-
1Academic Journal
Συγγραφείς: O. I. Kit, E. M. Frantsiyants, S. A. Ilchenko, V. A. Bandovkina, I. V. Neskubina, A. I. Shikhlyarova, Yu. A. Petrova, A. A. Vereskunova, A. O. Adamyan, E. N. Kolesnikov, G. G. Beloshapkina, A. Yu. Arakelova, U. M. Gaziev, S. V. Sanamyants
Πηγή: Южно-Российский онкологический журнал, Vol 6, Iss 2, Pp 14-21 (2025)
Θεματικοί όροι: мужчины, aif, митохондрии, колоректальный рак, Neoplasms. Tumors. Oncology. Including cancer and carcinogens, женщины, ткань опухоли, ткань кишки, RC254-282
Σύνδεσμος πρόσβασης: https://doaj.org/article/c42742fc63d94ebb9a870ec232e46443
-
2Academic Journal
Συγγραφείς: A. A. Garganeeva, O. V. Tukish, E. A. Kuzheleva, E. F. Muslimova, M. O. Gulya, V. A. Zhargasova, S. V. Popov, А. А. Гарганеева, О. В. Тукиш, Е. А. Кужелева, Э. Ф. Муслимова, М. О. Гуля, В. А. Жаргасова, С. В. Попов
Συνεισφορές: Исследование выполнено при финансовой поддержке гранта Российского научного фонда (проект № 23-75- 00009).
Πηγή: Acta Biomedica Scientifica; Том 10, № 1 (2025); 103-114 ; 2587-9596 ; 2541-9420
Θεματικοί όροι: окислительное фосфорилирование, mitochondria, mitochondrial dysfunction, mitochondrial DNA, mitochondrial respiration, oxidative phosphorylation, митохондрии, митохондриальная дисфункция, митохондриальная ДНК, дыхание митохондрий
Περιγραφή αρχείου: application/pdf
Relation: https://www.actabiomedica.ru/jour/article/view/5219/2966; McDonagh T, Metra M. 2021 рекомендации ESC по диагностике и лечению острой и хронической сердечной недостаточности. Российский кардиологический журнал. 2023; 28(1): 5168. doi:10.15829/1560-4071-2023-5168; Scheffer DDL, Garcia AA, Lee L, Mochly-Rosen D, Ferreira JCB. Mitochondrial fusion, fission, and mitophagy in cardiac diseases: Challenges and therapeutic opportunities. Antioxid Redox Signal. 2022; 36(13-15): 844-863. doi:10.1089/ars.2021.0145; Цыпленкова В.Г. Гистологические и ультраструктурные характеристики миокарда при сердечной недостаточности. Кардиология. 2013; 9: 58-62.; Khoynezhad A, Jalali Z, Tortolani AJ. Apoptosis: Pathophysiology and therapeutic implications for the cardiac surgeon. Ann Thorac Surg. 2004; 78(3): 1109-1118. doi:10.1016/j.athoracsur.2003.06.034; Wiessner M, Maroofian R, Ni MY, Pedroni A, Müller JS, Stucka R, et al. Biallelic variants in HPDL cause pure and complicated hereditary spastic paraplegia. Brain. 2021; 144(5): 1422-1434. doi:10.1093/brain/awab041; Huang L, Chen H, Luo Y, Rivenson Y, Ozcan A. Recurrent neural network-based volumetric fluorescence microscopy. Light Sci Appl. 2021; 10(1): 62. doi:10.1038/s41377-021-00506-9; Судаков Н.П., Клименков И.В., Катышев А.И., Никифоров С.Б., Гольдберг О.А., Пушкарёв Б.Г., и др. Митохондриальная дисфункция при атеросклерозе и инфаркте миокарда: молекулярные и цитохимические маркеры. Acta biomedica scientifica. 2016; 1(3-2): 131-134. doi:10.12737/article_590823a517c941.46556762; Wong HH, Seet SH, Maier M, Gurel A, Traspas RM, Lee C, et al. Loss of C2orf69 defines a fatal autoinflammatory syndrome in humans and zebrafish that evokes a glycogen-storage-associated mitochondriopathy. Am J Hum Genet. 2021; 108(7): 1301-1317. doi:10.1016/j.ajhg.2021.05.003; Fernström J, Ohlsson L, Asp M, Lavant E, Holck A, Grudet C, et al. Plasma circulating cell-free mitochondrial DNA in depressive disorders. PLoS One. 2021; 16(11): e0259591. doi:10.1371/journal.pone.0259591; Pelletier-Galarneau M, Detmer FJ, Petibon Y, Normandin M, Ma C, Alpert NM, et al. Quantification of myocardial mitochondrial membrane potential using PET. Curr Cardiol Rep. 2021; 23(6): 70. doi:10.1007/s11886-021-01500-8; Newman NJ, Yu-Wai-Man P, Carelli V, Moster ML, Biousse V, Vignal-Clermont C, et al. Efficacy and safety of intravitreal gene therapy for Leber hereditary optic neuropathy treated within 6 months of disease onset. Ophthalmology. 2021; 128(5): 649-660. doi:10.1016/j.ophtha.2020.12.012; Kuwahara Y, Roudkenar MH, Suzuki M, Urushihara Y, Fukumoto M, Saito Y, et al. The Involvement of mitochondrial membrane potential in cross-resistance between radiation and docetaxel. Int J Radiat Oncol Biol Phys. 2016; 96(3): 556-565. doi:10.1016/j.ijrobp.2016.07.002; Kadenbach B, Ramzan R, Moosdorf R, Vogt S. The role of mitochondrial membrane potential in ischemic heart failure. Mitochondrion. 2011; 11(5): 700-706. doi:10.1016/j.mito.2011.06.001; Marchi S, Patergnani S, Missiroli S, Morciano G, Rimessi A, Wieckowski MR, et al. Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death. Cell Calcium. 2018; 69: 62-72. doi:10.1016/j.ceca.2017.05.003; Glancy B, Willis WT, Chess DJ, Balaban RS. Effect of calcium on the oxidative phosphorylation cascade in skeletal muscle mitochondria. Biochemistry. 2013; 52(16): 2793-2809. doi:10.1021/bi3015983; Denton RM, McCormack JG, Edgell NJ. Role of calcium ions in the regulation of intramitochondrial metabolism. Effects of Na+, Mg2+ and ruthenium red on the Ca2+-stimulated oxidation of oxoglutarate and on pyruvate dehydrogenase activity in intact rat heart mitochondria. Biochem J. 1980; 190(1): 107-117. doi:10.1042/bj1900107; Bauer TM, Murphy E. Role of mitochondrial calcium and the permeability transition pore in regulating cell death. Circ Res. 2020; 126(2): 280-293. doi:10.1161/CIRCRESAHA.119.316306; Duong QV, Hoffman A, Zhong K, Dessinger MJ, Zhang Y, Bazil JN. Calcium overload decreases net free radical emission in cardiac mitochondria. Mitochondrion. 2020; 51: 126-139. doi:10.1016/j.mito.2020.01.005; Kembro JM, Cortassa S, Aon MA. Complex oscillatory redox dynamics with signaling potential at the edge between normal and pathological mitochondrial function. Front Physiol. 2014; 5: 257. doi:10.3389/fphys.2014.00257; D’Oria R, Schipani R, Leonardini A, Natalicchio A, Perrini S, Cignarelli A, et al. The role of oxidative stress in cardiac disease: From physiological response to injury factor. Oxid Med Cell Longev. 2020; 2020: 5732956. doi:10.1155/2020/5732956; Guo Q, Bi J, Wang H, Zhang X. Mycobacterium tuberculosis ESX-1-secreted substrate protein EspC promotes mycobacterial survival through endoplasmic reticulum stress-mediated apoptosis. Emerg Microbes Infect. 2021; 10(1): 19-36. doi:10.1080/22221751.2020.1861913; Chinopoulos C. Mitochondrial permeability transition pore: Back to the drawing board. Neurochem Int. 2018; 117: 49-54. doi:10.1016/j.neuint.2017.06.010; Briston T, Selwood DL, Szabadkai G, Duchen MR. Mitochondrial permeability transition: A molecular lesion with multiple drug targets. Trends Pharmacol Sci. 2019; 40(1): 50-70. doi:10.1016/j.tips.2018.11.004; Burke PJ. Mitochondria, bioenergetics and apoptosis in cancer. Trends Cancer. 2017; 3(12): 857-870. doi:10.1016/j.trecan.2017.10.006; Shah SS, Lannon H, Dias L, Zhang JY, Alper SL, Pollak MR, et al. APOL1 kidney risk variants induce cell death via mitochondrial translocation and opening of the mitochondrial permeability transition pore. JAm Soc Nephrol. 2019; 30(12): 2355-2368. doi:10.1681/ASN.2019020114; Lee P, Chandel NS, Simon MC. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol. 2020; 21(5): 268-283. doi:10.1038/s41580-020-0227-y; Rambold AS, Pearce EL. Mitochondrial dynamics at the interface of immune cell metabolism and function. Trends Immunol. 2018; 39(1): 6-18. doi:10.1016/j.it.2017.08.006; Guntur AR, Gerencser AA, Le PT, DeMambro VE, Bornstein SA, Mookerjee SA, et al. Osteoblast-like MC3T3-E1 cells prefer glycolysis for ATP production but adipocyte-like 3T3-L1 cells prefer oxidative phosphorylation. J Bone Miner Res. 2018; 33(6): 1052- 1065. doi:10.1002/jbmr.3390; Dorr BM, Fuerst DE. Enzymatic amidation for industrial applications. Curr Opin Chem Biol. 2018; 43: 127-133. doi:10.1016/j.cbpa.2018.01.008; Ishida A, Yamada Y, Kamidate T. Colorimetric method for enzymatic screening assay of ATP using Fe(III)-xylenol orange complex formation. Anal Bioanal Chem. 2008; 392(5): 987-994. doi:10.1007/s00216-008-2334-z; Ušaj M, Moretto L, Vemula V, Salhotra A, Månsson A. Single molecule turnover of fluorescent ATP by myosin and actomyosin unveil elusive enzymatic mechanisms. Commun Biol. 2021; 4(1): 64. doi:10.1038/s42003-020-01574-0; Vasta JD, Corona CR, Wilkinson J, Zimprich CA, Hartnett JR, Ingold MR, et al. Quantitative, wide-spectrum kinase profiling in live cells for assessing the effect of cellular ATP on target engagement. Cell Chem Biol. 2018; 25(2): 206-214.e11. doi:10.1016/j.chembiol.2017.10.010; Mita M, Sugawara I, Harada K, Ito M, Takizawa M, Ishida K, et al. Development of red genetically encoded biosensor for visualization of intracellular glucose dynamics. Cell Chem Biol. 2022; 29(1): 98-108.e4. doi:10.1016/j.chembiol.2021.06.002; Mollazadeh H, Tavana E, Fanni G, Bo S, Banach M, Pirro M, et al. Effects of statins on mitochondrial pathways. J Cachexia Sarcopenia Muscle. 2021; 12(2): 237-251. doi:10.1002/jcsm.12654; Vercellino I, Sazanov LA. The assembly, regulation and function of the mitochondrial respiratory chain. Nat Rev Mol Cell Biol. 2022; 23(2): 141-161. doi:10.1038/s41580-021-00415-0; Ferrari D, Stepczynska A, Los M, Wesselborg S, Schulze-Osthoff K. Differential regulation and ATP requirement for caspase-8 and caspase-3 activation during CD95- and anticancer druginduced apoptosis. J Exp Med. 1998; 188(5): 979-984. doi:10.1084/jem.188.5.979; Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS sources in physiological and pathological conditions. Oxid Med Cell Longev. 2016; 2016: 1245049. doi:10.1155/2016/1245049; Khacho M, Tarabay M, Patten D, Khacho P, MacLaurin JG, Guadagno J, et al. Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival. Nat Commun. 2014; 5: 3550. doi:10.1038/ncomms4550; Wang M, Ren X, Wang L, Lu X, Han L, Zhang X, et al. A functional analysis of mitochondrial respiratory chain cytochrome bc1 complex in Gaeumannomyces tritici by RNA silencing as a possible target of carabrone. Mol Plant Pathol. 2020; 21(12): 1529-1544. doi:10.1111/mpp.12993; Cogliati S, Lorenzi I, Rigoni G, Caicci F, Soriano ME. Regulation of mitochondrial electron transport chain assembly. JMol Biol. 2018; 430(24): 4849-4873. doi:10.1016/j.jmb.2018.09.016; Weinberg SE, Singer BD, Steinert EM, Martinez CA, Mehta MM, Martínez-Reyes I, et al. Mitochondrial complex III is essential for suppressive function of regulatory T cells. Nature. 2019; 565(7740): 495-499. doi:10.1038/s41586-018-0846-z; Nesci S, Pagliarani A, Algieri C, Trombetti F. Mitochondrial F-type ATP synthase: Multiple enzyme functions revealed by the membrane-embedded FO structure. Crit Rev Biochem Mol Biol. 2020; 55(4): 309-321. doi:10.1080/10409238.2020.1784084; Banh RS, Iorio C, Marcotte R, Xu Y, Cojocari D, Rahman AA, et al. PTP1B controls non-mitochondrial oxygen consumption by regulating RNF213 to promote tumour survival during hypoxia. Nat Cell Biol. 2016; 18(7): 803-813. doi:10.1038/ncb3376; Baumann K. mtDNA robs nuclear dNTPs. Nat Rev Mol Cell Biol. 2019; 20(11): 663. doi:10.1038/s41580-019-0182-7; Zhu SC, Chen C, Wu YN, Ahmed M, Kitmitto A, Greenstein AS, et al. Cardiac complex II activity is enhanced by fat and mediates greater mitochondrial oxygen consumption following hypoxic re-oxygenation. Pflugers Arch. 2020; 472(3): 367-374. doi:10.1007/s00424-020-02355-8; Gu X, Ma Y, Liu Y, Wan Q. Measurement of mitochondrial respiration in adherent cells by seahorse XF96 cell mito stress test. STAR Protoc. 2020; 2(1): 100245. doi:10.1016/j.xpro.2020.100245; Eagleson KL, Villaneuva M, Southern RM, Levitt P. Proteomic and mitochondrial adaptations to early-life stress are distinct in juveniles and adults. Neurobiol Stress. 2020; 13: 100251. doi:10.1016/j.ynstr.2020.100251; Nishida M, Yamashita N, Ogawa T, Koseki K, Warabi E, Ohue T, et al. Mitochondrial reactive oxygen species trigger metformin-dependent antitumor immunity via activation of Nrf2/ mTORC1/p62 axis in tumor-infiltrating CD8T lymphocytes. JImmunother Cancer. 2021; 9(9): e002954. doi:10.1136/jitc-2021-002954; Nishida Y, Nawaz A, Kado T, Takikawa A, Igarashi Y, Onogi Y, et al. Astaxanthin stimulates mitochondrial biogenesis in insulin resistant muscle via activation of AMPK pathway. J Cachexia Sarcopenia Muscle. 2020; 11(1): 241-258. doi:10.1002/jcsm.12530; Панов А.В., Дикалов С.И., Даренская М.А., Рычкова Л.В., Колесникова Л.И., Колесников С.И. Митохондрии: старение, метаболический синдром и сердечно-сосудистая патология. Становление новой парадигмы. Acta biomedica scientifica. 2020; 5(4): 33-44. doi:10.29413/ABS.2020-5.4.5; Boengler K, Kosiol M, Mayr M, Schulz R, Rohrbach S. Mitochondria and ageing: Role in heart, skeletal muscle and adi pose tissue. J Cachexia Sarcopenia Muscle. 2017; 8(3): 349-369. doi:10.1002/jcsm.12178; Sanderson TH, Reynolds CA, Kumar R, Przyklenk K, Hüttemann M. Molecular mechanisms of ischemia-reperfusion injury in brain: Pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol. 2013; 47(1): 9-23. doi:10.1007/s12035-012-8344-z; Koch RE, Josefson CC, Hill GE. Mitochondrial function, ornamentation, and immunocompetence. Biol Rev Camb Philos Soc. 2017; 92(3): 1459-1474. doi:10.1111/brv.12291; Zhu X, Liu G, Bu Y, Zhang J, Wang L, Tian Y, et al. In situ monitoring of mitochondria regulating cell viability by the RNAspecific fluorescent photosensitizer. Anal Chem. 2020; 92(15): 10815-10821. doi:10.1021/acs.analchem.0c02298; Yang J, Chen Z, Liu N, Chen Y. Ribosomal protein L10 in mitochondria serves as a regulator for ROS level in pancreatic cancer cells. Redox Biol. 2018; 19: 158-165. doi:10.1016/j.redox.2018.08.016; Jiang X, Wang L, Carroll SL, Chen J, Wang MC, Wang J. Challenges and opportunities for small-molecule fluorescent probes in redox biology applications. Antioxid Redox Signal. 