller-Butler, B. J. Smith, B. R. Kreiser, E. K. Blythe // HortScience. – 2019. – Vol. 54, № 5. – P. 793–798. https://doi.org/10.21273/HORTSCI13805-18; Njuguna, W. Development and use of molecular tools in Fragaria: Ph. D. Thesis / Njuguna Wambui; Oregon State Univ. – Corvallis, 2010. – 370 p.; Inheritance of resistance to Colletotrichum acutatum in Fragaria × ananassa / B. Denoyes-Rothan, G. Guérin, E. Ler- ceteau-Köhler, G. Risser // Phytopathology. – 2005. – Vol. 95, № 4. – P. 405–412. https://doi.org/10.1094/PHYTO-95-0405; Wagner, A. Susceptibility of strawberry cultivars to Colletotrichum acutatum J. H. Simmonds / A. Wagner, B. Hetman // Acta Scientiarum Polonorum-Hortorum Cultus. – 2016. – Vol. 15, № 6. – P. 209–219. Весці Нацыянальнай акадэміі навук Беларусі. Серыя аграрных навук. 2025. Т. 63, № 1. С. 35–44; https://vestiagr.belnauka.by/jour/article/view/784

  4. 4
    Academic Journal

    Συγγραφείς: Rizaev, Jasur, Akhrorov, Alisher

    Πηγή: Medical science of Uzbekistan; No. 2 (2025): March-April; 155-160 ; Медицинская наука Узбекистана; № 2 (2025): Март-Апрель; 155-160 ; O`zbekiston tibbiyot ilmi; No. 2 (2025): Mart-Aprel; 155-160 ; 2181-3612

    Περιγραφή αρχείου: application/pdf

  5. 5
    Academic Journal

    Συνεισφορές: the research was carried out using the funds of the Strategic Academic Leadership Program “Priority 2030” of the Kazan Federal University of the Government of the Russian Federation., работа выполнена за счет средств Программы стратегического академического лидерства Казанского (Приволжского) федерального университета («Приоритет-2030»).

    Πηγή: Agricultural Science Euro-North-East; Том 26, № 1 (2025); 107-114 ; Аграрная наука Евро-Северо-Востока; Том 26, № 1 (2025); 107-114 ; 2500-1396 ; 2072-9081

