Showing 1 - 20 results of 143 for search '"молекулярно-генетические маркеры"', query time: 1.14s Refine Results
  1. 1
  2. 2
  3. 3
    Academic Journal

    Source: Počki, Vol 7, Iss 3, Pp 158-166 (2018)
    KIDNEYS; Том 7, № 3 (2018); 158-166
    Почки-Počki; Том 7, № 3 (2018); 158-166
    Нирки-Počki; Том 7, № 3 (2018); 158-166

    File Description: application/pdf

  4. 4
    Academic Journal

    Contributors: The study was supported by the Russian Science Foundation (RSF) grant №21-15-00411 and grant №1815-00391. The study was supported by resources of the MIPT Research Equipment Sharing Center «Applied Genetics» (grant №075-15-2021-684, state assignment 730000Ф.99.1.БВ10АА00006)., Исследование выполнено при финансовой поддержке РНФ гранты №21-15-00411 и РНФ №18-1500391. Исследование было выполнено при использовании ресурсов ЦКП МФТИ «Прикладная генетика» (грант №075-15-2021-684, госзадание 730000Ф.99.1.БВ10АА00006).

    Source: Siberian journal of oncology; Том 22, № 3 (2023); 108-118 ; Сибирский онкологический журнал; Том 22, № 3 (2023); 108-118 ; 2312-3168 ; 1814-4861

