Showing 1 - 5 results of 5 for search '"молекулярно-генетический маркер"', query time: 0.50s Refine Results
  1. 1
    Academic Journal

    Source: Advances in Molecular Oncology; Том 11, № 3 (2024); 114-125 ; Успехи молекулярной онкологии; Том 11, № 3 (2024); 114-125 ; 2413-3787 ; 2313-805X

    File Description: application/pdf

    Relation: https://umo.abvpress.ru/jour/article/view/713/366; Louis D.N., Perry A., Wesseling P. et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 2021;23(8):1231–51. DOI:10.1093/neuonc/noab190; Marien E., Meister M., Muley T. et al. Non-small cell lung cancer is characterized by dramatic changes in phospholipid profiles. Int J Cancer 2015;137(7):1539–48. DOI:10.1002/ijc.29517; Bensaad K., Favaro E., Lewis C.A. et al. Fatty acid uptake and lipid storage induced by HIF-1α contribute to cell growth and survival after hypoxia-reoxygenation. Cell Rep 2014;9(1):349–65. DOI:10.1016/j.celrep.2014.08.056; Guo D., Bell E.H., Chakravarti A. Lipid metabolism emerges as a promising target for malignant glioma therapy. CNS Oncol 2013;2(3):289–99. DOI:10.2217/cns.13.20; El Khayari A., Bouchmaa N., Taib B. et al. Metabolic rewiring in glioblastoma cancer: EGFR, IDH and beyond. Front Oncol 2022;12:901–51. DOI:10.3389/fonc.2022.901951; Zhou J., Ji N., Wang G. et al. Metabolic detection of malignant brain gliomas through plasma lipidomic analysis and support vector machine-based machine learning. BioMedicine 2022;81:104097. DOI:10.1016/j.ebiom.2022.104097; Wu X., Geng F., Cheng X. et al. Lipid droplets maintain energy homeostasis and glioblastoma growth via autophagic release of stored fatty acids. iScience 2020;23(10):1–11. DOI:10.1016/j.isci.2020.101569; Шаршунова М., Шварц В., Михалец Ч. Тонкослойная хроматография в фармации и клинической биохимии: в 2 т. М., Мир, 1980. 295 с.; Кузьмина Е.И., Нелюбин А.С., Щенникова М.К. Применение индуцированной хемилюминесценции для оценки свободно-радикальных реакций в биологических субстратах. В кн.: Межвузовский сборник биохимии и биофизики микроорганизмов. Горький: Волго-Вятское издательство, 1983. С. 179–183.; Горяинова Е.Р., Панков А.Р., Платонова Е.Н. Прикладные методы анализа статистических данных: учеб. пособие для вузов. М.: Издательский дом Высшей школы экономики, 2012. С. 113–151.; Eibinger G., Fauler G., Bernhart E. et al. On the role of 25-hydroxycholesterol synthesis by glioblastoma cell lines. Implications for chemo-tactic monocyte recruitment. Exp Cell Res 2013;319:1828–38. DOI:10.1016/j.yexcr.2013.03.025; Cigliano L., Spagnuolo M.S., Napolitano G. et al. 24S-hydroxychole-sterol