2018; 29(6): 518-540. doi:10.1089/ars.2017.7491; Ortega-Villasante C, Burén S, Blázquez-Castro A, Barón-Sola Á, Hernández LE. Fluorescent in vivo imaging of reactive oxygen species and redox potential in plants. Free Radic Biol Med. 2018; 122: 202-220. doi:10.1016/j.freeradbiomed.2018.04.005; Gotham JP, Li R, Tipple TE, Lancaster JR Jr, Liu T, Li Q. Quantitation of spin probe-detectable oxidants in cells using electron paramagnetic resonance spectroscopy: To probe or to trap? Free Radic Biol Med. 2020; 154: 84-94. doi:10.1016/j.freeradbiomed.2020.04.020; Wanrooij PH, Tran P, Thompson LJ, Carvalho G, Sharma S, Kreisel K, et al. Elimination of rNMPs from mitochondrial DNA has no effect on its stability. Proc Natl Acad Sci U S A. 2020; 117(25): 14306-14313. doi:10.1073/pnas.1916851117; Chiang JL, Shukla P, Pagidas K, Ahmed NS, Karri S, Gunn DD, et al. Mitochondria in ovarian aging and reproductive longevity. Ageing Res Rev. 2020; 63: 101168. doi:10.1016/j.arr.2020.101168; Корепанов В.А., Реброва Т.Ю., Атабеков Т.А., Афанасьев С.А. Возможная роль митохондриальной дисфункции в аритмогенезе при ишемической болезни сердца. Сибирский журнал клинической и экспериментальной медицины. 2023; 38(4): 236-242. doi:10.29001/2073-8552-2023-38-4-236-242; Kuzheleva EA, Garganeeva AA, Tukish OV, Nesova AK, Golubenko MV, Andreev SL, et al. The role of rs2238296 of the mitochondrial DNA polymerase gamma gene in combination with polymorphic variants of antioxidant defense genes in the development of postinfarction left ventricular aneurysm. Russian Journal of Genetics. 2023; 59: 97-103. doi:10.1134/s1022795423010076; Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science. 2005; 309(5733): 481-484. doi:10.1126/science.1112125; Понасенко А.В., Цепокина А.В., Тхоренко Б.А., Голубенко М.В., Губиева Е.К., Трефилова Л.П. Изменчивость митохондриальной ДНК в развитии атеросклероза и инфаркта миокарда (обзор литературы). Комплексные проблемы сердечно-сосудистых заболеваний. 2018; 7(4S): 75-85. doi:10.17802/2306-1278-2018-7-4S-75-85; Wang J, Balciuniene J, Diaz-Miranda MA, McCormick EM, Aref-Eshghi E, Muir AM, et al. Advanced approach for comprehensive mtDNA genome testing in mitochondrial disease. Mol Genet Metab. 2022; 135(1): 93-101. doi:10.1016/j.ymgme.2021.12.006; Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy. 2021; 17(1): 1-382. doi:10.1080/15548627.2020.1797280; Li H, Slone J, Fei L, Huang T. Mitochondrial DNA variants and common diseases: A mathematical model for the diversity of age-related mtDNA mutations. Cells. 2019; 8(6): 608. doi:10.3390/cells8060608; West AP, Shadel GS. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol. 2017; 17(6): 363-375. doi:10.1038/nri.2017.21; Carvalho PA, Chiu ML, Kronauge JF, Kawamura M, Jones AG, Holman BL, et al. Subcellular distribution and analysis of technetium-99m-MIBI in isolated perfused rat hearts. JNucl Med. 1992; 33(8): 1516-1522.; Backus M, Piwnica-Worms D, Hockett D, Kronauge J, Lieberman M, Ingram P, et al. Microprobe analysis of Tc-MIBI in heart cells: Calculation of mitochondrial membrane potential. Am J Physiol. 1993; 265(1 Pt 1): C178-С187. doi:10.1152/ajpcell.1993.265; Kawamoto A, Kato T, Shioi T, Okuda J, Kawashima T, Tamaki Y, et al. Measurement of technetium-99m sestamibi signals in rats administered a mitochondrial uncoupler and in a rat model of heart failure. PLoS One. 2015; 10(1): e0117091. doi:10.1371/journal.pone.0117091; Crane P, Laliberté R, Heminway S, Thoolen M, Orlandi C. Effect of mitochondrial viability and metabolism on technetium-99m-sestamibi myocardial retention. Eur J Nucl Med. 1993; 20(1): 20-25. doi:10.1007/BF02261241; Hayashi D, Ohshima S, Isobe S, Cheng XW, Unno K, Funahashi H, et al. Increased (99m)Tc-sestamibi washout reflects impaired myocardial contractile and relaxation reserve during dobutamine stress due to mitochondrial dysfunction in dilated cardiomyopathy patients. J Am Coll Cardiol. 2013; 61(19): 2007-2017. doi:10.1016/j.jacc.2013.01.074; Tsampasian V, Swift AJ, Assadi H, Chowdhary A, Swoboda P, Sammut E, et al. Myocardial inflammation and energetics by cardiac MRI: A review of emerging techniques. BMC Med Imaging. 2021; 21(1): 164. doi:10.1186/s12880-021-00695-0; Meyerspeer M, Boesch C, Cameron D, Dezortová M, Forbes SC, Heerschap A, et al. 31P magnetic resonance spectroscopy in skeletal muscle: Experts’ consensus recommendations. NMR Biomed. 2020; 34(5): e4246. doi:10.1002/nbm.4246; Holley CT, Long EK, Lindsey ME, McFalls EO, Kelly RF. Recovery of hibernating myocardium: What is the role of surgical revascularization? JCard Surg. 2015; 30(2): 224-231. doi:10.1111/jocs.12477; Bøtker HE, Cabrera-Fuentes HA, Ruiz-Meana M, Heusch G, Ovize M. Translational issues for mitoprotective agents as adjunct to reperfusion therapy in patients with ST-segment elevation myocardial infarction. J Cell Mol Med. 2020; 24(5): 2717-2729. doi:10.1111/jcmm.14953; Unno K, Isobe S, Izawa H, Cheng XW, Kobayashi M, Hirashiki A, et al. Relation of functional and morphological changes in mitochondria to myocardial contractile and relaxation reserves in asymptomatic to mildly symptomatic patients with hypertrophic cardiomyopathy. Eur HeartJ. 2009; 30(15): 1853-1862. doi:10.1093/eurheartj/ehp184; Афанасьев С.А., Муслимова Э.Ф, Реброва Т.Ю., Цапко Л.П., Керчева М.А., Голубенко М.В. Особенности функционального состояния митохондрий лейкоцитов периферической крови у пациентов с острым инфарктом миокарда. Бюллетень экспериментальной биологии и медицины. 2020; 169(4): 435-437. doi:10.1007/s10517-020-04903-9; Tsampasian V, Cameron D, Sobhan R, Bazoukis G, Vassiliou VS. Phosphorus magnetic resonance spectroscopy (31P MRS) and cardiovascular disease: The importance of energy. Medicina (Kaunas). 2023; 59(1): 174. doi:10.3390/medicina59010174; https://www.actabiomedica.ru/jour/article/view/5219
-
3Academic Journal
Πηγή: IX Всероссийская Пущинская конференция «Биохимия, физиология и биосферная роль микроорганизмов».
Θεματικοί όροι: VTC4, полифосфаты, митохондрии, окислительное фосфорилирование, Saccharomyces cerevisiae, PPN1
-
4Academic Journal
Πηγή: Высшая школа: научные исследования.
Θεματικοί όροι: репродукция, жизнеспособность, митохондрии, COVID-19, свободнорадикальное окисление
-
5Academic Journal
Συγγραφείς: Ядгарова , Норбиби
Πηγή: Eurasian Journal of Medical and Natural Sciences; Vol. 5 No. 10 (2025): Eurasian Journal of Medical and Natural Sciences; 276-284 ; Евразийский журнал медицинских и естественных наук; Том 5 № 10 (2025): Евразийский журнал медицинских и естественных наук; 276-284 ; Yevrosiyo tibbiyot va tabiiy fanlar jurnali; Jild 5 Nomeri 10 (2025): Евразийский журнал медицинских и естественных наук; 276-284 ; 2181-287X
Θεματικοί όροι: Энергетический обмен, дети, метаболизм, анаболизм, катаболизм, АТФ, гормональная регуляция, митохондрии, рост и развитие, обмен веществ, Energy metabolism, children, metabolism, anabolism, catabolism, ATP, hormonal regulation, mitochondria, growth and development
Περιγραφή αρχείου: application/pdf
Διαθεσιμότητα: https://in-academy.uz/index.php/EJMNS/article/view/63214
-
6Academic Journal
Συγγραφείς: Elena A. Kuzheleva, Alla A. Garganeeva, Olga V. Tukish, Ekaterina E. Syromyatnikova, Beligma B. Dorzhieva, Oksana N. Ogurkova, Елена Андреевна Кужелева, Алла Анатольевна Гарганеева, Ольга Викторовна Тукиш, Екатерина Егоровна Сыромятникова, Бэлигма Баторовна Доржиева, Оксана Николаевна Огуркова
Συνεισφορές: The study was supported by the grant from the Russian Science Foundation No. 23-75-00009, https://rscf.ru/project/23-75-00009/, Исследование выполнено за счет гранта Российского научного фонда № 23-75-00009, https://rscf.ru/project/23-75-00009/
Πηγή: Complex Issues of Cardiovascular Diseases; Том 14, № 4 (2025); 18-27 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 14, № 4 (2025); 18-27 ; 2587-9537 ; 2306-1278
Θεματικοί όροι: KCCQ, Mitochondria, Coronary artery bypass grafting, Coronary artery disease, Heart failure, Biomarkers, Kansas City Heart Questionnaire, Митохондрии, Аортокоронарное шунтирование, Ишемическая болезнь сердца, Сердечная недостаточность, Биомаркеры, Канзасский опросник
Περιγραφή αρχείου: application/pdf
Relation: https://www.nii-kpssz.com/jour/article/view/1670/1069; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1670/2067; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1670/2068; Savarese G, Becher PM, Lund LH, Seferovic P, Rosano GMC, Coats AJS. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc Res. 2023 Jan 18;118(17):3272-3287. doi:10.1093/cvr/cvac013. Erratum in: Cardiovasc Res. 2023 Jun 13;119(6):1453. doi:10.1093/cvr/cvad026.; Шляхто Е.В., Беленков Ю.Н., Бойцов С.А., Виллевальде С.В., Галявич А.С., Глезер М.Г., и др. Результаты промежуточного анализа проспективного наблюдательного многоцентрового регистрового исследования пациентов с хронической сердечной недостаточностью в Российской Федерации "ПРИОРИТЕТ-ХСН": исходные характеристики и лечение первых включенных пациентов. Российский кардиологический журнал. 2023;28(10):5593. doi:10.15829/1560-4071-2023-5593.; Canepa M, Anastasia G, Ameri P, Vergallo R, O'Connor CM, Sinagra G, Porto I. Characterization of ischemic etiology in heart failure with reduced ejection fraction randomized clinical trials: A systematic review and meta-analysis. Eur J Intern Med. 2025 Feb 11:S0953-6205(25)00042-1. doi:10.1016/j.ejim.2025.02.004. Epub ahead of print. PMID: 39939263.; Panza JA, Ellis AM, Al-Khalidi HR, et al. Myocardial Viability and Long-Term Outcomes in Ischemic Cardiomyopathy. N Engl J Med. 2019 Aug 22;381(8):739-748. doi:10.1056/NEJMoa1807365; Heusch G. Myocardial ischemia/reperfusion: Translational pathophysiology of ischemic heart disease. Med. 2024 Jan 12;5(1):10-31. doi:10.1016/j.medj.2023.12.007. PMID: 38218174.; Khoynezhad A, Jalali Z, Tortolani AJ. Apoptosis: pathophysiology and therapeutic implications for the cardiac surgeon. Ann Thorac Surg. 2004 Sep;78(3):1109-18. doi:10.1016/j.athoracsur.2003.06.034. PMID: 15337071.; Cocchi MN, Salciccioli J, Yankama T, Chase M, Patel PV, Liu X, et al. Predicting Outcome After Out-of-Hospital Cardiac Arrest: Lactate, Need for Vasopressors, and Cytochrome c. J Intensive Care Med. 2020 Dec;35(12):1483-1489. doi:10.1177/0885066619873315. Epub 2019 Aug 29. PMID: 31466497.; Andersen LW, Liu X, Montissol S, Holmberg MJ, Fabian-Jessing BK, Donnino MW; Center for Resuscitation Science Research Group. Cytochrome c in patients undergoing coronary artery bypass grafting: A post hoc analysis of a randomized trial. J Crit Care. 2017 Dec;42:248-254. doi:10.1016/j.jcrc.2017.08.006.; Гарганеева А.А., Кужелева Е.А., Тукиш О.В., Витт К.Н., Андреев С.Л., Муслимова Э.Ф., Корепанов В.А., Афанасьев С.А., Гуля М.О., Сыромятникова Е.Е., Владимирова Е.А., Степанов И.В. Возможности диагностики митохондриальной дисфункции при хронической сердечной недостаточности. Сибирский журнал клинической и экспериментальной медицины. 2024;39(3):51–57. https://doi.org/10.29001/2073-8552-2024-39-3-51-57; Alves-Figueiredo H, Silva-Platas C, Lozano O, Vázquez-Garza E, Guerrero-Beltrán CE, Zarain-Herzberg A, García-Rivas G. « A systematic review of post-translational modifications in the mitochondrial permeability transition pore complex associated with cardiac diseases. Biochim Biophys Acta Mol Basis Dis. 2021 Jan 1;1867(1):165992. doi:10.1016/j.bbadis.2020.165992; Paraskevaidis I, Kourek C, Farmakis D, Tsougos E., «Mitochondrial Dysfunction in Cardiac Disease: The Fort Fell. Biomolecules. 2024 Nov 29;14(12):1534. doi:10.3390/biom14121534. PMID: 39766241; PMCID: PMC11673776.; Галявич А. С., Терещенко С. Н., Ускач Т. М., Агеев Ф. Т., Аронов Д. М., Арутюнов Г. П., и др. Хроническая сердечная недостаточность. Клинические рекомендации 2024. Российский кардиологический журнал. 2024;29(11):6162. doi:10.15829/1560-4071-2024-6162.; Goedeke L, Ma Y, Gaspar RC, Nasiri A, Lee J, Zhang D, Galsgaard KD, Hu X, Zhang J, Guerrera N, Li X, LaMoia T, Hubbard BT, Haedersdal S, Wu X, Stack J, Dufour S, Butrico GM, Kahn M, Perry RJ, Cline GW, Young LH, Shulman GI. SGLT2 inhibition alters substrate utilization and mitochondrial redox in healthy and failing rat hearts. J Clin Invest. 2024 Dec 16;134(24):e176708. doi:10.1172/JCI176708.; Shu H, Hang W, Peng Y, Nie J, Wu L, Zhang W, Wang DW, Zhou N. Trimetazidine Attenuates Heart Failure by Improving Myocardial Metabolism via AMPK. Front Pharmacol. 2021 Sep 15;12:707399. doi:10.3389/fphar.2021.707399. PMID: 34603021; PMCID: PMC8479198.; Shah YR, Turgeon RD. Impact of SGLT2 Inhibitors on Quality of Life in Heart Failure Across the Ejection Fraction Spectrum: Systematic Review and Meta-analysis. CJC Open. 2023 Dec 10;6(4):639-648. doi:10.1016/j.cjco.2023.12.002.; Nassiri S, Van de Bovenkamp AA, Remmelzwaal S, Sorea O, de Man F, Handoko ML. Effects of trimetazidine on heart failure with reduced ejection fraction and associated clinical outcomes: a systematic review and meta-analysis. Open Heart. 2024 May 8;11(1):e002579. doi:10.1136/openhrt-2023-002579. PMID: 38719498; PMCID: PMC11086535.
