Εμφανίζονται 1 - 20 Αποτελέσματα από 24 για την αναζήτηση '"моделирование методом Монте-Карло"', χρόνος αναζήτησης: 0,83δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
    Academic Journal

    Πηγή: Devices and Methods of Measurements; Том 13, № 1 (2022); 32-39 ; Приборы и методы измерений; Том 13, № 1 (2022); 32-39 ; 2414-0473 ; 2220-9506 ; 10.21122/2220-9506-2022-13-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://pimi.bntu.by/jour/article/view/747/613; Agbalagba E.O., Avwiri G.O., Chad-Umoreh Y.E. γ-Spectroscopy measurement of natural radioactivity and assessment of radiation hazard indices in soil samples from oil fields environment of Delta State, Nigeria. Journal of environmental radioactivity, 2012, vol. 109, pp. 64–70. DOI:10.1016/j.jenvrad.2011.10.012; Analytical Methodology for the Determination of Radium Isotopes in Environmental Samples. IAEA Analytical Quality in Nuclear Applications Series, 2010, no. 19 VIENNA.; Seokki Cha, Siu Kim, Geehyun Kim. Development of fast measurements of concentration of NORM U-238 by HPGe. Journal of Instrumentation, 2017, vol. 12, P02013. DOI:10.1088/1748-0221/12/02/P02013; Passive Nondestructive Assay of Nuclear Materials, Doug Reilly, 7 part, Hastings A. Smith, Jr. The Measurement of Uranium Enrichment, 1991.; Briestmeister J.F. Ed. MCNPA general MonteCarlo N-particle transport code, Version 4A. Report LA12625-M, Los Alamos. NM, Los Alamos National Laboratory, 1994.; Wiener N. Extrapolation, interpolation and smoothing of stationary time series with engineering applications, J. Wiley, 1950.; BardinV. Sposob dekonvolyucii spektrometricheskoj informacii i obnaruzheniya spektral'nyh pikov [WAY Deconvolution spectrometer information and detection of spectral peaks]. Nauchnoe priborostroenie [Scientific instrumentation], 2017, vol. 27, no. 2, pp. 75–82 (in Russian). DOI:10.18358/np-27-2-i7582; Wolfram Research, Inc., Mathematica, Version 12.1, Champaign, IL, 2020.; https://pimi.bntu.by/jour/article/view/747

  5. 5
    Academic Journal

    Πηγή: Системи обробки інформації. — 2016. — № 3(140). 82-87 ; Системы обработки информации. — 2016. — № 3(140). 82-87 ; Information Processing Systems. — 2016. — № 3(140). 82-87 ; 1681-7710

    Περιγραφή αρχείου: application/pdf

  6. 6
    Academic Journal

    Πηγή: Системи обробки інформації. — 2016. — № 2(139). 35-39 ; Системы обработки информации. — 2016. — № 2(139). 35-39 ; Information Processing Systems. — 2016. — № 2(139). 35-39 ; 1681-7710