    File Description: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/2590/1118; Хухлаева Е.А., Коновалов А.Н., Пронин И.Н., Корниенко В.Н., Гаврюшин А.В. Нейрорадиология и принципы классификации опухолей ствола головного мозга. Медицинская визуализация. 2011; 6: 62-74.; Louis D.N., Perry A., Wesseling P., Brat D.J., Cree I.A., Figarella-Branger D., Hawkins C., Ng H.K., Pfister S.M., Reifenberger G., Soffietti R., von Deimling A., Ellison D.W. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021; 23(8): 1231-51. doi:10.1093/neuonc/noab106.; Диникина Ю.В., Белогурова М.Б. Особенности новой классификации опухолей центральной нервной системы ВОЗ 2021: взгляд клинициста. Российский журнал персонализированной медицины. 2022; 2(4): 77-90. doi:10.18705/2782-3806-2022-2-4-77-90.; Gianno F., Giovannoni I., Cafferata B., Diomedi-Camassei F., Minasi S., Barresi S., Buttarelli F.R., Alesi V., Cardoni A., Antonelli M., Puggioni C., Colafati G.S., Carai A., Vinci M., Mastronuzzi A., Miele E., Alaggio R., Giangaspero F., Rossi S. Paediatric-type diffuse high-grade gliomas in the 5th CNS WHO Classification. Pathologica. 2022; 114(6): 422-35. doi:10.32074/1591-951X-830.; Регентова О.С., Щербенко О.И. Современное состояние проблемы диагностики и лечения диффузно растущих глиом ствола мозга у детей и подростков. Вестник Российского научного центра рентгенорадиологии Минздрава России. 2019; 19(1): 95-130.; Hoffman L.M., Veldhuijzen van Zanten S.E.M., Colditz N., et al. Clinical, Radiologic, Pathologic, and Molecular Characteristics of LongTerm Survivors of Diffuse Intrinsic Pontine Glioma (DIPG): A Collaborative Report From the International and European Society for Pediatric Oncology DIPG Registries. J Clin Oncol. 2018; 36(19): 1963-72. doi:10.1200/JCO.2017.75.9308.; Veldhuijzen van Zanten S.E.M., Sewing A.C.P., van Lingen A., Hoekstra O.S., Wesseling P., Meel M.H., van Vuurden D.G., Kaspers G.J.L., Hulleman E., Bugiani M. Multiregional Tumor Drug-Uptake Imaging by PET and Microvascular Morphology in End-Stage Diffuse Intrinsic Pontine Glioma. J Nucl Med. 2018; 59(4): 612-5. doi:10.2967/jnumed.117.197897.; Lobon-Iglesias M.J., Santa-Maria Lopez V., Puerta Roldan P., Candela-Canto S., Ramos-Albiac M., Gomez-Chiari M., Puget S., Bolle S., Goumnerova L., Kieran M.W., Cruz O., Grill J., Morales La Madrid A. Tumor dissemination through surgical tracts in diffuse intrinsic pontine glioma. J Neurosurg Pediatr. 2018; 22(6): 678-83. doi:10.3171/2018.6.PEDS17658.; Hoffman L.M., DeWire M., Ryall S., Buczkowicz P., Leach J., Miles L., Ramani A., Brudno M., Kumar S.S., Drissi R., Dexheimer P., Salloum R., Chow L., Hummel T., Stevenson C., Lu Q.R., Jones B., Witte D., Aronow B., Hawkins C.E., Fouladi M. Spatial genomic heterogeneity in diffuse intrinsic pontine and midline high-grade glioma: implications for diagnostic biopsy and targeted therapeutics. Acta Neuropathol Commun. 2016; 4: 1. doi:10.1186/s40478-015-0269-0. Erratum in: Acta Neuropathol Commun. 2016; 4: 13.; Bronkhorst A.J., Ungerer V., Holdenrieder S. The emerging role of cell-free DNA as a molecular marker for cancer management. Biomol Detect Quantif. 2019; 17. doi:10.1016/j.bdq.2019.100087.; Lu V.M., Power E.A., Zhang L., Daniels D.J. Unlocking the translational potential of circulating nucleosomes for liquid biopsy in diffuse intrinsic pontine glioma. Biomark Med. 2019; 13(8): 597-600. doi:10.2217/bmm-2019-0139.; Garnier D., Jabado N., Rak J. Extracellular vesicles as prospective carriers of oncogenic protein signatures in adult and paediatric brain tumours. Proteomics. 2013; 13(10-11): 1595-607. doi:10.1002/pmic.201200360.; Nobre L., Zapotocky M., Johnson M., Wasserman J., Abla O., Whitlock J., Tabori U., Hawkins C. Abstract 2226: Validation of a liquid biopsy tool to identify point mutations in pediatric brain tumor patients. Cancer Res. 2019; 79: 2226. doi:10.1158/1538-7445.AM2019-2226.; Назарян Д., Друй А., Ясько Л., Папуша Л., Новичкова Г. Жидкостные биопсии в детской нейроонкологии: в преддверии возможностей тераностики. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2018; 17(1): 133-5. doi:10.24287/17261708-2018-17-1-133-135.; Lapin D.H., Tsoli M., Ziegler D.S. Genomic Insights into Diffuse Intrinsic Pontine Glioma. Front Oncol. 2017; 7: 57. doi:10.3389/fonc.2017.00057.; Dufour C., Vasseur R., PerbetR., LeblondP, VinchonM., Reyns N., Touzet G., Maurage C.A., Fabienne E., Florence R. DIPG-44. Molecular And Chromosomal Characterization Of A Unique Series Of Diffuse Midline Gliomas In Children And Young Adults. Neuro Oncol. 2018; 20s2: 57-8. doi:10.1093/neuonc/noy059.137.; Wu G., Broniscer A., McEachron TA., Lu C., Paugh B.S.,Becksfort J., Qu C., Ding L., Huether R., Parker M., Zhang J., Gajjar A., Dyer M.A., Mullighan C.G., Gilbertson R.J., Mardis E.R., Wilson R.K., Downing J.R., Ellison D.W., Zhang J., Baker S.J.; St. .Jude Childrens Research Hospital Washington University Pediatric Cancer Genome Project. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and nonbrainstem glioblastomas. Nat Genet. 2012; 44(3): 251-3. doi:10.1038/ng.1102.; Lewis P.W., Muller M.M., Koleisky M.S., Cordero F., Lin S., Banaszynski L.A., Garcia B.A., Muir T.W., Becher O.J., Allis C.D. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science. 2013; 340(6134): 857-61. doi:10.1126/science.1232245.; Mohammad F., Helin K. Oncohistones: drivers of pediatric cancers. Genes Dev. 2017; 31(23-24): 2313-24. doi:10.1101/gad.309013.117.; Salloum R., McConechy M.K., Mikael L.G., Fuller C., Drissi R., DeWire M., Nikbakht H., De Jay N., Yang X., Boue D., Chow L.M.L., Finlay J.L., Gayden T., Karamchandani J., Hummel T.R., Olshefski R., Osorio D.S., Stevenson C., Kleinman C.L., Majewski J., Fouladi M., Jabado N. Characterizing temporal genomic heterogeneity in pediatric high-grade gliomas. Acta Neuropathol Commun. 2017; 5(1): 78. doi:10.1186/s40478-017-0479-8.; Park Y., An P., Ding D., Eberhart C.G., Raabe E.H. DIPG-34. A Human Neural Stem Cell Dipg Model Identifies The Relative Contribution Of Different Oncogenic Elements To Invasive Malignant Transformation. Neuro Oncol. 2018; 20 (s2): 55-6. doi:10.1093/neuonc/noy059.127.; Silveira A.B., Kasper L.H., Fan Y., Jin H., Wu G., Shaw T.I., Zhu X., Larson J.D., Easton J., Shao Y., Yergeau D.A., Rosencrance C., Boggs K., Rusch M.C., Ding L., Zhang J., Finkelstein D., Noyes R.M., Russell B.L., Xu B., Broniscer A., Wetmore C., Pounds S.B., Ellison D.W., Zhang J., Baker S.J. H3.3 K27M depletion increases differentiation and extends latency of diffuse intrinsic pontine glioma growth in vivo. Acta Neuropathol. 2019; 137(4): 637-55. doi:10.1007/s00401-019-01975-4. Erratum in: Acta Neuropathol. 2019; 137(6): 1021.; Chan K.M., Fang D., Gan H., Hashizume R., Yu C., SchroederM., Gupta N., Mueller S., James C.D., Jenkins R., Sarkaria J., Zhang Z. The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. Genes Dev. 2013; 27(9): 985-90. doi:10.1101/gad.217778.113.; Louis D.N., Giannini C., Capper D., Paulus W., Figarella-Branger D., Lopes M.B., Batchelor T.T., Cairncross J.G., van den Bent M., Wick W., Wesseling P. cIMPACT-NOW update 2: diagnostic clarifications for diffuse midline glioma, H3 K27M-mutant and diffuse astrocytoma/anaplastic astrocytoma, IDH-mutant. Acta Neuropathol. 2018; 135(4): 639-42. doi:10.1007/s00401-018-1826-y.; Han H.J., Jain P., Resnick A.C. Shared ACVR1 mutations in FOP and DIPG: Opportunities and challenges in extending biological and clinical implications across rare diseases. Bone. 2018; 109: 91-100. doi:10.1016/j.bone.2017.08.001.; Carvalho D., Taylor K.R., Olaciregui N.G., Molinari V, Clarke M., Mackay A., Ruddle R., Henley A., Valenti M., Hayes A., Brandon A.H., Eccles S.A., Raynaud F., Boudhar A., Monje M., Popov S., Moore A.S., Mora J., Cruz O., Vinci M., Brennan P.E., Bullock A.N., Carcaboso A.M., Jones C. ALK2 inhibitors display beneficial effects in preclinical models of ACVR1 mutant diffuse intrinsic pontine glioma. Commun Biol. 2019; 2: 156. doi:10.1038/s42003-019-0420-8.; Saratsis A.M., Yadavilli S., Magge S., Rood B.R., Perez J., Hill D.A., Hwang E., Kilburn L., Packer R.J., Nazarian J. Insights into pediatric diffuse intrinsic pontine glioma through proteomic analysis of cerebrospinal fluid. Neuro Oncol. 2012; 14(5): 547-60. doi:10.1093/neuonc/nos067.; WerbrouckC., Evangelista C.C.S., Lobon-IglesiasMJ., Barret E., Le Teuff G., Merlevede J., Brusini R., Kergrohen T., Mondini M., Bolle S., Varlet P., Beccaria K., Boddaert N., Puget S., Grill J., Debily M.A., Castel D. TP53 Pathway Alterations Drive Radioresistance in Diffuse Intrinsic Pontine Gliomas (DIPG). Clin Cancer Res. 2019; 25(22): 6788-6800. doi:10.1158/1078-0432.CCR-19-0126.; Paugh B.S., Broniscer A., Qu C., Miller C.P., Zhang J., Tatevossian R.G., Olson J.M., Geyer J.R., Chi S.N., da Silva N.S., Onar-Thomas A., Baker J.N., Gajjar A., Ellison D.W., Baker S.J. Genome-wide analyses identify recurrent amplifications of receptor tyrosine kinases and cell-cycle regulatory genes in diffuse intrinsic pontine glioma. J Clin Oncol. 2011; 29(30): 3999-4006. doi:10.1200/JCO.2011.35.5677.; Paugh B.S., Zhu X., Qu C., Endersby R., Diaz A.K., Zhang J., Bax D.A., Carvalho D., Reis R.M., Onar-Thomas A., Broniscer A., Wetmore C., Zhang J., Jones C., Ellison D.W., Baker S.J. Novel oncogenic PDGFRA mutations in pediatric high-grade gliomas. Cancer Res. 2013; 73(20): 6219-29. doi:10.1158/0008-5472.CAN-13-1491.; Akamandisa M.P., Nie K., Nahta R., Hambardzumyan D., Castel-lino R.C. Inhibition of mutant PPM1D enhances DNA damage response and growth suppressive effects of ionizing radiation in diffuse intrinsic pontine glioma. Neuro Oncol. 2019; 21(6): 786-99. doi:10.1093/neuonc/noz053.; Chi A.S., Tarapore R.S., Hall M.D., Shonka N., Gardner S., Umemura Y., Sumrall A., Khatib Z., Mueller S., Kline C., Zaky W., Khatua S., Weathers S.P., Odia Y., Niazi T.N., Daghistani D., Cherrick I., Korones D., Karajannis M.A., Kong X.T., Minturn J., Waanders A., Arillaga-Romany I., Batchelor T., Wen P.Y., Merdinger K., Schalop L., Stogniew M., Allen J.E., Oster W., Mehta M.P. Pediatric and adult H3 K27M-mutant diffuse midline glioma treated with the selective DRD2 antagonist ONC201. J Neurooncol. 