-
7Academic Journal
Συγγραφείς: Мансурова Дилафруз Ахмаджоновна, Ишанкулов Илхом
Θεματικοί όροι: Ключевые слова: Цикл Кребса, митохондрий, ацетил-КоА, Гликолиз, Фумарат, Малат
Relation: https://zenodo.org/communities/rf2181-3833/; https://zenodo.org/records/14846667; oai:zenodo.org:14846667; https://doi.org/10.5281/zenodo.14846667
-
8Academic Journal
Συγγραφείς: A. Sh. Latypov, E. V. Proskurin, O. P. Sidorova, I. A. Vasilenko, D. V. Kassina, M. S. Bunak, А. Ш. Латыпов, Е. В. Проскурина, О. П. Сидорова, И. А. Василенко, Д. В. Кассина, М. С. Бунак
Πηγή: Russian Journal of Child Neurology; Том 19, № 4 (2024); 52-57 ; Русский журнал детской неврологии; Том 19, № 4 (2024); 52-57 ; 2412-9178 ; 2073-8803
Θεματικοί όροι: митохондрии, congenital anomalies, USP9X mutation (OMIM: 300968), mitochondria, врожденные аномалии, мутация в гене USP9X (OMIM: 300968)
Περιγραφή αρχείου: application/pdf
Relation: https://rjdn.abvpress.ru/jour/article/view/496/341; Курбатова О.В., Измайлова Т.Д., Сурков А.Н. и др. Митохондриальная дисфункция у детей с печеночными формами гликогеновой болезни. Вестник Российской академии медицинских наук 2014;69(7–8):78–84. DOI:10.15690/vramn.v69i7-8.1112; Brett M., McPherson J., Zang Z.J. et al. Massively parallel sequencing of patients with intellectual disability, congenital anomalies and/or autism spectrum disorders with a targeted gene panel. PLoS One 2014;9(4):e93409. DOI:10.1371/journal.pone.0093409; Reijnders M.R.F., Zachariadis V., Latour B. et al. De novo loss-of-function mutations in USP9X cause a female-specific recognizable syndrome with developmental delay and congenital malformations. Am J Hum Genet 2016;98(2):373–81. DOI:10.1016/j.ajhg.2015.12.015; Sisoudiya S.D., Mishra P., Li He et al. Identification of USP9X as a leukemia susceptibility gene. Blood Adv 2023;22;7(16):4563–75. DOI:10.1182/bloodadvances.2023009814; https://rjdn.abvpress.ru/jour/article/view/496
-
9Academic Journal
Συγγραφείς: Ефремова Ирина Михайловна, ФГБОУ ВО «Чувашский государственный университет им. И.Н. Ульянова», Irina M. Efremova, Chuvash State University, Курбатова Яна Андреевна, Iana A. Kurbatova, Шамитова Елена Николаевна, Elena N. Shamitova
Πηγή: Fundamental and applied research for key propriety areas of bioecology and biotechnology; 78-81 ; Фундаментальные и прикладные исследования по приоритетным направлениям биоэкологии и биотехнологии; 78-81
Θεματικοί όροι: мелатонин, антиоксидант, триптофан, инфракрасное излучение, митохондрии
Περιγραφή αρχείου: text/html
Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-907965-64-5; https://phsreda.com/e-articles/10716/Action10716-138657.pdf; Mendes L., Queiroz M., Sena C.M. Melatonin and Vascular Function. Antioxidants (Basel). Search in PubMed. 2024 Jun 20;13(6):747. doi:10.3390/antiox13060747. EDN BFUWSJ; Rahmani S., Roohbakhsh A., Pourbarkhordar V., Hayes A.W., Karimi G. Melatonin regulates mitochondrial dynamics and mitophagy: Cardiovascular protection. J Cell Mol Med. Search in PubMed – 2024 Sep; 28 (18) : e70074. doi:10.1111/jcmm.70074. EDN KWUNYJ; Boutin J.A., Kennaway D.J., Jockers R. Melatonin: Facts, Extrapolations and Clinical Trials. Biomolecules Search in PubMed. – 2023 Jun 5; 13(6) : 943. doi:10.3390/biom13060943. EDN GUIQIY; Changjiu He, Jing Wang, Zhenzhen Zhang, Minghui Yang, Yu Li, Xiuzhi Tian, Teng Ma, Jingli Tao, Kuanfeng Zhu, Yukun Song, Pengyun Ji, Guoshi Liu. Mitochondria Synthesize Melatonin to Ameliorate Its Function and Improve Mice Oocyte's Quality under in Vitro Conditions. 2016.; Нейтрализация ангиопоэтина-2 и фактора роста эндотелия сосудов (vegf) с терапевтической целью / Е.Н. Шамитова, К.Г. Матьков, Д.Д. Шихранова, Р.Р. Абдуллин // Acta Medica Eurasica. – 2021. – №2. – С. 64–79. – DOI 10.47026/2413-4864-2021-2-64-79. – EDN DSQYIX; https://phsreda.com/article/138657/discussion_platform
-
10Academic Journal
Συγγραφείς: Myalyuk, O.P., Demchuk, E.N., Sabadyshin, R.A., Babyak, V.I., Babyak, E.V., Korobko, L.R., Habor, H.H.
Πηγή: Azerbaijan Medical Journal. :148-154
Θεματικοί όροι: сахарный диабет, emoxipin, митохондрии, superoxide anion radical, супероксидный анион-радикал, şəkərli diabet, эмоксипин, 3. Good health, mitochondria, döş qəfəsinin travması, emoksipin, травмы грудной клетки, chest trauma, diabetes mellitus, superoksid-anion radikalı, mitoxondrilər
-
11Academic Journal
Συγγραφείς: Loskutov, O.A., Pivovarova, O.A.
Πηγή: EMERGENCY MEDICINE; № 1.80 (2017); 67-70
МЕДИЦИНА НЕОТЛОЖНЫХ СОСТОЯНИЙ; № 1.80 (2017); 67-70
МЕДИЦИНА НЕВІДКЛАДНИХ СТАНІВ; № 1.80 (2017); 67-70Θεματικοί όροι: 03 medical and health sciences, 0302 clinical medicine, митохондрии, стрептозотоциновый диабет, электронная микроскопия, миокард, легкие, mitochondria, streptozotocin diabetes, electron microscopy, myocardium, lungs, мітохондрії, стрептозотоциновий діабет, електронна мікроскопія, міокард, легені
Περιγραφή αρχείου: application/pdf
-
12Academic Journal
Συγγραφείς: О. I. Kit, E. M. Frantsiyants, A. I. Shikhlyarova, I. V. Neskubina, S. A. Ilchenko, О. И. Кит, Е. М. Франциянц, А. И. Шихлярова, И. В. Нескубина, С. А. Ильченко
Πηγή: Research and Practical Medicine Journal; Том 11, № 1 (2024); 40-53 ; Research'n Practical Medicine Journal; Том 11, № 1 (2024); 40-53 ; 2410-1893 ; 10.17709/2410-1893-2024-11-1
Θεματικοί όροι: злокачественные новообразования, mitochondrial DNA, extracellular mitochondria, malignant neoplasms, митохондриальная ДНК, внеклеточные митохондрии
Περιγραφή αρχείου: application/pdf
Relation: https://www.rpmj.ru/rpmj/article/view/982/611; Al Amir Dache Z, Otandault A, Tanos R, Pastor B, Meddeb R, Sanchez C, et al. Blood contains circulating cell-free respiratory competent mitochondria. FASEB J. 2020 Mar;34(3):3616–3630. https://doi.org/10.1096/fj.201901917rr; Liu Z, Sun Y, Qi Z, Cao L, Ding S. Mitochondrial transfer/transplantation: an emerging therapeutic approach for multiple diseases. Cell Biosci. 2022 May 19;12(1):66. https://doi.org/10.1186/s13578-022-00805-7; Shanmughapriya S, Langford D, Natarajaseenivasan K. Inter and Intracellular mitochondrial trafficking in health and disease. Ageing Res Rev. 2020 Sep;62:101128. https://doi.org/10.1016/j.arr.2020.101128; Zampieri LX, Silva-Almeida C, Rondeau JD, Sonveaux P. Mitochondrial transfer in cancer: a comprehensive review. Int J Mol Sci. 2021 Mar 23;22(6):3245. https://doi.org/10.3390/ijms22063245; Liu D, Gao Y, Liu J, Huang Y, Yin J, Feng Y, et al. Intercellular mitochondrial transfer as a means of tissue revitalization. Signal Transduct Target Ther. 2021 Feb 16;6(1):65. https://doi.org/10.1038/s41392-020-00440-z; Кит О. И., Франциянц Е. М., Шихлярова А. И., Нескубина И. В. Механизмы естественного переноса митохондрий в норме и при онкопатологии. Ульяновский медико-биологический журнал. 2023;3:14–29. https://doi.org/10.34014/2227-1848-2023-3-14-29; Pollara J, Edwards RW, Lin L, Bendersky VA, Brennan TV. Circulating mitochondria in deceased organ donors are associated with immune activation and early allograft dysfunction. JCI Insight. 2018 Aug 9;3(15):e121622. https://doi.org/10.1172/jci.insight.121622; Song X, Hu W, Yu H, Wang H, Zhao Y, Korngold R, Zhao Y. Existence of Circulating Mitochondria in Human and Animal Peripheral Blood. Int J Mol Sci. 2020 Mar 19;21(6):2122. https://doi.org/10.3390/ijms21062122; Stefano GB, Kream RM. Mitochondrial DNA heteroplasmy as an informational reservoir dynamically linked to metabolic and immunological processes associated with COVID-19 Neurological Disorders. Cell Mol Neurobiol. 2022 Jan;42(1):99–107. https://doi.org/10.1007/s10571-021-01117-z; Stefano GB, Kream RM. Viruses broaden the definition of life by genomic incorporation of artificial intelligence and machine learning processes. Curr Neuropharmacol. 2022;20(10):1888–1893. https://doi.org/10.2174/1570159x20666220420121746; Chou SH, Lan J, Esposito E, Ning M, Balaj L, Ji X, et al. Extracellular mitochondria in cerebrospinal fluid and neurological recovery after subarachnoid hemorrhage. Stroke. 2017 Aug;48(8):2231–2237. https://doi.org/10.1161/strokeaha.117.017758; Joshi AU, Minhas PS, Liddelow SA, Haileselassie B, Andreasson KI, Dorn GW 2nd, Mochly-Rosen D. Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat Neurosci. 2019 Oct;22(10):1635–1648. https://doi.org/10.1038/s41593-019-0486-0 . Erratum in: Nat Neurosci. 2021 Feb;24(2):289; Angajala A, Lim S, Phillips JB, Kim JH, Yates C, You Z, Tan M. Diverse roles of mitochondria in immune responses: novel insights into immuno-metabolism. Front Immunol. 2018 Jul 12;9:1605. https://doi.org/10.3389/fimmu.2018.01605; Lynch MA. Can the emerging field of immunometabolism provide insights into neuroinflammation? Prog Neurobiol. 2020 Jan;184:101719. https://doi.org/10.1016/j.pneurobio.2019.101719; Wu Z, Oeck S, West AP, Mangalhara KC, Sainz AG, Newman LE, et al. Mitochondrial DNA stress signalling protects the nuclear genome. Nat Metab. 2019 Dec;1(12):1209–1218. https://doi.org/10.1038/s42255-019-0150-8; Dutta S, Das N, Mukherjee P. Picking up a fight: fine tuning mitochondrial innate immune defenses against RNA Viruses. Front Microbiol. 2020 Aug 31;11:1990. https://doi.org/10.3389/fmicb.2020.01990; Tiku V, Tan MW, Dikic I. Mitochondrial Functions in Infection and Immunity. Trends Cell Biol. 2020 Apr;30(4):263-275. https://doi.org/10.1016/j.tcb.2020.01.006 Erratum in: Trends Cell Biol. 2020 Sep;30(9):748; Brokatzky D, Häcker G. Mitochondria: intracellular sentinels of infections. Med Microbiol Immunol. 2022 Aug;211(4):161–172. https://doi.org/10.1007/s00430-022-00742-9; Boudreau LH, Duchez AC, Cloutier N, Soulet D, Martin N, Bollinger J, et al. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood. 2014 Oct 2;124(14):2173–2183. https://doi.org/10.1182/blood-2014-05-573543; Sansone P, Savini C, Kurelac I, Chang Q, Amato LB, Strillacci A, et al. Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proc Natl Acad Sci U S A. 2017 Oct 24;114(43):E9066– E9075. https://doi.org/10.1073/pnas.1704862114; Newell C, Hume S, Greenway SC, Podemski L, Shearer J, Khan A. Plasma-derived cell-free mitochondrial DNA: A novel non-invasive methodology to identify mitochondrial DNA haplogroups in humans. Mol Genet Metab. 2018 Dec;125(4):332–337. https://doi.org/10.1016/j.ymgme.2018.10.002; Grazioli S, Pugin J. Mitochondrial damage-associated molecular patterns: from inflammatory signaling to human diseases. Front Immunol. 