-
1Academic Journal
Authors: T. N. Zamay, M. A. Dymova, A. A. Narodov, A. A. Koshmanova, D. S. Grek, I. I. Voronkovskii, A. K. Gorbushin, A. S. Kichkailo, E. V. Kuligina, V. A. Richter, R. А. Zukov, Т. Н. Замай, М. А. Дымова, А. А. Народов, А. А. Кошманова, Д. С. Грек, И. И. Воронковский, А. К. Горбушин, А. С. Кичкайло, Е. В. Кулигина, В. А. Рихтер, Р. А. Зуков
Contributors: The study was supported by the Russian Science Foundation grant No. 22-64-00041, URL: https://rscf.ru/ project/22-64-00041/. This study was supported by the Russian state-funded project for ICBFM Siberian branch of the Russian Academy of Sciences (grant No 121030200173-6), Исследование выполнено за счет гранта Российского научного фонда № 22-64-00041, URL: https:// rscf.ru/project/22-64-00041/. Работа также поддержана в рамках государственного задания ИХБФМ СО РАН № 121030200173-6
Source: Siberian journal of oncology; Том 22, № 5 (2023); 105-117 ; Сибирский онкологический журнал; Том 22, № 5 (2023); 105-117 ; 2312-3168 ; 1814-4861
Subject Terms: диагностика, Brain Glioblastoma, Aptamers, Molecular Target, Oncomarker, Target Therapy, diagnostics, глиобластома головного мозга, аптамеры, молекулярная мишень, онкомаркер, таргетная терапия
File Description: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/2765/1162; Park Y.W., Vollmuth P., Foltyn-Dumitru M., Sahm F., Ahn S.S., Chang J.H., Kim S.H. The 2021 WHO Classification for Gliomas and Implications on Imaging Diagnosis: Part 1-Key Points of the Fifth Edition and Summary of Imaging Findings on Adult-Type Diffuse Gliomas. J Magn Reson Imaging. 2023; 58(3): 677–89. doi:10.1002/jmri.28743.; Сергеев Н.И., Ребрикова В.А., Котляров П.М., Солодкий В.А. Магнитно-резонансная томография с перфузионной визуализацией в диагностике глиобластом головного мозга (Обзор литературы). Вестник Российского научного центра рентгенологии. 2021; 2(1): 45–59.; Aquino D., Di Stefano A.L., Scotti A., Cuppini L., Anghileri E., Finocchiaro G., Bruzzone M.G., Eoli M. Parametric response maps of perfusion MRI may identify recurrent glioblastomas responsive to bevacizumab and irinotecan. PLoS One. 2014; 9(3). doi:10.1371/journal.pone.0090535.; Розуменко В.Д. Опухоли головного мозга: современное состояние проблемы [Internet]. Алушта: III съезд нейрохирургов Украины, 2003. URL: https://health-ua.com/article/18896-opuholi-golovnogomozga-sovremennoe-sostoyanie-problemy. (in Russian).; Brown T.J., Brennan M.C., Li M., Church E.W., Brandmeir N.J., Rakszawski K.L., Patel A.S., Rizk E.B., Suki D., Sawaya R., Glantz M. Association of the Extent of Resection With Survival in Glioblastoma: A Systematic Review and Meta-analysis. JAMA Oncol. 2016; 2(11): 1460–9. doi:10.1001/jamaoncol.2016.1373.; Yung W.K., Albright R.E., Olson J., Fredericks R., Fink K., Prados M.D., Brada M., Spence A., Hohl R.J., Shapiro W., Glantz M., Greenberg H., Selker R.G., Vick N.A., Rampling R., Friedman H., Phillips P., Bruner J., Yue N., Osoba D., Zaknoen S., Levin V.A. A phase II study of temozolomide vs. procarbazine in patients with glioblastoma multiforme at first relapse. Br J Cancer. 2000; 83(5): 588–93. doi:10.1054/bjoc.2000.1316.; Jacobson O., Yan X., Niu G., Weiss I.D., Ma Y., Szajek L.P., Shen B., Kiesewetter D.O., Chen X. PET Imaging of Tenascin-C with a Radiolabeled Single-Stranded DNA Aptamer. J Nucl Med. 2015; 56(4): 616–621. doi:10.2967/jnumed.114.149484.; Gu M.J., Li K.F., Zhang L.X., Wang H., Liu L.S., Zheng Z.Z., Han N.Y., Yang Z.J., Fan T.Y. In vitro study of novel gadolinium-loaded liposomes guided by GBI-10 aptamer for promising tumor targeting and tumor diagnosis by magnetic resonance imaging. Int J Nanomedicine. 