2019; 145(1): 97-105. doi:10.1007/s11060-019-03271-3.; Mount C.W., Majzner R.G., Sundaresh S., Arnold E.P., Kadapa-kkam M., Haile S., Labanieh L., Hulleman E., Woo P.J., Rietberg S.P., Vogel H., Monje M., Mackall C.L. Potent antitumor efficacy of anti-GD2 CAR T cells in H3-K27M+ diffuse midline gliomas. Nat Med. 2018; 24(5): 572-9. doi:10.1038/s41591-018-0006-x.; Wingerter A., El Malki K., Sandhoff R., Seidmann L., Wagner D.C., Lehmann N., Vewinger N., Frauenknecht K.B.M., Sommer C.J., Traub F., Kindler T., Russo A., Otto H., Lollert A., Staatz G., Roth L., Paret C., Faber J. Exploiting Gangliosides for the Therapy of Ewing's Sarcoma and H3K27M-Mutant Diffuse Midline Glioma. Cancers (Basel). 2021; 13(3): 520. doi:10.3390/cancers13030520.; Cobb D.A., de Rossi J., Liu L., An E., Lee D.W. Targeting of the alphav beta3 integrin complex by CAR-T cells leads to rapid regression of diffuse intrinsic pontine glioma and glioblastoma. J Immunother Cancer. 2022; 10(2). doi:10.1136/jitc-2021-003816.; Chung C., Sweha S.R., Pratt D., Tamrazi B., Panwalkar P., Banda A., Bayliss J., Hawes D., Yang F., Lee H.J., Shan M., Cieslik M., Qin T., Werner C.K., Wahl D.R., Lyssiotis C.A., Bian Z., Shotwell J.B., Yadav V.N., Koschmann C., Chinnaiyan AM., Bluml S., Judkins A.R., Venneti S. Integrated Metabolic and Epigenomic Reprograming by H3K27M Mutations in Diffuse Intrinsic Pontine Gliomas. Cancer Cell. 2020; 38(3): 334-49. doi:10.1016/j.ccell.2020.07.008.; Duchatel R.J., Mannan A., Woldu A.S., Hawtrey T., Hindley P.A., Douglas A.M., Jackson E.R., Findlay I.J., Germon Z.P., Staudt D., Kearney P.S., Smith N.D., Hindley K.E., Cain J.E., Andre N., La Madrid AM., Nixon B., De Iuliis G.N., Nazarian J., Irish K., Alvaro F., Eisenstat D.D., Beck A., Vitanza N.A., Mueller S., Morris J.C., Dun M.D. Preclinical and clinical evaluation of German-sourced ONC201 for the treatment of H3K27M-mutant diffuse intrinsic pontine glioma. Neurooncol Adv. 2021; 3(1). doi:10.1093/noajnl/vdab169.; Mackay A., Molinari V., Carvalho D., Pemberton H., Temelso S., Burford A., Clarke M., Fofana M., Boult J., Izquierdo E., Taylor K.,Bjerke L., Salom J.F., Kessler K., Rogers R., Chandler C., Zebian B., Martin A., Stapleton S., Hettige S., Marshall L., Carceller F., Mandeville H., Vaidya S., Bridges L., Al-Sarraj S., Pears J., Mastronuzzi A., Carai A., del Bufalo F., de Torres C., Sunol M., Cruz O., Mora J., Moore A., Robinson S., Lord C., Carcaboso A.M., Vinci M., Jones C. HGG-23. drug screening linked to molecular profiling identifies novel dependencies in patient-derived primary cultures of paediatric high grade glioma and dipg. Neuro Oncol. 2018; 20(S2): 93-4. doi:10.1093/neuonc/noy059.295.; Fons N.R., Sundaram R.K., Breuer G.A., Peng S., McLean R.L., Kalathil A.N., Schmidt M.S., Carvalho D.M., Mackay A., Jones C., Car-caboso A.M., Nazarian J., BerensM.E., Brenner C., Bindra R.S. PPM1D mutations silence NAPRT gene expression and confer NAMPT inhibitor sensitivity in glioma. Nat Commun. 2019; 10(1): 3790. doi:10.1038/s41467-019-11732-6.; Carvalho D., Olaciregui N.G., Ruddle R., Donovan A., Pal A., Raynaud F., Richardson P.J., Carcaboso A.M., Jones C. DIPG-29. Pre-clinical efficacy of combined acvr1 and PI3K/mTOR inhibition in diffuse intrinsic pontine glioma (DIPG). Neuro Oncol. 2018; 20: 54-5. doi:10.1093/neuonc/noy059.122.; Panditharatna E., Kilburn L.B., Aboian M.S., Kambhampati M., Gordish-Dressman H., Magge S.N., Gupta N., Myseros J.S., Hwang E.I., Kline C., Crawford J.R., Warren K.E., Cha S., Liang W.S., Berens M.E., Packer R.J., Resnick A.C., Prados M., Mueller S., Nazarian J. Clinically Relevant and Minimally Invasive Tumor Surveillance of Pediatric Diffuse Midline Gliomas Using Patient-Derived Liquid Biopsy. Clin Cancer Res. 2018; 24(23): 5850-9. doi:10.1158/1078-0432.CCR-18-1345.; Huang T.Y., Piunti A., Lulla R.R., Qi J., Horbinski C.M., Tomita T., James C.D., Shilatifard A., Saratsis A.M. Detection of Histone H3 mutations in cerebrospinal fluid-derived tumor DNA from children with diffuse midline glioma. Acta Neuropathol Commun. 2017; 5(1): 28. doi:10.1186/s40478-017-0436-6.; Bruzek AK., Tunkle L., Stallard S., Thamilselvan V, Qin T., Wolfe I., Mody R., Muraszko K.L., Robertson P.L., Maher C.O., Garton H.J.L., Koschmann C. DIPG-06. rapid, ultra-deep sequencing of pediatric DIPG from cerebrospinal fluid using a novel hand-held electronic dna analysis platform. Neuro Oncol. 2019; 21s2: 69. doi:10.1093/neuonc/noz036.027.; Pan C., Diplas B.H., Chen X., Wu Y., Xiao X., Jiang L., Geng Y., Xu C., Sun Y., Zhang P., Wu W., Wang Y., Wu Z., Zhang J., Jiao Y., Yan H., Zhang L. Molecular profiling of tumors of the brainstem by sequencing of CSF-derived circulating tumor DNA. Acta Neuropathol. 2019; 137(2): 297-306. doi:10.1007/s00401-018-1936-6.; Cantor E., Wierzbicki K., Tarapore R.S., Ravi K., Thomas C., CartaxoR., Band Yadav V, RavindranR., BruzekA.K., Wadden J., .John V, May Babila C., Cummings J.R., Rahman Kawakibi A., Ji S., Ramos J., Paul A., Walling D., Leonard M., Robertson P., Franson A., Mody R., Garton H.J.L., Venneti S., Odia Y., Kline C., Vitanza N.A., Khatua S., Mueller S., Allen J.E., Gardner S.L., Koschmann C. Serial H3K27M cell-free tumor DNA (cf-tDNA) tracking predicts ONC201 treatment response and progression in diffuse midline glioma. Neuro Oncol. 2022; 24(8): 1366-74. doi:10.1093/neuonc/noac030.; Регентова О.С., Щербенко О.И., Джикия Е.Л., Захаренко М.В., Сенчукова А.Л., Измайлов Т.Р., Кулинич Т.М., Боженко В.К. Содержание и динамика в процессе лечения некоторых молекулярно-генетических маркеров в плазме крови у больных глиальными опухолями мозга по данным «жидкостной биопсии». Вестник Российского научного центра рентгенорадиологии Минздрава России. 2020; 20(2): 117-28.; Wadden J., Ravi K., John V., Babila C.M., Koschmann C. Cell-Free Tumor DNA (cf-tDNA) Liquid Biopsy: Current Methods and Use in Brain Tumor Immunotherapy. Front Immunol. 2022; 13. doi:10.3389/fimmu.2022.882452.; Zaytseva M., Usman N., Salnikova E., Sanakoeva A., Valiakhmetova A., Chervova A., PapushaL., Novichkova G., DruyA. Methodological Challenges of Digital PCR Detection of the Histone H3 K27M Somatic Variant in Cerebrospinal Fluid. Pathol Oncol Res. 2022; 28. doi:10.3389/pore.2022.1610024.; Ianno M.F., Biassoni V., Schiavello E., Carenzo A., Boschetti L., Gandola L., Diletto B., Marchesi E., Vegetti C., Molla A., Kramm C.M., van Vuurden D.G., Gasparini P., Gianno F., Giangaspero F., Modena P., Bison B., Anichini A., Vennarini S., Pignoli E., Massimino M., De Cecco L. A microRNA Prognostic Signature in Patients with Diffuse Intrinsic Pontine Gliomas through Non-Invasive Liquid Biopsy. Cancers (Basel). 2022; 14(17): 4307. doi:10.3390/cancers14174307.; Pericoli G., Galardi A., Lisa Petrilli L., Colletti M., Ferretti R., Paolini A., Masotti A., Levi Mortera S., Petrini S., de Billy E., Pascucci L., Court W., Cacchione A., Carai A., Camassei F.D., Moore A., Carcaboso AM., .Jones C., Mastronuzzi A., LocatelliF., Di Giannatale A., Vinci M. PDTM-09. diffuse intrinsic pontine glioma and pediatric glioblastoma derived-exosomes have specific oncogenic signatures. Neuro Oncol. 2018; 20 s6: 205. doi:10.1093/neuonc/noy148.851.; Petersen E.V., Chudakova D.A., Skorova E.Y., Anikin V., Reshetov I.V., Mynbaev O.A. The Extracellular Matrix-Derived Biomarkers for Diagnosis, Prognosis, and Personalized Therapy of Malignant Tumors. Front Oncol. 2020; 10. doi:10.3389/fonc.2020.575569.; Li Z., Langhans S.A. In Vivo and Ex Vivo Pediatric Brain Tumor Models: An Overview. Front Oncol. 2021; 11. doi:10.3389/fonc.2021.620831.; RotaCM., Brown A.T., Addleson E., Ives C., Trumper E., Pelton K., Teh W.P., Schniederjan M.J., Castellino R.C., Buhrlage S., Lauffenburger D.A., Ligon K.L., Griffith L.G., Segal R.A. Synthetic extracellular matrices and astrocytes provide a supportive microenvironment for the cultivation and investigation of primary pediatric gliomas. Neurooncol Adv. 2022; 4(1). doi:10.1093/noajnl/vdac049.; Kholosy M .W., Derieppe M., van den Ham F., Ober K., Su Y., Custers L., Schild L., van Zogchel M. J. L., M Wellens L., R Ariese H., Szanto C.L., Wienke J., Dierselhuis M.P., van Vuurden D., Dolman E.M., Molenaar J.J. Neuroblastoma and DIPG Organoid Coculture System for Personalized Assessment of Novel Anticancer Immunotherapies. J Pers Med. 2021; 11(9): 869. doi:10.3390/jpm11090869.; Carvalho D.M., Temelso S., Mackay A., Pemberton H.N., Rogers R., Kessler K., Izquierdo E., Bjerke L., Salom J.F., Clarke M., Grabovska Y., Burford A., Olaciregui N.G., Boult J.K.R., Molinari V., Fofana M., Proszek P., Potente E.F., Taylor K.R., Chandler C., Zebian B., Bhangoo R., Martin A.J., Dabbous B., Stapleton S., Hettige S., Marshall L.V., CarcellerF., MandevilleH.C., Vaidya S.J., Al-Sarraj S., Bridges L.R., Johnston R., Cryan J., Farrell M., Crimmins D., Caird J., Pears J., Pericoli G., Miele E., Mastronuzzi A., Locatelli F., Carai A., Robinson S.P., Hubank M., MonjeM., Moore A.S., Hassall T.E.G., Carcaboso A.M., Lord C.J., Vinci M., Jones C. Drug screening linked to molecular profiling identifies novel dependencies in patient-derived primary cultures of paediatric high grade glioma and DIPG. bioRxiv. 2020. doi:10.1101/2020.12.29.424674.; Kozhushko N., Jedrysik M., Fillmore H. OTME-22. Bioinformatic evaluation of ECM molecules and angiogenic associate genes in diffuse midline glioma (DMG): mapping the tumour microenvironment. Neurooncol Adv. 2021; 3(s2): 18. doi:10.1093/noajnl/vdab070.073.; Jedrysik M., Loveson K.L., Kozusko N., Singh P., Allison K., Fillmore H.L. OPTC-4. Bioinformatic analysis of COLXIa1 gene expression and its alternative splicing regulation in Paediatric Diffuse Intrinsic Pontine Gliomas (DIPGs). Neurooncol Adv. 2021; 3(S2): 6. doi:10.1093/noajnl/vdab070.025.; De T., Goyal S., Balachander G., Chatterjee K., Kumar P., Babu K G., Rangarajan A. A Novel Ex Vivo System Using 3D Polymer Scaffold to Culture Circulating Tumor Cells from Breast Cancer Patients Exhibits Dynamic E-M Phenotypes. J Clin Med. 2019; 8(9): 1473. doi:10.3390/jcm8091473.; Sherman H., Rossi A.E. A Novel Three-Dimensional Glioma Blood-Brain Barrier Model for High-Throughput Testing of Tumoricidal Capability. Front Oncol. 2019; 9: 351. doi:10.3389/fonc.2019.00351.; https://www.siboncoj.ru/jour/article/view/2590