2018 May 4;9:832. https://doi.org/10.3389/fimmu.2018.00832; Puhm F, Afonyushkin T, Resch U, Obermayer G, Rohde M, Penz T, et al. Mitochondria are a subset of extracellular vesicles released by activated monocytes and induce type I IFN and TNF responses in endothelial cells. Circ Res. 2019 Jun 21;125(1):43–52. https://doi.org/10.1161/circresaha.118.314601 Epub 2019 May 8. Erratum in: Circ Res. 2019 Oct 25;125(10):e93; Rodríguez-Nuevo A, Zorzano A. The sensing of mitochondrial DAMPs by non-immune cells. Cell Stress. 2019 May 23;3(6):195–207. https://doi.org/10.15698/cst2019.06.190; Bronkhorst AJ, Ungerer V, Diehl F, Anker P, Dor Y, Fleischhacker M, et al. Towards systematic nomenclature for cell-free DNA. Hum Genet. 2021 Apr;140(4):565–578. https://doi.org/10.1007/s00439-020-02227-2; Trumpff C, Rausser S, Haahr R, Karan KR, Gouspillou G, Puterman E, Kirschbaum C, Picard M. Dynamic behavior of cell-free mitochondrial DNA in human saliva. Psychoneuroendocrinology. 2022 Sep;143:105852. https://doi.org/10.1016/j.psyneuen.2022.105852; Tumburu L, Ghosh-Choudhary S, Seifuddin FT, Barbu EA, Yang S, Ahmad MM, et al. Circulating mitochondrial DNA is a proinflammatory DAMP in sickle cell disease. Blood. 2021 Jun 3;137(22):3116–3126. https://doi.org/10.1182/blood.2020009063 Erratum in: Blood. 2022 Sep 15;140(11):1327.; Duvvuri B, Lood C. Cell-free DNA as a biomarker in autoimmune rheumatic diseases. Front Immunol. 2019 Mar 19;10:502. https://doi.org/10.3389/fimmu.2019.00502; Meddeb R, Dache ZAA, Thezenas S, Otandault A, Tanos R, Pastor B, et al. Quantifying circulating cell-free DNA in humans. Sci Rep. 2019 Mar 26;9(1):5220. https://doi.org/10.1038/s41598-019-41593-4; Trumpff C, Marsland AL, Basualto-Alarcón C, Martin JL, Carroll JE, Sturm G, et al. Acute psychological stress increases serum circulating cell-free mitochondrial DNA. Psychoneuroendocrinology. 2019 Aug;106:268–276. https://doi.org/10.1016/j.psyneuen.2019.03.026; Kim K, Moon H, Lee YH, Seo JW, Kim YG, Moon JY, et al. Clinical relevance of cell-free mitochondrial DNA during the early postoperative period in kidney transplant recipients. Sci Rep. 2019 Dec 9;9(1):18607. https://doi.org/10.1038/s41598-019-54694-x; Varhaug KN, Vedeler CA, Myhr KM, Aarseth JH, Tzoulis C, Bindoff LA. Increased levels of cell-free mitochondrial DNA in the cerebrospinal fluid of patients with multiple sclerosis. Mitochondrion. 2017 May;34:32–35. https://doi.org/10.1016/j.mito.2016.12.003; Yen K, Mehta HH, Kim SJ, Lue Y, Hoang J, Guerrero N, et al. The mitochondrial derived peptide humanin is a regulator of lifespan and healthspan. Aging (Albany NY). 2020 Jun 23;12(12):11185–11199. https://doi.org/10.18632/aging.103534; Reynolds JC, Bwiza CP, Lee C. Mitonuclear genomics and aging. Hum Genet. 2020 Mar;139(3):381–399. https://doi.org/10.1007/s00439-020-02119-5; Reynolds JC, Lai RW, Woodhead JST, Joly JH, Mitchell CJ, Cameron-Smith D, et al. MOTS-c is an exercise-induced mitochondrial-encoded regulator of age-dependent physical decline and muscle homeostasis. Nat Commun. 2021 Jan 20;12(1):470. https://doi.org/10.1038/s41467-020-20790-0; Thierry A.R., El Messaoudi S., Gahan P.B., Anker P., Stroun M. Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev. 2016 Sep;35(3):347–376. https://doi.org/10.1007/s10555-016-9629-x; Malik AN, Parsade CK, Ajaz S, Crosby-Nwaobi R, Gnudi L, Czajka A, Sivaprasad S. Altered circulating mitochondrial DNA and increased inflammation in patients with diabetic retinopathy. Diabetes Res Clin Pract. 2015 Dec;110(3):257–265. https://doi.org/10.1016/j.diabres.2015.10.006; Sudakov NP, Popkova TP, Katyshev AI, Goldberg OA, Nikiforov SB, Pushkarev BG, et al. Level of blood cell-free circulating mitochondrial DNA as a novel biomarker of acute myocardial ischemia. Biochemistry (Mosc). 2015 Oct;80(10):1387–1392. https://doi.org/10.1134/s000629791510020x; Zhang Q, Itagaki K, Hauser CJ. Mitochondrial DNA is released by shock and activates neutrophils via p38 map kinase. Shock. 2010;34(1):55–59. https://doi.org/10.1097/shk.0b013e3181cd8c08; Otandault A, Anker P, Al Amir Dache Z, Guillaumon V, Meddeb R, Pastor B, et al. Recent advances in circulating nucleic acids in oncology. Ann Oncol. 2019 Mar 1;30(3):374–384. https://doi.org/10.1093/annonc/mdz031; Sanchez C, Snyder MW, Tanos R, Shendure J, Thierry AR. New insights into structural features and optimal detection of circulating tumor DNA determined by single-strand DNA analysis. NPJ Genom Med. 2018 Nov 23;3:31. https://doi.org/10.1038/s41525-018-0069-0; Heitzer E, Haque IS, Roberts CES, Speicher MR. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat Rev Genet. 2019 Feb;20(2):71–88. https://doi.org/10.1038/s41576-018-0071-5; Zhu Y, Zhang H, Chen N, Hao J, Jin H, Ma X. Diagnostic value of various liquid biopsy methods for pancreatic cancer: A systematic review and meta-analysis. Medicine (Baltimore). 2020 Jan;99(3):e18581. https://doi.org/10.1097/md.0000000000018581; Bronkhorst AJ, Ungerer V, Holdenrieder S. The emerging role of cell-free DNA as a molecular marker for cancer management. Biomol Detect Quantif. 2019 Mar 18;17:100087. https://doi.org/10.1016/j.bdq.2019.100087; Bronkhorst AJ, Ungerer V, Oberhofer A, Holdenrieder S. The rising tide of cell-free DNA profiling: From snapshot to temporal genome analysis. Laboratoriums Medizin. 2022. https://doi.org/10.1515/labmed-2022-0030; Keup C, Suryaprakash V, Hauch S, Storbeck M, Hahn P, Sprenger-Haussels M, et al. Integrative statistical analyses of multiple liquid biopsy analytes in metastatic breast cancer. Genome Med. 2021 May 17;13(1):85. https://doi.org/10.1186/s13073-021-00902-1; Keup C, Kimmig R, Kasimir-Bauer S. Combinatorial power of cfDNA, CTCs and EVs in oncology. Diagnostics (Basel). 2022 Mar 31;12(4):870. https://doi.org/10.3390/diagnostics12040870; Neuberger EWI, Hillen B, Mayr K, Simon P, Krämer-Albers EM, Brahmer A. Kinetics and topology of DNA associated with circulating extracellular vesicles released during exercise. Genes (Basel). 2021 Apr 2;12(4):522. https://doi.org/10.3390/genes12040522; Cisneros-Villanueva M, Hidalgo-Pérez L, Rios-Romero M, Cedro-Tanda A, Ruiz-Villavicencio CA, Page K, et al. Cell-free DNA analysis in current cancer clinical trials: a review. Br J Cancer. 2022 Feb;126(3):391–400. https://doi.org/10.1038/s41416-021-01696-0; Keserű JS, Soltész B, Lukács J, Márton É, Szilágyi-Bónizs M, Penyige A, et al. Detection of cell-free, exosomal and whole blood mitochondrial DNA copy number in plasma or whole blood of patients with serous epithelial ovarian cancer. J Biotechnol. 2019 Jun 10;298:76–81. https://doi.org/10.1016/j.jbiotec.2019.04.015; Castellani CA, Longchamps RJ, Sun J, Guallar E, Arking DE. Thinking outside the nucleus: Mitochondrial DNA copy number in health and disease. Mitochondrion. 2020 Jul;53:214–223. https://doi.org/10.1016/j.mito.2020.06.004; Lin YH, Lim SN, Chen CY, Chi HC, Yeh CT, Lin WR. Functional role of mitochondrial DNA in cancer progression. Int J Mol Sci. 2022 Jan 31;23(3):1659. https://doi.org/10.3390/ijms23031659; Gammage PA, Frezza C. Mitochondrial DNA: the overlooked oncogenome? BMC Biol. 2019 Jul 8;17(1):53. https://doi.org/10.1186/s12915-019-0668-y; Lam ET, Bracci PM, Holly EA, Chu C, Poon A, Wan E, et al. Mitochondrial DNA sequence variation and risk of pancreatic cancer. Cancer Res. 2012 Feb 1;72(3):686–695. https://doi.org/10.1158/0008-5472.can-11-1682; An Q, Hu Y, Li Q, Chen X, Huang J, Pellegrini M, et al. The size of cell-free mitochondrial DNA in blood is inversely correlated with tumor burden in cancer patients. Precis Clin Med. 2019 Sep;2(3):131–139. https://doi.org/10.1093/pcmedi/pbz014; Silagy M, Pes O, Marton E, Boogli G, Soltes B, Keser J, et al. Circulating cell-free nucleic acids: key characteristics and clinical applications. 2020;21(18):6827. https://doi.org/10.3390/ijms21186827; Yue P, Jing S, Liu L, Ma F, Zhang Y, Wang C, et al. Association between mitochondrial DNA copy number and cardiovascular disease: current evidence based on a systematic review and meta-analysis. PLoS One. 2018 Nov 7;13(11):e0206003. https://doi.org/10.1371/journal.pone.0206003; Dabravolski SA, Khotina VA, Sukhorukov VN, Kalmykov VA, Mikhaleva LM, Orekhov AN. The role of mitochondrial DNA mutations in cardiovascular diseases. Int J Mol Sci. 2022 Jan 16;23(2):952. https://doi.org/10.3390/ijms23020952; Tuchalska-Czuroń J, Lenart J, Augustyniak J, Durlik M. Is mitochondrial DNA copy number a good prognostic marker in resectable pancreatic cancer? Pancreatology. 2019 Jan;19(1):73–79. https://doi.org/10.1016/j.pan.2018.11.009; Gentiluomo M, Katzke VA, Kaaks R, Tjønneland A, Severi G, Perduca V, et al. Mitochondrial DNA copy-number variation and pancreatic cancer risk in the prospective EPIC cohort. Cancer Epidemiol Biomarkers Prev. 2020 Mar;29(3):681–686. https://doi.org/10.1158/1055-9965.epi-19-0868; Moro L. Mitochondrial DNA and mitomir variations in pancreatic cancer: potential diagnostic and prognostic biomarkers. Int J Mol Sci. 2021 Sep 7;22(18):9692. https://doi.org/10.3390/ijms22189692; Randeu H, Bronkhorst AJ, Mayer Z, Oberhofer A, Polatoglou E, Heinemann V, et al. Preanalytical variables in the analysis of mitochondrial DNA in whole blood and plasma from pancreatic cancer patients. Diagnostics (Basel). 2022 Aug 6;12(8):1905. https://doi.org/10.3390/diagnostics12081905; Bernal-Tirapo J, Bayo Jiménez MT, Yuste-García P, Cordova I, Peñas A, García-Borda FJ, et al. Evaluation of mitochondrial function in blood samples shows distinct patterns in subjects with thyroid carcinoma from those with hyperplasia. Int J Mol Sci. 2023 Mar 29;24(7):6453. https://doi.org/10.3390/ijms24076453; Stefano GB, Büttiker P, Weissenberger S, Esch T, Anders M, Raboch J, et al. Independent and sensory human mitochondrial functions reflecting symbiotic evolution. Front Cell Infect Microbiol. 2023 Jun 14;13:1130197. https://doi.org/10.3389/fcimb.2023.1130197; Singh A, Faccenda D, Campanella M. Pharmacological advances in mitochondrial therapy. EBioMedicine. 2021 Mar;65:103244. https://doi.org/10.1016/j.ebiom.2021.103244; Catalán M, Olmedo I, Faúndez J, Jara JA. Medicinal chemistry targeting mitochondria: from new vehicles and pharmacophore groups to old drugs with mitochondrial activity. Int J Mol Sci. 2020 Nov 18;21(22):8684. https://doi.org/10.3390/ijms21228684; Xu J, Shamul JG, Kwizera EA, He X. Recent advancements in mitochondria-targeted nanoparticle drug delivery for cancer therapy. Nanomaterials (Basel). 2022 Feb 23;12(5):743. https://doi.org/10.3390/nano12050743; https://www.rpmj.ru/rpmj/article/view/982
-
13Academic Journal
Συγγραφείς: D. A. Andreev, E. I. Balakin, A. S. Samoilov, V. I. Pustovoit, Д. А. Андреев, Е. И. Балакин, А. С. Самойлов, В. И. Пустовойт
Συνεισφορές: The study was conducted on an initiative basis., Исследование проводилось на инициативной основе.
