-
1
-
2Academic Journal
Authors: Мустафин, Р. Н., Хуснутдинова, Э. К.
Subject Terms: медицина, медицинская генетика, вирусная мимикрия, длинные некодирующие РНК, злокачественные новообразования, канцерогенез, микроРНК, мобильные генетические элементы, таргетная терапия, транспозоны
Availability: http://dspace.bsu.edu.ru/handle/123456789/62805
-
3Academic Journal
Authors: Ageevets V.A., Ageevets I.V., Sidorenko S.V.
Contributors: 0, РНФ
Source: Russian Journal of Infection and Immunity; Vol 12, No 3 (2022); 450-460 ; Инфекция и иммунитет; Vol 12, No 3 (2022); 450-460 ; 2313-7398 ; 2220-7619
Subject Terms: Klebsiella sp., hypervirulence, multi-drug resistance, hybrid pathotype, mobile genetic elements, epidemiology, гипервирулентность, множественная резистентность, гибридный патотип, мобильные генетические элементы, эпидемиология
File Description: application/pdf
Relation: https://iimmun.ru/iimm/article/view/1825/1453; https://iimmun.ru/iimm/article/view/1825/1510; https://iimmun.ru/iimm/article/downloadSuppFile/1825/7300; https://iimmun.ru/iimm/article/downloadSuppFile/1825/7301; https://iimmun.ru/iimm/article/downloadSuppFile/1825/7302; https://iimmun.ru/iimm/article/downloadSuppFile/1825/7339; https://iimmun.ru/iimm/article/downloadSuppFile/1825/7341; https://iimmun.ru/iimm/article/downloadSuppFile/1825/7342; https://iimmun.ru/iimm/article/view/1825
-
4Academic Journal
Source: Естественные и технические науки.
Subject Terms: микросателлиты, мобильные генетические элементы, mobile genetic elements, microsatellites, sand lizard, прыткая ящерица
-
5
-
6Academic Journal
Source: Vavilov Journal of Genetics and Breeding; Том 21, № 6 (2017); 742-749 ; Вавиловский журнал генетики и селекции; Том 21, № 6 (2017); 742-749 ; 2500-3259
Subject Terms: процессинг, introns, mobile genetic elements, noncoding RNA, RNA interference, transposons, processing, интроны, мобильные генетические элементы, некодирующие РНК, система РНК-интерференции, транспозоны
File Description: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/1196/985; Baranov V.S., Kuznetsova T.V. Tsitogenetika embrionalnogo razvitiya cheloveka [Cytogenetics of Human Embryonic Development]. St.-Petersburg, 2007. (in Russian); Belancio V.P., Roy-Engel A.M., Deininger P.L. All y’all need to know ‘bout retroelements in cancer. Semin. Cancer. Biol. 2010;20(4): 200-210.; Biryukova I., Ye T. Endogenous siRNA and piRNAs derived from transposable elements and genes in the malaria vector mosquito Anopheles gambiae. BMC Genomics. 2015;16:278.; Borchert G.M., Holton N.W., Williams J.D., Hernan W.L., Bishop I.P., Dembosky J.A., Elste J.E., Gregoire N.S., Kim J.A., Koehler W.W., Lengerich J.C., Medema A.A., Nguyen M.A., Ower G.D., Rarick M.A., Strong B.N., Tardi N.J., Tasker N.M., Wozniak D.J., Gat-to C., Larson E.D. Comprehensive analysis of microRNA genomic loci identifies pervasive repetitive-element origins. Mob. Genet. Elements. 2011;1(1):8-17.; Bush S.J., Chen L., Tovar-Corona J.M., Urrutia A.O. Alternative splicing and the evolution of phenotypic novelty. Philos. Trans. R. Soc. Lond. B. Bilol. Sci. 2017;372(1713):pii:20150474.; Christie M., Croft L.J., Carroll B.J. Intron splicing suppresses RNA silencing in Arabidopsis. Plant. J. 2011;68(1):159-167.; Coufal N.G., Garcia-Perez J.L., Peng G.E., Yeo G.W., Mu Y., Lovci M.T., Morell M., O’Shea K.S., Moran J.V., Gage F.H. L1 retrotransposition in human neural progenitor cells. Nature. 2009; 460(7259):1127-1231.; de Koning A.P., Gu W., Castoe T.A., Batzer M.A., Pollock D.D. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet. 2011;7(12):e1002384.; Dimmeler S., Nicotera P. MicroRNAs in age-related diseases. EMBO Mol. Med. 2013;5(2):180-190.; Du Z., Yang C., Rothschild M.F., Ross J. Novel microRNA families expanded in the human genome. BMC Genomics. 2013;14:98-105.; Duan C.G., Wang X., Xie S., Pan L., Miki D., Tang K., Hsu C.C., Lei M., Zhong Y., Hou Y.J., Wang Z., Zhang Z., Mangrauthia S.K., Xu H., Zhang H., Dilkes B., Tao W.A., Zhu J.K. A pair of transpo-son-derived proteins function in a histone acetyltransferase complex for active DNA demethylation. Cell Res. 2017;27(2):226-240.; Dumesic P.A., Madhani H.D. The spliceosome as a transposon sensor. RNA Biol. 2013;10(11):1653-1660.; Dupressoir A., Lavialle C., Heidmann T. From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentation. Placenta. 2012;33(9):663-671.; Elliott T.A., Gregory T.R. Do larger genomes contain more diverse transposable elements? BMC Evol. Biol. 2015;15(1):69-81.; Faulkner G.J. Retrotransposons: mobile and mutagenic from conception to death. FEBS Lett. 2011;585(11):1589-1594.; Feschotte C. The contribution of transposable elements to the evolution of regulatory networks. Nat. Rev. Genet. 2008;9(5):397-405.; Finatto T., de Oliveira A., Chaparro C., da Maia L.C., Farias D.R., Woyann L.G., Mistura C.C., Soares-Bresolin A.P., Llauro C., Panaud O., Picault N. Abiotic stress and genome dynamics: specific genes and transposable elements response to iron excess in rice. Rice. 2015; 8(13). DOI 10.1186/s12284-015-0045-6.; Garcia-Perez J.L., Marchetto M.C., Muotri A.R., Coufal N.G., Gage F.H., O’Shea K.S., Moran J.V. LINE-1 retrotransposition in human embryonic stem cells. Hum. Mol. Genet. 2007;16(13):1569-1577.; Gim J., Ha H., Ahn K., Kim D.S., Kim H.S. Genome-wide identification and classification of microRNAs derived from repetitive elements. Genomics Inform. 2014;12(4):261-267.; Guo W., Zhang M.Q., Wu H. Mammalian non-CG methylations are conserved and cell-type specific and may have been involved in the evolution of transposon elements. Sci. Rep. 2016;6:32207-32219.; Hadjiargyrou M., Delihas N. The Intertwining of transposable elements and non-coding RNAs. Int. J. Mol. Sci. 2013;14(7):13307-13328.; Huff J.T., Zilberman D., Roy S.W. Mechanism for DNA transposons to generate introns on genomic scales. Nature. 2016;538(7626):533-536.; Johnson R., Guigo R. The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs. RNA. 2014;20(7): 959-976.; Kiselev O.I. Endogenous retroviruses: structure and functions in the human genome. Voprosy virusologii = Problems of Virology. 2013; 1:102-115. (in Russian); Kitkumthorn N., Mutirangura A. Long interspersed nuclear element-1 hypomethylation in cancer: biology and clinical applications. Clin. Epigenet. 2011;2:315-330.; Klawitter S., Fuchs N.V., Upton K.R., Munoz-Lopez M., Shukla R., Wang J., Garcia-Canadas M., Lopez-Ruiz C., Gerhardt D.J., Sebe A., Grabundaija I., Merkert S., Gerdes P., Pulgarin J.A., Bock A., Held U., Witthuhn A., Haase A., Sarkadi B., Lower J., Wolve tang E.J., Martin U., Ivics Z., Izsvak Z., Garcia-Perez J.L., Faulkner G.J., Schumann G.G. Reprogramming triggers endogenous L1 and Alu retrotransposition in human induced pluripotent stem cells. Nat. Commun. 