  5. 5
    Academic Journal

    Source: Problems of Particularly Dangerous Infections; № 3 (2023); 51-58 ; Проблемы особо опасных инфекций; № 3 (2023); 51-58 ; 2658-719X ; 0370-1069

    File Description: application/pdf

    Relation: https://journal.microbe.ru/jour/article/view/1854/1405; World Health Organization. Hepatitis B. Key facts. [Электронный ресурс]. URL: http://www.who.int/news-room/factsheets/detail/hepatitis-b (дата обращения 08.09.2022).; World Health Organization. Hepatitis C. Key facts. [Электронный ресурс]. URL: https://www.who.int/news-room/fact-sheets/detail/hepatitis-c (дата обращения 08.09.2022).; World Health Organization. HIV. Key facts. [Электронный ресурс]. URL: https://cdn.who.int/media/docs/default-source/hq-hiv-hepatitis-and-stis-library/key-facts-hiv-2020.pdf?sfvrsn=582c3f6e_3 (дата обращения 08.09.2022).; Raizada A., Dwivedi S., Bhattacharya S. The hepatitis B, hepatitis C and HIV co-infection at an antiretroviral centre in Delhi. Trop. Doct. 2011; 41(3):154–6. DOI:10.1258/td.2011.100440.; Degenhardt L., Charlson F., Stanaway J., Larney S., Alexander L.T., Hickman M., Cowie B., Hall W.D., Strang J., Whiteford H., Vos T. Estimating the burden of disease attributable to injecting drug use as a risk factor for HIV, hepatitis C, and hepatitis B: findings from the Global Burden of Disease Study 2013. Lancet Infect. Dis. 2016; 16(12):1385–98. DOI:10.1016/S1473-3099(16)30325-5.; Roser М., Ritchie Н. HIV/AIDS. [Электронный ресурс]. URL: https://ourworldindata.org/hiv-aids (дата обращения 08.09.2022).; GBD 2019 Hepatitis B Collaborators. Global, regional, and national burden of hepatitis B, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Gastroenterol Hepatol. 2022; 7(9):796–829. DOI:10.1016/S2468-1253(22)00124-8.; The Polaris Observatory HCV Collaborators. Global change in hepatitis C virus prevalence and cascade of care between 2015 and 2020: a modelling study. Lancet Gastroenterol Hepatol. 2022; 7(5):396–415. DOI:10.1016/S2468-1253(21)00472-6.; Nkuoh G.N., Meyer D.J., Nshom E.M. Women’s attitudes toward their partners’ involvement in antenatal care and prevention of mother-to-child transmission of HIV in Cameroon, Africa. J. Midwifery Womens Health. 2013; 58(1):83–91. DOI:10.1111/j.1542-2011.2012.00208.x.; Hershow R.B., Zimba C.C., Mweemba O., Chibwe K.F., Phanga T., Dunda W., Matenga T., Mutale W., Chi B.H., Rosenberg N.E., Maman S. Perspectives on HIV partner notification, partner HIV self-testing and partner home-based HIV testing by pregnant and postpartum women in antenatal settings: a qualitative analysis in Malawi and Zambia. J. Int. AIDS Soc. 2019; 22 Suppl 3(Suppl Suppl 3):e25293. DOI:10.1002/jia2.25293.; Amano A., Musa A. Male involvement in PMTCT and associated factors among men whom their wives had ANC visit 12 months prior to the study in Gondar town, North west Ethiopia, December, 2014. Pan Afr. Med. J. 2016; 24:239. DOI:10.11604/pamj.2016.24.239.8460.; Drammeh B., Medley A., Dale H., De A.K., Diekman S., Yee R., Aholou T., Lasry A., Auld A., Baack B., Duffus W., Shahul E., Wong V., Grillo M., Al-Samarrai T., Ally S., Nyangulu M; MCHD2; Nyirenda R., Olivier J., Chidarikire T., Khanyile N., Kayange A.A., Rwabiyago O.E., Kategile U., Bisimba J., Weber R.A., Ncube G., Maguwu O., Pietersen I., Mali D., Dzinotyiweyi E., Nelson L., Bosco M.J., Dalsone K., Apolot M., Anangwe S., Soo L.K., Mugambi M., Mbayiha A., Mugwaneza P., Malamba S.S., Phiri A.; MCD28; Chisenga T., Boyd M., Temesgan C., Shimelis M., Weldegebreal T., Getachew M., Balachandra S., Eboi E., Shasha W., Doumatey N., Adjoua D., Meribe C., Gwamna J., Gado P., John-Dada I., Mukinda E., Lukusa L.F.K., Kalenga L., Bunga S., Achyut V., Mondi J., Loeto P., Mogomotsi G., Ledikwe J., Ramphalla P., Tlhomola M., Mirembe J.K., Nkwoh T., Eno L., Bonono L., Honwana N., Chicuecue N., Simbine A., Malimane I., Dube L., Mirira M., Mndzebele P., Frawley A., Cardo Y.M.R., Behel S. Sex differences in HIV testing – 20 PEPFAR-supported sub-Saharan African countries, 2019. MMWR Morb. Mortal. Wkly Rep. 2020; 69(48):1801–6. DOI:10.15585/mmwr.mm6948a1.; Guinea Population. [Электронный ресурс]. URL: https://countrymeters.info/en/Guinea (дата обращения 18.08.2022).; Chersich M.F., Gray G., Fairlie L,, Eichbaum Q., Mayhew S., Allwood B., English R., Scorgie F., Luchters S., Simpson G., Haghighi M.M., Pham M.D., Rees H. COVID-19 in Africa: care and protection for frontline healthcare workers. Global. Health. 2020; 16(1):46. DOI:10.1186/s12992-020-00574-3.; Найденова Е.В., Лопатин A.A., Сафронов В.A., Коломоец Е.В., Левковский A.E., Силла А.Л., Старшинов В.A., Щербакова С.А., Малеев В.В. Обеспечение биологической безопасности при проведении противоэпидемических мероприятий в период ликвидации эпидемии лихорадки Эбола в Гвинейской Республике. Инфекционные болезни: новости, мнения, обучение. 2018; 7(3):102–8. DOI:10.24411/2305-3496-2018-13015.; Коломоец Е.В., Ицков Я.Ю., Найденова Е.В., Konomou V., Keita S., Lamah R. Создание и обеспечение функционирования госпитальной сети для лечения больных COVID-19 в Гвинейской Республике. Проблемы особо опасных инфекций. 2021; 3:66–71. DOI:10.21055/0370-1069-2021-3-66-71.; Annuaire Statistique 2021. [Электронный ресурс]. URL: http://www.stat-guinee.org/images/Documents/Publications/INS/annuelles/annuaire/Annuaire_Statistique_2021_vf.pdf (дата обращения 20.08.2022).; Leno N.N., Delamou A., Koita Y., Diallo T.S., Kaba A., Delvaux T., Van Damme W., Laga M. Ebola virus disease outbreak in Guinea: what effects on prevention of mother-to-child transmission of HIV services? Reprod. Health. 2018; 15(1):60. DOI:10.1186/s12978-018-0502-y.; Camara B.S., Delamou A., Diro E., Béavogui A.H., El Ayadi A.M., Sidibé S., Grovogui F.M., Takarinda K.C., Bouedouno P., Sandouno S.D., Okumura J., Baldé M.D., Van Griensven J., Zachariah R. Effect of the 2014/2015 Ebola outbreak on reproductive health services in a rural district of Guinea: an ecological study. Trans. R. Soc. Trop. Med. Hyg. 2017; 111(1):22–9. DOI:10.1093/trstmh/trx009.; Balde T.A.L., Boumbaly S., Серикова Е.Н., Валутите Д.Э., Щемелев А.Н., Останкова Ю.В., Зуева Е.Б., Семенов А .В. Сравнительный анализ вертикального риска передачи некоторых гемоконтактных инфекций в Гвинейской Республике. Проблемы особо опасных инфекций. 2021; 1:87–94. DOI:10.21055/0370-1069-2021-1-87-94.; Останкова Ю.В., Серикова Е.Н., Семенов А.В., Тотолян А рег А . Метод выявления в биологическом материале ДНК вируса гепатита В при низкой вирусной нагрузке на основе гнездовой ПЦР с детекцией по трем вирусным мишеням в режиме реального времени. Клиническая лабораторная диагностика. 2022; 67(9):530–7. DOI:10.51620/0869-2084-2022-67-9-530-537.; Mbange A.E., Kaba D., Diouara A.A.M., Diop-Ndiaye H., Ngom-Ngueye N.F., Dieng A., Lo S., Toure K.N., Fall M., Mbacham W.F., Diallo M.S., Cisse M., Mboup S., Kane C.T. Surveillance of transmitted HIV-1 antiretroviral drug resistance in the context of decentralized HIV care in Senegal and the Ebola outbreak in Guinea. BMC Res. Notes. 2018; 11(1):723. DOI:10.1186/s13104-018-3804-9.; Ingasia L.A.O., Kostaki E.G., Paraskevis D., Kramvis A. Global and regional dispersal patterns of hepatitis B virus genotype E from and in Africa: A full-genome molecular analysis. PLoS One. 2020; 15(10):e0240375. DOI:10.1371/journal.pone.0240375.; Clifford G.M., Waterboer T., Dondog B., Qiao Y.L., Kordzaia D., Hammouda D., Keita N., Khodakarami N., Raza S.A., Sherpa A.T., Zatonski W., Pawlita M., Plummer M., Franceschi S. Hepatitis C virus seroprevalence in the general female population of 9 countries in Europe, Asia and Africa. Infect. Agent. Cancer. 2017; 12:9. DOI:10.1186/s13027-017-0121-1.; Naughton B., Bulterys M.A., Mugisha J., Mujugira A., Boyer J., Celum C., Weiner B., Sharma M. ‘If there is joy… I think it can work well’: a qualitative study investigating relationship factors impacting HIV self-testing acceptability among pregnant women and male partners in Uganda. BMJ Open. 2023; 13(2):e067172. DOI:10.1136/bmjopen-2022-067172.; UNAIDS data 2020. UNAIDS. Jul 2020. [Электронный ресурс]. URL: https://www.unaids.org/en/resources/documents/2020/unaids-data (дата обращения 18.08.2022).; Bekolo C.E., Soumah M.M., Tiemtore O.W., Diallo A., Yuma J.D., Di Stefano L., Metcalf C., Cisse M. Assessing the outcomes of HIV-infected persons receiving treatment for Kaposi sarcoma in Conakry-Guinea. BMC Cancer. 2017; 17(1):806. DOI:10.1186/s12885-017-3771-x.; Shchemelev A.N., Boumbaly S., Ostankova Y.V., Zueva E.B., Semenov A.V., Totolian A.A. Prevalence of drug resistant HIV-1 forms in patients without any history of antiretroviral therapy in the Republic of Guinea. J. Med. Virol. 2022; 95(1):e28184. DOI:10.1002/jmv.28184.; Бумбали С., Серикова Е.Н., Семенов А.В., Останкова Ю.В., Валутите Д.Э., Щемелев А.Н., Зуева Е.Б., Балде Т.А.Л., Баимова Р.Р., Тотолян А .А. Значимость лабораторной диагностики парентеральных вирусных гепатитов в Гвинейской Республике. Журнал микробиологии, эпидемиологии и иммунобиологии. 2021; 98(4):440–9. DOI:10.36233/0372-9311-116.; Sanjuán R. The social life of viruses. Annu. Rev. Virol. 2021; 8(1):183–99. DOI:10.1146/annurev-virology-091919-071712.; Huy B.V., Vernavong K., Kính N.V. HBV and HCV coinfection among HIV/AIDS patients in the National hospital of tropical diseases, Vietnam. AIDS Res. Treat. 2014; 2014:581021. DOI:10.1155/2014/581021.; https://journal.microbe.ru/jour/article/view/1854