Πηγή: Drug development & registration; Том 13, № 1 (2024); 190-199 ; Разработка и регистрация лекарственных средств; Том 13, № 1 (2024); 190-199 ; 2658-5049 ; 2305-2066
Θεματικοί όροι: митохондрии, doxorubicin, cardiotoxicity, cardiomyocytes, mitochondria, доксорубицин, кардиотоксичность, кардиомиоциты
Περιγραφή αρχείου: application/pdf
Relation: https://www.pharmjournal.ru/jour/article/view/1720/1236; https://www.pharmjournal.ru/jour/article/downloadSuppFile/1720/2062; Di Marco A., Cassinelli G., Arcamone F. The discovery of daunorubicin. Cancer treatment reports. 1981;65(4):3–8.; Tan C., Tasaka H., Yu K. P., Murphy M. L., Karnofsky D. A. Daunomycin, an antitumor antibiotic, in the treatment of neoplastic disease. Clinical evaluation with special reference to childhood leukemia. Cancer. 1967;20(3):333–353. DOI:10.1002/1097-0142(1967)20:33.0.co;2-k.; Arcamone F., Cassinelli G., Fantini G., Grein A., Orezzi P., Pol C., Spalla C. Adriamycin, 14-hydroxydaunomycin, a new antitumor antibiotic from S. peucetius var. caesius. Biotechnology and Bioengineering. 1969;11(6):1101–1110. DOI:10.1002/bit.260110607.; Chaulin A. M., Duplyakov D. V. Arrhythmogenic effects of doxorubicin. Complex Issues of Cardiovascular Diseases. 2020;9(3):69–80. DOI:10.17802/2306-1278-2020-9-3-69-80.; Yang F., Kemp C. J., Henikoff S. Doxorubicin Enhances Nucleosome Turnover around Promoters. Current Biology. 2013;23(9):782–787. DOI:10.1016/j.cub.2013.03.043.; Von Hoff D. D. Risk Factors for Doxorubicin-lnduced Congestive Heart Failure. Annals of Internal Medicine. 1979;91(5):710. DOI:10.7326/0003-4819-91-5-710.; Swain S. M., Whaley F. S., Ewer M. S. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer. 2003;97(11):2869–2879. DOI:10.1002/cncr.11407.; Cardinale D., Colombo A., Bacchiani G., Tedeschi I., Meroni C. A., Veglia F., Civelli M., Lamantia G., Colombo N., Curigliano G., Fiorentini C., Cipolla C. M. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015;131(22):1981–1988. DOI:10.1161/CIRCULATIONAHA.114.013777.; Cardinale D., Sandri M. T., Martinoni A., Borghini E., Civelli M., Lamantia G., Cinieri S., Martinelli G., Fiorentini C., Cipolla C. M. Myocardial injury revealed by plasma troponin I in breast cancer treated with high-dose chemotherapy. Annals of Oncology. 2002;13(5):710–715. DOI:10.1093/annonc/mdf170.; Thavendiranathan P., Poulin F., Lim K. D., Plana J. C., Woo A., Marwick T. H. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. Journal of the American College of Cardiology. 2014;63(25 Pt. A):2751–2768. DOI:10.1016/j.jacc.2014.01.073.; Linschoten M., Teske A. J., Cramer M. J., van der Wall E., Asselbergs F. W. Chemotherapy-Related Cardiac Dysfunction: A Systematic Review of Genetic Variants Modulating Individual Risk. Circulation: Genomic and Precision Medicine. 2018;11(1):e001753. DOI:10.1161/CIRCGEN.117.001753.; Miller K. D., Nogueira L., Mariotto A. B., Rowland J. H., Yabroff K. R., Alfano C. M., Jemal A., Kramer J. L., Siegel R. L. Cancer treatment and survivorship statistics, 2019. CA: A Cancer Journal for Clinicians. 2019;69(5):363–385. DOI:10.3322/caac.21565.; Billingham M. E., Mason J. W., Bristow M. R., Daniels J. R. Anthracycline cardiomyopathy monitored by morphologic changes. Cancer treatment reports. 1978;62(6):865–872.; Bristow M. R., Mason J. W., Billingham M. E., Daniels J. R. Doxorubicin cardiomyopathy: evaluation by phonocardiography, endomyocardial biopsy, and cardiac catheterization. Annals of Internal Medicine. 1978;88(2):168–175. DOI:10.7326/0003-4819-88-2-168.; Ewer S. M., Ewer M. S. Cardiotoxicity profile of trastuzumab. Drug Safety. 2008;31(6):459–467. DOI:10.2165/00002018-200831060-00002.; Ferrans V. J. Overview of cardiac pathology in relation to anthracycline cardiotoxicity. Cancer treatment reports. 1978;62(6):955–961.; Shan K., Lincoff A. M., Young J. B. Anthracycline-induced cardiotoxicity. Annals of Internal Medicine. 1996;125(1):47–58. DOI:10.7326/0003-4819-125-1-199607010-00008.; Berry G. J., Jorden M. Pathology of radiation and anthracycline cardiotoxicity. Pediatric Blood & Cancer. 2005;44(7):630–637. DOI:10.1002/pbc.20346.; Šimůnek T., Štěrba M., Popelová O., Adamcová M., Hrdina R., Geršl V. Anthracycline-induced cardiotoxicity: Overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacological Reports. 2009;61(1):154–171. DOI:10.1016/S1734-1140(09)70018-0.; Xu X., Persson H. L., Richardson D. R. Molecular Pharmacology of the Interaction of Anthracyclines with Iron. Molecular Pharmacology. 2005;68(2):261–271. DOI:10.1124/mol.105.013383.; Doroshow J. H., Davies K. J. Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. Journal of Biological Chemistry. 1986;261(7):3068–3074. DOI:10.1016/s0021-9258(17)35747-2.; Winterbourn C. C. Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicology Letters. 1995;82–83:969–974. DOI:10.1016/0378-4274(95)03532-X.; Keizer H. G., Pinedo H. M., Schuurhuis G. J., Joenje H. Doxorubicin (adriamycin): a critical review of free radical-dependent mechanisms of cytotoxicity. Pharmacology & Therapeutics. 1990;47(2):219–231. DOI:10.1016/0163-7258(90)90088-j.; Myers C. E., Gianni L., Simone C. B., Klecker R., Greene R. Oxidative destruction of erythrocyte ghost membranes catalyzed by the doxorubicin-iron complex. Biochemistry. 1982;21(8):1707–1712. DOI:10.1021/bi00537a001.; Minotti G., Recalcati S., Mordente A., Liberi G., Calafiore A. M., Mancuso C., Preziosi P., Cairo G. The secondary alcohol metabolite of doxorubicin irreversibly inactivates aconitase/iron regulatory protein-1 in cytosolic fractions from human myocardium. The FASEB Journal. 1998;12(7):541–552. DOI:10.1096/fasebj.12.7.541.; Bugger H., Guzman C., Zechner C., Palmeri M., Russell K. S., Russell R. R. Uncoupling protein downregulation in doxorubicin-induced heart failure improves mitochondrial coupling but increases reactive oxygen species generation. Cancer Chemotherapy and Pharmacology. 2011;67(6):1381–1388. DOI:10.1007/s00280-010-1441-7.; Wu X.-Y., Luo A.-Y., Zhou Y.-R., Ren J.-H. N-acetylcysteine reduces oxidative stress, nuclear factor-κB activity and cardiomyocyte apoptosis in heart failure. Molecular Medicine Reports. 2014;10(2):615–624. DOI:10.3892/mmr.2014.2292.; Van Dalen E. C., Caron H. N., Dickinson H. O., Kremer L. C. M. Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database of Systematic Reviews. 2011. DOI:10.1002/14651858.CD003917.pub4.; Jo S.-H., Kim L. S., Kim S.-A., Kim H.-S., Han S.-J., Park W. J., Choi Y. J. Evaluation of Short-Term Use of N-Acetylcysteine as a Strategy for Prevention of Anthracycline-Induced Cardiomyopathy: EPOCH Trial – A Prospective Randomized Study. Korean Circulation Journal. 2013;43(3):174–181. DOI:10.4070/kcj.2013.43.3.174.; Hasinoff B. B., Patel D., Wu X. The oral iron chelator ICL670A (deferasirox) does not protect myocytes against doxorubicin. Free Radical Biology and Medicine. 2003;35(11):1469–1479. DOI:10.1016/j.freeradbiomed.2003.08.005.; Popelová O., Sterba M., Simůnek T., Mazurová Y., Guncová I., Hroch M., Adamcová M., Geršl V. Deferiprone does not protect against chronic anthracycline cardiotoxicity in vivo. Journal of Pharmacology and Experimental Therapeutics. 2008;326(1):259–269. DOI:10.1124/jpet.108.137604.; Elihu N., Anandasbapathy S., Frishman W. H. Chelation therapy in cardiovascular disease: ethylenediaminetetraacetic acid, deferoxamine, and dexrazoxane. The Journal of Clinical Pharmacology. 1998;38(2):101–105. DOI:10.1002/j.1552-4604.1998.tb04397.x.; Giordano F. J. Oxygen, oxidative stress, hypoxia, and heart failure. Journal of Clinical Investigation. 2005;115(3):500–508. DOI:10.1172/JCI200524408.; Goormaghtigh E., Chatelain P., Caspers J., Ruysschaert J. M. Evidence of a complex between adriamycin derivatives and cardiolipin: Possible role in cardiotoxicity. Biochemical Pharmacology. 1980;29(21):3003–3010. DOI:10.1016/0006-2952(80)90050-7.; Childs A. C., Phaneuf S. L., Dirks A. J., Phillips T., Leeuwenburgh C. Doxorubicin treatment in vivo causes cytochrome C release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2:Bax ratio. Cancer Research. 2002;62(16):4592–4598.; Ichikawa Y., Ghanefar M., Bayeva M., Wu R., Khechaduri A., Naga Prasad S. V., Mutharasan R. K., Naik T. J., Ardehali H. Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. Journal of Clinical Investigation. 2014;124(2):617–630. DOI:10.1172/JCI72931.; Tewey K. M., Rowe T. C., Yang L., Halligan B. D., Liu L. F. Adriamycin-Induced DNA Damage Mediated by Mammalian DNA Topoisomerase II. Science. 1984;226(4673):466–468. DOI:10.1126/science.6093249.; Wang J. C. Cellular roles of DNA topoisomerases: a molecular perspective. Nature Reviews Molecular Cell Biology. 2002;3(6):430–440. DOI:10.1038/nrm831.; Zhang S., Liu X., Bawa-Khalfe T., Lu L.-S., Lyu Y. L., Liu L. F., Yeh E. T. H. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nature Medicine. 2012;18(11):1639–1642. DOI:10.1038/nm.2919.; Vavrova A., Jansova H., Mackova E., Machacek M., Haskova P., Tichotova L., Sterba M., Simunek T. Catalytic inhibitors of topoisomerase II differently modulate the toxicity of anthracyclines in cardiac and cancer cells. PloS One. 2013;8(10):e76676. DOI:10.1371/journal.pone.0076676.; Classen S., Olland S., Berger J. M. Structure of the topoisomerase II ATPase region and its mechanism of inhibition by the chemotherapeutic agent ICRF-187. Proceedings of the National Academy of Sciences. 2003;100(19):10629–10634. DOI:10.1073/pnas.1832879100.; Khiati S., Dalla Rosa I., Sourbier C., Ma X., Rao V. A., Neckers L. M., Zhang H., Pommier Y. Mitochondrial Topoisomerase I (Top1mt) Is a Novel Limiting Factor of Doxorubicin Cardiotoxicity. Clinical Cancer Research. 2014;20(18):4873–4881. DOI:10.1158/1078-0432.CCR-13-3373.; Lebrecht D., Kokkori A., Ketelsen U. P., Setzer B., Walker U. A. Tissue-specific mtDNA lesions and radical-associated mitochondrial dysfunction in human hearts exposed to doxorubicin. The Journal of Pathology. 2005;207(4):436–444. DOI:10.1002/path.1863.; Lebrecht D., Setzer B., Ketelsen U. P., Haberstroh J., Walker U. A. Time-Dependent and Tissue-Specific Accumulation of mtDNA and Respiratory Chain Defects in Chronic Doxorubicin Cardiomyopathy. Circulation. 2003;108(19):2423–2429. DOI:10.1161/01.CIR.0000093196.59829.DF.; Yin J., Guo J., Zhang Q., Cui L., Zhang L., Zhang T., Zhao J., Li J., Middleton A., Carmichael P. L., Peng S. Doxorubicin-induced mitophagy and mitochondrial damage is associated with dysregulation of the PINK1/parkin pathway. Toxicology in Vitro. 2018;51:1–10. DOI:10.1016/j.tiv.2018.05.001.; Vega R. B., Horton J. L., Kelly D. P. Maintaining ancient organelles. Mitochondrial biogenesis and maturation. Circulation Research. 2015;116(11):1820–1834. DOI:10.1161/CIRCRESAHA.116.305420.; Kruiswijk F., Labuschagne C. F., Vousden K. H. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nature Reviews Molecular Cell Biology. 2015;16(7):393–405. DOI:10.1038/nrm4007.; Zhuang J., Ma W., Lago C. U., Hwang P. M. Metabolic regulation of oxygen and redox homeostasis by p53: lessons from evolutionary biology? Free Radical Biology and Medicine. 2012;53(6):1279–1285. DOI:10.1016/j.freeradbiomed.2012.07.026.; Hoshino A., Mita Y., Okawa Y., Ariyoshi M., Iwai-Kanai E., Ueyama T., Ikeda K., Ogata T., Matoba S. Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart. Nature Communications. 2013;4(1):2308. DOI:10.1038/ncomms3308.; Dhingra R., Margulets V., Chowdhury S. R., Thliveris J., Jassal D., Fernyhough P., Dorn G. W., Kirshenbaum L. A. Bnip3 mediates doxorubicin-induced cardiac myocyte necrosis and mortality through changes in mitochondrial signaling. Proceedings of the National Academy of Sciences. 2014;111(51):E5537–E5544. DOI:10.1073/pnas.1414665111.; Fang X., Wang H., Han D., Xie E., Yang X., Wei J., Gu S., Gao F., Zhu N., Yin X., Cheng Q., Zhang P., Dai W., Chen J., Yang F., Yang H.-T., Linkermann A., Gu W., Min J., Wang F. Ferroptosis as a target for protection against cardiomyopathy. Proceedings of the National Academy of Sciences. 2019;116(7):2672–2680. DOI:10.1073/pnas.1821022116.; Zhu W., Soonpaa M. H., Chen H., Shen W., Payne R. M., Liechty E. A., Caldwell R. L., Shou W., Field L. J. Acute doxorubicin cardiotoxicity is associated with p53-induced inhibition of the mammalian target of rapamycin pathway. Circulation. 2009;119(1):99–106. DOI:10.1161/CIRCULATIONAHA.108.799700.; Zhu W., Zhang W., Shou W., Field L. J. P53 inhibition exacerbates late-stage anthracycline cardiotoxicity. Cardiovascular Research. 2014;103(1):81–89. DOI:10.1093/cvr/cvu118.; Nithipongvanitch R., Ittarat W., Velez J. M., Zhao R., St. Clair D. K., Oberley T. D. Evidence for p53 as Guardian of the Cardiomyocyte Mitochondrial Genome Following Acute Adriamycin Treatment. Journal of Histochemistry & Cytochemistry. 2007;55(6):629–639. DOI:10.1369/jhc.6A7146.2007.; Saleme B., Gurtu V., Zhang Y., Kinnaird A., Boukouris A. E., Gopal K., Ussher J. R., Sutendra G. Tissue-specific regulation of p53 by PKM2 is redox dependent and provides a therapeutic target for anthracycline-induced cardiotoxicity. Science Translational Medicine. 2019;11(478):eaau8866. DOI:10.1126/scitranslmed.aau8866.; Sala V., Li M., Ghigo A. New avenues in cardio-oncology. Aging. 2019;11(4):1075–1076. DOI:10.18632/aging.101817.; Sawyer D. B., Zuppinger C., Miller T. A., Eppenberger H. M., Suter T. M. Modulation of Anthracycline-Induced Myofibrillar Disarray in Rat Ventricular Myocytes by Neuregulin-1β and Anti-erbB2: Potential Mechanism for Trastuzumab-Induced Cardiotoxicity. Circulation. 2002;105(13):1551–1554. DOI:10.1161/01.CIR.0000013839.41224.1C.; Granzier H. L., Labeit S. The giant protein titin: a major player in myocardial mechanics, signaling, and disease. Circulation Research. 