2016;7:10286-10301.; Kubiak M.R., Makalowska I. Protein-coding genes’ retrocopies and their functions. Viruses. 2017;9(4):pii:E80.; Lee K.H., Chiu S., Lee Y.K., Greenhalgh D.G., Cho K. Age-dependent and tissue-specific structural changes in the C57BL/6J mouse genome. Exp. Mol. Pathol. 2012;93(1):167-172.; Lee K.H., Yee L., Lim D., Greenhalgh D., Cho K. Temporal and spatial rearrangements of a repetitive element array on C57BL/6J mouse genome. Exp. Mol. Pathol. 2015;98(3):439-445.; Lee S., Stevens S.W. Spliceosomal intronogenesis. Proc. Natl. Acad.; Sci. USA. 2016;113(23):6514-6519.; Lei H., Vorechovsky I. Identification of splicing silencers and enhancers in sense Alus: a role for pseudoacceptors in splice site repression. Mol. Cell. Biol. 2005;25(16):6912-6920.; Lescale C., Deriano L. The RAG recombinase: Beyond breaking. Mech. Ageing Dev. 2016;16:30263-30269. DOI 10.1016/j.mad.2016.11.003. Liew Y.J., Aranda M., Carr A., Baumgarten S., Zoccola D., Tambutte S., Allemand D., Micklem G., Voolstra C.R. Identification of microRNA in the coral Styphora pistillata. PLoS One. 2014;9(3):e91101.; Llave C., Kasschau K.D., Rector M.A., Carrington J.C. Endogenous and silencing-associated small RNAs in plants. 2002;14(7):1605-1619.; Lu D., Davis M.P., Abreu-Goodger C., Wang W., Campos L.S., Siede J., Vigorito E., Skarnes W.C., Dunham I., Enright A.J., Liu P. MiR-25 regulates Wwp2 and Fbxw7 and promotes reprogramming of mouse fibroblast cells to iPSCs. PLoS One. 2012;7(8):e40938.; Luco R.F., Allo M., Schor I.E., Kornblihtt A.R., Misteli T. Epigenetics in alternative pre-mRNA splicing. Cell. 2011;144(1):16-26.; Macia A., Munoz-Lopez M., Cortes J.L., Hastings R.K., Morell S., Lucena-Aguilar G., Marchal J.A., Badge R.M., Garcia-Perez J.L. Epigenetic control of retrotransposons expression in human embryonic stem cells. Mol. Cell. Biol. 2011;31(2):300-316.; Marchetto M.C., Narvaiza I., Denli A.M., Benner C., Lazzarini T.A., Nathanson J.L., Paguola A.C., Desai K.N., Herai R.H., Weitz-man M.D., Yeo G.W., Muotri A.R., Gage F.H. Differential L1 regulation in pluripotent stem cells of humans and apes. Nature. 2013; 503(7477):525-529.; Miousse I.R., Chalbot M.G., Lumen A., Ferguson A., Kavouras I.G., Koturbash I. Response of transposable elements to environmental stressors. Mutat. Res. Rev. Mutat. Res. 2015;765:19-39.; Moran Y., Praher D., Fredman D., Technau U. The evolution of mi-croRNA pathway protein components in Cnidaria. Mol. Biol. Evol. 2013;30(12):2541-2552.; Morita S., Horii T., Kimura M., Ochiya T., Tajima S., Hatada I. miR-29 represses the activities of DNA methyltransferases and DNA demethylases. Int. J. Mol. Sci. 2013;14:14647-14658.; Muotri A.R., Chu V.T., Marchetto M.C., Deng W., Moran J.V., Gage F.H. Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature. 2005;435(7044):903-910.; Ong S., Lee W.H., Kodo K., Wu J.C. MicroRNA-mediated regulation of differentiation and trans-differentiation in stem cells. Adv. Drug Deliv. Rev. 2015;88:3-15.; Ostertag E.M., De Berardinis R.J., Goodier J.L., Zhang Y., Yang N., Gerton G.L., Kazazian H.H., Jr. A mouse model of human L1 retrotransposition. Nat. Genet. 2002;32(4):655-660.; Pastor T., Talotti G., Lewandowska M.A., Pagani F. An Alu-derived in-tronic splicing enhancer facilitates intronic processing and modulates aberrant splicing in ATM. Nucleic Acids Res. 2009;37(21):7258-7267.; Patrushev L.I., Minkevich I.G. The problem of the eukaryotic genome size. Uspekhi biologicheskoi khimii = Advances of Biological Chemistry. 2007;47:293-370. (in Russian); Piriyapongsa J., Marino-Ramirez L., Jordan I.K. Origin and evolution of human microRNAs from transposable elements. Genetics. 2007; 176(2):1323-1337.; Pizarro J.G., Cristofari G. Post-transcriptional control of LINE-1 retrotransposition by cellular host factors in somatic cells. Front. Cell. Dev. Biol. 2016;4:14-23.; Platt R.N., Vandeweqe M.W., Kern C., Schmidt C.J., Hoffmann F.G.; Ray D.A. Large number of novel miRNAs originate from DNA transposons and are coincident with a large species radiation in bats. Mol. Biol. Evol. 2014;31(6):1536-1545.; Prak E.T., Dodson A.W., Farkash E.A., Kazazian H.H. Jr. Tracking an embryonic L1 retrotransposition event. Proc. Natl. Acad. Sci. USA. 2003;100(4):1832-1837.; Qin S., Jin P., Zhou X., Chen L., Ma F. The role of transposable elements in the origin and evolution of microRNAs in human. PLoS One. 2015;10(6):e0131365.; Ramsay L., Marchetto M.C., Caron M., Chen S.H., Busche S., Kwan T.; Pastinen T., Gage F.H., Bourgue G. Conserved expression of trans-poson-derived non-coding transcripts in primate stem cells. BMC Genomics. 2017;18(1):214-226.; Richardson S.R., Morell S., Faulkner G.J. L1 retrotransposons and somatic mosaicism in the brain. Annu. Rev. Genet. 2014;48:1-27.; Samantarrai D., Dash S., Chhetri B., Mallick B. Genomic and epigenomic cross-talks in the regulatory landscape of miRNAs in breast cancer. Mol. Cancer Res. 2013;11(4):315-328.; Shabalina S.A., Koonin E.V. Origins and evolution of eukaryotic RNA interference. Trends Ecol. Evol. 2008;23(10):578-587.; Shen S., Guo X., Yan H., Lu Y., Ji X., Li L., Liang T., Zhou D., Feng X.H., Zhao J.C., Yu J., Gong X.G., Zhang L., Zhao B. A miR-130a-YAP positive feedback loop promotes organ size and tumoro-genesis. Cell Res. 2015;25:997-1012.; Singh D.K., Rath P.C. Long interspersed nuclear elements (LINEs) show tissue-specific, mosaic genome and methylation-unrestricted, widespread expression of noncoding RNAs in somatic tissues of the rat. RNA Biol. 2012;9(11):1380-1396.; Smalheiser N.R., Torvik V.I. Mammalian microRNAs derived from genomic repeats. Trends Genet. 2005;21(6):322-326.; Tourasse N.J., Stabell F.B., Kolsto A.B. Survey of chimeric IStron elements in bacterial genomes: multiple molecular symbioses between group I intron ribozymes and DNA transposons. Nucleic Acids Res. 2014;42(20):12333-12351.; Ulrich A.K.C., Wahl M.C. Human MFAP1 is a cryptic ortholog of the Saccharomyces cerevisiae Spp381 splicing factor. BMC Evol. Biol. 2017;17:91-107.; Upadhyay U., Srivastava S., Khatri I., Nanda J.S., Subramanian S., Arora A., Singh J. Ablation of RNA interference and retrotransposons accompany acquisistion and evolution of transposases to hetero-chromatin protein CENPB. Mol. Biol. Cell. 2017;28(8):1132-1146.; Van den Hurk J.A., Meij I.C., Seleme M.C. L1 retrotransposition can occur early in human embryonic development. Hum. Mol. Genet. 2007;16(13):1587-1592.; Vanyushin B.F. Epigenetics today and tomorrow. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2013;17(4/2):805-832. (in Russian); Wissing S., Munoz-Lopez M., Macia A., Yang Z., Montano M., Col-lins W., Garcia-Perez J.L., Moran J.V., Greene W.C. Reprogramming somatic cells into iPS cell activates LINE-1 retroelement mobility. Hum. Mol. Genet. 2012;21(1):208-218.; Xu C., Tian J., Mo B. siRNA-mediated DNA methylation and H3K9 dimethylation in plants. Protein Cell. 2013;4(9):656-663.; Yuan Z., Sun X., Liu H., Xie J. MicroRNA genes derived from repetitive elements and expanded by segmental duplication events in mammalian genomes. PLoS One. 2011;6(3):e17666.; Zakrzewski F., Schmidt M., Van Lijsebettens M., Schmidt T. DNA methylation of retrotransposons, DNA transposons and genes in sugar beet (Beta vulgaris L.). Plant J. 2017; DOI 10.1111/tpj. 13526.; Zhang G., Esteve P., Chin H.G., Terragni J., Dai N., Correa Jr. I.R., Pradhan S. Small RNA-mediated DNA (cytosine-5) methyltransferase 1 inhibition leads to aberrant DNA methylation. Nucleic Acids Res. 2015;43(12):6112-6124.; Zhang H., Tao Z., Hong H., Chen Z., Wu C., Li X., Xiao J., Wang S. Transposon-derived small RNA is responsible for modified function of WRKY45 locus. Nat. Plants. 2016;2:16016-16023.; Zhou H., Kishima Y. Alternative plant host defense against transposon activities occurs at the post-translational stage. Plant Signal. Behav. 2017;e1318238. DOI 10.1080/15592324.2017.; https://vavilov.elpub.ru/jour/article/view/1196
-
7Academic Journal
Contributors: Казанский (Приволжский) федеральный университет
Subject Terms: антибиотикорезистентность, мобильные генетические элементы
Access URL: https://openrepository.ru/article?id=190767
-
8Academic Journal
Authors: M. V. Puzakov, L. V. Puzakova, I. K. Zakharov, М. В. Пузаков, Л. В. Пузакова, И. К. Захаров
Contributors: бюджетный проект «Разработка научных основ решения экологических и гидробиологических проблем интегрированного управления прибрежными зонами» (0012-2015-0001), О.В. Ваулин
Source: Vavilov Journal of Genetics and Breeding; Том 21, № 2 (2017); 269-283 ; Вавиловский журнал генетики и селекции; Том 21, № 2 (2017); 269-283 ; 2500-3259
Subject Terms: морские беспозвоночные, genome, mobile genetic elements, MGE, transposons, retrotransposons, variation, biological diversity, species, hydrobionts, marine invertebrates, геном, мобильные генетические элементы, транспозоны, ретротранспозоны, изменчивость, биологическое разнообразие, вид, гидробионты
File Description: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/783/771; Бубенщикова Е.В., Антоненко О.В., Васильева Л.В., Ратнер В.А. Индукция транспозиций МГЭ 412 раздельно тепловым и холодовым шоком в сперматогенезе у самцов дрозофилы. Генетика. 2002;38(1):46-55.; Васильева Л.А., Ратнер В.А., Антоненко О.В., Лопухова Е.Д., Бубенщикова Е.В. Индукция транспозиций МГЭ 412 различными дозами паров этанола в изогенной линии Drosophila melanogaster. Генетика. 2003;39(5):717-720.; Захаренко Л.П., Коваленко Л.В., Перепелкина М.П., Захаров И.К. Влияние γ-радиации на индукцию транспозиций hobo-элемента у Drosophila melanogaster. Генетика. 2006;42(6):763-767.; Иващенко Н.И., Гришаева Т.М. Современные представления о роли разных семейств мобильных элементов в геномах эукариот. Успехи современной биологии. 2009;129(2):115-123.; Коваленко Л.В., Захаренко Л.П., Волошина М.А., Карамышева Т.В., Рубцов Н.Б., Захаров И.К. Поведение транспозонов hobo и P в нестабильной линии yellow2-717 Drosophila melanogaster и ее производных после скрещиваний с лабораторной линией. Генетика. 2006;42(6):748-756.; Ратнер В.А., Васильева Л.А. Индукция транспозиций и эксцизий мобильных генетических элементов у дрозофилы в процессе изогенизации. Генетика. 1996;32(7):933-944.; Сергеева Е.М., Салина Е.А. Мобильные элементы и эволюция генома растений. Вавиловский журнал генетики и селекции. 2011;15(2):382-398.; Сормачева Н.Д., Блинов А.Г. LTR ретротранспозоны растений. Вавиловский журнал генетики и селекции. 2011;15(2):351-381.; Чересиз С.В., Юрченко Н.Н., Иванников А.В., Захаров И.К. Мобильные элементы и стресс. Информационный вестник ВОГиС. 2008;12(1/2):217-242.; Юрченко Н.Н., Коваленко Л.В., Захаров И.К. Мобильные генетические элементы: нестабильность генов и геномов. Вавиловский журнал генетики и селекции. 2011;15(2):261-270.; Albertin C.B., Simakov O., Mitros T., Wang Z.Y., Pungor J.R., Edsinger-Gonzales E., Brenner S., Ragsdale C.W., Rokhsar D.S. The octopus genome and the evolution of cephalopod neural and morphological novelties. Nature. 2015;524(7564):220-224. DOI 10.1038/nature14668.; Arkhipova I., Meselson M. Transposable elements in sexual and ancient asexual taxa. Proc. Natl Acad. Sci. USA. 2000;97(26):14473-14477. DOI 10.1073/pnas.97.26.14473.; Bao W., Jurka M.G., Kapitonov V.V., Jurka J. New superfamilies of eukaryotic DNA-transposons and their internal divisions. Mol. Biol. Evol. 2009;26(5):983-993. DOI 10.1093/molbev/msp013.; Baughman K.W., McDougall C., Cummins S.F., Hall M., Degnan B.M., Satoh N., Shoguchi E. Genomic organization of Hox and ParaHox clusters in the echinoderm, Acanthaster planci. Genesis. 2014;52(12):952-958. DOI 10.1002/dvg.22840.; Baumgarten S., Simakov O., Esherick L.Y., Liew Y.J., Lehnert E.M., Michell C.T., Li Y., Hambleton E.A., Guse A., Oates M.E., Gough J., Weis V.M., Aranda M., Pringle J.R., Voolstra C.R. The genome of Aiptasia, a sea anemone model for coral symbiosis. Proc. Natl Acad Sci U S A. 2015;112(38):11893-11898. DOI 10.1073/pnas.1513318112.; Bui Q.T., Delaurière L., Casse N., Nicolas V., Laulier M., Chénais B. Molecular characterization and phylogenetic position of a new mariner-like element in the coastal crab, Pachygrapsus marmoratus. Gene. 2007;396(2):248-256. DOI 10.1016/j.gene.2007.03.004.; Casse N., Bui Q.T., Nicolas V., Renault S., Bigot Y., Laulier M. Species sympatry and horizontal transfers of Mariner transposons in marine crustacean genomes. Mol. Phylogenet. Evol. 2006;40(2):609-619. DOI 10.1016/j.ympev.2006.02.005.; Chipman A.D., Ferrier D.E., Brena C., Qu J., Hughes D.S., Schröder R., Torres-Oliva M., Znassi N., Jiang H., Almeida F.C., Alonso C.R., Apostolou Z., Aqrawi P., Arthur W., Barna J.C., Blankenburg K.P., Brites D., Capella-Gutiérrez S., Coyle M., Dearden P.K., Du Pasquier L., Duncan E.J., Ebert D., Eibner C., Erikson G., Evans P.D., Extavour C.G., Francisco L., Gabaldón T., Gillis W.J., GoodwinHorn E.A., Green J.E., Griffiths-Jones S., P. Grimmelikhuijzen C. J., Gubbala S., Guigó R., Han Y., Hauser F., Havlak P., Hayden L., Helbing S., Holder M., Hui J.H.L., Hunn J.P., Hunnekuhl V.S., Jackson L., Javaid M., Jhangiani S.N., Jiggins F.M., Jones T.E., Kaiser T.S., Kalra D., Kenny N.J., Korchina V., Kovar C.L., Kraus F.B., Lapraz F., Lee S.L., Jie Lv, Mandapat C., Manning G., Mariotti M., Mata R., Mathew T., Neumann T., Newsham I., Ngo D.N., ., Pu L.