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.agronauka-sv.ru/jour/article/view/1890/861; Kokhmetova A., Rsaliyev A., Malysheva A., Atishova M., Kumarbayeva M., Keishilov Z. Identification of Stripe Rust Resistance Genes in Common Wheat Cultivars and Breeding Lines from Kazakhstan. Plants (Basel). 2021;10(11):2303. DOI: https://doi.org/10.3390/plants10112303; Chen W., Wellings T., Chen C., Kang X., Liu Z. Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. Tritici. Molecular Plant Pat hology. 2014;15(5):433–446. DOI: https://doi.org/10.1111/mpp.12116; Carmona M. A., Sautua F. J., Pérez-Hernández O., Grosso С., Vettorello L., Milanesio B., Corvi E., Almada G., Hovmøller M. S. Rapid emergency response to yellow rust epidemics caused by newly introduced lineages of Puccinia striiformis f. sp. tritici in Argentina. Tropical Plant Pathology. 2019;44:385–391. DOI: https://doi.org/10.1007/s40858-019-00295-y; Swarup S., Cargill E. J., Crosby K., Flagel L., Kniskern J., Glenn K. C. Genetic diversity is indispensable for plant breeding to improve crops. Crop Science. 2021;61(2):839–852. DOI: https://doi.org/10.1002/csc2.20377; Chen X. M. High temperature adult plant resistance, key for sustainable control of stripe rust. American Journal of Plant Sciences. 2013;4(3):608–627. DOI: https://doi.org/10.4236/ajps.2013.43080; Chen X. Pathogens which threaten food security: Puccinia striiformis, the wheat stripe rust pathogen. Food Security. 2020;12(2):239–251. DOI: https://doi.org/10.1007/s12571-020-01016-z; Волкова Г. В., Матвеева И. П., Дерова Т. Г., Шишкин Н. В., Марченко Д. М. Источники устойчивости к желтой ржавчине (возбудитель Puccinia striiformis West.) Среди селекционного и коллекционного материала озимой пшеницы ФГБНУ «АНЦ «Донской». Зерновое хозяйство России. 2020;(4):69–76. DOI: https://doi.org/10.31367/2079-8725-2020-70-4-69-76 EDN: NGCOIF.; Röder M. S., Korzun V., Wendehake K., Plaschke J., Tixier M. H., Leroy P., Ganal M. W. A microsatellite map of wheat. Genetics. 1998;149(4):2007–2023. DOI: https://doi.org/10.1093/genetics/149.4.2007; Smith P. H., Hadfield J., Hart N. J., Koebner R. M. D., Boyd L. A. STS markers for the wheat yellow rust resistance gene Yr5 suggest a NBS-LRR-type resistance gene cluster. Genome. 2007;50(3):259–265. DOI: https://doi.org/10.1139/g07-004; Ravishankar L. V., Pandey M. K., Dey T., Singh A., Rasool B., Diskit S., et al. Phenotyping and molecular characterization of durable resistance in bread wheat for stripe rust (Puccinia striiformis f.sp. tritici). Journal of Biobased Materials and Bioenergy. 2024;18(4):710–720. DOI: https://doi.org/10.1166/jbmb.2024.2407; Wang L. F., Ma J. X., Zhou R. H., Wang X. M., Jia J. Z. Molecular tagging of the yellow rust resistance gene Yr10 in common wheat, P.I.178383 (Triticum aestivum L.). Euphytica. 2002;124:71–73. DOI: https://doi.org/10.1023/A:1015689817857; Peng J. H., Fahima T., Roeder M. S., Huang Q. Y., Dahan A., Li Y. C., Grama A., Nevo E. Highdensity molecular map of chromosome region harboring stripe-rust resistance genes YrH52 and Yr15 derived from wild emmer wheat, Triticum dicoccoides. Genetica. 2000;109(3):199–210. DOI: https://doi.org/10.1023/a:1017573726512; Lagudah E. S., McFadden H., Singh R. P., Huerta-Espino J., Bariana H. S., Spielmeyer W. Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theoretical and Applied Genetics. 2006;114:21–30. DOI: https://doi.org/10.1007/s00122-006-0406-z; Bansal U. K., Hayden M. J., Keller B., Wellings C. R., Park R. F., Bariana H. S. Relationship between wheat rust resistance genes Yr1 and Sr48 and a microsatellite marker. Plant Pathology. 2009;58(6):1039–1043. DOI: https://doi.org/10.1111/j.1365-3059.2009.02144.x; Macer R. C. F. The formal and monosomic genetic analysis of stripe rust (Puccinia striiformis) resistance in wheat. Proceedings of the 2nd international wheat genetics symposium, Lund, Sweden. 1966;(2):127–142.; Sharma-Poudyal D., Chen X. M., Wan A. M., Zhan G. M., Kang Z. S., Cao S. Q., et al. Virulence Characterization of International Collections of the Wheat Stripe Rust Pathogen, Puccinia striiformis f. sp. tritici. Plant Disease. 2013;97(3):379–386. DOI: https://doi.org/10.1094/PDIS-01-12-0078-RE; Kemma G. H. J., Lange W. Resistance in spelt wheat to yellow rust. II: Monosomic analysis of the Iranian accession 415. Euphytica. 1992;63:219–224. DOI: https://doi.org/10.1007/BF00024547; Bariana H. S., Brown G. N., Ahmed N. U., Khatkar S., Conner R. L., Wellings C. R., et al. Characterisation of Triticum vavilovii-derived stripe rust resistance using genetic, cytogenetic and molecular analyses and its marker-assisted selection. Theoretical and Applied Genetics. 2002;104:315–320. DOI: https://doi.org/10.1007/s001220100767; Ul Islam B., Mir S., Dar M. S., Khan G. H., Shikari A. B., Sofi N. U. R., et al. Characterization of pre-breeding wheat (Triticum aestivum L.) germplasm for stripe rust resistance using field phenotyping and genotyping. Plants (Basel). 2023;12(18):3239. DOI: https://doi.org/10.3390/plants12183239; Gerechter-Amitai Z. K., Van Silfhout C. H., Grama A., Kleitman F. Yr 15 - a new gene for resistance to Puccinia striiformis in Triticum dicoccoides sel. G-25. Euphytica. 1989;43:187–190. DOI: https://doi.org/10.1007/BF00037912; Yaniv E., Raats D., Ronin Y., Korol A. B., Grama A., Bariana H., Dubcovsky J., Schulman A. H. Evaluation of marker-assisted selection for the stripe rust resistance gene Yr15, introgressed from wild emmer wheat. Molecular Breeding. 2015;35:43. DOI: https://doi.org/10.1007/s11032-015-0238-0; Klymiuk V., Yaniv E., Huang L., Raats D., Fatiukha A., Chen S., et al. Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nature Communications. 2018;9:3735. DOI: https://doi.org/10.1038/s41467-018-06138-9; Agarwal P., Jha S. K., Sharma N. K., Raghunanadan K., Mallick N., Niranjana M., Saharan M.S., Singh J.B., Vinod. Identification of the improved genotypes with 2NS/2AS translocation through molecular markers for imparting resistance to multiple biotic stresses in wheat. Indian Journal of Genetics and Plant Breeding. 2021;81(04):522–528. DOI: https://doi.org/10.31742/IJGPB.81.4.4; Василова Н. З., Асхадуллин Д-л Ф., Асхадуллин Д-р Ф., Багавиева Э. З., Тазутдинова М. Р., Хусаинова И. И. Достижения селекции яровой мягкой пшеницы в Татарстане. Зернобобовые и крупяные культуры. 2019;(2(30)):124–131. DOI: https://doi.org/10.24411/2309-348X-2019-11102 EDN: KZXAFM.