2015; 10: 5187–204. doi:10.2147/IJN.S84351.; Hicke B.J., Stephens A.W., Gould T., Chang Y.F., Lynott C.K., Heil J., Borkowsk, S., Hilger C.S., Cook G., Warren S., Schmidt P.G. Tumor targeting by an aptamer. J Nucl Med. 2006; 47(4): 668–78.; Amero P., Esposito C.L., Rienzo A., Moscato F., Catuogno S., de Franciscis V. Identification of an Interfering Ligand Aptamer for EphB2/3 Receptors. Nucleic Acid Ther. 2016; 26(2): 102–10. doi:10.1089/nat.2015.0580.; Affinito A., Quintavalle C., Esposito C.L., Roscigno G., Giordano C., Nuzzo S., Ricci-Vitiani L., Scognamiglio I., Minic Z., Pallini R, Pallini R., Berezovski M.V., de Francisis V., Condorelli G. Targeting Ephrin Receptor Tyrosine Kinase A2 with a Selective Aptamer for Glioblastoma Stem Cells. Mol Ther Nucleic Acids. 2020; 20: 176–85. doi:10.1016/j.omtn.2020.02.005.; Li N., Nguyen H.H., Byrom M., Ellington A.D. Inhibition of cell proliferation by an anti-EGFR aptamer. PLoS One. 2011; 6(6). doi:10.1371/journal.pone.0020299.; Hasan M.R., Hassan N., Khan R., Kim Y.T., Iqbal S.M. Classification of cancer cells using computational analysis of dynamic morphology. Comput Methods Programs Biomed. 2018; 156: 105–12. doi:10.1016/j.cmpb.2017.12.003.; Camorani S., Crescenzi E., Colecchia D., Carpentieri A., Amoresano A., Fedele M., Chiariello M., Cerchia L. Aptamer targeting EGFRvIII mutant hampers its constitutive autophosphorylation and affects migration, invasion and proliferation of glioblastoma cells. Oncotarget. 2015; 6(35): 37570–87. doi:10.18632/oncotarget.6066.; Wan Y., Tan J., Asghar W., Kim Y.T., Liu Y., Iqbal S.M. Velocity effect on aptamer-based circulating tumor cell isolation in microfluidic devices. J Phys Chem B. 2011; 115(47): 13891–6. doi:10.1021/jp205511m.; Wang T., Philippovich S., Mao J., Veedu R.N. Efficient Epidermal Growth Factor Receptor Targeting Oligonucleotide as a Potential Molecule for Targeted Cancer Therapy. Int J Mol Sci. 2019; 20(19): 4700. doi:10.3390/ijms20194700.; Wu X., Liang H., Tan Y., Yuan C., Li S., Li X., Li G., Shi Y., Zhang X. Cell-SELEX Aptamer for Highly Specific Radionuclide Molecular Imaging of Glioblastoma In Vivo. PLoS One. 2014; 9(6). doi:10.1371/journal.pone.0090752.; Tang J., Huang N., Zhang X., Zhou T., Tan Y., Pi J., Pi L., Cheng S., Zheng H., Cheng Y. Aptamer-conjugated PEGylated quantum dots targeting epidermal growth factor receptor variant III for fluorescence imaging of glioma. Int J Nanomedicine 2017; 12: 3899–911. doi:10.2147/IJN.S133166.; Mahmood M.A.I., Hasan M.R., Khan U.J.M., Allen P.B., Kim Y., Ellington A.D., Iqbal S.M. One-step tumor detection from dynamic morphology tracking on aptamer-grafted surfaces. Technology (Singap World Sci). 2015; 3(4): 194–200. doi:10.1142/S2339547815500089.; Peng L., Liang Y., Zhong X., Liang Z., Tian Y., Li S., Liang J., Wang R., Zhong Y., Shi Y., Zhang X. Aptamer-Conjugated Gold Nanoparticles Targeting Epidermal Growth Factor Receptor Variant III for the Treatment of Glioblastoma. Int J Nanomedicine. 