-L., Putman N.H., Rabouille C., Ramos O.M., Rhodes A.C., Robertson H.E., Robertson H.M., Ronshaugen M., Rozas J., Saada N., Sánchez-Gracia A., Scherer S.E., Schurko A.M., Siggens K.W., Simmons D., Stief A., Stolle E., Telford M.J., Tessmar-Raible Ninova M., Okwuonu G., Ongeri F., Palmer W.J., Patil S., Patraquim P., Pham C K., Thornton R., Maurijn van der Zee, Arndt von Haeseler, Williams J.M., Willis J.H., Wu Y., Zou X., Lawson D., Muzny D.M., Worley Kim C., Gibbs R.A., Akam M., Richards S. The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima. PLoS Biol. 2014;12(11):e1002005. DOI 10.1371/journal.pbio.1002005.; Cohen J.B., Liebermann D., Kedes L. Tsp transposons: a heterogeneous family of mobile sequences in the genome of the sea urchin Strongylocentrotus purpuratus. Mol. Cel. Biol. 1985;5(10):2814-2825.; Cordaux R., Udit S., Batzer M.A., Feschotte C. Birth of a chimeric primate gene by capture of the transposase gene from a mobile element. Proc. Natl Acad. Sci. USA. 2006;103(21):8101-8106. DOI 10.1073/pnas.0601161103.; Dehal P., Satou Y., Campbell R.K., Chapman J., Degnan B., De Tomaso A., Davidson B., Di Gregorio A., Gelpke M., Goodstein D.M., Harafuji N., Hastings K.E., Ho I., Hotta K., Huang W., Kawashima T., Lemaire P., Martinez D., Meinertzhagen I.A., Necula S., Nonaka M., Putnam N., Rash S., Saiga H., Satake M., Terry A., Yamada L., Wang H.G., Awazu S., Azumi K., Boore J., Branno M., Chin-Bow S., DeSantis R., Doyle S., Francino P., Keys D.N., Haga S., Hayashi H., Hino K., Imai K.S., Inaba K., Kano S., Kobayashi K., Kobayashi M., Lee B.I., Makabe K.W., Manohar C., Matassi G., Medina M., Mochizuki Y., Mount S., Morishita T., Miura S., Nakayama A., Nishizaka S., Nomoto H., Ohta F., Oishi K., Rigoutsos I., Sano M., Sasaki A., Sasakura Y., Shoguchi E., Shin-i T., Spagnuolo A., Stainier D., Suzuki M.M., Tassy O., Takatori N., Tokuoka M., Yagi K., Yoshizaki F., Wada S., Zhang C., Hyatt P.D., Larimer F., Detter C., Doggett N., Glavina T., Hawkins T., Richardson P., Lucas S., Kohara Y., Levine M., Satoh N., Rokhsar D.S. The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science. 2002;298(5601):2157-2167.; de Koning A.P., Gu W., Castoe T.A., Batzer M.A., Pollock D.D. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet. 2011;7(12):e1002384. DOI 10.1371/journal.pgen.1002384.; de la Vega E., Hall M.R., Wilson K.J., Reverter A., Woods R.G., Degnan B.M. Stress-induced gene expression profiling in the black tiger shrimp Penaeus monodon. Physiol. Genomics. 2007;31(1):126-138. DOI 10.1152/physiolgenomics.00068.2007.; Dimitri P., Junakovic N. Revising the selfish DNA hypothesis: new evidence on accumulation of transposable elements in heterochromatin. Trends Genet. 1999;15(4):123-124. DOI http://dx.doi.org/10.1016/S0168-9525(99)01711-4.; Fedoroff N.V. Transposable elements, epigenetics, and genome evolution. Science. 2012;338:758-767. DOI 10.1126/science.338.6108.758.; Feschotte C., Zhang X., Wessler S.R. Miniature inverted-repeat transposable elements (MITEs) and their relationship with established DNA transposons, in Mobile DNA II. Washington (DC): Am. Society Microbiol. Press. 2002.; Fontdevila A. Hybrid genome evolution by transposition. Cytogenet. Genome Res. 2005;110(1-4):49-55. DOI 10.1159/000084937.; Fugmann S.D., Lee A.I., Shockett P.E., Villey I.J., Schatz D.G. The RAG proteins and V(D)J recombination: complexes, ends, and transposition. Annu. Rev. Immunol. 2000;18:495–527. DOI 10.1146/annurev.immunol.18.1.495.; Gaffney P.M., Pierce J.C., Mackinley A.G., Titchen D.A., Glenn W.K. Pearl, a novel family of putative transposable elements in bivalve mollusks. J. Mol. Evol. 2003;56(3):308-316. DOI 10.1007/s00239-002-2402-5.; Georgiev G.P. Mobile genetic elements in animal cells and their biological significance. Eur. J. Biochem. 1984;145(2):203-220. DOI 10.1111/j.1432-1033.1984.tb08541.x.; Gentles A.J., Wakefield M.J., Kohany O., Gu W., Batzer M.A., Pollock D.D., Jurka J. Evolutionary dynamics of transposable elements in the short-tailed opossum Monodelphis domestica. Genome Res. 2007;17(7):992-1004. DOI 10.1101/gr.6070707.; Geyer P.K., Spana C., Corces V.G. On the molecular mechanism of gypsy-induced mutations at the yellow locus of Drosophila melanogaster. EMBO J. 1986;5(10):2657-2662.; Goodier J.L., Kazazian H.H.Jr. Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell. 2008;135(1):23-35. DOI 10.1016/j.cell.2008.09.022.; Goodwin T.J., Poulter R.T. The DIRS1 group of retrotransposons. Mol. Biol. Evol. 2001;18(11):2067-2082. DOI mbev_18_1108.2067_2082.tp.; Gonzalez P., Lessios H.A. Evolution of sea urchin retroviral-like (SURL) elements: evidence from 40 Echinoid species. Mol. Biol. Evol. 1999;16(7):938-952. DOI mbev_16_705.938_952.; Guo B., Zou M., Gan X., He S. Genome size evolution in pufferfish: an insight from BAC clone-based Diodon holocanthus genome sequencing. BMC Genomics. 2010;11:396. DOI 10.1186/1471-2164-11-396.; Halaimia-Toumi N., Casse N., Demattei M.V., Renault S., Pradier E., Bigot Y., Laulier M. The GC-rich transposon Bytmar1 from the deep-sea hydrothermal crab, Bythograea thermydron, may encode three transposase isoforms from a single ORF. J. Mol. Evol. 2004;59(6):747-760. DOI 10.1007/s00239-004-2665-0.; Handler A.M., Gomez S.P. P element excision in Drosophila is stimulated by gamma-irradiation in transient embryonic assays. Genet. Res. 1997;70(1):75-78.; Hizer S.E., Tamulis W.G., Robertson L.M., Garcia D.K. Evidence of multiple retrotransposons in two litopenaeid species. Anim. Genet. 2008;39(4):363-373. DOI 10.1111/j.1365-2052.2008.01739.x.; Hoffman-Liebermann B., Liebermann D., Kedes L.H., Cohen S.N. TU elements: a heterogeneous family of modularly structured eucaryotic transposons. Mol. Cell Biol. 1985;5(5):991–1001.; Huang C.R.L., Burns K.H., Boeke J.D. Active transposition in genomes. Annu. Rev. Genet. 2012;46:651-675. DOI 10.1146/annurevgenet-110711-155616.; Junakovic N., di Franco C., Barsanti P., Palumbo G. Transpositions of copia-like elements can be induced by heat shock. J. Mol. Evol. 1986;24:89-93.; Jurka J., Bao W., Kojima K.K. Families of transposable elements, population structure and the origin of species. Biol. Direct. 2011;6:44. DOI 10.1186/1745-6150-6-44.; Jurka J. Repeats in genomic DNA: mining and meaning. Curr. Opin. Struct. Biol. 1998;8:333-337.; Jurka J. Conserved eukaryotic transposable elements and the evolution of gene regulation. Cell Mol. Life Sci. 2008;65:201-204. DOI 10.1007/s00018-007-7369-3.; Kapitonov V.V., Jurka J. A universal classification of eukaryotic transposable elements implemented in Repbase. Nat Rev Genet. 