affects redox homeostasis in human glial U-87 MG cells. Mol Cell Endocrinol 2019; 486:25–33. DOI:10.1016/j.mce.2019.02.013; Ríos-Marco P., Martín-Fernández M., Soria-Bretones I. et al. Alkylphospholipids deregulate cholesterol metabolism and induce cell-cycle arrest and autophagy in U-87 MG glioblastoma cells. Biochim Biophys Acta 2013;1831(8):1322–34. DOI:10.1016/j.bbalip.2013.05.004; Chang T.Y., Li B.L., Chang C.C., Urano Y. Acyl-coenzyme A: cholesterol acyltransferases. Am J Physiol Endocrinol Metab 2009;297:E1–9. DOI:10.1152/ajpendo.90926.2008; Geng F., Cheng X., Wu X. et al. Inhibition of SOAT1 suppresses glioblastoma growth via blocking SREBP-1-mediated lipogenesis. Clin Cancer Res 2016;22(21):5337–48. DOI:10.1158/1078-0432.ccr-17-0063; Geng F., Guo D. Lipid droplets, potential biomarker and metabolic target in glioblastoma. Intern Med Rev (Wash D C) 2017;3(5):10.18103. DOI:10.18103/imr.v3i5.443; Kou Y., Geng F., Guo D. Lipid metabolism in glioblastoma: from de novo synthesis to storage. Biomedicines 2022;10(8):1943–25. DOI:10.3390/biomedicines10081943; Deligne C., Hachani J., Duban-Deweer S. et al. Development of a human in vitro blood–brain tumor barrier model of diffuse intrinsic pontine glioma to better understand the chemoresistance. Fluids Barriers CNS 2020;17(1):37. DOI:10.1186/s12987-020-00198-0; Abbott N.J. Blood-brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis 2013;36(3):437–49. DOI:10.1007/s10545-013-9608-0; Sarkaria J.N., Hu L.S., Parney I.F. et al. Is the blood–brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data. Neuro-Oncology 2018;20(2):184–91. DOI:10.1093/neuonc/nox175; Красникова О.В., Кондратьева А.Р., Баду С.К. и др. Потенциальные диагностические биомаркеры глиом в жидких средах организма. Журнал медико-биологических исследований 2022;10(1):52–63. DOI:10.37482/2687-1491-z090; Zhou J., Ji N., Wang G. et al. Metabolic detection of malignant brain gliomas through plasma lipidomic analysis and support vector machine-based machine learning. Articles 2022;81:1–13. DOI:10.1016/j.ebiom.2022.104097; Kao T.-J., Lin Ch.-L., Yang W.-B. et al. Dysregulated lipid metabolism in TMZ-resistant glioblastoma: pathways, proteins, metabolites and therapeutic opportunities. Lipids Health Dis 2023;22(114):1–13. DOI:10.1186/s12944-023-01881-5; Bullwinkel J., Baron-Luehr B., Ludemann A. et al. Ki-67 protein is associated with ribosomal RNA transcription in quiescent and proliferating cells. J Cell Physiol 2006;206(3):624–35. DOI:10.1002/jcp.20494; Theresia E., Malueka R.G., Pranacipta S. et al. Association between Ki-67 labeling index