2020; 15: 1363–72. doi:10.2147/IJN.S238206.; Shi S., Fu W., Lin S., Tian T., Li S., Shao X., Zhang Y., Zhang T., Tang Z., Zhou Y.; Lin Y., Cai X. Targeted and effective glioblastoma therapy via aptamer-modified tetrahedral framework nucleic acid-paclitaxel nanoconjugates that can pass the blood brain barrier. Nanomedicine Nanotechnology, Biol. Med. 2019; 21. doi:10.1016/j.nano.2019.102061.; Yoon S., Wu X., Armstrong B., Habib N., Rossi J.J. An RNA Aptamer Targeting the Receptor Tyrosine Kinase PDGFRα Induces Antitumor Effects through STAT3 and p53 in Glioblastoma. Mol Ther Nucleic Acids. 2019; 14: 131–41. doi:10.1016/j.omtn.2018.11.012.; Kim Y., Wu Q., Hamerlik P., Hitomi M., Sloan A.E., Barnett G.H., Weil R.J., Leahy P., Hjelmeland A.B., Rich J.N. Aptamer Identification of Brain Tumor–Initiating Cells. Cancer Res. 2013; 73: 4923–36. doi:10.1158/0008-5472.CAN-12-4556.; McNamara J.O., Kolonias D., Pastor F., Mittler R.S., Chen L., Giangrande P.H., Sullenger B., Gilboa E. Multivalent 4-1BB binding aptamers costimulate CD8+ T cells and inhibit tumor growth in mice. J Clin Invest. 2008; 118(1): 376–86. doi:10.1172/JCI33365.; Verhoeff J.J.C., Stalpers L.J.A., Claes A., Hovinga K.E., Musters G.D., Vandertop P.W., Richel D.J., Leenders W.P.J., van Furth W.R. Tumour control by whole brain irradiation of anti-VEGF-treated mice bearing intracerebral glioma. Eur J Cancer. 2009; 45(17): 3074–80. doi:10.1016/j.ejca.2009.08.004.; Luo Z., Yan Z., Jin K., Pang Q., Jiang T., Lu H., Liu X., Pang Z., Yu L., Jiang X. Precise glioblastoma targeting by AS1411 aptamer-functionalized poly (l-γ-glutamylglutamine)–paclitaxel nanoconjugates. J Colloid Interface Sci. 2017; 490: 783–96. doi:10.1016/j.jcis.2016.12.004.; Alibolandi M., Abnous K., Ramezani M., Hosseinkhani H., Hadizadeh F. Synthesis of AS1411-Aptamer-Conjugated CdTe Quantum Dots with High Fluorescence Strength for Probe Labeling Tumor Cells. J Fluoresc. 2014; 24(5): 1519–29. doi:10.1007/s10895-014-1437-5.; Blank M., Weinschenk T., Priemer M., Schluesener H. Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels. selective targeting of endothelial regulatory protein pigpen. J Biol Chem. 2001; 276(19): 16464–8. doi:10.1074/jbc.M100347200.; Aptekar S., Arora M., Lawrence C.L., Lea R.W., Ashton K., Dawson T., Alder J.E., Shaw L. Selective Targeting to Glioma with Nucleic Acid Aptamers. PLoS One. 2015; 10(8). doi:10.1371/journal.pone.0134957.; Oguro A., Ohtsu T., Svitkin Y.V., Sonenberg N., Nakamura Y. RNA aptamers to initiation factor 4A helicase hinder cap-dependent translation by blocking ATP hydrolysis. RNA. 2003; 9(4): 394–407. doi:10.1261/rna.2161303.; Fechter P., Cruz Da Silva E., Mercier M.C., Noulet F., EtienneSeloum N., Guenot D., Lehmann M., Vauchelles R., Martin S., LelongRebel I.; Ray A.-M., Seguin C., Dontenwill S., Choulier L. RNA Aptamers Targeting Integrin α5β1 as Probes for Cyto- and Histofluorescence in Glioblastoma. Mol Ther Nucleic Acids. 2019; 17: 63–77. doi:10.1016/j.omtn.2019.05.006.; Kichkailo A.S., Narodov A.A., Komarova, M.A., Zamay T.N., Zamay G.S., Kolovskaya O.S., Erakhtin E.E., Glazyrin Y.E., Veprintsev D.V., Moryachkov R.V., Zabluda V.N., Shchugoreva I., Artyushenko P., Mironov V.A., Morozov D.I., KhorzhevskII V.A., Gorbushin A.V., Koshmanova A.A., Nikolaeva E.D., Grinev I.P., VoronkovskII I.I., Grek D.S., Belugin K.V., Volzhentsev A.A., Badmaev O.N., Luzan N.A., Lukyanenko K.A., Peters G., Lapin I.N., Kirichenko A.K., Konarev P.V., Morozov E.V., Mironov G.G., Gargaun A., Muharemagic D., Zamay S.S., Kochkina E.V., Dymova