  6. 6
    Academic Journal

    Source: HIV Infection and Immunosuppressive Disorders; Том 15, № 2 (2023); 48-58 ; ВИЧ-инфекция и иммуносупрессии; Том 15, № 2 (2023); 48-58 ; 2077-9828 ; 10.22328/2077-9828-2023-15-2

    File Description: application/pdf

    Relation: https://hiv.bmoc-spb.ru/jour/article/view/809/546; Greener R. AIDS and macroeconomic impact. State of The Art; AIDS and Economics // IAEN. 2002. P. 49–55.; Walker N., Grassly N.C., Gamett G.P. et al. Estimating the global burden of HIV/AIDS: What do we really know about the HIV pandemic? // Lancet. 2004. Nо. 363. P. 2180–2185. doi:10.1016/S0140-6736(04)16511-2.; UNAIDS data 2020. UNAIDS. Jul 2020. https://www.unaids.org/en/resources/documents/2020/unaids-data.; Taylor B.S., Sobieszczyk M.E., McCutchan F.E. The challenge of HIV-1 subtype diversity // N. Engl. J. Med. 2008. Vol. 358. P. 1590–1602. doi:10.1056/NEJMc086373.; Trover R.M., Collins K.R., Abhara A. et al. Changes in human immunodeficiency virus type 1 fitness and genetic diversity during disease progression // J. Virol. 2005. Vol. 79. P. 9006–9018. doi:10.1128/JVI.79.14.9006-9018.2005.; Sackto N., Nakasujja N., Skolasky R.L. et al. HIV subtype D is associated with dementia, compared with subtype A, in immunosuppressed individuals at risk of cognitive impairment in Kampala, Uganda // Clin. Infect. Dis. 2009. Vol. 49, No. 5. P. 780–786. doi:10.1086/605284.; Perno C.F., Moyle G., Tsoukas C. et al. Overcoming resistance to existing therapies in HIV-infected patients: The role of new antiretroviral drugs // J. Med. Virol. 2008. Vol. 80. P. 565–576. doi:10.1002/jmv.21034. PMID: 18297706.; Bobkova M.R. HIV drug resistance (Drug-resistant HIV). Moscow: Chelovek, 2014. 288 р. (In Russ.).; WHO. HIV DRUG RESISTANCE REPORT 2021 https://www.who.int/publications/i/item/9789240038608.; Aghokeng A.F., Monleau M., Eymard-Duvernay S. et al. Extraordinary heterogeneity of virological outcomes in patients receiving highly antiretroviral therapy and monitored with the World Health Organization public health approach in sub-Saharan Africa and Southeast Asia // Clin. Infect. Dis. 2014. Vol. 58. Р. 99–109; doi:10.1093/cid/cit627.; Boender T.S., Kityo C.M., Boerma R.S. et al. Accumulation of HIV-1 drug resistance after continued virological failure on first-line ART in adults and children in sub-Saharan Africa // J. Antimicrob Chemother. 2016. Vol. 71. Р. 2918–2927. doi:10.1093/jac/dkw218.; Avila-Rios S., Garcia-Morales C., Matias-Florentino M. et al. Pretreatment HIV-drug resistance in Mexico and its impact on the effectiveness of first-line antiretroviral therapy: a nationally representative 2015 WHO survey // Lancet HIV. 2016. Vol. 3. Р. e579–e91; doi:10.1016/S2352-3018(16)30119-9.; Bissio E., Barbás M.G., Bouzas M.B. et al. Pretreatment HIV-1 drug resistance in Argentina: results from a surveillance study performed according to WHO-proposed new methodology in 2014–15 // J. Antimicrob. Chemother. 2017. Vol. 72. Р. 504–510. doi:10.1093/jac/dkw445.; Aghokeng A.F., Kouanfack C., Laurent C. et al. Scale-up of antiretroviral treatment in sub-Saharan Africa is accompanied by increasing HIV-1 drug resistance mutations in drug-naive patients // AIDS. 2011. Vol. 25. Р. 2183–2188. doi:10.1093/jac/dkw445.; Chung M.H., Silverman R., Beck I.A. et al. Increasing HIV-1 pretreatment drug resistance among antiretroviral-naïve adults initiating treatment between 2006 and 2014 in Nairobi, Kenya // AIDS. 2016. Vol. 30. Р. 1680–1682. doi:10.1097/QAD.0000000000001110.; Gupta R.K., Gregson J., Parkin N. et al. HIV-1 drug resistance before initiation or re-initiation of first-line antiretroviral therapy in low-income and middle-income countries: a systematic review and meta-regression analysis // Lancet Infect Dis. 2018. Vol. 18. Р. 346–355. doi:10.1016/S1473–3099(17)30702-8.; Bekolo C.E., Soumah M.M., Tiemtore O.W. et al. Assessing the outcomes of HIV-infected persons receiving treatment for Kaposi sarcoma in Conakry-Guinea // BMC Cancer. 2017. Vol. 17, No. 1. Р. 806. doi:10.1186/s12885-017-3771-x.; Bbosa N., Kaleebu P., Ssemwanga D. HIV subtype diversity worldwide // Curr. Opin HIV AIDS. 2019. Vol. 14, No. 3. Р. 153–160. doi:10.1097/COH.0000000000000534.; Lihana R.W., Ssemwanga D., Abimiku A., Ndembi N. Update on HIV-1 diversity in Africa: a decade in review // AIDS Rev. 2012. Vol. 14. Р. 83–100.; Nii-Trebi N.I., Brandful J.A.M., Ibe S. et al. Dynamic HIV-1 genetic recombination and genotypic drug resistance among treatment-experienced adults in northern Ghana // J. Med Microbiol. 2017. Vol. 66, No. 11. Р. 1663–1672. doi:10.1099/jmm.0.000621.; Shchemelev A.N., Boumbaly S., Ostankova Y.V. et al. Prevalence of drug resistant HIV-1 forms in patients without any history of antiretroviral therapy in the Republic of Guinea // J. Med. Virol. 2023. Jan; Vol. 95, No. 1. e28184. doi:10.1002/jmv.28184. Epub 2022 Oct 6. PMID: 36175006.; Mugo N.R., Heffron R., Donnell D. et al. Increased risk of HIV-1 transmission in pregnancy: a prospective study among African HIV-1-serodiscordant couples // AIDS. 2011. Vol. 25. Р. 1887–1895. doi:10.1097/QAD.0b013e32834a9338.; Sheffield J.S., Wendel G.D.J., McIntire D.D., Norgard M.V. The effect of progesterone levels and pregnancy on HIV-1 coreceptor expression // Reprod. Sci. 2009. Vol. 16. Р. 20–31. doi:10.1177/1933719108325510.; Weiser S.D., Young S.L., Cohen C.R. et al. Conceptual framework for understanding the bidirectional links between food insecurity and HIV/AIDS // Am. J. Clin. Nutr. 2011. Vol. 94. Р. 1729S–1739S. doi:10.3945/ajcn.111.012070.; UNAIDS. UNAIDS 2019 Data [Internet]. Joint United Nations Programme on HIV/AIDS (UNAIDS). 2019. Р. 1–248. Available.; Weiser S.D., Leiter K., Bangsberg D.R. et al. Food insufficiency is associated with high-risk sexual behavior among women in Botswana and Swaziland // PLoS Med. 2007. Vol. 4. Р1589–1597. doi:10.1371/journal.pmed.0040260. from: https://www.unaids.org/sites/default/files/media_asset/2019-UNAIDS-data_en.pdf.; World Health Organization (WHO). Antiretroviral Therapy for HIV Infection in Adults and Adolescents: Recommendations for a Public Health Approach: 2010 Revision. 2010. P. 14. from: https://www.ncbi.nlm.nih.gov/books/NBK138528.; Diouara A.A., Ndiaye H.D., Guindo I. et al. Antiretroviral treatment outcome in HIV-1-infected patients routinely followed up in capital cities and remote areas of Senegal, Mali and Guinea-Conakry // J. Int. AIDS Soc. 2014. Dec 18; Vol. 17, No. 1. Р; 19315. doi:10.7448/IAS.17.1.19315.; Start Free, Stay Free, AIDS Free [website]. Geneva: UNAIDS; 2020 [cited: 21/12/20]. from: https://www.unaids.org/sites/default/files/media_asset/Stay_free_vision_mission_En.pdf.; Kumar S., Stecher G., Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets // Molecular Biology and Evolution. 2016. Vol. 33, No. 7. P. 1870–1874. doi:10.1093/molbev/msw054.; Vingerhoets J., Peeters M., Azijn H. et al. An update of the list of NNRTI mutations associated with decreased virological response to etravirine: multivariate analyses on the pooled DUET-1 and DUET-2 clinical trial data [abstract 24] // Antiviral Therapy. 2008. Vol. 13, Suppl. 3. A26.; Flor-Parra F., Pérez-Pulido A.J., Pachón J., Pérez-Romero P. The HIV type 1 protease L10I minor mutation decreases replication capacity and confers resistance to protease inhibitors // AIDS Res Hum Retroviruses. 2011; Vol. 27, No. 1. Р. 65–70; doi:10.1089/aid.2010.0072.; Barnard J.P., Huber K.D., Sluis-Cremer N. Nonnucleoside Reverse Transcriptase Inhibitor Hypersusceptibility and Resistance by Mutation of Residue 181 in HIV-1 Reverse Transcriptase // Antimicrob. Agents Chemother. 2019. Jul 25; Vol. 63, No. 8. Р. e00676–19; doi:10.1128/AAC.00676-19.; Tambuyzer L., Azijn H., Rimsky L.T. et al. Compilation and prevalence of mutations associated with resistance to non-nucleoside reverse transcriptase inhibitors // Antivir. Ther. 2009. Vol. 14, No. 1. Р. 103–109.; Moorhouse M., Maartens G., Venter W.D.F. et al. Third-Line Antiretroviral Therapy Program in the South African Public Sector: Cohort Description and Virological Outcomes // J. Acquir. Immune Defic. Syndr. 2019. Jan 1; Vol. 80, No. 1. Р. 73–78. doi:10.1097/QAI.0000000000001883.; Mo H., King M.S., King K. et al. Selection of resistance in protease inhibitor-experienced, human immunodeficiency virus type 1-infected subjects failing lopinavirand ritonavir-based therapy: mutation patterns and baseline correlates // J. Virol. 2005. Vol. 79. Р. 3329–3338. 10.1128/JVI.79.6.3329-3338.2005.; Yendewa G.A., Sahr F., Lakoh S. et al. Prevalence of drug resistance mutations among ART-naive and -experienced HIV-infected patients in Sierra Leone // J. Antimicrob. Chemother. 2019. Vol. 74, No. 7. Р. 2024–2029.; Boyce C.L., Sils T., Ko D. et al. Maternal Human Immunodeficiency Virus (HIV) Drug Resistance Is Associated With Vertical Transmission and Is Prevalent in Infected Infants // Clin. Infect. Dis. 2022. Jun 10; Vol. 74, No. 11. Р. 2001–2009. doi:10.1093/cid/ciab744.; World Health Organization. Update of Recommendations on First- and Second-Line Antiretroviral Regimens Geneva, Switzerland: World Health Organization, 2019. Report No: Licence: CC BY-NC-SA 3.0 IGO.; Scarsi K.K., Havens J.P., Podany A.T. et al. HIV-1 Integrase Inhibitors: A Comparative Review of Efficacy and Safety // Drugs. 2020. Nov; Vol. 80, No. 16. Р. 1649–1676. doi:10.1007/s40265-020-01379-9.