and histopathological grading of glioma in Indonesian population. Asian Pac J Cancer Prev 2020;21(4):1063–8. DOI:10.31557/apjcp.2020.21.4.1063; Yoda R.A., Marxen T., Longo L. et al. Mitotic index thresholds do not predict clinical outcome for IDH-mutant astrocytoma. J Neuropathol Exp Neurol 2019;78(11):1002–10. DOI:10.1093/jnen/nlz082; Dahlrot R.H., Bangsø J.A., Petersen J.K. et al. Prognostic role of Ki-67 in glioblastomas excluding contribution from nonneoplastic cells. Sci Rep 2021;11(1):17918. DOI:10.1038/s41598-021-95958-9; Chen W.J., He D.S., TangR.X. et al. Ki-67 is a valuable prognostic factor in gliomas: evidence from a systematic review and metaanalysis. Asian Pac J Cancer Prev 2015;16(2):411–20. DOI:10.7314/apjcp.2015.16.2.411; Abdul Rashid K., Ibrahim K., Wong J.H.D., Mohd Ramli N. Lipid alterations in glioma: a systematic review. Metabolites 2022;12(12):1280. DOI:10.3390/metabo12121280; Morash S.C., Cook H.W., Spence M.W. Lysophosphatidylcholine as an intermediate in phosphatidylcholine metabolism and glycerophosphocholine synthesis in cultured cells: an evaluation of the roles of 1-acyl- and 2-acyl-lysophosphatidylcholine. Biochim Biophys Acta 1989;1004(2):221–9. DOI:10.1016/0005-2760(89)90271-3; Butler M., Pongor L., Su Y.T. et al. MGMT status as a clinical biomarker in glioblastoma. Trends Cancer 2020;6(5):380–91. DOI:10.1016/j.trecan.2020.02.010; Tano K., Shiota S., Collier J et al. Isolation and structural characterization of a cDNA clone encoding the human DNA repair protein for O6-alkylguanine. Proc Nat Acad Sci USA 1990;87(2):686–90. DOI:10.1073/pnas.87.2.686; Chen X., Zhang M., Gan H. et al. A novel enhancer regulates MGMT expression and promotes temozolomide resistance in glioblastoma. Nat Commun 2018;9(1):2949. DOI:10.1038/s41467-018-05373-4; Pandith A.A., Qasim I., Zahoor W. et al. Concordant association validates MGMT methylation and protein expression as favorable prognostic factors in glioma patients on alkylating chemotherapy (temozolo-mide). Sci Rep 2018;8(1):6704. DOI:10.1038/s41598-018-25169-2; Dahlrot R.H., Larsen P., Boldt H.B. et al. Posttreatment effect of MGMT methylation level on glioblastoma survival. J Neuropathol Exp Neurol 2019;8(7):633–40. DOI:10.1093/jnen/nlz032; Aoki K., Natsume A. Overview of DNA methylation in adult diffuse gliomas. Brain Tumor Pathol 2019;36(2):8491. DOI:10.1007/s10014-019-00339-w; Huang F., Li S., Wang X. et al. Serum lipids concentration on prognosis of high-gradeglioma. Cancer Causes Control 2023;34(9):801–11. DOI:10.1007/s10552-023-01710-1; https://umo.abvpress.ru/jour/article/view/713