M.A., Smolyarova T.E., Sokolov A.E., Modestov A.A., Tokarev N.A., Shepelevich N.V., Ozerskaya A.V., Chanchikova N.G., Krat A.V., Zukov R.A., Bakhtina V.I., Shnyakin P.G., Shesternea P.A., Svetlichnyi V.A., Petrova M.M., Artyukhov I.P., Tomilin F.N., Berezovski M.V. Development of DNA aptamers for visualization of glial brain tumors and detection of circulating tumor cells. Mol Ther Nucleic Acids 2023; 32: 267–88. doi:10.1016/j.omtn.2023.03.015.; Larcher L.M., Wang T., Veedu R.N. Development of novel antimirzymes for targeted inhibition of miR-21 expression in solid cancer cells. Molecules. 2019; 24(13). doi:10.3390/molecules24132489.; Fu W., You C., Ma L., Li H., Ju Y., Guo X., Shi S., Zhang T., Zhou R., Lin Y. Enhanced Efficacy of Temozolomide Loaded by a Tetrahedral Framework DNA Nanoparticle in the Therapy for Glioblastoma. ACS Appl Mater Interfaces. 2019; 11(43): 39525–33. doi:10.1021/acsami.9b13829.; Shigdar S., Qiao L., Zhou S.-F., Xiang D., Wang T., Li Y., Lim L.Y., Kong L., Li L., Duan W. RNA aptamers targeting cancer stem cell marker CD133. Cancer Lett. 2013; 330(1): 84–95. doi:10.1016/j.canlet.2012.11.0320.; Affinito A., Quintavalle C., Esposito, C.L., Roscigno G., Vilardo C., Nuzzo S., Ricci-Vitiani L., De Luca G., Pallini R., Kichkailo A.S., Lapin I.N., de Franciscis V., Condorelli G. The Discovery of RNA Aptamers that Selectively Bind Glioblastoma Stem Cells. Mol Ther Nucleic Acids. 2019; 18: 99–109. doi:10.1016/j.omtn.2019.08.015.; Wei J., Marisetty A., Schrand B., Gabrusiewicz K., Hashimoto Y., Ott M., Grami Z., Kong L.-Y., Ling X., Caruso H., Zhou S., Wang A., Fuller G.N., Huse J., Giboa E., Kang N., Huang X., Verhaak R., Li S., Heimberger A.B. Osteopontin mediates glioblastoma-associated macrophage infiltration and is a potential therapeutic target. J Clin Invest. 2018; 129(1): 137–49. doi:10.1172/JCI121266.; Bayrac A.T., Sefah K., Parekh P., Bayrac C., Gulbakan B., Oktem H.A., Tan W. In Vitro Selection of DNA Aptamers to Glioblastoma Multiforme. ACS Chem. Neurosci. 2011; 2(3): 175–81. doi:10.1021/cn100114k.; Wu Q.m Lin N., Tian T., Zhu Z., Wu L., Wang H., Wang D., Kang D., Tian R., Yang C. Evolution of Nucleic Acid Aptamers Capable of Specifically Targeting Glioma Stem Cells via Cell-SELEX. Anal Chem. 2019; 91(13): 8070–7. doi:10.1021/acs.analchem.8b05941.; Wu Q., Wang Y., Wang H., Wu L., Zhang H., Song Y., Zhu Z., Kang D., Yang C. DNA aptamers from whole-cell SELEX as new diagnostic agents against glioblastoma multiforme cells. Analyst. 2018; 143(10): 2267–75. doi:10.1039/c8an00271a.; Gao H., Qian J., Yang Z., Pang Z., Xi Z., Cao S., Wang Y., Pan S., Zhang S., Wang W., Jiang X., Zhang O. Whole-cell SELEX aptamerfunctionalised poly(ethyleneglycol)-poly(ε-caprolactone) nanoparticles for enhanced targeted glioblastoma therapy. Biomaterials. 2012; 33(26): 6264–72. doi:10.1016/j.biomaterials.2012.05.020.; Bayraç A.T., Akça O.E., Eyidoğan F.İ., Öktem H.A. Target-specific delivery of doxorubicin to human glioblastoma cell line via ssDNA aptamer. J Biosci. 2018; 43: 97–104. doi:10.1007/s12038-018-9733-x.; Kang D., Wang J., Zhang W., Song Y., Li X., Zou Y., Zhu M., Zhu Z., Chen F., Yang C.J. Selection of DNA Aptamers against Glioblastoma Cells with High Affinity and Specificity. PLoS One. 2012; 7(10). doi:10.1371/journal.pone.0042731.; Miratashi Yazd, S.A., Bakhshi N., Nazar E., Moradi Tabriz H., Gorji R. Epidermal growth factor receptor (EGFR) expression in high grade glioma and relationship with histopathologic findings, a cross sectional study. Int J Surg Open. 2022; 46. doi:10.1016/j.ijso.2022.100527.; Hatanpaa K.J., Burma S., Zhao D. Habib A.A. Epidermal Growth Factor Receptor in Glioma: Signal Transduction, Neuropathology, Imaging, and Radioresistance. Neoplasia. 