2008;9(5):411-412. DOI 10.1038/nrg2165-c1.; Kapitonov V.V., Jurka J. Chapaev – a novel superfamily of DNA transposons. Repbase Reports. 2007;7(9):774-781. http://www.girinst.org/2007/vol7/issue9.; Kapitonov V.V., Jurka J. Molecular paleontology of transposable elements in the Drosophila melanogaster genome. Proc. Natl Acad. Sci. USA. 2003;100(11):6569-6574. DOI 10.1073/pnas.0732024100.; Kapitonov V.V., Jurka J. RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol. 2005;3(6):e181. DOI 10.1371/journal.pbio.0030181.; Kenny N.J., Sin Y.W., Shen X., Zhe Q., Wang W., Chan T.F., Tobe S.S., Shimeld S.M., Chu K.H., Hui J.H. Genomic sequence and experimental tractability of a new decapod shrimp model, Neocaridina denticulata. Mar Drugs. 2014;12(3):1419-1437. DOI 10.3390/md12031419.; Kidwell M.G., Lisch D.R. Perspective: transposable elements, parasitic DNA, and genome evolution. Evolution. 2001;55(1):1-24.; Kidwell M.G. Transposable elements and the evolution of genome size in eukaryotes. Genetica. 2002;115(1):49-63.; Kourtidis A., Drosopoulou E., Pantzartzi C.N., Chintiroglou C.C., Scouras Z.G. Three new satellite sequences and a mobile element found inside HSP70 introns of the mediterranean mussel (Mytilus galloprovincialis). Genome. 2006;49(11):1451-1458. DOI 10.1139/g06-111.; Kumar A., Bennetzen J.L. Plant retrotransposons. Annu. Rev. Genet. 1999;33:479-532. DOI 10.1146/annurev.genet.33.1.479.; Lander E.S., Linton L.M., Birren B., Nusbaum C., Zody M.C., Baldwin J., Devon K., Dewar K., Doyle M., FitzHugh W., Funke R., Gage D., Harris K., Heaford A., Howland J., Kann L., Lehoczky J., LeVine R., McEwan P., McKernan K., Meldrim J., Mesirov J.P., Miranda C., Morris W., Naylor J., Raymond C., Rosetti M., Santos R., Sheridan A., Sougnez C., Stange-Thomann Y., Stojanovic N., Subramanian A., Wyman D., Rogers J., Sulston J., Ainscough R., Beck S., Bentley D., Burton J., Clee C., Carter N., Coulson A., Deadman R., Deloukas P., Dunham A., Dunham I., Durbin R., French L., Grafham D., Gregory S., Hubbard T., Humphray S., Hunt A., Jones M., Lloyd C., McMurray A., Matthews L., Mercer S., Milne S., Mullikin J.C., Mungall A., Plumb R., Ross M., Shownkeen R., Sims S., Waterston R.H., Wilson R.K., Hillier L.W., McPherson J.D., Marra M.A., Mardis E.R., Fulton L.A., Chinwalla A.T., Pepin K.H., Gish W.R., Chissoe S.L., Wendl M.C., Delehaunty K.D., Miner T.L., Delehaunty A., Kramer J.B., Cook L.L., Fulton R.S., Johnson D.L., Minx P.J., Clifton S.W., Hawkins T., Branscomb E., Predki P., Richardson P., Wenning S., Slezak T., Doggett N., Cheng J.F., Olsen A., Lucas S., Elkin C., Uberbacher E., Frazier M., Gibbs R.A., Muzny D.M., Scherer S.E., Bouck J.B., Sodergren E.J., Worley K.C., Rives C.M., Gorrell J.H., Metzker M.L., Naylor S.L., Kucherlapati R.S., Nelson D.L., Weinstock G.M., Sakaki Y., Fujiyama A., Hattori M., Yada T., Toyoda A., Itoh T., Kawagoe C., Watanabe H., Totoki Y., Taylor T., Weissenbach J., Heilig R., Saurin W., Artiguenave F., Brottier P., Bruls T., Pelletier E., Robert C., Wincker P., Smith D.R., DoucetteStamm L., Rubenfield M., Weinstock K., Lee H.M., Dubois J., Rosenthal A., Platzer M., Nyakatura G., Taudien S., Rump A., Yang H., Yu J., Wang J., Huang G., Gu J., Hood L., Rowen L., Madan A., Qin S., Davis R.W., Federspiel N.A., Abola A.P., Proctor M.J., Myers R.M., Schmutz J., Dickson M., Grimwood J., Cox D.R., Olson M.V., Kaul R., Raymond C., Shimizu N., Kawasaki K., Minoshima S., Evans G.A., Athanasiou M., Schultz R., Roe B.A., Chen F., Pan H., Ramser J., Lehrach H., Reinhardt R., McCombie W.R., de la Bastide M., Dedhia N., Blöcker H., Hornischer K., Nordsiek G., Agarwala R., Aravind L., Bailey J.A., Bateman A., Batzoglou S., Birney E., Bork P., Brown D.G., Burge C.B., Cerutti L., Chen H.C., Church D., Clamp M., Copley R.R., Doerks T., Eddy S.R., Eichler E.E., Furey T.S., Galagan J., Gilbert J.G., Harmon C., Hayashizaki Y., Haussler D., Hermjakob H., Hokamp K., Jang W., Johnson L.S., Jones T.A., Kasif S., Kaspryzk A., Kennedy S., Kent W.J., Kitts P., Koonin E.V., Korf I., Kulp D., Lancet D., Lowe T.M., McLysaght A., Mikkelsen T., Moran J.V., Mulder N., Pollara V.J., Ponting C.P., Schuler G., Schultz J., Slater G., Smit A.F., Stupka E., Szustakowki J., Thierry-Mieg D., Thierry-Mieg J., Wagner L., Wallis J., Wheeler R., Williams A., Wolf Y.I., Wolfe K.H., Yang S.P., Yeh R.F., Collins F., Guyer M.S., Peterson J., Felsenfeld A., Wetterstrand K.A., Patrinos A., Morgan M.J., de Jong P., Catanese J.J., Osoegawa K., Shizuya H., Choi S., Chen Y.J., Szustakowki J. Initial International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860-921. DOI F409_15d 860.921.; Liebermann D., Hoffman-Liebermann B., Weinthal J., Childs G., Maxson R., Mauron A., Cohen S.N., Kedes L. An unusual transposon with long terminal inverted repeats in the sea urchin Strongylocentrotus purpuratus. Nature. 1983;306(5941):342-347.; Lim J.K., Simmons M.J. Gross chromosome rearrangements mediated by transposable elements in Drosophila melanogaster. Bioessays. 1994;16(4):269-275. DOI 10.1002/bies.950160410.; Llorens C., Muñoz-Pomer A., Bernad L., Botella H., Moya A. Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees. Biol Direct. 2009;4:41. DOI 10.1186/1745-6150-4-41.; Luo Y.J., Takeuchi T., Koyanagi R., Yamada L., Kanda M., Khalturina M., Fujie M., Yamasaki S., Endo K., Satoh N. The Lingula genome provides insights into brachiopod evolution and the origin of phosphate biomineralization. Nat Commun. 2015;6:8301. DOI 10.1038/ncomms9301.; McClintock B. Controlling elements and the gene. Cold Spring Harbor Sympos. Quant. Biol. 1956;21;197.; McInerney C.E., Allcock A.L., Johnson M.P., Bailie D.A., Prodöhl P.A. Comparative genomic analysis reveals speciesdependent complexities that explain difficulties with microsatellite marker development in molluscs. Heredity. 2011;106:78–87. DOI 10.1038/hdy.2010.36.; Mobile DNA. Eds. Berg D.E., Howe M.M. Washington D.C.: American Society of Microbiology Press, 1989.; Mobile DNA II. Edited by Craig N, Craigie R, Gellert M, Lambowitz A. Washington DC: American Society of Microbiology Press, 2002.; Mora C., Tittensor D.P., Adl S., Simpson A.G.B., Worm B. How many species are there on earth and in the ocean? PLoS Biology. 2011;9(8):e1001127. DOI 10.1371/journal.pbio.1001127.; Moroz L.L., Kocot K.M., Citarella M.R., Dosung S., Norekian T.P., Povolotskaya I.S., Grigorenko A.P., Dailey C., Berezikov E., Buckley K.M., Ptitsyn A., Reshetov D., Mukherjee K., Moroz T.P., Bobkova Y., Yu F., Kapitonov V.V., Jurka J., Bobkov Y.V., Swore J.J., Girardo D.O., Fodor A., Gusev F., Sanford R., Bruders R., Kittler E., Mills C.E., Rast J.P., Derelle R., Solovyev V.V., Kondrashov F.A., Swalla B.J., Sweedler J.V., Rogaev E.I., Halanych K.M., Kohn A.B. The ctenophore genome and the evolutionary origins of neural systems. Nature. 