  2. 2
  3. 3
    Academic Journal

    Source: Cancer Urology; Том 17, № 4 (2021); 76-84 ; Онкоурология; Том 17, № 4 (2021); 76-84 ; 1996-1812 ; 1726-9776

    File Description: application/pdf

    Relation: https://oncourology.abvpress.ru/oncur/article/view/1398/1331; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1398/959; Bray F., Ferlay J., Soerjomataram I. et al. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2018;68(6):394-424. DOI:10.3322/caac.21492.; Аксель Е.М., Матвеев В.Б. Статистика злокачественных новообразований мочевых и мужских половых органов в России и странах бывшего СССР. Онкоурология 2019;15(2):15-24. DOI:10.17650/1726-9776-2019-15-2-15-24.; Zelic R., Garmo H., Zugna D. et al. Predicting prostate cancer death with different pretreatment risk stratification tools: a head-to-head comparison in a nationwide cohort study. Eur Urol 2020;77(2):180-8. DOI:10.1016/j.eururo.2019.09.027.; Ahdoot M., Wilbur A.R., Reese S.E. et al. MRI-targeted, systematic, and combined biopsy for prostate cancer diagnosis. N Engl J Med 2020;382:917-28. DOI:10.1056/NEJMoa1910038.; Robinson D., van Allen E.M., Wu Y.M. et al. Integrative clinical genomics of advanced prostate cancer. Cell 2015;161(5):1215-28. DOI:10.1016/j.cell.2015.05.001.; Wise H.M., Hermida M.A., Leslie N.R. Prostate cancer, PI3K, PTEN and prognosis. Clin Sci 2017;131(3):197-210. DOI:10.1042/CS20160026.; Nyquist M.D., Corella A., Coleman I. et al. Combined TP53 and RB1 loss promotes prostate cancer resistance to a spectrum of therapeutics and confers vulnerability to replication stress. Cell Rep 2020;31(8):107669. DOI:10.1016/j.celrep.2020.107669.; Castro E., Eeles R. The role of BRCA1 and BRCA2 in prostate cancer. Asian J Androl 2012;14(3):409-14. DOI:10.1038/aja.2011.150.; Reichard C.A., Stephenson A.J., Klein E.A. Molecular markers in urologic oncology. Curr Opin Urol 2016;26:225-30. DOI:10.1097/MOU.0000000000000273.; Матвеев В.Б., Киричек А.А., Савинкова А.В. и др. Влияние герминальных мутаций в гене CHEK2 на выживаемость до биохимического рецидива и безметастатическую выживаемость после радикального лечения у больных раком предстательной железы. Онкоурология 2018;14(4):53-67. DOI:10.17650/1726-9776-2018-14-4-53-67.; Eggener S.E., Rumble R.B., Armstrong A.J. et al. Molecular biomarkers in localized prostate cancer: ASCO Guideline. J Clin Oncol 2020;38(13):1474-94. DOI:10.1200/JCO.19.02768.; National Comprehensive Cancer Network. Prostate Cancer (Version 3.2020). Available at: https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf.; Cairns P., Okami K., Halachmi S. et al. Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res 1997;57(22):4997-5000.; Ракул С.А., Камилова Т.А., Голота А.С., Щербак С.Г. Прогностические и предиктивные биомаркеры рака предстательной железы (обзор литературы). Онкоурология 2017;13(4):111-21. DOI:10.17650/1726-9776-2017-13-4111-121.; Wang Y., Dai B. PTEN genomic deletion defines favorable prognostic biomarkers in localized prostate cancer: a systematic review and meta-analysis. Int J Clin Exp Med 2015;8:5430-7.; Lotan T.L., Carvalho F.L., Peskoe S.B. et al. PTEN loss is associated with upgrading of prostate cancer from biopsy to radical prostatectomy. Mod Pathol 2015;28(1):128-37. DOI:10.1038/modpathol.2014.85.; Thangavel C., Boopathi E., Liu Y. et al. RB loss promotes prostate cancer metastasis. Cancer Res 2017;77:982-95. DOI:10.1158/0008-5472.CAN-16-1589.; Ku S.Y., Rosario S., Wang Y. et al. RB1 and TRP53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science 2017;355(6320):78-83. DOI:10.1126/science.aah4199.; Pritchard C.C., Mateo J., Walsh M.F. et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med 2016;375:443-53. DOI:10.1056/NEJMoa1603144.; Castro E., Goh C., Olmos D. et al. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol 2013;31:1748-57. DOI:10.1200/JCO.2012.43.1882.; Князев Е.Н., Фомичева К.А., Нюшко К.М. и др. Актуальные вопросы молекулярной диагностики рака предстательной железы. Онкоурология 2014;10(4):14-22. DOI:10.17650/1726-9776-2014-10-4-14-22.; https://oncourology.abvpress.ru/oncur/article/view/1398

  4. 4
    Academic Journal

    Contributors: The work was supported by RFBR grant No. 17-29-06026, as well as partially by grant No. SS-2595.2020.7 and budgetary projects No. 0324-2016-0002, No. 0120.0502961 within the state assignment No. AAAA-A19-119100990053-4., Работа поддержана грантом РФФИ № 17-29-06026, а также частично грантом № НШ-2595.2020.7 и бюджетными проектами № 0324-2016-0002, № 0120.0502961 в рамках государственного задания № AAAA-A19-119100990053-4.

    Source: Bulletin of Siberian Medicine; Том 21, № 1 (2022); 133-143 ; Бюллетень сибирской медицины; Том 21, № 1 (2022); 133-143 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2022-21-1