2010; 12(9): 675–84. doi:10.1593/neo.10688.; Wan Y., Liu Y., Allen P.B., Asghar W., Mahmood M.A.I., Tan J., Duhon H., Kim Y., Ellington A.D., Iqbal S.M. Capture, isolation and release of cancer cells with aptamer-functionalized glass bead array. Lab Chip. 2012; 12(22): 4693–701. doi:10.1039/c2lc21251j.; Wan Y., Mahmood M.A.I., Li N., Allen P.B., Kim Y., Bachoo R., Ellington A.D., Iqbal S.M. Nanotextured substrates with immobilized aptamers for cancer cell isolation and cytology. Cancer. 2012; 118(4): 1145–54. doi:10.1002/cncr.26349.; Wan Y., Tamuly D., Allen P.B., Kim Y.T., Bachoo R., Ellington A.D., Iqbal S.M. Proliferation and migration of tumor cells in tapered channels. Biomed Microdevices. 2013; 15(4): 635–43. doi:10.1007/s10544-0129721-0.; Wang L., Zheng, Q., Zyang Q., Xu H., Tong J., Zhu C., Wan Y. Detection of single tumor cell resistance with aptamer biochip. Oncol Lett. 2012; 4(5): 935–40. doi:10.3892/ol.2012.890.; Wan Y., Kim Y., Li N., Cho S.K., Bachoo R., Ellington A.D., Iqbal S.M. Surface-Immobilized Aptamers for Cancer Cell Isolation and Microscopic Cytology. Cancer Res. 2010; 70(22): 9371–80. doi:10.1158/0008-5472.CAN-10-0568.; Nakada M., Hayashi Y., Hamada J.I. Role of Eph/ephrin tyrosine kinase in malignant glioma. Neuro Oncol. 2011; 13(11): 1163–70. doi:10.1093/neuonc/nor102.; Корчагина А.А., Шеин С.А., Гурина О.И., Чехонин В.П. Роль рецепторов VEGFR в неопластическом ангиогенезе и перспективы терапии опухолей мозга. Вестник РАМН. 2013; 68(11): 104–14. doi:10.15690/vramn.v68i11.851.; Yalcin F., Dzaye O., Xia S. Tenascin-C Function in Glioma: Immunomodulation and Beyond. Adv Exp Med Biol. 2020; 1272: 149–72. doi:10.1007/978-3-030-48457-6_9.; Zhang Q., Xu B., Hu F., Chen X., Liu X., Zhang Q., Zuo Y. Tenascin C Promotes Glioma Cell Malignant Behavior and Inhibits Chemosensitivity to Paclitaxel via Activation of the PI3K/AKT Signaling Pathway. J Mol Neurosci. 2021; 71(8): 1636–47. doi:10.1007/s12031-021-01832-8.; Angel I., Pilo Kerman,O., Rousso-Noori L., Friedmann-Morvinski D. Tenascin C promotes cancer cell plasticity in mesenchymal glioblastoma. Oncogene. 2020; 39(46): 6990–7004. doi:10.1038/s41388-02001506-6.; Chen H., Zheng X., Di B., Wang D., Zhang Y., Xia H., Mao Q. Aptamer modification improves the adenoviral transduction of malignant glioma cells. J Biotechnol. 2013; 168(4): 362–6. doi:10.1016/j.jbiotec.2013.10.024.; Ma H., Gao Z., Yu P., Shen S., Liu Y., Xu B. A dual functional fluorescent probe for glioma imaging mediated by Blood-brain barrier penetration and glioma cell targeting. Biochem Biophys Res Commun. 2014; 449(1): 44–8. doi:10.1016/j.bbrc.2014.04.148.; Чулкова С.В., Шолохова Е.Н., Поддубная И.В., Стилиди И.С., Тупицын Н.Н. Анализ взаимосвязи трансферринового рецептора 1 (TfR1) с клинико-морфологическими и иммунофенотипическими характеристиками рака молочной железы. Современная онкология. 2022; 24(3): 355–60. doi:10.26442/18151434 .2022.3.201821.; Ahmed S.I., Javed G., Laghari A.A., Bareeqa S.B., Farrukh S., Zahid S., Samar S.S., Aziz K. CD133 Expression in Glioblastoma Multiforme: A Literature Review. Cureus. 2018; 10(10). doi:10.7759/cureus.3439.; Gasser M., Waaga-Gasser A.M. Therapeutic Antibodies in Cancer Therapy. Adv Exp Med Biol. 2016. doi:10.1007/978-3-319-32805-8_6.; https://www.siboncoj.ru/jour/article/view/2765