2004;94(3):284–295. DOI:10.1161/01.RES.0000117769.88862.F8.; Ali M. A. M., Cho W. J., Hudson B., Kassiri Z., Granzier H., Schulz R. Titin is a Target of Matrix Metalloproteinase-2: Implications in Myocardial Ischemia/Reperfusion Injury. Circulation. 2010;122(20):2039–2047. DOI:10.1161/CIRCULATIONAHA.109.930222.; Lim C. C., Zuppinger C., Guo X., Kuster G. M., Helmes M., Eppenberger H. M., Suter T. M., Liao R., Sawyer D. B. Anthracyclines Induce Calpain-dependent Titin Proteolysis and Necrosis in Cardiomyocytes. Journal of Biological Chemistry. 2004;279(9):8290–8299. DOI:10.1074/jbc.M308033200.; Sala V., Della Sala A., Hirsch E., Ghigo A. Signaling Pathways Underlying Anthracycline Cardiotoxicity. Antioxidants & Redox Signaling. 2020;32(15):1098–1114. DOI:10.1089/ars.2020.8019.; Galvez A. S., Diwan A., Odley A. M., Hahn H. S., Osinska H., Melendez J. G., Robbins J., Lynch R. A., Marreez Y., Dorn G. W. Cardiomyocyte degeneration with calpain deficiency reveals a critical role in protein homeostasis. Circulation Research. 2007;100(7):1071–1078. DOI:10.1161/01.RES.0000261938.28365.11.; Taneike M., Mizote I., Morita T., Watanabe T., Hikoso S., Yamaguchi O., Takeda T. , Oka T., Tamai T., Oyabu J., Murakawa T., Nakayama H., Nishida K., Takeda J., Mochizuki N., Komuro I., Otsu K. Calpain protects the heart from hemodynamic stress. Journal of Biological Chemistry. 2011;286(37):32170–32177. DOI:10.1074/jbc.M111.248088.; Wang Y., Zheng D., Wei M., Ma J., Yu Y., Chen R., Lacefield J. C., Xu H., Peng T. Over-expression of calpastatin aggravates cardiotoxicity induced by doxorubicin. Cardiovascular Research. 2013;98(3):381–390. DOI:10.1093/cvr/cvt048.; Chan B. Y. H., Roczkowsky A., Moser N., Poirier M., Hughes B. G., Ilarraza R., Schulz R. Doxorubicin induces de novo expression of N-terminal-truncated matrix metalloproteinase-2 in cardiac myocytes. Canadian Journal of Physiology and Pharmacology. 2018;96(12):1238–1245. DOI:10.1139/cjpp-2018-0275.; Doucet A., Overall C. Protease proteomics: Revealing protease in vivo functions using systems biology approaches. Molecular Aspects of Medicine. 2008;29(5):339–358. DOI:10.1016/j.mam.2008.04.003.; McCawley L. J., Matrisian L. M. Matrix metalloproteinases: they’re not just for matrix anymore! Current Opinion in Cell Biology. 2001;13(5):534–540. DOI:10.1016/s0955-0674(00)00248-9.; Gao C. Q., Sawicki G., Suarez-Pinzon W. L., Csont T., Wozniak M., Ferdinandy P., Schulz R. Matrix metalloproteinase-2 mediates cytokine-induced myocardial contractile dysfunction. Cardiovascular Research. 2003;57(2):426–433. DOI:10.1016/s0008-6363(02)00719-8.; Wang W., Schulze C. J., Suarez-Pinzon W. L., Dyck J. R. B., Sawicki G., Schulz R. Intracellular Action of Matrix Metalloproteinase-2 Accounts for Acute Myocardial Ischemia and Reperfusion Injury. Circulation. 2002;106(12):1543–1549. DOI:10.1161/01.CIR.0000028818.33488.7B.; Sawicki G., Leon H., Sawicka J., Sariahmetoglu M., Schulze C. J., Scott P. G., Szczesna-Cordary D., Schulz R. Degradation of Myosin Light Chain in Isolated Rat Hearts Subjected to Ischemia-Reperfusion Injury: A New Intracellular Target for Matrix Metalloproteinase-2. Circulation. 2005;112(4):544–552. DOI:10.1161/CIRCULATIONAHA.104.531616.; Sung M. M., Schulz C. G., Wang W., Sawicki G., Bautista-López N. L., Schulz R. Matrix metalloproteinase-2 degrades the cytoskeletal protein α-actinin in peroxynitrite mediated myocardial injury. Journal of Molecular and Cellular Cardiology. 2007;43(4):429–436. DOI:10.1016/j.yjmcc.2007.07.055.; Bergman M. R., Teerlink J. R., Mahimkar R., Li L., Zhu B. Q., Nguyen A., Dahi S., Karliner J. S., Lovett D. H. Cardiac matrix metalloproteinase-2 expression independently induces marked ventricular remodeling and systolic dysfunction. American Journal of Physiology-Heart and Circulatory Physiology. 2007;292(4):H1847–H1860. DOI:10.1152/ajpheart.00434.2006.; Chan B. Y. H., Roczkowsky A., Cho W. J., Poirier M., Sergi C., Keschrumrus V., Churko J. M., Granzier H., Schulz R. MMP inhibitors attenuate doxorubicin cardiotoxicity by preventing intracellular and extracellular matrix remodelling. Cardiovascular Research. 2021;117(1):188–200. DOI:10.1093/cvr/cvaa017.; Tanihata J., Nishioka N., Inoue T., Bando K., Minamisawa S. Urinary Titin Is Increased in Patients After Cardiac Surgery. Frontiers in Cardiovascular Medicine. 2019;6. DOI:10.3389/fcvm.2019.00007.; Zhang T., Zhang Y., Cui M., Jin L., Wang Y., Lv F., Liu Y., Zheng W., Shang H., Zhang J., Zhang M., Wu H., Guo J., Zhang X., Hu X., Cao C.-M., Xiao R.-P. CaMKII is a RIP3 substrate mediating ischemiaand oxidative stress-induced myocardial necroptosis. Nature Medicine. 2016;22(2):175–182. DOI:10.1038/nm.4017.; Meng L., Lin H., Zhang J., Lin N., Sun Z., Gao F., Luo H., Ni T., Luo W., Chi J., Guo H. Doxorubicin induces cardiomyocyte pyroptosis via the TINCR-mediated posttranscriptional stabilization of NLR family pyrin domain containing 3. Journal of Molecular and Cellular Cardiology. 2019;136:15–26. DOI:10.1016/j.yjmcc.2019.08.009.; Zheng X., Zhong T., Ma Y., Wan X., Qin A., Yao B., Zou H., Song Y., Yin D. Bnip3 mediates doxorubicin-induced cardiomyocyte pyroptosis via caspase-3/GSDME. Life Sciences. 2020;242:117186. DOI:10.1016/j.lfs.2019.117186.; Arola O. J., Saraste A., Pulkki K., Kallajoki M., Parvinen M., Voipio-Pulkki L. M. Acute doxorubicin cardiotoxicity involves cardiomyocyte apoptosis. Cancer Research. 2000;60(7):1789–1792.; Bartlett J. J., Trivedi P. C., Pulinilkunnil T. Autophagic dysregulation in doxorubicin cardiomyopathy. Journal of Molecular and Cellular Cardiology. 2017;104:1–8. DOI:10.1016/j.yjmcc.2017.01.007.; Koleini N., Kardami E. Autophagy and mitophagy in the context of doxorubicin-induced cardiotoxicity. Oncotarget. 2017;8(28):46663–46680. DOI:10.18632/oncotarget.16944.; Li M., Russo M., Pirozzi F., Tocchetti C. G., Ghigo A. Autophagy and cancer therapy cardiotoxicity: From molecular mechanisms to therapeutic opportunities. Biochimica et Biophysica Acta (BBA) – Molecular Cell Research. 2020;1867(3):118493. DOI:10.1016/j.bbamcr.2019.06.007.; Xiao B., Hong L., Cai X., Mei S., Zhang P., Shao L. The true colors of autophagy in doxorubicin-induced cardiotoxicity. Oncology Letters. 2019;18(3):2165–2172. DOI:10.3892/ol.2019.10576.; Bartlett J. J., Trivedi P. C., Yeung P., Kienesberger P. C., Pulinilkunnil T. Doxorubicin impairs cardiomyocyte viability by suppressing transcription factor EB expression and disrupting autophagy. Biochemical Journal. 2016;473(21):3769–3789. DOI:10.1042/BCJ20160385.; Li D. L., Wang Z. V., Ding G., Tan W., Luo X., Criollo A., Xie M., Jiang N., May H., Kyrychenko V., Schneider J. W., Gillette T. G., Hill J. A. Doxorubicin Blocks Cardiomyocyte Autophagic Flux by Inhibiting Lysosome Acidification. Circulation. 2016;133(17):1668–1687. DOI:10.1161/CIRCULATIONAHA.115.017443.; Li M., Sala V., De Santis M. C., Cimino J., Cappello P., Pianca N., Di Bona A., Margaria J. P., Martini M., Lazzarini E., Pirozzi F., Rossi L., Franco I., Bornbaum J., Heger J., Rohrbach S., Perino A., Tocchetti C. G., Lima B. H. F., Teixeira M. M., Porporato P. E., Schulz R., Angelini A., Sandri M., Ameri P., Sciarretta S., Lima-Júnior R. C. P., Mongillo M., Zaglia T., Morello F., Novelli F., Hirsch E., Ghigo A. Phosphoinositide 3-Kinase Gamma Inhibition Protects From Anthracycline Cardiotoxicity and Reduces Tumor Growth. Circulation. 2018;138(7):696–711. DOI:10.1161/CIRCULATIONAHA.117.030352.; Ejiri J., Inoue N., Kobayashi S., Shiraki R., Otsui K., Honjo T., Takahashi M., Ohashi Y., Ichikawa S., Terashima M., Mori T., Awano K., Shinke T., Shite J., Hirata K.-I., Yokozaki H., Kawashima S., Yokoyama M. Possible role of brain-derived neurotrophic factor in the pathogenesis of coronary artery disease. Circulation. 2005;112(14):2114–2120. DOI:10.1161/CIRCULATIONAHA.104.476903.; Meloni M., Caporali A., Graiani G., Lagrasta C., Katare R., Van Linthout S., Spillmann F., Campesi I., Madeddu P., Quaini F., Emanueli C. Nerve growth factor promotes cardiac repair following myocardial infarction. Circulation Research. 2010;106(7):1275–1284. DOI:10.1161/CIRCRESAHA.109.210088.; Liao D., Zhang C., Liu N., Cao L., Wang C., Feng Q., Yao D., Long M., Jiang P. Involvement of neurotrophic signaling in doxorubicin-induced cardiotoxicity. Experimental and Therapeutic Medicine. 2020;19(2):1129–1135. DOI:10.3892/etm.2019.8276.; Hang P., Zhao J., Sun L., Li M., Han Y., Du Z., Li Y. Brain-derived neurotrophic factor attenuates doxorubicin-induced cardiac dysfunction through activating Akt signalling in rats. Journal of Cellular and Molecular Medicine. 2017;21(4):685–696. DOI:10.1111/jcmm.13012.; Zhao J., Du J., Pan Y., Chen T., Zhao L., Zhu Y., Chen Y., Zheng Y., Liu Y., Sun L., Hang P., Du Z. Activation of cardiac TrkB receptor by its small molecular agonist 7,8-dihydroxyflavone inhibits doxorubicin-induced cardiotoxicity via enhancing mitochondrial oxidative phosphorylation. Free Radical Biology and Medicine. 2019;130:557–567. DOI:10.1016/j.freeradbiomed.2018.11.024.; https://www.pharmjournal.ru/jour/article/view/1720
-
14Academic Journal
Συγγραφείς: D. A. Andreev, E. I. Balakin, A. S. Samoilov, V. I. Pustovoit, Д. А. Андреев, Е. И. Балакин, А. С. Самойлов, В. И. Пустовойт
Πηγή: Drug development & registration; Том 13, № 3 (2024); 208-218 ; Разработка и регистрация лекарственных средств; Том 13, № 3 (2024); 208-218 ; 2658-5049 ; 2305-2066
Θεματικοί όροι: митохондрии, doxorubicin, cardiotoxicity, cardiomyocytes, mitochondria, доксорубицин, кардиотоксичность, кардиомиоциты
Περιγραφή αρχείου: application/pdf
Relation: https://www.pharmjournal.ru/jour/article/view/1913/1312; https://www.pharmjournal.ru/jour/article/downloadSuppFile/1913/2426; Andreev D. A., Balakin E. I., Samoilov A. S., Pustovoit V. I. The Role of Doxorubicin in the Formation of Cardiotoxicity – Generally Accepted Statement. Part I. Prevalence and Mechanisms of Formation (Review). Drug development & registration. 2024;13(1):190–199. (In Russ.) DOI:10.33380/2305-2066-2024-13-1-1508.; Wallace K. B., Sardão V. A., Oliveira P. J. Mitochondrial Determinants of Doxorubicin-Induced Cardiomyopathy. Circulation Research. 2020;126(7):926–941. DOI:10.1161/CIRCRESAHA.119.314681.; Lefrak E. A., Pitha J., Rosenheim S., Gottlieb J. A. A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer. 1973;32(2):302–314. DOI:10.1002/1097-0142(197308)32:23.0.co;2-2.; Swain S. M., Whaley F. S., Ewer M. S. Congestive heart failure in patients treated with doxorubicin. Cancer. 2003;97(11):2869–2879. DOI:10.1002/cncr.11407.; Arai M., Yoguchi A., Takizawa T., Yokoyama T., Kanda T., Kurabayashi M., Nagai R. Mechanism of doxorubicin-induced inhibition of sarcoplasmic reticulum Ca 2+ -ATPase gene transcription. Circulation Research. 2000;86(1):8–14. DOI:10.1161/01.res.86.1.8.; Steinherz L. J., Steinherz P. G., Tan C. T., Heller G., Murphy M. L. Cardiac toxicity 4 to 20 years after completing anthracycline therapy. JAMA. 1991;266(12):1672–1677.; Maksjutov N. F., Murtazin A. A., Balakin E. I., Pustovoit V. I. Using machine learning approaches and omics technologies for assessment of human functional state. Modern Issues of Biomedicine. 2022;6(3). (In Russ.) DOI:10.51871/2588-0500_2022_06_03_14.; Cardinale D., Colombo A., Bacchiani G., Tedeschi I., Meroni C. A., Veglia F., Civelli M., Lamantia G., Colombo N., Curigliano G., Fiorentini C., Cipolla C. M. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015;131(22):1981–1988. DOI:10.1161/CIRCULATIONAHA.114.013777.; Pustovoit V. I., Balakin E. I., Maksjutov N. F., Murtazin A. A., Samoylov A. S. Change in the functional status of extreme athletes in response to adverse environmental conditions. Human sport medicine. 2022;22(S2):22–29. DOI:10.14529/hsm22s203.; Jordan J. H., Castellino S. M., Meléndez G. C., Klepin H. D., Ellis L. R., Lamar Z., Vasu S., Kitzman D. W., Ntim W. O., Brubaker P. H., Reichek N., D’Agostino R. B., Hundley W. G. Left Ventricular Mass Change After Anthracycline Chemotherapy. Circulation: Heart Failure. 2018;11(7):e004560. DOI:10.1161/CIRCHEARTFAILURE.117.004560.; Willis M. S., Parry T. L., Brown D. I., Mota R. I., Huang W., Beak J. Y., Sola M., Zhou C., Hicks S. T., Caughey M. C., D’Agostino R. B., Jordan J., Hundley W. G., Jensen B. C. Doxorubicin Exposure Causes Subacute Cardiac Atrophy Dependent on the Striated Muscle-Specific Ubiquitin Ligase MuRF1. Circulation: Heart Failure. 2019;12(3):e005234. DOI:10.1161/CIRCHEARTFAILURE.118.005234.; Kajihara H., Yokozaki H., Yamahara M., Kadomoto Y., Tahara E. Anthracycline induced myocardial damage: An analysis of 16 autopsy cases. Pathology – Research and Practice. 1986;181(4):434–441. DOI:10.1016/S0344-0338(86)80079-6.; Prezioso L., Tanzi S., Galaverna F., Frati C., Testa B., Savi M., Graiani G., Lagrasta C., Cavalli S., Galati S., Madeddu D., Rizzini E., Ferraro F., Musso E., Stilli D., Urbanek K., Piegari E., De Angelis A., Maseri A., Rossi F., Quaini E., Quaini F. Cancer Treatment-Induced Cardiotoxicity: a Cardiac Stem Cell Disease? Cardiovascular & Hematological Agents in Medicinal Chemistry. 2010;8(1):55–75. DOI:10.2174/187152510790796165.; Bearzi C., Rota M., Hosoda T., Tillmanns J., Nascimbene A., De Angelis A., Yasuzawa-Amano S., Trofimova I., Siggins R. W., LeCapitaine N., Cascapera S., Beltrami A. P., D'Alessandro D. A., Zias E., Quaini F., Urbanek K., Michler R. E., Bolli R., Kajstura J., Leri A., Anversa P. Human cardiac stem cells. Proceedings of the National Academy of Sciences. 2007;104(35):14068–14073. DOI:10.1073/pnas.0706760104.; Beltrami A. P., Barlucchi L., Torella D., Baker M., Limana F., Chimenti S., Kasahara H., Rota M., Musso E., Urbanek K., Leri A., Kajstura J., Nadal-Ginard B., Anversa P. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114(6):763–776. DOI:10.1016/s0092-8674(03)00687-1.; Pfister O., Mouquet F., Jain M., Summer R., Helmes M., Fine A., Colucci W. S., Liao R. CD31 – but Not CD31 + cardiac side population cells exhibit functional cardiomyogenic differentiation. Circulation Research. 2005;97(1):52–61. DOI:10.1161/01.RES.0000173297.53793.fa.; Smith R. R., Barile L., Cho H. C., Leppo M. K., Hare J. M., Messina E., Giacomello A., Abraham M. R., Marbán E. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation. 2007;115(7):896–908. DOI:10.1161/CIRCULATIONAHA.106.655209.; Cesselli D., Beltrami A. P., D’Aurizio F., Marcon P., Bergamin N., Toffoletto B., Pandolfi M., Puppato E., Marino L., Signore S., Livi U., Verardo R., Piazza S., Marchionni L., Fiorini C., Schneider C., Hosoda T., Rota M., Kajstura J., Anversa P., Beltrami C. A., Leri A. Effects of age and heart failure on human cardiac stem cell function. The American Journal of Pathology. 2011;179(1):349–366. DOI:10.1016/j.ajpath.2011.03.036.; Chimenti C., Kajstura J., Torella D., Urbanek K., Heleniak H., Colussi C., Di Meglio F., Nadal-Ginard B., Frustaci A., Leri A., Maseri A., Anversa P. Senescence and death of primitive cells and myocytes lead to premature cardiac aging and heart failure. Circulation Research. 2003;93(7):604–613. DOI:10.1161/01.RES.0000093985.76901.AF.; Rota M., LeCapitaine N., Hosoda T., Boni A., De Angelis A., Padin-Iruegas M. E., Esposito G., Vitale S., Urbanek K., Casarsa C., Giorgio M., Lüscher T. F., Pelicci P. G., Anversa P., Leri A., Kajstura J. Diabetes promotes cardiac stem cell aging and heart failure, which are prevented by deletion of the p66 shc gene. Circulation Research. 2006;99(1):42–52. DOI:10.1161/01.RES.0000231289.63468.08.; Rupp S., Bauer J., von Gerlach S., Fichtlscherer S., Zeiher A. M., Dimmeler S., Schranz D. Pressure overload leads to an increase of cardiac resident stem cells. Basic Research in Cardiology. 2012;107(2):252. DOI:10.1007/s00395-012-0252-x.; Urbanek K., Torella D., Sheikh F., De Angelis A., Nurzynska D., Silvestri F., Beltrami C. A., Bussani R., Beltrami A. P., Quaini F., Bolli R., Leri A., Kajstura J., Anversa P. Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proceedings of the National Academy of Sciences. 2005;102(24):8692–8697. DOI:10.1073/pnas.0500169102.; Avolio E., Gianfranceschi G., Cesselli D., Caragnano A., Athanasakis E., Katare R., Meloni M., Palma A., Barchiesi A., Vascotto C., Toffoletto B., Mazzega E., Finato N., Aresu G., Livi U., Emanueli C., Scoles G., Beltrami C. A., Madeddu P., Beltrami A. P. Ex vivo molecular rejuvenation improves the therapeutic activity of senescent human cardiac stem cells in a mouse model of myocardial infarction. Stem Cells. 2014;32(9):2373–2385. DOI:10.1002/stem.1728.; Kajstura J., Gurusamy N., Ogórek B., Goichberg P., Clavo-Rondon C., Hosoda T., D'Amario D., Bardelli S., Beltrami A. P., Cesselli D., Bussani R., del Monte F., Quaini F., Rota M., Beltrami C. A., Buchholz B. A., Leri A., Anversa P. Myocyte Turnover in the Aging Human Heart. Circulation Research. 2010;107(11):1374–1386. DOI:10.1161/CIRCRESAHA.110.231498.; Huang C., Zhang X., Ramil J. M., Rikka S., Kim L., Lee Y., Gude N. A., Thistlethwaite P. A., Sussman M. A., Gottlieb R. A., Gustafsson Å. B. Juvenile exposure to anthracyclines impairs cardiac progenitor cell function and vascularization resulting in greater susceptibility to stress-induced myocardial injury in adult mice. Circulation. 2010;121(5):675–683. DOI:10.1161/CIRCULATIONAHA.109.902221.; De Angelis A., Piegari E., Cappetta D., Marino L., Filippelli A., Berrino L., Ferreira-Martins J., Zheng H., Hosoda T., Rota M., Urbanek K., Kajstura J., Leri A., Rossi F., Anversa P. Anthracycline cardiomyopathy is mediated by depletion of the cardiac stem cell pool and is rescued by restoration of progenitor cell function. Circulation. 2010;121(2):276–292. DOI:10.1161/CIRCULATIONAHA.109.895771.; Piegari E., De Angelis A., Cappetta D., Russo R., Esposito G., Costantino S., Graiani G., Frati C., Prezioso L., Berrino L., Urbanek K., Quaini F., Rossi F. Doxorubicin induces senescence and impairs function of human cardiac progenitor cells. Basic Research in Cardiology. 2013;108(2):334. DOI:10.1007/s00395-013-0334-4.; De Angelis A., Piegari E., Cappetta D., Russo R., Esposito G., Ciuffreda L. P., Ferraiolo F. A. V., Frati C., Fagnoni F., Berrino L., Quaini F., Rossi F., Urbanek K. SIRT1 activation rescues doxorubicin-induced loss of functional competence of human cardiac progenitor cells. International Journal of Cardiology. 2015;189:30–44. DOI:10.1016/j.ijcard.2015.03.438.; Linke A., Müller P., Nurzynska D., Casarsa C., Torella D., Nascimbene A., Castaldo C., Cascapera S., Böhm M., Quaini F., Urbanek K., Leri A., Hintze T. H., Kajstura J., Anversa P. Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proceedings of the National Academy of Sciences. 2005;102(25):8966–8971. DOI:10.1073/pnas.0502678102.; Torella D., Rota M., Nurzynska D., Musso E., Monsen A., Shiraishi I., Zias E., Walsh K., Rosenzweig A., Sussman M. A., Urbanek K., Nadal-Ginard B., Kajstura J., Anversa P., Leri A. Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circulation Research. 2004;94(4):514–524. DOI:10.1161/01.RES.0000117306.10142.50.; Urbanek K., Rota M., Cascapera S., Bearzi C., Nascimbene A., De Angelis A., Hosoda T., Chimenti S., Baker M., Limana F., Nurzynska D., Torella D., Rotatori F., Rastaldo R., Musso E., Quaini F., Leri A., Kajstura J., Anversa P. Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circulation Research. 2005;97(7):663–673. DOI:10.1161/01.RES.0000183733.53101.11.; Powell E. M., Mars W. M., Levitt P. Hepatocyte Growth Factor/Scatter Factor Is a Motogen for Interneurons Migrating from the Ventral to Dorsal Telencephalon. Neuron. 2001;30(1):79–89. DOI:10.1016/S0896-6273(01)00264-1.; Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell. 2005;120(4):513–522. DOI:10.1016/j.cell.2005.02.003.; Beauséjour C. M., Krtolica A., Galimi F., Narita M., Lowe S. W., Yaswen P., Campisi J. Reversal of human cellular senescence: roles of the p53 and p16 pathways. The EMBO Journal. 2003;22(16):4212–4222. DOI:10.1093/emboj/cdg417.; Takai H., Smogorzewska A., de Lange T. DNA damage foci at dysfunctional telomeres. Current Biology. 2003;13(17):1549–1556. DOI:10.1016/s0960-9822(03)00542-6.; Ali M. K., Ewer M. S., Gibbs H. R., Swafford J., Graff K. L. Late doxorubicin-associated cardiotoxicity in children. Cancer. 1994;74(1):182–188. DOI:10.1002/1097-0142(19940701)74:13.0.co;2-2.; Chen M. H., Colan S. D., Diller L. Cardiovascular disease: cause of morbidity and mortality in adult survivors of childhood cancers. Circulation Research. 2011;108(5):619–628. DOI:10.1161/CIRCRESAHA.110.224519.; Pai V. B., Nahata M. C. Cardiotoxicity of chemotherapeutic agents: incidence, treatment and prevention. Drug Safety. 2000;22(4):263–302. DOI:10.2165/00002018-200022040-00002.; Kuwahara F., Kai H., Tokuda K., Kai M., Takeshita A., Egashira K., Imaizumi T. Transforming growth Factor-β function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation. 2002;106(1):130–135. DOI:10.1161/01.cir.0000020689.12472.e0.; Krstić J., Trivanović D., Mojsilović S., Santibanez J. F. Transforming Growth Factor-Beta and Oxidative Stress Interplay: Implications in Tumorigenesis and Cancer Progression. Oxidative Medicine and Cellular Longevity. 2015;2015:654594. DOI:10.1155/2015/654594.; Li A.-H., Liu P. P., Villarreal F. J., Garcia R. A. Dynamic changes in myocardial matrix and relevance to disease: translational perspectives. Circulation Research. 2014;114(5):916–927. DOI:10.1161/CIRCRESAHA.114.302819.; Cappetta D., Esposito G., Piegari E., Russo R., Ciuffreda L. P., Rivellino A., Berrino L., Rossi F., De Angelis A., Urbanek K. SIRT1 activation attenuates diastolic dysfunction by reducing cardiac fibrosis in a model of anthracycline cardiomyopathy. International Journal of Cardiology. 2016;205:99–110. DOI:10.1016/j.ijcard.2015.12.008.; Urbanek K., Cesselli D., Rota M., Nascimbene A., De Angelis A., Hosoda T., Bearzi C., Boni A., Bolli R., Kajstura J., Anversa P., Leri A. Stem cell niches in the adult mouse heart. Proceedings of the National Academy of Sciences. 2006;103(24):9226–9231. DOI:10.1073/pnas.0600635103.; Ramkisoensing A. A., de Vries A. A. F., Atsma D. E., Schalij M. J., Pijnappels D. A. Interaction between myofibroblasts and stem cells in the fibrotic heart: balancing between deterioration and regeneration. Cardiovascular Research. 2014;102(2):224–231. DOI:10.1093/cvr/cvu047.; Soultati A., Mountzios G., Avgerinou C., Papaxoinis G., Pectasides D., Dimopoulos M.-A., Papadimitriou C. Endothelial vascular toxicity from chemotherapeutic agents: Preclinical evidence and clinical implications. Cancer Treatment Reviews. 2012;38(5):473–483. DOI:10.1016/j.ctrv.2011.09.002.; Bielak-Zmijewska A., Wnuk M., Przybylska D., Grabowska W., Lewinska A., Alster O., Korwek Z., Cmoch A., Myszka A., Pikula S., Mosieniak G., Sikora E. A comparison of replicative senescence and doxorubicin-induced premature senescence of vascular smooth muscle cells isolated from human aorta. Biogerontology. 2014;15(1):47–64. DOI:10.1007/s10522-013-9477-9.; Murata T., Yamawaki H., Hori M., Sato K., Ozaki H., Karaki H. Chronic vascular toxicity of doxorubicin in an organ-cultured artery. British Journal of Pharmacology. 2001;132(7):1365–1373. DOI:10.1038/sj.bjp.0703959.; Urbich C., Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circulation Research. 2004;95(4):343–353. DOI:10.1161/01.RES.0000137877.89448.78.; Rafii S., Lyden D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nature Medicine. 2003;9(6):702–712. DOI:10.1038/nm0603-702.; Hamed S., Barshack I., Luboshits G., Wexler D., Deutsch V., Keren G., George J. Erythropoietin improves myocardial performance in doxorubicin-induced cardiomyopathy. European Heart Journal. 2006;27(15):1876–1883. DOI:10.1093/eurheartj/ehl044.; Takahashi T., Kalka C., Masuda H., Chen D., Silver M., Kearney M., Magner M., Isner J. M., Asahara T. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nature Medicine. 1999;5(4):434–438. DOI:10.1038/7434.; Hill J. M., Zalos G., Halcox J. P. J., Schenke W. H., Waclawiw M. A., Quyyumi A. A., Finkel T. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. New England Journal of Medicine. 2003;348(7):593–600. DOI:10.1056/NEJMoa022287.; Maejima Y., Adachi S., Ito H., Hirao K., Isobe M. Induction of premature senescence in cardiomyocytes by doxorubicin as a novel mechanism of myocardial damage. Aging Cell. 2008;7(2):125–136. DOI:10.1111/j.1474-9726.2007.00358.x.; Spallarossa P., Altieri P., Barisione C., Passalacqua M., Aloi C., Fugazza G., Frassoni F., Podestà M., Canepa M., Ghigliotti G., Brunelli C. p38 MAPK and JNK antagonistically control senescence and cytoplasmic p16INK4A expression in doxorubicin-treated endothelial progenitor cells. PLoS ONE. 2010;5(12):e15583. DOI:10.1371/journal.pone.0015583.; Wada T., Stepniak E., Hui L., Leibbrandt A., Katada T., Nishina H., Wagner E. F., Penninger J. M. Antagonistic control of cell fates by JNK and p38-MAPK signaling. Cell Death & Differentiation. 2008;15(1):89–93. DOI:10.1038/sj.cdd.4402222.; Spallarossa P., Altieri P., Pronzato P., Aloi C., Ghigliotti G., Barsotti A., Brunelli C. Sublethal doses of an anti-erbB2 antibody leads to death by apoptosis in cardiomyocytes sensitized by low prosenescent doses of epirubicin: the protective role of dexrazoxane. Journal of Pharmacology and Experimental Therapeutics. 2010;332(1):87–96. DOI:10.1124/jpet.109.159525.; Yasuda K., Park H.-C., Ratliff B., Addabbo F., Hatzopoulos A. K., Chander P., Goligorsky M. S. Adriamycin nephropathy: a failure of endothelial progenitor cell-induced repair. The American Journal of Pathology. 2010;176(4):1685–1695. DOI:10.2353/ajpath.2010.091071.; Moore M. A. S., Hattori K., Heissig B., Shieh J.-H., Dias S., Crystal R. G., Rafii S. Mobilization of endothelial and hematopoietic stem and progenitor cells by adenovector-mediated elevation of serum levels of SDF-1, VEGF, and angiopoietin-1. Annals of the New York Academy of Sciences. 2001;938(1):36–47. DOI:10.1111/j.1749-6632.2001.tb03572.x.; McNiece I. K., Briddell R. A., Hartley C. A., Smith K. A., Andrews R. G. Stem cell factor enhances in vivo effects of granulocyte colony stimulating factor for stimulating mobilization of peripheral blood progenitor cells. STEM CELLS. 1993;11(S2):36–41. DOI:10.1002/stem.5530110807.; Quaini F., Urbanek K., Beltrami A. P., Finato N., Beltrami C. A., Nadal-Ginard B., Kajstura J., Leri A., Anversa P. Chimerism of the transplanted heart. New England Journal of Medicine. 2002;346(1):5–15. DOI:10.1056/NEJMoa012081.; Thiele J., Varus E., Wickenhauser C., Kvasnicka H. M., Metz K. A., Beelen D. W. Regeneration of heart muscle tissue: quantification of chimeric cardiomyocytes and endothelial cells following transplantation. Histol Histopathol. 2004;19(1):201–209. DOI:10.14670/HH-19.201.; Fukuhara S., Tomita S., Nakatani T., Ohtsu Y., Ishida M., Yutani C., Kitamura S. G-CSF promotes bone marrow cells to migrate into infarcted mice heart, and differentiate into cardiomyocytes. Cell Transplantation. 2004;13(7–8):741–748. DOI:10.3727/000000004783983486.; Tomita S., Ishida M., Nakatani T., Fukuhara S., Hisashi Y., Ohtsu Y., Suga M., Yutani C., Yagihara T., Yamada K., Kitamura S. Bone marrow is a source of regenerated cardiomyocytes in doxorubicin-induced cardiomyopathy and granulocyte colony-stimulating factor enhances migration of bone marrow cells and attenuates cardiotoxicity of doxorubicin under electron microscopy. The Journal of Heart and Lung Transplantation. 