  6. 6
    Academic Journal

    Πηγή: BIOAsia-Altai; Том 4 № 1 (2024): Международный биотехнологический форум «BIOAsia–Altai»; 283-285
    BIOAsia-Altai; Vol 4 No 1 (2024): International Biotechnology Forum “BIOAsia-Altai”; 283-285

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: http://journal.asu.ru/bioasia/article/view/16344

  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
    Academic Journal

    Συνεισφορές: Cytogenetic analysis was carried out with the support of the budget project FWNR-2022-0017 of the Ministry of Science and Higher Education.

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 28, № 5 (2024); 506-514 ; Вавиловский журнал генетики и селекции; Том 28, № 5 (2024); 506-514 ; 2500-3259 ; 10.18699/vjgb-24-52

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/4232/1857; Adonina I.G., Petrash N.V., Timonova E.M., Khristov Yu.A., Salina E.A. Construction and study of leaf rust resistant common wheat lines with translocations of Aegilops speltoides Tausch. Genetic material. Russ. J. Genet. 2012;48(4):404¬409. DOI 10.1134/S1022795412020020; Badaeva E.D., Badaev N.S., Gill B.S., Filatenko A.A. Intraspecific karyotype divergence in Triticum araraticum (Poaceae). Plant Syst. Evol. 1994;192(1):117-145. DOI 10.1007/BF00985912; Badaeva E.D., Friebe B., Gill B.S. Genome differentiation in Aegilops. 1. Distribution of highly repetitive DNA sequence on chromosomes of diploid species. Genome. 1996;39(2):293¬306. DOI 10.1139/g96-040; Bedbrook J.R., Jones J., O’Dell M., Thompson R.D., Flavell R.B. A molecular description of telomeric heterochromatin in Secale species. Cell. 1980;19(2):545-560. DOI 10.1016/0092-8674(80)90529-2; Brevis J.C., Chicaiza O., Khan I.A., Jackson L., Morris C.F., Dubcovsky J. Agronomic and quality evaluation of common wheat nearisogenic lines carrying the leaf rust resistance gene Lr47. Crop Sci. 2008;48(4):1441¬1451. DOI 10.2135/cropsci2007.09.0537; Cherukuri D.P., Gupta S.K., Charpe A., Koul S., Prabhu K.V., Singh R.B., Haq Q.M.R. Molecular mapping of Aegilops speltoides derived leaf rust resistance gene Lr28 in wheat. Euphytica. 2005; 143:19¬26. DOI 10.1007/s10681-005-1680-6; Davoyan E.R., Davoyan R.O., Bebyakina I.V., Davoyan O.R., Zubanova Yu.S., Kravchenko A.M., Zinchenko A.N. Identification of a leaf¬rust resistance gene in species of Aegilops L., synthetic forms, and introgression lines of common wheat. Russ. J. Genet.: Appl. Res. 2012;2(4):325¬329. DOI 10.1134/S2079059712040041; Davoyan R.O., Bebyakina I.V., Davoyan O.R., Zinchenko A.N., Davoyan E.R., Kravchenko A.M., Zubanova Y.S. The use of synthetic forms in the preservation and exploitation of the gene pool of wild common wheat relatives. Russ. J. Genet.: Appl. Res. 2012;2(6):480¬485. DOI 10.1134/S2079059712060044; Davoyan R.O., Bebyakina I.V., Davoyan E.R., Mikov D.S., Badaeva E.D., Adonina I.G., Salina E.A., Zinchenco A.N., Zubanova Y.S. Use of a synthetic form Avrodes for transfer of leaf rust resistance from Aegilops speltoides to common wheat. Vavilovskii Zhurnal Ge netiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017; 21(6):663¬670. DOI 10.18699/VJ17.284 (in Russian); Davoyan R.O., Bebyakina I.V., Davoyan E.R., Zinchenko A.N., Zubanova Yu.S., Badaeva E.D. Use of synthetic forms for common wheat improvement. Risovodstvo = Rice Growing. 2018;3(40):47¬53 (in Russian); Dvorak J. Genetic variability in Aegilops speltoides affecting on homoelogous pairing in wheat. Can. J. Genet. Cytol. 1972;14(2):133¬141. DOI 10.1139/g72-046; Friebe B., Jiang J., Raupp W.J., McIntosh R.A., Gill B.S. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica. 1996;91:59¬87. DOI 10.1007/BF00035277; Gasner G., Straib U.W. Weitere Untersuchungen uber die Spezialisierung sverhaltnissedes Gelbrostes Puccinia glumarum (Schm.) Erikss. u. Henn. Arb. Boil. Reichsanstalt. 1934;21:121¬145; Helguera M., Vanzetti L., Soria M., Khan I.A., Kolmer J., Dubcovsky J. PCR markers for Triticum speltoides leaf rust resistance gene Lr51 and their use to develop isogenic hard red spring wheat lines. Crop Sci. 2005;45(2):728¬734. DOI 10.2135/cropsci2005.0728; Hoffmann B. Alteration of drought tolerance of winter wheat caused by translocation of rye chromosome segment 1RS. Cereal Res. Comm. 2008;36:269-278. DOI 10.1556/CRC.36.2008.2.7; Kerber E.R., Dyck P.L. Transfer to hexaploid wheat of linked genes for adult-plant leaf rust and seedling stem rust resistance from an amphiploid of Aegilops speltoides × Triticum monococcum. Genome. 