-
2Academic Journal
Authors: V. V. Smirnov, O. A. Petukhova, A. V. Filatov, D. A. Kudlay, M. R. Khaitov, В. В. Смирнов, О. А. Петухова, А. В. Филатов, Д. А. Кудлай, М. Р. Хаитов
Contributors: This study was carried out with no external funding., Исследование проводилось без спонсорской поддержки.
Source: Biological Products. Prevention, Diagnosis, Treatment; Том 23, № 2 (2023): От традиционных биологических к высокотехнологичным лекарственным препаратам: вопросы разработки и применения; 173-180 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 23, № 2 (2023): От традиционных биологических к высокотехнологичным лекарственным препаратам: вопросы разработки и применения; 173-180 ; 2619-1156 ; 2221-996X
Subject Terms: биотехнология, mAbs, pharmacokinetic parameters, biosimilar medicinal products, molecular target, biotechnology, МкАт, фармакокинетические параметры, биоподобный препарат, молекулярная мишень
File Description: application/pdf
Relation: https://www.biopreparations.ru/jour/article/view/434/671; https://www.biopreparations.ru/jour/article/view/434/673; https://www.biopreparations.ru/jour/article/view/434/680; https://www.biopreparations.ru/jour/article/view/434/697; https://www.biopreparations.ru/jour/article/downloadSuppFile/434/463; https://www.biopreparations.ru/jour/article/downloadSuppFile/434/464; https://www.biopreparations.ru/jour/article/downloadSuppFile/434/682; Kenakin TP. A Pharmacology Primer: Theory, Applications, and Methods. 2nd ed. Vol. XVIII. Burlington, MA; London: Academic Press; 2006.; Leader B, Baca QJ, Golan DE. Protein therapeutics: a summary and pharmacological classifi cation. Nat Rev Drug Discov. 2008;7(1):21–39. https://doi.org/10.1038/nrd2399; Ryman JT, Meibohm B. Pharmacokinetics of monoclonal antibodies. CPT Pharmacometrics Syst Pharmacol. 2017;6(9):576–88. https://doi.org/10.1002/psp4.12224; Breedveld FC. Therapeutic monoclonal antibodies. Lancet. 2000;355(9205):735–40. https://doi.org/10.1016/s0140-6736(00)01034-5; Weiner LM, Surana R, Wang S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol. 2010;10(5):317–27. https://doi.org/10.1038/nri2744; Geng X, Kong X, Hu H, Chen J, Yang F, Liang H, et al. Research and development of therapeutic mAbs: an analysis based on pipeline projects. Hum Vaccin Immunother. 2015;11(12):2769–76. https://doi.org/10.1080/21645515.2015.1074362; Kinder M, Greenplate AR, Strohl WR, Jordan RE, Brezski RJ. An Fc engineering approach that modulates antibody-dependent cytokine release without altering cell-killing functions. MAbs. 2015;7(3):494–504. https://doi.org/10.1080/19420862.2015.1022692; An Z, Forrest G, Moore R, Cukan M, Haytko P, Huang L, et al. IgG2m4, an engineered antibody isotype with reduced Fc function. MAbs. 2009;1(6):572–9. https://doi.org/10.4161/mabs.1.6.10185; Strohl WR. Current progress in innovative engineered antibodies. Protein Cell. 2018;9(1):86–120. https://doi.org/10.1007/s13238-017-0457-8; Castelli MS, McGonigle P, Hornby PJ. The pharmacology and therapeutic applications of monoclonal antibodies. Pharmacol Res Perspect. 