  7. 7
  8. 8
  9. 9
    Academic Journal

    Source: Odesa National University Herald. Biology; Vol. 15 No. 17 (2010); 59-64
    Вестник Одесского национального университета. Биология; Том 15 № 17 (2010); 59-64
    Вісник Одеського національного університету. Біологія; Том 15 № 17 (2010); 59-64

    File Description: application/pdf

  10. 10
  11. 11
    Academic Journal

    Source: Meditsinskiy sovet = Medical Council; № 5 (2022); 32-39 ; Медицинский Совет; № 5 (2022); 32-39 ; 2658-5790 ; 2079-701X

    File Description: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/6788/6121; Дедов И.И., Шестакова М.В., Галстян Г.Р. Распространенность сахарного диабета 2 типа у взрослого населения России (исследование NATION). Сахарный диабет. 2016;19(2):104–112. https://doi.org/10.14341/ DM2004116-17.; Kelly T., Yang W., Chen C.S., Reynolds K., He J. Global burden of obesity in 2005 and projections to 2030. Int J Obes (Lond). 2008;32(9):1431–1437. https://doi.org/10.1038/ijo.2008.102.; Wang Y.C., McPherson K., Marsh T., Gortmaker S.L., Brown M. Health and economic burden of the projected obesity trends in the USA and the UK. Lancet. 2011;378(9793):815–825. https://doi.org/10.1016/S0140-6736(11)60814-3.; Schetz M., De Jong A., Deane A.M., Druml W., Hemelaar P., Pelosi. P. et al. Obesity in the critically ill: a narrative review. Intensive Care Med. 2019;45(6):757–769. https://doi.org/10.1007/s00134-019-05594-1.; Broughton D.E., Moley K.H. Obesity and female infertility: potential mediators of obesity’s impact. Fertil Steril. 2017;107(4):840–847. https://doi.org/10.1016/j.fertnstert.2017.01.017.; Willemsen R.H., Dunger D.B. Normal Variation in Pubertal Timing: Genetic Determinants in Relation to Growth and Adiposity. Endocr Dev. 2016;29:17–35. https://doi.org/10.1159/000438957.; Biro F.M., Kiess W. Contemporary Trends in Onset and Completion of Puberty, Gain in Height and Adiposity. Endocr Dev. 2016;29:122–133. https://doi.org/10.1159/000438881.; Левкович М.А., Андреева В.О., Хошаби К.Э. Роль толл-подобных рецепторов и полиморфизма их генов в патогенезе овариальной дисфункции у девочек-подростков с ожирением. Репродуктивное здоровье детей и подростков. 2020;16(3):64–72. https://doi.org/10.33029/1816-2134-2020-16-3-64-72.; Zhang Y., Hu M., Ma H., Qu J., Wang Y., Hou L. et al. The impairment of reproduction in db/db mice is not mediated by intraovarian defective leptin signaling. Fertil Steril. 2012;97(5):1183–1191. https://doi.org/10.1016/j.fertnstert.2012.01.126.; Kawwass J.F., Summer R., Kallen C.B. Direct effects of leptin and adiponectin on peripheral reproductive tissues: a critical review. Mol Hum Reprod. 2015;21(8):617–632. https://doi.org/10.1093/molehr/gav025.; He Y., Lu Y., Zhu Q., Wang Y., Lindheim S. R., Qi J. et al. Influence of metabolic syndrome on female fertility and in vitro fertilization outcomes in PCOS women. Am J Obstet Gynecol. 2019;221(2):138.e1–138.e12. https://doi.org/10.1016/j.ajog.2019.03.011.; Xu L., Shi Y., Gu J., Wang Y., Wang L., You L. et al. Association between ghrelin gene variations, body mass index, and waist-to-hip ratio in patients with polycystic ovary syndrome. Exp Clin Endocrinol Diabetes. 2014;122(3):144–148. https://doi.org/10.1055/s-0034-1367024.; Day F.R., Hinds D.A., Tung J.Y., Stolk L., Styrkarsdottir U., Saxena R. et al. Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome. Nat Commun. 2015;6:8464. https://doi.org/10.1038/ncomms9464.; Batarfi A.A., Filimban N., Bajouh O. S., Dallol A., Chaudhary A.G., Bakhashab S. MC4R variants rs12970134 and rs17782313 are associated with obese polycystic ovary syndrome patients in the Western region of Saudi Arabia. BMC Med Genet. 2019;20(1):144. https://doi.org/10.1186/s12881-019-0876-x.; Silvestris E., de Pergola G., Rosania R., Loverro G. Obesity as disruptor of the female fertility. Reprod Biol Endocrinol. 2018;16(1):22. https://doi.org/10.1186/s12958-018-0336-z.; Ouchi N., Parker J.L., Lugus J.J., Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11(2):85–97. https://doi.org/10.1038/nri2921.; Nieuwenhuis D., Pujol-Gualdo N., Arnoldussen I.A.C., Kiliaan A.J. Adipokines: A gear shift in puberty. Obes Rev. 2020;21(6):e13005. https://doi.org/10.1111/obr.13005.; Zhao S., Kusminski C.M., Elmquist J.K., Scherer P.E. Leptin: Less Is More. Diabetes. 2020;69(5):823–829. https://doi.org/10.2337/dbi19-0018.; Pan W.W., Myers M.G. Jr. Leptin and the maintenance of elevated body weight. Nat Rev Neurosci. 2018;19(2):95–105. https://doi.org/10.1038/nrn.2017.168.; Caron A., Lee S., Elmquist J.K., Gautron L. Leptin and brain-adipose crosstalks. Nat Rev Neurosci. 2018;19(3):153–165. https://doi.org/10.1038/nrn.2018.7.; Çetinkaya S., Güran T., Kurnaz E., Keskin M., Sağsak E., Savaş Erdeve S. et al. A Patient with Proopiomelanocortin Deficiency: An Increasingly Important Diagnosis to Make. J Clin Res Pediatr Endocrinol. 2018;10(1):68–73. https://doi.org/10.4274/jcrpe.4638.; Baldini G., Phelan K.D. The melanocortin pathway and control of appetiteprogress and therapeutic implications. J Endocrinol. 2019;241(1):R1–R33. https://doi.org/10.1530/JOE-18-0596.; Baver S.B., Hope K., Guyot S., Bjørbaek C., Kaczorowski C., O’Connell K.M. Leptin modulates the intrinsic excitability of AgRP/NPY neurons in the arcuate nucleus of the hypothalamus. J Neurosci. 2014;34(16):5486–5496. https://doi.org/10.1523/JNEUROSCI.4861-12.2014.; Michalakis K., Mintziori G., Kaprara A., Tarlatzis B.C., Goulis D.G. The complex interaction between obesity, metabolic syndrome and reproductive axis: a narrative review. Metabolism. 2013;62(4):457–478. https://doi.org/10.1016/j.metabol.2012.08.012.; Reinehr T., Roth C.L. Is there a causal relationship between obesity and puberty? Lancet Child Adolesc Health. 2019;3(1):44–54. https://doi.org/10.1016/S2352-4642(18)30306-7.; Dobrzyn K., Smolinska N., Kiezun M., Szeszko K., Rytelewska E., Kisielewska K. et al. Adiponectin: A new regulator of female reproductive system. Int J Endocrinol. 2018;7965071. https://doi.org/10.1155/2018/7965071.; Mathew H., Castracane V.D., Mantzoros C. Adipose tissue and reproductive health. Metabolism. 2018;86:18–32. https://doi.org/10.1016/j.metabol.2017.11.006.; Khan M., Joseph F. Adipose tissue and adipokines: the association with and application of adipokines in obesity. Scientifica (Cairo). 2014;328592. https://doi.org/10.1155/2014/328592.; Huang-Doran I., Franks S. Genetic Rodent Models of Obesity-Associated Ovarian Dysfunction and Subfertility: Insights into Polycystic Ovary Syndrome. Front Endocrinol (Lausanne). 2016;7:53. https://doi.org/10.3389/fendo.2016.00053.; Luzzo K.M., Wang Q., Purcell S.H., Chi M., Jimenez P.T., Grindler N. et al. High fat diet induced developmental defects in the mouse: oocyte meiotic aneuploidy and fetal growth retardation/brain defects. PLoS ONE. 2012;7(11):e49217. https://doi.org/10.1371/journal.pone.0049217.; Singh A., Choubey M., Bora P., Krishna A. Adiponectin and Chemerin: Contrary Adipokines in Regulating Reproduction and Metabolic Disorders. Reprod Sci. 2018;25(10):1462–1473. https://doi.org/10.1177/1933719118770547.; Tsatsanis C., Dermitzaki E., Avgoustinaki P., Malliaraki N., Mytaras V., Margioris A.N. The impact of adipose tissue‐derived factors on the hypothalamic‐pituitary‐gonadal (HPG) axis. Hormones (Athens). 2015;14:549–562. https://doi.org/10.14310/horm.2002.1649.; Souter I., Baltagi L.M., Kuleta D., Meeker J.D., Petrozza J.C. Women, weight, and fertility: the effect of body mass index on the outcome of superovulation/intrauterine insemination cycles. Fertil Steril. 2011;95(3):1042–1047. https://doi.org/10.1016/j.fertnstert.2010.11.062.; Provost M.P., Acharya K.S., Acharya C.R., Yeh J.S., Steward R.G., Eaton J.L. et al. Pregnancy outcomes decline with increasing recipient body mass index: an analysis of 22,317 fresh donor/recipient cycles from the 2008– 2010 Society for Assisted Reproductive Technology Clinic Outcome Reporting System registry. Fertil Steril. 2016;105(2):364–368. https://doi.org/10.1016/j.fertnstert.2015.10.015.; Luke B., Brown M.B., Stern J.E., Missmer S.A., Fujimoto V.Y., Leach R. Female obesity adversely affects assisted reproductive technology (ART) pregnancy and live birth rates. Hum Reprod. 2011;26(1):245–252. https://doi.org/10.1093/humrep/deq306.; Jungheim E.S., Schon S.B., Schulte M.B., DeUgarte D.A., Fowler S.A., Tuuli M.G. IVF outcomes in obese donor oocyte recipients: a systematic review and meta-analysis. Hum Reprod. 2013;28(10):2720–2727. https://doi.org/10.1093/humrep/det292.; Rubio C., Vassena R., García D., Vernaeve V., Madero J.I. Influence of donor, recipient, and male partner body mass index on pregnancy rates in oocyte donation cycles. JBRA Assist Reprod. 2015;19(2):53–58. https://doi.org/10.5935/1518-0557.20150013.; Cardozo E.R., Karmon A.E., Gold J., Petrozza J.C., Styer A.K. Reproductive outcomes in oocyte donation cycles are associated with donor BMI. Hum Reprod. 2016;31(2):385–392. https://doi.org/10.1093/humrep/dev298.; Rhee J.S., Saben J.L., Mayer A.L., Schulte M.B., Asghar Z., Stephens C. Dietinduced obesity impairs endometrial stromal cell decidualization: a potential role for impaired autophagy. Hum Reprod. 