1990;33(4):530¬537. DOI 10.1139/g90-07; Knott D.R. Transferring alien genes to wheat. In: Heyne E.G. (Ed.). Wheat and Wheat Improvement. American Society of Agronomy. Madison, WI, USA, 1987;462¬471; Lapochkina I.F., Grishina E.E., Vishnyakova Kh.S., Pukhalskiy V.A., Solomatin D.A., Serezhkina G.V. Common wheat lines with genetic material from Aegilops speltoides Tausch. Russ. J. Genet. 1996; 32(12):1438¬1442; Leonova I.N. Influence of alien genetic material on the manifestation of agronomically important traits of common wheat (T. aestivum L.). Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2018;22(3):321¬328. DOI 10.18699/VJ18.367 (in Russian); Leonova I.N., Budashkina E.B. The study of agronomical traits determining productivity of Triticum aestivum/Triticum timopheevii introgression lines with resistance to fungal diseases. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2016;20(3):311¬319. DOI 10.18699/VJ16.120 (in Russian); Mains E.B., Jakson H.S. Physiologic specialization in leaf rust of wheat, Puccinia triticiana Erikss. Phytopatology. 1926;16:89¬120; Manisterski A., Segal A., Lev A.A., Feeldman M. Evaluation of Israel Aegilops and Agropyron species for resistance to wheat leaf rust. Plant Disease. 1988;72(11):941¬944. DOI 10.1094/PD-72-0941; McIntosch R.A., Wellings C.R., Park R.F. Wheat Rust: an Atlas of Resistance Genes. Australia: CSIRO Publ., 1995; McIntosh R.A., Yamazaki Y., Dubovsky J., Rogers J., Morris C., Appels R., Xia X.C. Catalogue of Gene Symbols for Wheat. 2013. Available at: http://shigen.nig.ac.jp/wheat/komugi/genes; Methodology of State Variety Testing of Agricultural Crops. Moscow, 1988 (in Russian); Peterson R.F., Cambell A.B., Hannah A.E. A diagrammatic scale for estimating rust intensity of leaves and stem of cereals. Can. J. Res. 1948;26(5):496¬500. DOI 10.1139/cjr48c-033; Petrash N.V., Leonova I.N., Adonina I.G., Salina E.A. Effect of trans-locations from Aegilops speltoides Tausch on resistance to fungal diseases and productivity in common wheat. Russ. J. Genet. 2016; 52(12):1253¬1262. DOI 10.1134/S1022795416120097; Plaschke J., Ganal M.W., Röder M.S. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor. Appl. Genet. 1995;91(6-7):1001¬1007. DOI 10.1007/BF00223912; Rayburn A.L., Gill B.S. Isolation of a D¬genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol. Biol. Rep. 1986;4: 102¬109. DOI 10.1007/BF02732107; Salina E., Adonina I., Vatolina T., Kurata N. A comparative analysis of the composition and organization of two subtelomeric repeat families in Aegilops speltoides Tausch. and related species. Genetics. 2004;122(3):227¬237. DOI 10.1007/s10709-004-5602-7; Salina E.A., Lim Y.K., Badaeva E.D., Shcherban A.B., Adonina I.G., Amosova A.V., Samatadze T.E., Vatolina T.Yu., Zoshchuk S.A., Leitch A.A. Phylogenetic reconstruction of Aegilops section Sitopsis and the evolution of tandem repeats in the diploids and derived wheat polyploids. Genome. 2006;49(8):1023¬1035. DOI 10.1139/G06-050; Schneider A., Linc G., Molnar¬Lang M. Fluorescence in situ hybridization polymorphism using two repetitive DNA clones in different cultivars of wheat. Plant Breed. 2003;122(5):396¬400. DOI 10.1046/j.1439-0523.2003.00891; Sibikeev S.N., Voronina S.A., Badaeva E.D., Druzhin A.E. Study of resistance to leaf and stem rusts in Triticum aestivum–Aegilops speltoides lines. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2015;19(2):165¬170 (in Russian); Song W., Xie H., Liu Q., Xie C., Ni Z., Yang T., Sun Q., Liu Z. Molecular identification of Pm12 carrying introgression lines in wheat using genomic and EST¬SSR markers. Euphytica. 2007;158:95¬102. DOI 10.1007/s10681-007-9432-4; Volkova G.V., Matveeva I.P., Kudinova O.A. Virulence of the wheat stripe rust pathogene populationin the North¬Caucasus region of Russia. Mikologiya i Fitopatologiya = Mycology and Phytopathology. 2020;54(1):33¬41. DOI 10.31857/s0026364820010110 (in Russian); Zhirov E.G., Ternovskaya T.K. The genome engineering in wheat. Vestnik Sel’skokhozyaystvennoy Nauki = Herald of Agricultural Science. 1984;10:58¬66 (in Russian); https://vavilov.elpub.ru/jour/article/view/4232

  16. 16
  17. 17
  18. 18
  19. 19
  20. 20