2014;510(7503):109-114. DOI 10.1038/nature13400.; Nossa C.W., Havlak P., Yue J.X., Lv J., Vincent K.Y., Brockmann H.J., Putnam N.H. Joint assembly and genetic mapping of the Atlantic horseshoe crab genome reveals ancient whole genome duplication. Gigascience. 2014;3:9. DOI 10.1186/2047-217X-3-9.; Nuzhdin S.V. Sure facts, speculations, and open questions about the evolution of transposable element copy number. Genetica. 1999;107(1-3):129-137.; Osborne P.W., Luke G.N., Holland P.W., Ferrier D.E. Identification and characterisation of five novel miniature inverted-repeat transposable elements (MITEs) in amphioxus (Branchiostoma floridae). Int. J. Biol. Sci. 2006;2(2):54-60. DOI 10.7150/ijbs.2.54.; Panchin Y., Moroz L.L. Molluscan mobile elements similar to the vertebrate Recombination-Activating Genes. Biochem. Biophys. Res. Commun. 2008;369(3):818-823. DOI 10.1016/j.bbrc.2008.02.097.; Pearce S.R., Pich U., Harrison G., Flavell A.J., Heslop-Harrison J.S., Schubert I., Kumar A. The Ty1-copia group retrotransposons of Allium cepa are distributed throughout the chromosomes but are enriched in the terminal heterochromatin. Chromosome Res. 1996;4(5):357-364.; Peifer M., Bender W. Sequences of the gypsy transposon of Drosophila necessary for its effects on adjacent genes. Proc. Natl Acad. Sci. USA. 1988;85(24):9650-9654.; Permanyer J., Gonzalez-Duarte R., Albalat R. The non-LTR retrotransposons in Ciona intestinalis: new insights into the evolution of chordate genomes. Genome Biol. 2003;4(11):R73. DOI 10.1186/gb-2003-4-11-r73.; Peterson P.A. Historical overview of transposable element research. In: Plant Transposable Elements: Methods and Protocols. Methods in Molecular Biology. Ed. Th. Peterson. 2013;1057:1-9. DOI 10.1007/978-1-62703-568-2_1.; Piednoël M., Bonnivard E. DIRS1-like retrotransposons are widely distributed among Decapoda and are particularly present in hydrothermal vent organisms. BMC Evol. Biol. 2009;9:86. DOI 10.1186/1471-2148-9-86.; Piednoël M., Donnart T., Esnault C., Graḉa P., Higuet D., Bonnivard E. LTR-retrotransposons in R. exoculata and other crustaceans: the outstanding success of GalEa-like copia elements. PLoS ONE. 2013;8(3):e57675. DOI 10.1371/journal.pone.0057675.; Putnam N.H., Butts T., Ferrier D.E., Furlong R.F., Hellsten U., Kawashima T., Robinson-Rechavi M., Shoguchi E., Terry A., Yu J.K., Benito-Gutiérrez E.L., Dubchak I., Garcia-Fernàndez J., GibsonBrown J.J., Grigoriev I.V., Horton A.C., de Jong P.J., Jurka J., Kapitonov V.V., Kohara Y., Kuroki Y., Lindquist E., Lucas S., Osoegawa K., Pennacchio L.A., Salamov A.A., Satou Y., Sauka-Spengler T., Schmutz J., Shin-I T., Toyoda A., Bronner-Fraser M., Fujiyama A., Holland L.Z., Holland P.W., Satoh N., Rokhsar D.S. The amphioxus genome and the evolution of the chordate karyotype. Nature. 2008;453(7198):1064-1071. DOI 10.1038/nature06967.; Putnam N.H., Srivastava M., Hellsten U., Dirks B., Chapman J., Salamov A., Terry A., Shapiro H., Lindquist E., Kapitonov V.V., Jurka J., Genikhovich G., Grigoriev I.V., Lucas S.M., Steele R.E., Finnerty J.R., Technau U., Martindale M.Q., Rokhsar D.S. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science. 2007;317(5834):86-94. DOI 10.1126/science.1139158.; Rebollo R., Romanish M.T., Mager D.L. Transposable elements: an abundant and natural source of regulatory sequences for host genes. Annu Rev. Genet. 2012;46:21-42. DOI 10.1146/annurev-genet-110711-155621.; Robertson H.M. Multiple mariner transposons in flatworms and hydras are related to those of insects. J. Heredity. 1997;88:195–201.; Robertson H.M., Zumpano K.L. Molecular evolution of an ancient mariner transposon, Hsmar1, in the human genome. Gene. 1997;205:203-217.; Ryan J.F., Pang K., Schnitzler C.E., Nguyen A.D., Moreland R.T., Simmons D.K., Koch B.J., Francis W.R., Havlak P., NISC Comparative Sequencing Program, Smith S.A., Putnam N.H., Haddock S.H., Dunn C.W., Wolfsberg T.G., Mullikin J.C., Martindale M.Q., Baxevanis A.D. The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science. 2013;342(6164):1242592. DOI 10.1126/science.1242592.; Sakaew W., Pratoomthai B., Pongtippatee P., Flegel T.W., Withyachumnarnkul B. Discovery and partial characterization of a non-LTR retrotransposon that may be associated with abdominal segment deformity disease (ASDD) in the whiteleg shrimp Penaeus (Litopenaeus) vannamei. BMC Veterinary Research. 2013;9:189. DOI 10.1186/1746-6148-9-189.; Sakano H., Huppi K., Heinrich G., Tonegawa S. Sequences at the somatic recombination sites of immunoglobulin light-chain genes. Nature. 1979;280:288-294.; SanMiguel P., Tikhonov A., Jin Y.K., Motchoulskaia N., Zakharov D., Melake-Berhan A., Springer P.S., Edwards K.J., Lee M., Avramova Z., Bennetzen J.L. Nested retrotransposons in the intergenic regions of the maize genome. Science. 1996;274(5288):765-768. DOI 10.1126/science.274.5288.765.; Seo H.C., Kube M., Edvardsen R.B., Jensen M.F., Beck A., Spriet E., Gorsky G., Thompson E.M., Lehrach H., Reinhardt R., Chourrout D. Miniature genome in the marine chordate Oikopleura dioica. Science. 2001;294(5551):2506.; Shinzato C., Shoguchi E., Kawashima T., Hamada M., Hisata K., Tanaka M., Fujie M., Fujiwara M., Koyanagi R., Ikuta T., Fujiyama A., Miller D.J., Satoh N. Using the Acropora digitifera genome to understand coral responses to environmental change. Nature. 2011;476(7360):320-323. DOI 10.1038/nature10249.; Simakov O., Kawashima T., Marlétaz F., Jenkins J., Koyanagi R., Mitros T., Hisata K., Bredeson J., Shoguchi E., Gyoja F., Yue J.X., Chen Y.C., Freeman R.M. Jr., Sasaki A., Hikosaka-Katayama T., Sato A., Fujie M., Baughman K.W., Levine J., Gonzalez P., Cameron C., Fritzenwanker J.H., Pani A.M., Goto H., Kanda M., Arakaki N., Yamasaki S., Qu J., Cree A., Ding Y., Dinh H.H., Dugan S., Holder M., Jhangiani S.N., Kovar C.L., Lee S.L., Lewis L.R., Morton D., Nazareth L.V., Okwuonu G., Santibanez J., Chen R., Richards S., Muzny D.M., Gillis A., Peshkin L., Wu M., Humphreys T., Su Y.H., Putnam N.H., Schmutz J., Fujiyama A., Yu J.K., Tagawa K., Worley K.C., Gibbs R.A., Kirschner M.W., Lowe C.J., Satoh N., Rokhsar D.S., Gerhart J. Hemichordate genomes and deuterostome origins. Nature. 