2016;31(6):1315–1326. https://doi.org/10.1093/humrep/dew048.; Carpinello O.J., Sundheimer L.W., Alford C.E., Taylor R.N., DeCherney A.H. Endometriosis. In: Feingold K.R., Anawalt B., Boyce A. (eds.). Endotext. South Dartmouth (MA): MDText.com, Inc.; 2017. Available at: https://www.ncbi.nlm.nih.gov/books/NBK278996/.; Holdsworth-Carson S.J., Rogers P.A. The complex relationship between body mass index and endometriosis. J Endometr Pelvic Pain Disord. 2018;10(4):187–189. https://doi.org/10.1177/2284026518810586.; Holdsworth-Carson S.J., Dior U.P., Colgrave E.M., Healey M., Montgomery G.W., Rogers P.A., Girling J.E. The association of body mass index with endometriosis and disease severity in women with pain. J Endometr Pelvic Pain Disord. 2018;10(2):79–87. https://doi.org/10.1177/2284026518773939.; Yun K.Y., Hwang S.Y., Lee H.J., Kim S.C., Joo J.K., Suh D.S. et al. The association of body mass index with incidence, stage and recurrence of endometriosis: case-control study in Korean women. Clin Exp Obstet Gynecol. 2020;47(1):53–56. https://doi.org/10.31083/j.ceog.2020.01.4996.; Vaghar M.I. Evaluation of lifestyle and endometriosis in infertile women referring to the selected hospital of Tehran University Medical Sciences. J Family Med Prim Care. 2019;8(11):3574–3577. https://doi.org/10.4103/jfmpc.jfmpc_496_19; Cardoso J.V., Abrão M.S., Berardo P.T., Ferrari R., Nasciutti L.E., Machado D.E., Perini J.A. Role of cytochrome P450 2C19 polymorphisms and body mass index in endometriosis: A case-control study. Eur J Obstet Gynecol Reprod Biol. 2017;219:119–123. https://doi.org/10.1016/j.ejogrb.2017.10.027.; Holdsworth-Carson S.J., Chung J., Sloggett C., Mortlock S., Fung J.N., Montgomery G.W., Dior U.P. et al. Obesity does not alter endometrial gene expression in women with endometriosis. Reprod Biomed Online. 2020;41(1):113–118. https://doi.org/10.1016/j.rbmo.2020.03.015.; Pantelis A., Machairiotis N., Lapatsanis D.P. The Formidable yet Unresolved Interplay between Endometriosis and Obesity. ScientificWorldJournal. 2021;6653677. https://doi.org/10.1155/2021/6653677.; Rathore N., Kriplani A., Yadav R.K., Jaiswal U., Netam R. Distinct peritoneal fluid ghrelin and leptin in infertile women with endometriosis and their correlation with interleukin-6 and vascular endothelial growth factor. Gynecol Endocrinol. 2014;30(9):671–675. https://doi.org/10.3109/09513590.2014.920318.; Hanson F.K., Kishan R., Macleay K., Riese, C.S. Investigating the Association Between Metabolic Syndrome and Adenomyosis. Obstet Gynecol. 2020;135:25S. https://doi.org/10.1097/01.aog.0000663176.96985.e4.; Heavy menstrual bleeding: assessment and management. London: NICE; 2021. Available at: https://www.ncbi.nlm.nih.gov/books/NBK493300/.; Singh S., Best C., Dunn S., Leyland N., Wolfman W.L. Clinical Practice Gynecology Committee. Abnormal uterine bleeding in premenopausal women. J Obstet Gynaecol Can. 2013;35(5):473–479. https://doi.org/10.1016/j.jogc.2018.03.007.; Munro M.G., Critchley H.O.D., Fraser I.S. The two FIGO systems for normal and abnormal uterine bleeding symptoms and classification of causes of abnormal uterine bleeding in the reproductive years: 2018 revisions. Int J Gynaecol Obstet. 2018;143(3):393–408. https://doi.org/10.1002/ijgo.12666.; Reavey J.J., Walker C., Murray A.A., Brito-Mutunayagam S., Sweeney S., Nicol M., Cambursano A. et al. Obesity is associated with heavy menstruation that may be due to delayed endometrial repair. J Endocrinol. 2021;249(2):71–82. https://doi.org/10.1530/JOE-20-0446.; Shaw E., Farris M., McNeil J., Friedenreich C. Obesity and Endometrial Cancer. Recent Results Cancer Res. 2016;208:107–136. https://doi.org/10.1007/978-3-319-42542-9_7.; Wise M.R., Jordan V., Lagas A., Showell M., Wong N., Lensen S., Farquhar C.M. Obesity and endometrial hyperplasia and cancer in premenopausal women: A systematic review. Am J Obstet Gynecol. 2016;214(6):689.e1–689.e17. https://doi.org/10.1016/j.ajog.2016.01.175.; Yang X., Wang J. The Role of Metabolic Syndrome in Endometrial Cancer: A Review. Front Oncol. 2019;9:744. https://doi.org/10.3389/fonc.2019.00744.; Chu Y., Wang Y., Peng W., Xu L., Liu M., Li J. et al. STAT3 activation by IL-6 from adipose-derived stem cells promotes endometrial carcinoma proliferation and metastasis. Biochem Biophys Res Commun. 2018;500(3):626–631. https://doi.org/10.1016/j.bbrc.2018.04.121.; Zahid H., Subbaramaiah K., Iyengar N.M., Zhou X.K., Chen I.C., Bhardwaj P. et al. Leptin regulation of the p53-HIF1α/PKM2-aromatase axis in breast adipose stromal cells: a novel mechanism for the obesity-breast cancer link. Int J Obes (Lond). 2018;42(4):711–720. https://doi.org/10.1038/ijo.2017.273.; Song N.Y., Lee Y.H., Na H.K., Baek J.H., Surh Y.J. Leptin induces SIRT1 expression through activation of NF-E2-related factor 2: Implications for obesity-associated colon carcinogenesis. Biochem Pharmacol. 2018;153:282–291. https://doi.org/10.1016/j.bcp.2018.02.001.; Wang P.P., He X.Y., Wang R., Wang Z., Wang Y.G. High leptin level is an independent risk factor of endometrial cancer: a meta-analysis. Cell Physiol Biochem. 2014;34(5):1477–1484. https://doi.org/10.1159/000366352.; Giannella L., Mfuta K., Setti T., Cerami L.B., Bergamini E., Boselli F. A risk-scoring model for the prediction of endometrial cancer among symptomatic postmenopausal women with endometrial thickness > 4 mm. Biomed Res Int. 2014; 130569. https://doi.org/10.1155/2014/130569.; Van Hanegem N., Breijer M.C., Khan K.S., Clark T.J., Burger M.P., Mol B.W., Timmermans A. Diagnostic evaluation of the endometrium in postmenopausal bleeding: an evidence-based approach. Maturitas. 2011;68(2):155–164. https://doi.org/10.1016/j.maturitas.2010.11.010.; Kim M.J., Kim J.J., Kim S.M. Endometrial evaluation with transvaginal ultrasonography for the screening of endometrial hyperplasia or cancer in premenopausal and perimenopausal women. Obstet Gynecol Sci. 2016;59(3):192–200. https://doi.org/10.5468/ogs.2016.59.3.192.; Van den Bosch T., Ameye L., Van Schoubroeck D., Bourne T., Timmerman D. Intra-cavitary uterine pathology in women with abnormal uterine bleeding: a prospective study of 1220 women. Facts Views Vis Obgyn. 2015;7(1):17–24. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4402439.; Giannella L., Cerami L.B., Setti T., Bergamini E., Boselli F. Prediction of Endometrial Hyperplasia and Cancer among Premenopausal Women with Abnormal Uterine Bleeding. Biomed Res Int. 2019;8598152. https://doi.org/10.1155/2019/8598152.; Wise M.R., Gill P., Lensen S., Thompson J.M., Farquhar C.M. Body mass index trumps age in decision for endometrial biopsy: cohort study of symptomatic premenopausal women. Am J Obstet Gynecol. 2016;215(5):598.e1–598.e8. https://doi.org/10.1016/j.ajog.2016.06.006.; Guraslan H., Dogan K., Kaya C., Senturk M.B., Guraslan B., Helvacioglu C. et al. Could body mass index be an indicator for endometrial biopsy in premenopausal women with heavy menstrual bleeding? Arch Gynecol Obstet. 2016;294(2):395–402. https://doi.org/10.1007/s00404-016-4043-8.; Gao Y., Dai X., Lee A.C., Wise M.R., Shen F., Chen Q. Body Mass Index is Negatively Associated with Endometrial Cancer Stage, Regardless of Subtype and Menopausal Status. J Cancer. 2018;9(24):4756–4761. https://doi.org/10.7150/jca.21137.; Akalyaa K., Shakuntala P.N., Renuka P. Correlation of body mass index and abnormal uterine bleeding in premenopausal women. Int J Reprod Contracept Obstet Gynecol. 2020;9(11):4640–4647. https://doi.org/10.18203/2320-1770.ijrcog20204826.; Singh S., Best C., Dunn S., Leyland N., Wolfman W.L. Abnormal uterine bleeding in pre-menopausal women. J Obstet Gynaecol Can. 2013;35(5):473–475. https://doi.org/10.1016/S1701-2163(15)30939-7.; Semenza G.L. Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology (Bethesda). 2004;19:176–182. https://doi.org/10.1152/physiol.00001.2004.; Maybin J.A., Murray A.A., Saunders P., Hirani N., Carmeliet P., Critchley H. Hypoxia and hypoxia inducible factor-1α are required for normal endometrial repair during menstruation. Nat Commun. 2018;9(1):295. https://doi.org/10.1038/s41467-017-02375-6.; Chen X., Liu J., He B., Li Y., Liu S., Wu B. Vascular endothelial growth factor (VEGF) regulation by hypoxia inducible factor-1 alpha (HIF1A) starts and peaks during endometrial breakdown, not repair, in a mouse menstrual-like model. Hum Reprod. 2015;30(9):2160–2170. https://doi.org/10.1093/humrep/dev156.; Goossens G.H., Blaak E.E. Adipose tissue dysfunction and impaired metabolic health in human obesity: a matter of oxygen? Front Endocrinol (Lausanne). 2015;6:55. https://doi.org/10.3389/fendo.2015.00055.; Nouri M., Tavakkolian A., Mousavi S.R. Association of dysfunctional uterine bleeding with high body mass index and obesity as a main predisposing factor. Diabetes Metab Syndr. 2014;8(1):1–2. https://doi.org/10.1016/j.dsx.2013.10.013.; Cousins F.L., Murray A.A., Scanlon J.P., Saunders P.T. Hypoxyprobe™ reveals dynamic spatial and temporal changes in hypoxia in a mouse model of endometrial breakdown and repair. BMC Res Notes. 2016;9:30. https://doi.org/10.1186/s13104-016-1842-8.; Jafari-Gharabaghlou D., Vaghari-Tabari M., Oghbaei H., Lotz L., Zarezadeh R., Rastgar Rezaei Y. et al. Role of adipokines in embryo implantation.