    File Description: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/4709/3165; https://bulletin.tomsk.ru/jour/article/view/4709/3188; Zaman S., Goldberger J.J., Kovoor P. Sudden death risk-stratification in 2018–2019: the old and the new. Heart, Lung and Circ. 2019;28(1):57–64. DOI:10.1016/j.hlc.2018.08.027.; Wong C.X., Brown A., Lau D.H., Chugh S.S., Albert C.M., Kalman J.M. et al. Epidemiology of sudden cardiac death: global and regional perspectives. Heart, Lung and Circ. 2019;28(1):6–14. DOI:10.1016/j.hlc.2018.08.026.; Бойцов С.А., Никулина Н.Н., Якушин С.С., Акинина С.А., Фурменко Г.И. Внезапная сердечная смерть у больных ишемической болезнью сердца по результатам Российского многоцентрового эпидемиологического исследования заболеваемости, смертности, качества диагностики и лечения острых форм ИБС (РЕЗОНАНС). Российский кардиологический журнал. 2011;2(5):9–64.; Линчак Р.М., Недбайкин А.М., Семенцова Е.В., Юсова И.А., Струкова В.В. Частота и структура внезапной сердечной смертности трудоспособного населения Брянской области. Данные регистра ГЕРМИНА (регистр внезапной сердечной смертности трудоспособного населения Брянской области). Рациональная фармакотерапия в кардиологии. 2016;12(1):45–50.; Adabag A.S., Luepker R.V., Roger V.L., Gersh B.J. Sudden cardiac death: epidemiology and risk factors. Nat. Rev. Cardiol. 2010;7(4):216–225. DOI:10.1038/nrcardio.2010.3.; Zheng Z.J., Croft J.B., Giles W.H., Mensah G.A. Sudden cardiac death in the United States, 1989 to 1998. Circulation. 2001;104:2158–2163. DOI:10.1161/hc4301.098254.; Ghobrial J., Heckbert S.R., Bartz T.M., Lovasi G., Wallace E., Lemaitre R.N. et al. Ethnic differences in sudden cardiac arrest resuscitation. Heart. 2016;102(17):1363–1370. DOI:10.1136/heartjnl-2015-308384.; Вайханская Т.Г., Фролов А.В., Мельникова О.П., Воробьев А.П., Гуль Л.М., Севрук Т.В. и др. Риск-стратификация пациентов с кардиомиопатией с учетом предикторов электрической нестабильности миокарда. Кардиология в Беларуси. 2013;5(30):59–73.; Hayashi M., Shimizu W., Albert C.M. The Spectrum of epidemiology underlying sudden cardiac death. Circ. Res. 2015;116 (12):1887–1906. DOI:10.1161/CIRCRESAHA.116.304521.; Kuriachan V.P., Sumner G.L., Mitchell L.B. Sudden cardiac death. Curr. Probl. Cardiol. 2015;40(4):133–200. DOI:10.1016/j.cpcardiol.2015.01.002.; Gray B., Ackerman M.J., Semsarian C., Behr E.R. Evaluation after sudden death in the young: a global approach. Circ. Arrhythm. Electrophysiol. 2019;12(8):e007453. DOI:10.1161/CIRCEP.119.007453.; Jayaraman R., Reinier K., Nair S., Aro A.L., Uy-Evanado A., Rusinaru C. et al. Risk factors of sudden cardiac death in the young: multiple-year community-wide assessment. Circulation. 2018;137(15):1561–1570. DOI:10.1161/CIRCULATIONAHA.117.031262.; Chen L.Y., Sotoodehnia N., Bůžková P., Lopez F.L., Yee L.M., Heckbert S.R. et al. Atrial Fibrillation and the Risk of Sudden Cardiac Death: The Atherosclerosis Risk in Communities (ARIC) Study and Cardiovascular Health Study (CHS). JAMA Intern. Med. 2013;173(1):29–35. DOI:10.1001/2013.jamainternmed.744.; Deo R., Norby F.L., Katz R., Sotoodehnia N., Adabag S., DeFilippi C.R. et al. Development and validation of a sudden cardiac death prediction model for the general population. Circulation. 