2015;527(7579):459-465. DOI 10.1038/nature16150.; Simakov O., Marletaz F., Cho S.J., Edsinger-Gonzales E., Havlak P., Hellsten U., Kuo D.H., Larsson T., Lv J., Arendt D., Savage R., Osoegawa K., de Jong P., Grimwood J., Chapman J.A., Shapiro H., Aerts A., Otillar R.P., Terry A.Y., Boore J.L., Grigoriev I.V., Lindberg D.R., Seaver E.C., Weisblat D.A., Putnam N.H., Rokhsar D.S. Insights into bilaterian evolution from three spiralian genomes. Nature. 2013;493(7433):526-531. DOI 10.1038/nature11696.; Simmen M.W., Bird A. Sequence analysis of transposable elements in the sea squirt, Ciona intestinalis. Mol. Biol. Evol. 2000;17(11):1685-1694. DOI mbev_17_1102.1685_1694.tp.; Small K.S., Brudno M., Hill M.M., Sidow A. A haplome alignment and reference sequence of the highly polymorphic Ciona savignyi genome. Genome Biol. 2007;8(3):R41.; Sodergren E., Weinstock G.M., Davidson E.H., Cameron R.A., Gibbs R.A., Angerer R.C., Angerer L.M., Arnone M.I., Burgess D.R., Burke R.D., Coffman J.A., Dean M., Elphick M.R., Ettensohn C.A., Foltz K.R., Hamdoun A., Hynes R.O., Klein W.H., Marzluff W., McClay D.R., Morris R.L., Mushegian A., Rast J.P., Smith L.C., Thorndyke M.C., Vacquier V.D., Wessel G.M., Wray G., Zhang L., Elsik C.G., Ermolaeva O., Hlavina W., Hofmann G., Kitts P., Landrum M.J., Mackey A.J., Maglott D., Panopoulou G., Poustka A.J., Pruitt K., Sapojnikov V., Song X., Souvorov A., Solovyev V., Wei Z., Whittaker C.A., Worley K., Durbin K.J., Shen Y., Fedrigo O., Garfield D., Haygood R., Primus A., Satija R., Severson T., Gonzalez-Garay M.L., Jackson A.R., Milosavljevic A., Tong M., Killian C.E., Livingston B.T., Wilt F.H., Adams N., Bellé R., Carbonneau S., Cheung R., Cormier P., Cosson B., Croce J., Fernandez-Guerra A., Genevière A.M., Goel M., Kelkar H., Morales J., Mulner-Lorillon O., Robertson A.J., Goldstone J.V., Cole B., Epel D., Gold B., Hahn M.E., Howard-Ashby M., Scally M., Stegeman J.J., Allgood E.L., Cool J., Judkins K.M., McCafferty S.S., Musante A.M., Obar R.A., Rawson A.P., Rossetti B.J., Gibbons I.R., Hoffman M.P., Leone A., Istrail S., Materna S.C., Samanta M.P., Stolc V., Tongprasit W., Tu Q., Bergeron K.F., Brandhorst B.P., Whittle J., Berney K., Bottjer D.J., Calestani C., Peterson K., Chow E., Yuan Q.A., Elhaik E., Graur D., Reese J.T., Bosdet I., Heesun S., Marra M.A., Schein J., Anderson M.K., Brockton V., Buckley K.M., Cohen A.H., Fugmann S.D., Hibino T., Loza-Coll M., Majeske A.J., Messier C., Nair S.V., Pancer Z., Terwilliger D.P., Agca C., Arboleda E., Chen N., Churcher A.M., Hallböök F., Humphrey G.W., Idris M.M., Kiyama T., Liang S., Mellott D., Mu X., Murray G., Olinski R.P., Raible F., Rowe M., Taylor J.S., Tessmar-Raible K., Wang D., Wilson K.H., Yaguchi S., Gaasterland T., Galindo B.E., Gunaratne H.J., Juliano C., Kinukawa M., Moy G.W., Neill A.T., Nomura M., Raisch M., Reade A., Roux M.M., Song J.L., Su Y.H., Townley I.K., Voronina E., Wong J.L., Amore G., Branno M., Brown E.R., Cavalieri V., Duboc V., Duloquin L., Flytzanis C., Gache C., Lapraz F., Lepage T., Locascio A., Martinez P., Matassi G., Matranga V., Range R., Rizzo F., Röttinger E., Beane W., Bradham C., Byrum C., Glenn T., Hussain S., Manning G., Miranda E., Thomason R., Walton K., Wikramanayke A., Wu S.Y., Xu R., Brown C.T., Chen L., Gray R.F., Lee P.Y., Nam J., Oliveri P., Smith J., Muzny D., Bell S., Chacko J., Cree A., Curry S., Davis C., Dinh H., Dugan-Rocha S., Fowler J., Gill R., Hamilton C., Hernandez J., Hines S., Hume J., Jackson L., Jolivet A., Kovar C., Lee S., Lewis L., Miner G., Morgan M., Nazareth L.V., Okwuonu G., Parker D., Pu L.L., Thorn R., Wright R. The genome of the sea urchin Strongylocentrotus purpuratus. Science. 2006;314(5801):941-952.; Specchia V., Piacentini L., Tritto P., Fanti L., D’Alessandro R., Palumbo G., Pimpinelli S., Bozzetti M.P. Hsp90 prevents phenotypic variation by suppressing the mutagenic activity of transposons. Nature. 2010;463(7281):662-665.; Springer M.S., Davidson E.H., Britten R.J. Retroviral-like element in a marine invertebrate. Proc. Natl Acad. Sci. USA. 1991;88:8401-8404.; Srivastava M., Begovic E., Chapman J., Putnam N.H., Hellsten U., Kawashima T., Kuo A., Mitros T., Salamov A., Carpenter M.L., Signorovitch A.Y., Moreno M.A., Kamm K., Grimwood J., Schmutz J., Shapiro H., Grigoriev I.V., Buss L.W., Schierwater B., Dellaporta S.L., Rokhsar D.S. The Trichoplax genome and the nature of placozoans. Nature. 2008;454(7207):955-60. DOI 10.1038/nature07191.; Srivastava M., Simakov O., Chapman J., Fahey B., Gauthier M.E., Mitros T., Richards G.S., Conaco C., Dacre M., Hellsten U., Larroux C., Putnam N.H., Stanke M., Adamska M., Darling A., Degnan S.M., Oakley T.H., Plachetzki D.C., Zhai Y., Adamski M., Calcino A., Cummins S.F., Goodstein D.M., Harris C., Jackson D.J., Leys S.P., Shu S., Woodcroft B.J., Vervoort M., Kosik K.S., Manning G., Degnan B.M., Rokhsar D.S. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature. 2010;466(7307):720-726. DOI 10.1038/nature09201.; Syvanen M. Evolutionary implications of horizontal gene transfer. Annu. Rev. Genet. 2012;46:341-358. DOI 10.1146/annurev-genet-110711-155529.; Terrat Y., Bonnivard E., Higuet D. GalEa retrotransposons from galatheid squat lobsters (Decapoda, Anomura) define a new clade of Ty1/copia-like elements restricted to aquatic species. Mol. Genet. Genomics. 2008;279:63-73. DOI 10.1007/s00438-007-0295-0.; Thompson C.B. New insights into V(D)J recombination and its role in the evolution of the immune system. Immunity. 1995;3:531-539.; Vieira C., Nardon C., Arpin C., Lepetit D., Biémont C. Evolution of genome size in Drosophila. Is the invader’s genome being invaded by transposable elements? Mol. Biol. Evol. 2002;19(7):1154–1161. DOI mbev_19_705.1154_1161.tp.; Volff J.N., Lehrach H., Reinhardt R., Chourrout D. Retroelement dynamics and a novel type of chordate retrovirus-like element in the miniature genome of the tunicate Oikopleura dioica. Mol. Biol. Evol. 2004;21(11):2022-2033. DOI 10.1093/molbev/msh207.; Wang S., Zhang L., Meyer E., Matz M.V. Characterization of a group of MITEs with unusual features from two coral genomes. PLoS One. 2010;5(5):e10700. DOI 10.1371/journal.pone.0010700.; Waterston R.H., Lindblad-Toh K., Birney E., Rogers J., Abril J.F., Agarwal P., Agarwala R., Ainscough R., Alexandersson M., An P., Antonarakis S.E., Attwood J., Baertsch R., Bailey J., Barlow K., Beck S., Berry E., Birren B., Bloom T., Bork P., Botcherby M., Bray N., Brent M.R., Brown D.G., Brown S.D., Bult C., Burton J., Butler J., Campbell R.D., Carninci P., Cawley S., Chiaromonte F., Chinwalla A.T., Church D.M., Clamp M., Clee C., Collins F.S., Cook L.L., Copley R.R., Coulson A., Couronne O., Cuff J., Curwen V., Cutts T., Daly M., David R., Davies J., Delehaunty K.D., Deri J., Dermitzakis E.T., Dewey C., Dickens N.J., Diekhans M., Dodge S., Dubchak