  12. 12
  13. 13
    Academic Journal

    Contributors: Pavlov, Igor N., Litovka, Yuliya A., Ryazanova, Tatyana V., Chuprova, Nelli A., Litvinova, Ekaterina A., Putintseva, Yuliya A., Kües, Ursula, Krutovsky, Konstantin V.

    Source: Журнал Сибирского федерального университета: Серия Биология, Vol 11, Iss 1, Pp 30-48 (2018)

  14. 14
  15. 15
    Academic Journal

    Source: Bukovinian Medical Herald; Vol. 14 No. 2 (54) (2010); 12-19
    Буковинский медицинский вестник; Том 14 № 2 (54) (2010); 12-19
    Буковинський медичний вісник; Том 14 № 2 (54) (2010); 12-19

    File Description: application/pdf

  16. 16
    Academic Journal

    Contributors: Shestibratov, Konstantin A., Baranov, Oleg Yu., Mescherova, Eugenia N., Kiryanov, Pavel S., Panteleev, Stanislav V., Mozharovskaya, Ludmila V., Krutovsky, Konstantin V., Padutov, Vladimir E.

    Source: Front Genet
    Frontiers in Genetics, Vol 12 (2021)

    File Description: application/pdf

  17. 17
  18. 18
  19. 19
  20. 20