2016;134(11):806–816. DOI:10.1161/CIRCULATIONAHA.116.023042.; Gami A.S., Olson E.J., Shen W.K., Wright R.S., Ballman K.V., Hodge D.O. et al. Obstructive Sleep Apnea and the Risk of Sudden Cardiac Death: A Longitudinal Study of 10,701 Adults. J. Am. Coll. Cardiol. 2013;62(7):610–616. DOI:10.1016/j.jacc.2013.04.080.; Friedlander Y., Siscovick D.S., Weinmann S., Austin M.A., Psaty B.M., Lemaitre R.N. et al. Family history as a risk factor for primary cardiac arrest. Circulation. 1998;97(2):155–160. DOI:10.1161/01.cir.97.2.155.; Bai R., Napolitano C., Bloise R., Monteforte N., Priori S.G. Yield of genetic screening in inherited cardiac channelopathies: how to prioritize access to genetic testing. Circ. Arrhythm. Electrophysiol. 2009;2(1):6–15. DOI:10.1161/CIRCEP.108.782888.; Ackerman M.J., Priori S.G., Willems S., Berul C., Brugada R., Calkins H. et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm. 2011;8(8):1308–1339. DOI:10.1016/j.hrthm.2011.05.020.; Crotti L., Marcou C.A., Tester D.J., Castelletti S., Giudicessi J.R., Torchio M. et al. Spectrum and prevalence of mutations involving BrS1- through BrS12-susceptibility genes in a cohort of unrelated patients referred for Brugada syndrome genetic testing: implications for genetic testing. J. Am. Coll. Cardiol. 2012;60(15):1410–1408. DOI:10.1016/j.jacc.2012.04.037.; Van Driest S.L., Ommen S.R., Tajik A.J., Gersh B.J., Ackerman M.J. Yield of genetic testing in hypertrophic cardiomyopathy. Mayo Clin. Proc. 2005;80(6):739–744. DOI:10.1016/S0025-6196(11)61527-9.; Giudicessi J.R., Noseworthy P.A., Ackerman M.J. The QT interval. Circulation. 2019;139:2711–2713. DOI:10.1161/CIRCULATIONAHA.119.039598.; Arking D.E., Pulit S.L., Crotti L., van der Harst P., Munroe P.B., Koopmann T.T. et al. Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization. Nat. Genet. 2014;46(8):826–836. DOI:10.1038/ng.3014.; Garcia-Elias A., Benito B. Ion channel disorders and sudden cardiac death. J. Mol. Sci. 2018;19(3):692. DOI:10.3390/ijms19030692.; Schwartz P.J., Crotti L., Insolia R. Long QT syndrome: from genetics to management. Circ. Arrhythm. Electrophysiol. 2012;5(4):868–877. DOI:10.1161/CIRCEP.111.962019.; Vandenberk B., Vandael E., Robyns T., Vandenberghe J., Garweg C., Foulon V. et al. Which QT correction formulae to use for QT monitoring? J. Am. Heart Assoc. 2016;5(6):e003264. DOI:10.1161/JAHA.116.003264.; Smulyan H. QT interval: Bazett’s Correction corrected. J. Electrocardiol. 2018;51(6):1009–1010. DOI:10.1016/j.jelectrocard.2018.08.013.; Neira V., Enriquez A., Simpson C., Baranchuk A. Update on long QT syndrome. J. Cardiovasc. Electrophysiol. 2019;30(12):3068–3078. DOI:10.1111/jce.14227.; Marschall C., Moscu-Gregor A., Klein H.G. Variant panorama in 1,385 index patients and sensitivity of expanded next-generation sequencing panels in arrhythmogenic disorders. Cardiovasc. Diagn. Ther. 2019:S292–298. DOI:10.21037/cdt.2019.06.06.; Wallace E., Howard L., Liu M., O’Brien T., Ward D., Shen S. et al. Long QT syndrome: genetics and future perspective. Pediatr. Cardiol. 2019;40(7):1419–1430. DOI:10.1007/s00246-019-02151-x.; Priori S.G., Blomström-Lundqvist C., Mazzanti A., Blom N., Borggrefe M., Camm J. et al. ESC Scientific Document Group. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur. Heart J. 2015;36(41):2793–2867. DOI:10.1093/eurheartj/ehv316.; Schwartz P.J., Ackerman M.J., George A.L. Jr., Wilde A.A.M. Impact of genetics on the clinical management of channelopathies. J. Am. Coll. Cardiol. 2013;62(3):169–180. DOI:10.1016/j.jacc.2013.04.044.; Ohno S., Ozawa J., Fukuyama M., Makiyama T., Horie M. An NGS-based genotyping in LQTS; minor genes are no longer minor. J. Hum. Genet. 2020;65(12):1083–1091. DOI:10.1038/s10038-020-0805-z.; Mizusawa Y., Horie M., Wilde A.A. Genetic and clinical advances in congenital long QT syndrome. Circ. J. 2014;78(12):2827–2833. DOI:10.1253/circj.CJ-14-0905.; Lahrouchi N., Tadros R., Crotti L., Mizusawa Y., Postema P.G., Beekman L. et al. Transethnic Genome-Wide Association Study Provides Insights in the Genetic Architecture and Heritability of Long QT Syndrome. Circulation. 2020;142(4):324–338. DOI:10.1161/CIRCULATIONAHA.120.045956.; Giudicessi J.R., Wilde A.A.M., Ackerman M.J. The genetic architecture of long QT syndrome: A critical reappraisal. Trends Cardiovasc. Med. 2018;(7):453–464. DOI:10.1016/j.tcm.2018.03.003.; Bjerregaard P. Diagnosis and management of short QT syndrome. Heart Rhythm. 2018;15(8):1261–1267. DOI:10.1016/j.hrthm.2018.02.034.; Campuzano O., Fernandez-Falgueras A., Lemus X., Sarquella-Brugada G., Cesar S., Coll M. et al. Short QT syndrome: a comprehensive genetic interpretation and clinical translation of rare variants. J. Clin. Med. 2019;8(7):1035. DOI:10.3390/jcm8071035.; Perike S., McCauley M.D. Molecular insights into short QT syndrome. J. Innov. Card. Rhythm Manag. 2018;9(3):3065-3070. DOI:10.19102/icrm.2018.090302.; Hancox J.C., Whittaker D.G., Du C., Stuart A.G., Zhang H. Emerging therapeutic targets in the short QT syndrome. Expert. Opin. Ther. Targets. 2018;22(5):439–451. DOI:10.1080/14728222.2018.1470621.; Newton-Cheh C., Eijgelsheim M., Rice K.M., de Bakker P.I., Yin X., Estrada K. et al. Common variants at ten loci influence myocardial repolarization: the QTGEN consortium. Nat. Genet. 2009;41(4):399–406. DOI:10.1038/ng.364; Earle N., Yeo Han D., Pilbrow A., Crawford J., Smith W., Shelling A.N. et al. Single nucleotide polymorphisms in arrhythmia genes modify the risk of cardiac events and sudden death in long QT syndrome. Heart Rhythm. 2014;11(1):76–82. DOI:10.1016/j.hrthm.2013.10.005.; Gouas L., Nicaud V., Chaouch S., Berthet M., Forhan A., Tichet J. et al. Confirmation of associations between ion channel gene SNPs and QTc interval duration in healthy subjects. Eur. J. Hum. Genet. 2007;15(9):974–979. DOI:10.1038/sj.ejhg.5201866.; Qureshi S.F., Ali A., John P., Jadhav A.P., Venkateshwari A., Rao H. et al. Mutational analysis of SCN5A gene in long QT syndrome. Meta Gene. 2015;6:26–35. DOI:10.1016/j.mgene.2015.07.010; Bihlmeyer N.A., Brody J.A., Smith A.V., Warren H.R., Lin H., Isaacs A. et al. ExomeChip-Wide analysis of 95 626 individuals identifies 10 novel loci associated with QT and JT intervals. Circ. Genom. Precis. Med. 2018;11(1):e001758. DOI:10.1161/CIRCGEN.117.001758.; https://bulletin.tomsk.ru/jour/article/view/4709