    Περιγραφή αρχείου: application/pdf

  7. 7
    Academic Journal

    Πηγή: Devices and Methods of Measurements; Том 7, № 2 (2016); 161-168 ; Приборы и методы измерений; Том 7, № 2 (2016); 161-168 ; 2414-0473 ; 2220-9506 ; 10.21122/2220-9506-2016-7-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://pimi.bntu.by/jour/article/view/253/254; O. Kononchuk and B. -Y. Nguyen Silicon-on-insulator (SOI) Technology. Manufacture and Applications / eds., Woodhead Publishing, Sawston, Cambridge, UK, 2014, 474 p.; Sakurai T., Matsuzawa A., Douseki T. Fully-Depleted SOI CMOS Circuits and Technology for UltralowPower Applications, Springer, Dordrecht, The Netherlands, 2006, 411 p.; Celler G.K., Cristoloveanu S. Frontiers of siliconon-insulator. Journal of Applied Physics, 2003, vol. 93, no. 9, pp. 4955–4978.; Xin’an C., Qing’an H. A novel SOI MOSFET electrostatic field sensor. Journal of Semiconductors, 2010, vol. 31, no. 4, pp. 045003-1–045003-4.; Du W., Inokawa H., Satoh H., Ono A. SOI metaloxide-semiconductor field-effect transistor photon detector based on single-hole counting. Optics Letters, 2011, vol. 36, no 15, pp. 2800–2802.; Du W., Inokawa H., Satoh H., Ono A. Singlephoton detection by a simple silicon-on-insulator metaloxide-semiconductor field-effect Transistor. Japanese Journal of Applied Physics, 2012, vol. 51, pp. 06FE011–06FE01-4.; Sampedro C., Gamiz F., Godoy A., JimenezMolinos F. Quantum Ensemble Monte Carlo simulation of silicon-based nanodevices. Journal of Computational Electronics, 2007, no. 6, pp. 41–44.; Rengel R., Martin M.J., Gonzalez T., Mateos J., Pardo D., Dambrine G., Raskin J.-P., Danneville F. A microscopic interpretation of the RF noise performance of fabricated FDSOI MOSFETs. IEEE Transactions on Electron Devices, 2006, vol. 53, no. 3, pp. 523–532.; Zhevnyak O., Borzdov V., Borzdov A., Pozdnyakov D., Komarov F. Monte Carlo study of influence of channel length and depth on electron transport in SOI MOSFETs. Proceedings of SPIE, 2008, vol. 7025, pp. 70251L-1–70251L-8.; Gamiz F., Sampedro C., Donetti L., Godoy A. Monte-Carlo simulation of ultra-thin film siliconon-insulator MOSFETs. International Journal of High Speed Electronics and Systems, 2013, vol. 22, no. 1, pp. 1350001-1–1350001-32.; Fischetti M.V., Laux S.E. Monte Carlo analysis of electron transport in small semiconductor devices including band structure and space-charge effects. Physical Review B, 1988, vol. 38, no 14, pp. 9721–9745.; Duncan A., Ravaioli U., Jacumeit J. Fullband Monte Carlo investigation of hot carrier trends in the scaling of metal-oxide-semiconductor field-effect transistors. IEEE Transactions on Electron Devices, 1998, vol. 45, no. 4, pp. 867–876.; Buffler F.M., Schenk A., Fichtner W. Efficient Monte Carlo device modeling. IEEE Transactions on Electron Devices, 2000, vol. 47, no. 10, pp. 1891–1897.; Donetti L., Gamiz F., Biel B., Sampedro C. Twoband k·p model for Si-(110) electron devices. Journal of Applied Physics, 2013, vol. 114, pp. 073706-1–073706-7.; Rengel R., Pardo D., Martin M.J. A physically based investigation of the small-signal behaviour of bulk and fully-depleted silicon-on-insulator MOSFETs for microwave applications. Semiconductor Science and Technology, 2004, vol. 19, pp. 634–643.; Borzdov A.V., Borzdov V.M., V’yurkov V.V. Monte Carlo simulation of hot electron transport in deep submicron SOI MOSFET. Proceedings of SPIE, 2014, vol. 9440, pp. 944013-1–944013-7.; Hockney R.W., Eastwood J.W. Computer simulations using particles, McGraw-Hill, New York, 1981, 640 p.; Jacoboni C., Lugli P. The Monte Carlo method for semiconductor device simulation, Springer, Wien– New York, 1989, 357 p.; Gonzalez T., Pardo D. Physical models of ohmic contact for Monte Carlo device simulation. Solid-State Electronics, 1996, vol. 39, no. 4, pp. 555–562.; Jacoboni C., Reggiani L. The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Reviews of Modern Physics, 1983, vol. 55, no. 3, pp. 645–705.; Rodriguez-Bolivar S., Gomez-Campos F.M., Carceller J.E. Simple analytical valence band structure including warping and non-parabolicity to investigate hole transport in Si and Ge. Semiconductor Science and Technology, 2005, no. 20, pp. 16–22.; Rodriguez-Bolivar S., Gomez-Campos F.M., Gamiz F., Carceller J.E. Implications of nonparabolicity, warping, and inelastic phonon scattering on hole transport in pure Si and Ge within the effective mass framework. Journal of Applied Physics, 2005, vol. 97, pp. 013702- 1–013702-10.; Gomez-Campos F.M., Rodriguez-Bolivar S., Carceller J.E. An efficient Monte Carlo procedure for studying hole transport in doped semiconductors. Journal of Computational Electronics, 2004, no. 3, pp. 329–332.; Keldysh L.V. Concerning the theory of impact ionization in semiconductors. Soviet Physics JETP, 1965, vol. 21, no. 6, pp. 1135–1144.; Kane E.O. Electron scattering by pair production in silicon. Physical Review, 1967, vol. 159, no. 3, pp. 624–631.; Fischetti M.V., Laux S.E., Crabbe E. Understanding hot-electron transport in semiconductor devices. Journal of Applied Physics, 1995, vol. 78, no. 2, pp. 1058–1087.; Ridley B.K. Soft-threshold lucky drift theory of impact ionization in semiconductors. Semiconductor Science and Technology, 1987, no. 22, pp. 116–122.; Speransky D., Borzdov A., Borzdov V. Impact ionization process in deep submicron MOSFET. International Journal of Microelectronics and Computer Science, 2012, vol. 3, no.1, pp. 21–24.; Borzdov V.M., Borzdov A.V., Speransky D.S., V’yurkov V.V., Orlikovsky A.A. Evaluation of the effective threshold energy of interband impact ionization in a deep-submicron silicon n-channel MOS transistor. Russian Microelectronics, 2014, vol. 43, no. 3, pp 189–193.; Sano N., Aoki T., Tomizawa M., Yoshii A. Electron transport and impact ionization in Si. Physical Review B, 1990, vol. 41, no. 17, pp. 12122–12128.; Sano N., Yoshii A. Impact ionization rate near thresholds in Si. Journal of Applied Physics, 1994, vol. 75, no. 10, pp. 5102–5105.; Kamakura Y., Mizuno H., Yamaji M., Morifuji M., Taniguchi K., Hamaguchi C., Kunikiyo T., Takenaka M. Impact ionization model for full band Monte Carlo simulation. Journal of Applied Physics, 1994, vol. 75, no. 7, pp. 3500–3507.; Kunikiyo T., Takenaka M., Morifuji M., Taniguchi K., Hamaguchi C. A model of impact ionization due to the primary hole in silicon for a full band Monte Carlo simulation. Journal of Applied Physics, 1996, vol. 79, no. 10, pp. 7718–7725.; https://pimi.bntu.by/jour/article/view/253

  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
    Academic Journal
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20