2019;7(6):e00535. https://doi.org/10.1002/prp2.535; Pardridge WM. Blood-brain barrier drug delivery of IgG fusion proteins with a transferrin receptor monoclonal antibody. Expert Opin Drug Deliv. 2015;12(2):207–22. https://doi.org/10.1517/17425247.2014.952627; Cooper PR, Ciambrone GJ, Kliwinski CM, Maze E, Johnson L, Li Q, et al. Effl ux of monoclonal antibodies from rat brain by neonatal Fc receptor, FcRn. Brain Res. 2013;1534:13–21. https://doi.org/10.1016/j.brainres.2013.08.035; Karaoglu Hanzatian D, Schwartz A, Gizatullin F, Erickson J, Deng K, Villanueva R, et al. Brain uptake of multivalent and multi-specifi c DVD-Ig proteins after systemic administration. MAbs. 2018;10(5):765–77. https://doi.org/10.1080%2F19420862.2018.1465159; Wang W, Soriano B, Chen Q. Glycan profi ling of proteins using lectin binding by surface plasmon resonance. Anal Biochem. 2017;538:53–63. https://doi.org/10.1016/j.ab.2017.09.014; Hinke SA, Cieniewicz AM, Kirchner T, D’Aquino K, Nanjunda R, Aligo J, et al. Unique pharmacology of a novel allosteric agonist/sensitizer insulin receptor monoclonal antibody. Mol Metab. 2018;10:87–99. https://doi.org/10.1016/j.molmet.2018.01.014; Kang JC, Poovassery JS, Bansal P, You S, Manjarres IM, Ober RJ, Ward ES. Engineering multivalent antibodies to target heregulin-induced HER3 signaling in breast cancer cells. MAbs. 2014;6(2):340–53. https://doi.org/10.4161/mabs.27658; Ovacik M, Lin K. Tutorial on monoclonal antibody pharmacokinetics and its considerations in early development. Clin Transl Sci. 2018;11(6):540–52. https://doi.org/10.1111/cts.12567; Köhler G, Milstein C. Derivation of specifi c antibody-producing tissue culture and tumor lines by cell fusion. Eur J Immunol. 1976;6(7):511–9. https://doi.org/10.1002/eji.1830060713; Levene AP, Singh G, Palmieri C. Therapeutic monoclonal antibodies in oncology. J R Soc Med. 2005;98(4):146–52. https://doi.org/10.1177/014107680509800403; Yamashita M, Katakura Y, Shirahata S. Recent advances in the generation of human monoclonal antibody. Cytotechnology. 2007;55(2–3):55–60. https://doi.org/10.1007/s10616-007-9072-5; Sedykh SE, Prinz VV, Buneva VN, Nevinsky GA. Bispecific antibodies: design, therapy, perspectives. Drug Des Devel Ther. 2018;12:195–208. https://doi.org/10.2147/DDDT.S151282; Sau S, Alsaab HO, Kashaw SK, Tatiparti K, Iyer AK. Advances in antibody–drug conjugates: a new era of targeted cancer therapy. Drug Discov Today. 2017;22(10):1547–56. https://doi.org/10.1016/j.drudis.2017.05.011; Keizer RJ, Huitema AD, Schellens JH, Beijnen JH. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010;49(8):493–507. https://doi.org/10.2165/11531280-000000000-00000; Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol. 2007;7(9):715–25. https://doi.org/10.1038/nri2155; Suzuki T, Ishii-Watabe A, Tada M, Kobayashi T, Kanayusu-Toyoda T, Kawanishi T, Yamaguchi T. Importance of neonatal FcR in regulating the serum half-life of therapeutic proteins containing the Fc domain of human IgG1: a comparative study of the affi nity of monoclonal antibodies and Fc-fusion proteins to human neonatal FcR. J Immunol. 