  5. 5
    Academic Journal

    Source: Cancer Urology; Том 16, № 4 (2020); 82-88 ; Онкоурология; Том 16, № 4 (2020); 82-88 ; 1996-1812 ; 1726-9776

    File Description: application/pdf

    Relation: https://oncourology.abvpress.ru/oncur/article/view/1352/1217; Bray F., Ferlay J., Soerjomataram I. et al. Global Cancer Statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68(6):394-424. DOI:10.3322/caac.21492.; Duffy M.J. Biomarkers for prostate cancer: prostate-specific antigen and beyond. Clin Chem Lab Med 2020;58(3):326-39. DOI: https://doi.org/10.1515/cclm-2019-0693.; Van Hoof A., Bunn W., Klein A., Albala D. Role of molecular diagnostics in prostate cancer. Surg Proced Core Urol Trainees 2018:151-77. DOI:10.1007/978-3-319-57442-4_17.; Kearns J.T., Lin D.W. Improving the specificity of PSA screening with serum and urine markers. Curr Urol Rep 2018;19(10):80. DOI:10.1007/s11934-018-0828-6.; Tomlins S.A., Aubin S.M.J., Siddiqui J. et al. Urine TMPRSS2:ERG fusion transcript stratifies prostate cancer risk in men with elevated serum PSA. Sci Transl Med 2011;3(94):94ra72. DOI:10.1126/scitranslmed.3001970.; Yang Z., Yu L., Wang Z. PCA3 and TMPRSS2-ERG gene fusions as diagnostic biomarkers for prostate cancer. Chin J Cancer Res 2016;28(1):65-71. DOI:10.3978/j.issn.1000-9604.2016.01.05.; Koo K.M., Mainwaring P.N., Tomlins S.A., Trau M. Merging new-age biomarkers and nanodiagnostics for precision prostate cancer management. Nat Rev Urol 2019;16(5):302-17. DOI:10.1038/s41585-019-0178-2.; Hendriks R.J., van Oort I.M., Schalken J.A. Blood-based and urinary prostate cancer biomarkers: a review and comparison of novel biomarkers for detection and treatment decisions. Prostate Cancer Prostatic Dis 2017;20(1):12-9. DOI:10.1038/pcan.2016.59.; Raja N., Russell C.M., George A.K. Urinary markers aiding in the detection and risk stratification of prostate cancer. Transl Androl Urol 2018;7(Suppl 4):S436-42. DOI:10.21037/tau.2018.07.01.; Hessels D., Schalken J.A. The use of PCA3 in the diagnosis of prostate cancer. Nat Rev Urol 2009;6(5):255-61. DOI:10.1038/nrurol.2009.40.; Тороповский А.Н., Никитин А.Г., Гордиев М.Г. и др. Результаты испытания набора реагентов для выявления мРНК гена PCA3 и определения уровня его экспрессии методом двустадийной ОТ-ПЦР-РВ (Проста-Тест) для диагностики рака предстательной железы in vitro в клинической практике. Вестник медицинского института «РЕАВИЗ» 2018;(1):126-36.; Mottet N., Bastian P., Bellmunt J. et al. EAU-EANM-ESTRO-ESUR-SIOG: Guidelines on Prostate Cancer. Eur Assoc Urol 2020.; Sokoll L.J., Ellis W., Lange P. et al. A multicenter evaluation of the PCA3 molecular urine test: Preanalytical effects, analytical performance, and diagnostic accuracy. Clin Chim Acta 2008;389(1-2):1-6. DOI:10.1016/j.cca.2007.11.003.; Paliksa S., Gagilas J., Lopeta M. et al. Diagnostic performance of PCA3 and TMPRSS2:ERG biomarkers in prostate cancer patients urine collected with and without prostate massage. Eur Urol 2019;18:e2427-8. DOI:10.1016/S1569-9056(19)32142-6.; Cui Y., Cao W., Li Q. et al. Evaluation of prostate cancer antigen 3 for detecting prostate cancer: a systematic review and meta-analysis. Sci Rep 2016;6:25776. DOI:10.1038/srep25776.; Аполихин О.И., Сивков А.В., Ефремов Г.Д. и др. РСА3 и TMPRSS2:ERG в диагностике рака предстательной железы: первый опыт применения комбинации маркеров в России. Экспериментальная клиническая урология 2015;(2):30-5.; https://oncourology.abvpress.ru/oncur/article/view/1352