I., Dunn D.M., Eddy S.R., Elnitski L., Emes R.D., Eswara P., Eyras E., Felsenfeld A., Fewell G.A., Flicek P., Foley K., Frankel W.N., Fulton L.A., Fulton R.S., Furey T.S., Gage D., Gibbs R.A., Glusman G., Gnerre S., Goldman N., Goodstadt L., Grafham D., Graves T.A., Green E.D., Gregory S., Guigó R., Guyer M., Hardison R.C., Haussler D., Hayashizaki Y., Hillier L.W., Hinrichs A., Hlavina W., Holzer T., Hsu F., Hua A., Hubbard T., Hunt A., Jackson I., Jaffe D.B., Johnson L.S., Jones M., Jones T.A., Joy A., Kamal M., Karlsson E.K., Karolchik D., Kasprzyk A., Kawai J., Keibler E., Kells C., Kent W.J., Kirby A., Kolbe D.L., Korf I., Kucherlapati R.S., Kulbokas E.J., Kulp D., Landers T., Leger J.P., Leonard S., Letunic I., Levine R., Li J., Li M., Lloyd C., Lucas S., Ma B., Maglott D.R., Mardis E.R., Matthews L., Mauceli E., Mayer J.H., McCarthy M., McCombie W.R., McLaren S., McLay K., McPherson J.D., Meldrim J., Meredith B., Mesirov J.P., Miller W., Miner T.L., Mongin E., Montgomery K.T., Morgan M., Mott R., Mullikin J.C., Muzny D.M., Nash W.E., Nelson J.O., Nhan M.N., Nicol R., Ning Z., Nusbaum C., O’Connor M.J., Okazaki Y., Oliver K., Overton-Larty E., Pachter L., Parra G., Pepin K.H., Peterson J., Pevzner P., Plumb R., Pohl C.S., Poliakov A., Ponce T.C., Ponting C.P., Potter S., Quail M., Reymond A., Roe B.A., Roskin K.M., Rubin E.M., Rust A.G., Santos R., Sapojnikov V., Schultz B., Schultz J., Schwartz M.S., Schwartz S., Scott C., Seaman S., Searle S., Sharpe T., Sheridan A., Shownkeen R., Sims S., Singer J.B., Slater G., Smit A., Smith D.R., Spencer B., Stabenau A., Stange-Thomann N., Sugnet C., Suyama M., Tesler G., Thompson J., Torrents D., Trevaskis E., Tromp J., Ucla C., Ureta-Vidal A., Vinson J.P., Von Niederhausern A.C., Wade C.M., Wall M., Weber R.J., Weiss R.B., Wendl M.C., West A.P., Wetterstrand K., Wheeler R., Whelan S., Wierzbowski J., Willey D., Williams S., Wilson R.K., Winter E., Worley K.C., Wyman D., Yang S., Yang S.P., Zdobnov E.M., Zody M.C., Lander E.S. Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis of the mouse genome. Nature. 2002;420:520-562. DOI 10.1038/nature01262.; Wicker T., Sabot F., Hua-van A., Bennetzen J.L., Capy P., Chalhoub B., Flavell A., Leroy P., Morgante M., Panaud O., Paux E., SanMiguel P., Schulman A.H. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 2007;8:973-982. DOI 10.1038/nrg2165.; Zhang G., Fang X., Guo X., Li L., Luo R., Xu F., Yang P., Zhang L., Wang X., Qi H., Xiong Z., Que H., Xie Y., Holland P.W., Paps J., Zhu Y., Wu F., Chen Y., Wang J., Peng C., Meng J., Yang L., Liu J., Wen B., Zhang N., Huang Z., Zhu Q., Feng Y., Mount A., Hedgecock D., Xu Z., Liu Y., Domazet-Lošo T., Du Y., Sun X., Zhang S., Liu B., Cheng P., Jiang X., Li J., Fan D., Wang W., Fu W., Wang T., Wang B., Zhang J., Peng Z., Li Y., Li N., Wang J., Chen M., He Y., Tan F., Song X., Zheng Q., Huang R., Yang H., Du X., Chen L., Yang M., Gaffney P.M., Wang S., Luo L., She Z., Ming Y., Huang W., Zhang S., Huang B., Zhang Y., Qu T., Ni P., Miao G., Wang J., Wang Q., Steinberg C.E., Wang H., Li N., Qian L., Zhang G., Li Y., Yang H., Liu X., Wang J., Yin Y., Wang J. The oyster genome reveals stress adaptation and complexity of shell formation. Nature. 2012;490(7418):49-54. DOI 10.1038/nature11413.; https://vavilov.elpub.ru/jour/article/view/783
-
9Academic Journal
Subject Terms: ISSR-PCR-МАРКЕРЫ, ИНВЕРТИРОВАННЫЕ ПОВТОРЫ ДНК, МОБИЛЬНЫЕ ГЕНЕТИЧЕСКИЕ ЭЛЕМЕНТЫ, ЭНДОГЕННЫЕ РЕТРОВИРУСЫ
File Description: text/html
-
10Academic Journal
Authors: Glazko, Valeriy, Bardukov, Nickolay, Pheophilov, Anton, Sipko, Taras, Elkina, Mariya, Glazko, Tatyana
Subject Terms: ОВЦЕБЫК, ГЕНОМНОЕ СКАНИРОВАНИЕ, ИНВЕРТИРОВАННЫЕ ПОВТОРЫ, МИКРОСАТЕЛЛИТЫ, МОБИЛЬНЫЕ ГЕНЕТИЧЕСКИЕ ЭЛЕМЕНТЫ, ЭНДОГЕННЫЕ РЕТРОВИРУСЫ
File Description: text/html
-
11Academic Journal
Authors: Артемьева, А., Дубовская, А., Соловьева, А., Чесноков, Ю.
Subject Terms: ВИДЫ РОДА BRASSICA, МОБИЛЬНЫЕ ГЕНЕТИЧЕСКИЕ ЭЛЕМЕНТЫ АС, СОХРАНЯЕМОЕ ГЕНЕТИЧЕСКОЕ БИОРАЗНООБРАЗИЕ, MOBILE GENETIC ELEMENTS АС
File Description: text/html
-
12Academic Journal
Authors: Михеева, Лидия, Карбышева, Елена, Шестаков, Сергей
Subject Terms: ЭВОЛЮЦИЯ, ЦИАНОБАКТЕРИИ, ГЕНОМЫ, МОБИЛЬНЫЕ ГЕНЕТИЧЕСКИЕ ЭЛЕМЕНТЫ, ТРАНСПОЗАЗЫ, ГЕНОМНЫЕ ПЕРЕСТРОЙКИ
File Description: text/html
-
13Academic Journal
Authors: Голубовский, Михаил
Subject Terms: МОБИЛЬНЫЕ ГЕНЕТИЧЕСКИЕ ЭЛЕМЕНТЫ, ИСТОРИЯ ОТРЫТИЯ
File Description: text/html
-
14Academic Journal
Source: Вестник Казанского технологического университета.
Subject Terms: СТАТИСТИЧЕСКАЯ МОДЕЛЬ, МУТАГЕННЫЕ СТРЕССОВЫЕ ФАКТОРЫ, ИНТРОНИЗАЦИЯ, ЭКЗОНИЗАЦИЯ, МОБИЛЬНЫЕ ГЕНЕТИЧЕСКИЕ ЭЛЕМЕНТЫ
File Description: text/html
-
15Academic Journal
Source: Известия Тимирязевской сельскохозяйственной академии.
Subject Terms: ISSR-PCR-МАРКЕРЫ, ИНВЕРТИРОВАННЫЕ ПОВТОРЫ ДНК, МОБИЛЬНЫЕ ГЕНЕТИЧЕСКИЕ ЭЛЕМЕНТЫ, ЭНДОГЕННЫЕ РЕТРОВИРУСЫ
File Description: text/html
-
16Academic Journal
Source: Сельскохозяйственная биология.
Subject Terms: ВИДЫ РОДА BRASSICA, МОБИЛЬНЫЕ ГЕНЕТИЧЕСКИЕ ЭЛЕМЕНТЫ АС, СОХРАНЯЕМОЕ ГЕНЕТИЧЕСКОЕ БИОРАЗНООБРАЗИЕ, MOBILE GENETIC ELEMENTS АС
File Description: text/html
-
17Academic Journal
Source: Ecological genetics.
Subject Terms: ЭВОЛЮЦИЯ, ЦИАНОБАКТЕРИИ, ГЕНОМЫ, МОБИЛЬНЫЕ ГЕНЕТИЧЕСКИЕ ЭЛЕМЕНТЫ, ТРАНСПОЗАЗЫ, ГЕНОМНЫЕ ПЕРЕСТРОЙКИ
File Description: text/html
-
18Academic Journal
Source: Историко-биологические исследования.
Subject Terms: 0301 basic medicine, 0303 health sciences, 03 medical and health sciences, МОБИЛЬНЫЕ ГЕНЕТИЧЕСКИЕ ЭЛЕМЕНТЫ, ИСТОРИЯ ОТРЫТИЯ
File Description: text/html
-
19Academic Journal
Authors: Старикова Елизавета Валентиновна, Манолов Александр Иванович, Федоров Дмитрий Евгеньевич, Ильина Елена Николаевна
Contributors: Казанский (Приволжский) федеральный университет
Subject Terms: антибиотикорезистентность, мобильные генетические элементы
Relation: В поисках моделей персонализированной медицины; http://rour.neicon.ru:80/xmlui/bitstream/rour/190767/1/nora.pdf; 579.254; https://openrepository.ru/article?id=190767
Availability: https://openrepository.ru/article?id=190767
-
20Academic Journal
Authors: Григорьев, Д.С., Воробьева, Л.И.
Subject Terms: генетика, локомоторная активность, гибридологический анализ, Drosophila melanogaster, мобильные генетические элементы
Relation: Григорьев Д.С., Воробьёва Л.И. Локомоторная активность линий Drosophila melanogaster, полученных из популяций разного географического происхождения / Вісник Харківського національного університету імені В.Н.Каразіна. Серія: біологія. – 2010. – Вип. 11, №905. – С. 77–83; http://dspace.univer.kharkov.ua/handle/123456789/3784
Availability: http://dspace.univer.kharkov.ua/handle/123456789/3784