2010;184(4):1968–76. https://doi.org/10.4049/jimmunol.0903296; Dirks NL, Meibohm B. Population pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010;49(10):633–59. https://doi.org/10.2165/11535960-000000000-00000; Kelly RL, Yu Y, Sun T, Caffry I, Lynaugh H, Brown M, et al. Target-independent variable region mediated effects on antibody clearance can be FcRn independent. MAbs. 2016;8(7):1269–75. https://doi.org/10.1080/19420862.2016.1208330; Datta-Mannan A, Lu J, Witcher DR, Leung D, Tang Y, Wroblewski VJ. The interplay of non-specifi c binding, target-mediated clearance and FcRn interactions on the pharmacokinetics of humanized antibodies. MAbs. 2015;7(6):1084–93. https://doi.org/10.1080/19420862.2015.1075109; Chiu HH, Tsai IL, Lu YS, Lin CH, Kuo CH. Development of an LC-MS/MS method with protein G purifi cation strategy for quantifying bevacizumab in human plasma. Anal Bioanal Chem. 2017;409(28):6583–93. https://doi.org/10.1007/s00216-017-0607-0; Irie K, Okada A, Yamasaki Y, Kokan C, Hata A, Kaji R, et al. An LC-MS/MS method for absolute quantification of nivolumab in human plasma: application to clinical therapeutic drug monitoring. Ther Drug Monit. 2018;40(6):716–24. https://doi.org/10.1097/ftd.0000000000000558; Chiu HH, Liao HW, Shao YY, Lu YS, Lin CH, Tsai IL, et al. Development of a general method for quantifying IgG-based therapeutic monoclonal antibodies in human plasma using protein G purifi cation coupled with a two internal standard calibration strategy using LC-MS/MS. Anal Chim Acta. 2018;1019:93–102. https://doi.org/10.1016/j.aca.2018.02.040; Willeman T, Jourdil JF, Gautier-Veyret E, Bonaz B, Stanke-Labesque F. A multiplex liquid chromatography tandem mass spectrometry method for the quantifi cation of seven therapeutic monoclonal antibodies: application for adalimumab therapeutic drug monitoring in patients with Crohn’s disease. Anal Chim Acta. 2019;1067:63–70. https://doi.org/10.1016/j.aca.2019.03.033; Iwamoto N, Takanashi M, Shimada T, Sasaki J, Hamada A. Comparison of bevacizumab quantifi cation results in plasma of non-small cell lung cancer patients using bioanalytical techniques between LC-MS/MS, ELISA, and microfl uidic-based immunoassay. AAPS J. 2019;21(6):101. https://doi.org/10.1208/s12248-019-0369-z; https://www.biopreparations.ru/jour/article/view/434
-
3Academic Journal
Authors: Krasil'nikova E.A., Trunyakova A.S., Vagaiskaya A.S., Svetoch T.E., Shaikhutdinova R.Z., Dentovskaya S.V.
Contributors: Rospotrebnadzor, Работа выполнена в рамках отраслевой научно-исследовательской программы Роспотребнадзора на 2016—2020 гг. ««Проблемно-ориентированные научные исследования в области эпидемиологического надзора за инфекционными и паразитарными болезнями».
Source: Russian Journal of Infection and Immunity; Vol 11, No 2 (2021); 265-282 ; Инфекция и иммунитет; Vol 11, No 2 (2021); 265-282 ; 2313-7398 ; 2220-7619
Subject Terms: plague, Yersinia pestis, pathogenicity factor, molecular target, vaccine prevention, чума, фактор патогенности, молекулярная мишень, вакцинопрофилактика
File Description: application/pdf
Relation: https://iimmun.ru/iimm/article/view/1254/1198; https://iimmun.ru/iimm/article/downloadSuppFile/1254/3879; https://iimmun.ru/iimm/article/downloadSuppFile/1254/3880; https://iimmun.ru/iimm/article/downloadSuppFile/1254/3881; https://iimmun.ru/iimm/article/downloadSuppFile/1254/3882; https://iimmun.ru/iimm/article/downloadSuppFile/1254/3885; https://iimmun.ru/iimm/article/view/1254
-
4Academic Journal
Authors: Архипов, Александр, Мудрикова, Ольга, Масунов, Николай
Subject Terms: CРАВНИТЕЛЬНЫЙ АНАЛИЗ, ГЕНОМ, СТАБИЛИЗАТОРЫ, МОЛЕКУЛЯРНАЯ МИШЕНЬ
File Description: text/html
-
5Academic Journal
Source: Техника и технология пищевых производств.
File Description: text/html