2004;23(5):577–584. DOI:10.1016/j.healun.2003.06.001.; Urbanek K., Frati C., Graiani G., Madeddu D., Falco A., Cavalli S., Lorusso B., Gervasi A., Prezioso L., Savi M., Ferraro F., Galaverna F., Rossetti P., Lagrasta C., Re F., Quaini E., Rossi F., Angelis A., Quaini F. Cardioprotection by Targeting the Pool of Resident and Extracardiac Progenitors. Current Drug Targets. 2015;16(8):884–894. DOI:10.2174/1389450116666150126105002.; Yang F., Chen H., Liu Y., Yin K., Wang Y., Li X., Wang G., Wang S., Tan X., Xu C., Lu Y., Cai B. Doxorubicin caused apoptosis of mesenchymal stem cells via p38, JNK and p53 pathway. Cellular Physiology and Biochemistry. 2013;32(4):1072–1082. DOI:10.1159/000354507.; Oliveira M. S., Carvalho J. L., De Angelis Campos A. C., Gomes D. A., de Goes A. M., Melo M. M. Doxorubicin has in vivo toxicological effects on ex vivo cultured mesenchymal stem cells. Toxicology Letters. 2014;224(3):380–386. DOI:10.1016/j.toxlet.2013.11.023.; Lipshultz S. E., Lipsitz S. R., Sallan S. E., Dalton V. M., Mone S. M., Gelber R. D., Colan S. D. Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. Journal of Clinical Oncology. 2005;23(12):2629–2636. DOI:10.1200/JCO.2005.12.121.; Legha S. S., Benjamin R. S., Mackay B., Yap H. Y., Wallace S., Ewer M., Blumenschein G. R., Freireich E. J. Adriamycin therapy by continuous intravenous infusion in patients with metastatic breast cancer. Cancer. 1982;49(9):1762–1766. DOI:10.1002/1097-0142(19820501)49:93.0.co;2-q.; Batist G. Cardiac safety of liposomal anthracyclines. Cardiovascular Toxicology. 2007;7(2):72–74. DOI:10.1007/s12012-007-0014-4.; Van Dalen E. C., Michiels E. M. C., Caron H. N., Kremer L. C. M. Different anthracycline derivates for reducing cardiotoxicity in cancer patients. Cochrane Database of Systematic Reviews. 2010;(3):CD005006. DOI:10.1002/14651858.CD005006.pub3.; Lipshultz S. E., Scully R. E., Lipsitz S. R., Sallan S. E., Silverman L. B., Miller T. L., Barry E. V., Asselin B. L., Athale U., Clavell L. A., Larsen E., Moghrabi A., Samson Y., Michon B., Schorin M. A., Cohen H. J., Neuberg D. S., Orav E. J., Colan S. D. Assessment of dexrazoxane as a cardioprotectant in doxorubicin-treated children with high-risk acute lymphoblastic leukaemia: long-term follow-up of a prospective, randomised, multicentre trial. The Lancet Oncology. 2010;11(10):950–961. DOI:10.1016/S1470-2045(10)70204-7.; Speyer J. L., Green M. D., Zeleniuch-Jacquotte A., Wernz J. C., Rey M., Sanger J., Kramer E., Ferrans V., Hochster H., Meyers M. ICRF-187 permits longer treatment with doxorubicin in women with breast cancer. Journal of Clinical Oncology. 1992;10(1):117–127. DOI:10.1200/JCO.1992.10.1.117.; Hochster H. S. Clinical pharmacology of dexrazoxane. Seminars in Oncology. 1998;25(4 Suppl 10):37–42.; Lyu Y. L., Kerrigan J. E., Lin C.-P., Azarova A. M., Tsai Y.-C., Ban Y., Liu L. F. Topoisomerase IIβ–Mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Research. 2007;67(18):8839–8846. DOI:10.1158/0008-5472.CAN-07-1649.; Ladas E. J., Jacobson J. S., Kennedy D. D., Teel K., Fleischauer A., Kelly K. M. Antioxidants and cancer therapy: a systematic review. Journal of Clinical Oncology. 2004;22(3):517–528. DOI:10.1200/JCO.2004.03.086.; Kalay N., Basar E., Ozdogru I., Er O., Cetinkaya Y., Dogan A., Oguzhan A., Eryol N. K., Topsakal R., Ergin A., Inanc T. Protective effects of carvedilol against anthracycline-induced cardiomyopathy. Journal of the American College of Cardiology. 2006;48(11):2258–2262. DOI:10.1016/j.jacc.2006.07.052.; Kaya M. G., Ozkan M., Gunebakmaz O., Akkaya H., Kaya E. G., Akpek M., Kalay N., Dikilitas M., Yarlioglues M., Karaca H., Berk V., Ardic I., Ergin A., Lam Y. Y. Protective effects of nebivolol against anthracycline-induced cardiomyopathy: a randomized control study. International Journal of Cardiology. 2013;167(5):2306–2310. DOI:10.1016/j.ijcard.2012.06.023.; Spallarossa P., Garibaldi S., Altieri P., Fabbi P., Manca V., Nasti S., Rossettin P., Ghigliotti G., Ballestrero A., Patrone F. Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro. Journal of Molecular and Cellular Cardiology. 2004;37(4):837–846. DOI:10.1016/j.yjmcc.2004.05.024.; Mason R. P., Kalinowski L., Jacob R. F., Jacoby A. M., Malinski T. Nebivolol reduces nitroxidative stress and restores nitric oxide bioavailability in endothelium of black Americans. Circulation. 2005;112(24):3795–3801. DOI:10.1161/CIRCULATIONAHA.105.556233.; Singal P., Li T., Kumar D., Danelisen I., Iliskovic N. Adriamycin-induced heart failure: mechanism and modulation. Molecular and Cellular Biochemistry. 2000;207(1–2):77–86. DOI:10.1023/a:1007094214460.; Ascensão A., Magalhães J., Soares J. M. C., Ferreira R., Neuparth M. J., Marques F., Oliveira P. J., Duarte J. A. Moderate endurance training prevents doxorubicin-induced in vivo mitochondriopathy and reduces the development of cardiac apoptosis. American Journal of Physiology-Heart and Circulatory Physiology. 2005;289(2):H722–H731. DOI:10.1152/ajpheart.01249.2004.; Foote K., Reinhold J., Yu E. P. K., Figg N. L., Finigan A., Murphy M. P., Bennett M. R. Restoring mitochondrial DNA copy number preserves mitochondrial function and delays vascular aging in mice. Aging Cell. 2018;17(4):e12773. DOI:10.1111/acel.12773.; Yue P., Jing S., Liu L., Ma F., Zhang Y., Wang C., Duan H., Zhou K., Hua Y., Wu G., Li Y. Association between mitochondrial DNA copy number and cardiovascular disease: Current evidence based on a systematic review and meta-analysis. PLOS ONE. 2018;13(11):e0206003. DOI:10.1371/journal.pone.0206003.; Pustovoit V. I. Database of methods for complex nutritional-metabolic correction of the functional state of an athlete’s body under extreme loads. RF patent for invention. Patent RUS № RU 2022622848. 11.11.2022. Available at: https://istina.msu.ru/patents/510751941/ Accessed: 29.01.2024.; Pustovoit V. I., Balakin E. I., Khan A. V., Murtazin A. A., Maksjutov N. F., Merkulova P. S., Kubyshev K. A. The combination of traditional cardiorespiratory markers during treadmill testing "to failure" in athletes, depending on professional activity. Sports medicine: research and practice. 2022;12(3):51–59. (In Russ.) DOI:10.47529/2223-2524.2022.3.5.; https://www.pharmjournal.ru/jour/article/view/1913
-
15Academic Journal
Συγγραφείς: A. U. Khamadyanova, R. M. Mannanov, D. M. Smakova, F. I. Musaeva, D. G. Bedelov, A. E. Ibragimov, A. A. Rusinova, M. M. Salikhova, S. V. Shtukaturova, T. V. Doroshenko, M. V. Fattakhova, M. K. Rakhimova, L. R. Marinova, А. У. Хамадьянова, Р. М. Маннанов, Д. М. Смакова, Ф. И. Мусаева, Д. Г. Беделов, А. Э. Ибрагимов, А. А. Русинова, М. М. Салихова, С. В. Штукатурова, Т. В. Дорошенко, М. В. Фаттахова, М. К. Рахимова, Л. Р. Маринова
Πηγή: Obstetrics, Gynecology and Reproduction; Vol 18, No 5 (2024); 720-734 ; Акушерство, Гинекология и Репродукция; Vol 18, No 5 (2024); 720-734 ; 2500-3194 ; 2313-7347
Θεματικοί όροι: сперматогенез, coenzyme Q10, CoQ10, oxidative stress, reproduction, mitochondria, organogenesis, oogenesis, spermatogenesis, коэнзим Q10, окислительный стресс, репродукция, митохондрии, органогенез, оогенез
Περιγραφή αρχείου: application/pdf
Relation: https://www.gynecology.su/jour/article/view/2136/1234; Башмакова Н.В., Третьякова Т.Б., Демченко Н.С. Цитогенетические нарушения у эмбриона при неразвивающейся беременности. Российский вестник акушера-гинеколога. 2013;13(4):18–21.; Новикова Н.Ю., Цибизова В.И., Первунина Т.М., Малушко А.В. Нутрициология и образ жизни при беременности. Российский журнал персонализированной медицины. 2023;3(2):82–92. https://doi.org/10.18705/2782-3806-2023-3-2-82-92.; Святова Г.С., Березина Г.М., Муртазалиева А.В. Генетические аспекты идиопатической формы привычного невынашивания беременности. Медицинская генетика. 2020;19(11):83–4. https://doi.org/10.25557/2073-7998.2020.11.83-84.; Адамян Л.В., Геворгян А.П. Аутофагия как новое звено в механизме развития нарушений репродуктивной системы (обзор литературы). Проблемы репродукции. 2019;25(5):6–14.; Zhao J., Yao K., Yu H. et al. Metabolic remodelling during early mouse embryo development. Nat Metab. 2021;3(10):1372–84. https://doi.org/10.1038/s42255-021-00464-x.; Motiei M., Vaculikova K., Cela A. et al. Non-invasive human embryo metabolic assessment as a developmental criterion. J Clin Med. 2020;9(12):4094. https://doi.org/10.3390/jcm9124094.; Ayer A., Fazakerley D.J., Suarna C. et al. Genetic screening reveals phospholipid metabolism as a key regulator of the biosynthesis of the redox-active lipid coenzyme Q. Redox Biol. 2021;46:102127. https://doi.org/10.1016/j.redox.2021.102127.; You X., Ryu M.J., Cho E. et al. Embryonic expression of nrasG 12 D leads to embryonic lethality and cardiac defects. Front Cell Dev Biol. 2021;9:633661. https://doi.org/10.3389/fcell.2021.633661.; Wu Y., Yang D., Chen G.Y. Targeted disruption of Rab1a causes early embryonic lethality. Int J Mol Med. 2022;49(4):46. https://doi.org/10.3892/ijmm.2022.5101.; Liang R., Chen X., Zhang Y. et al. Clinical features and gene variation analysis of COQ8B nephropathy: Report of seven cases. Front Pediatr. 2023;10:1030191. https://doi.org/10.3389/fped.2022.1030191.; Somnay Y.R., Wang A., Griffiths K.K., Levy R.J. Altered brown adipose tissue mitochondrial function in newborn fragile X syndrome mice. Mitochondrion. 2022;65:1–10. https://doi.org/10.1016/j.mito.2022.04.003.; Guerra R.M., Pagliarini D.J. Coenzyme Q biochemistry and biosynthesis. Trends Biochem Sci. 2023;48(5):463–76. https://doi.org/10.1016/j.tibs.2022.12.006.; Gutierrez-Mariscal F.M., Arenas-de Larriva A.P., Limia-Perez L. et al. Coenzyme Q10 supplementation for the reduction of oxidative stress: clinical implications in the treatment of chronic diseases. Int J Mol Sci. 2020;21(21):7870. https://doi.org/10.3390/ijms21217870.; Navas P., Sanz A. Editorial: "Mitochondrial coenzyme Q homeostasis: Signalling, respiratory chain stability and diseases". Free Radic Biol Med. 2021;169:12–3. https://doi.org/10.1016/j.freeradbiomed.2021.04.005.; Alcázar-Fabra M., Rodríguez-Sánchez F., Trevisson E., Brea-Calvo G. Primary Coenzyme Q deficiencies: A literature review and online platform of clinical features to uncover genotype-phenotype correlations. Free Radic Biol Med. 2021;167:141–80. https://doi.org/10.1016/j.freeradbiomed.2021.02.046.; Zhao M., Tian Z., Zhao D. et al. L-shaped association between dietary coenzyme Q10 intake and high-sensitivity C-reactive protein in Chinese adults: a national cross-sectional study. Food Funct. 2023;14(21):9815–24. https://doi.org/10.1039/d3fo00978e.; Громова О.А., Торшин И.Ю. Молекулярная фармакология коэнзима Q10 в контексте лечения гиперлипидемических состояний. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2023;16(2):345–57. https://doi.org/10.17749/2070-4909/farmakoekonomika.2023.186.; Lapuente-Brun E., Moreno-Loshuertos R., Acín-Pérez R. et al. Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science. 2013;340(6140):1567–70. https://doi.org/10.1126/science.1230381.; Griffiths K.K., Wang A., Levy R.J. Assessment of open probability of the mitochondrial permeability transition pore in the setting of coenzyme Q excess. J Vis Exp. 2022;(184). https://doi.org/10.3791/63646.; Oh J.N., Lee M., Choe G.C. et al. The number of primitive endoderm cells in the inner cell mass is regulated by platelet-derived growth factor signaling in porcine preimplantation embryos. Anim Biosci. 2023;36(8):1180–9. https://doi.org/10.5713/ab.22.0481.; Gauster M., Moser G., Wernitznig S. et al. Early human trophoblast development: from morphology to function. Cell Mol Life Sci. 2022;79(6):345. https://doi.org/10.1007/s00018-022-04377-0.; Wardle F.C. Mesoderm differentiation in vertebrate development and regenerative medicine. Semin Cell Dev Biol. 2022;127:1–2. https://doi.org/10.1016/j.semcdb.2022.02.014.; Adhikari D., Lee I.W., Yuen W.S., Carroll J. Oocyte mitochondria-key regulators of oocyte function and potential therapeutic targets for improving fertility. Biol Reprod. 2022;106(2):366–77. https://doi.org/10.1093/biolre/ioac024.; Непша О.С., Кулакова Е.В., Екимов А.Н. и др. Использование митохондриальной ДНК эмбрионов в качества предиктора эффективности программ вспомогательных репродуктивных технологий. Акушерство и гинекология. 2021;11:125–34. https://doi.org/10.18565/aig.2021.11.125-134.; Kang M.H., Kim Y.J., Lee J.H. Mitochondria in reproduction. Clin Exp Reprod Med. 2023;50(1):1–11. https://doi.org/10.5653/cerm.2022.05659.; Czernik M., Winiarczyk D., Sampino S. et al. Mitochondrial function and intracellular distribution is severely affected in in vitro cultured mouse embryos. Sci Rep. 2022;12(1):16152. https://doi.org/10.1038/s41598-022-20374-6.; Marchante M., Ramirez-Martin N., Buigues A. et al. Deciphering reproductive aging in women using a NOD/SCID mouse model for distinct physiological ovarian phenotypes. Aging (Albany NY). 2023;15(20):10856–74. https://doi.org/10.18632/aging.205086.; Адамян Л.В., Сибирская Е.В., Щерина А.В. Патогенетические аспекты преждевременной недостаточности яичников. Проблемы репродукции. 2021;27(1):6–12.; van der Reest J., Nardini Cecchino G., Haigis M.C., Kordowitzki P. Mitochondria: Their relevance during oocyte ageing. Ageing Res Rev. 2021;70:101378. https://doi.org/10.1016/j.arr.2021.101378.; Jiang Z., Shen H. Mitochondria: emerging therapeutic strategies for oocyte rescue. Reprod Sci. 2022;29(3):711–22. https://doi.org/10.1007/s43032-021-00523-4.; Hudson G., Takeda Y., Herbert M. Reversion after replacement of mitochondrial DNA. Nature. 2019;574(7778):8–11. https://doi.org/10.1038/s41586-019-1623-3.; Блашкив Т.В., Шепель А.А. Вознесенская Т.Ю. Экспрессия генов клетками кумулюсного окружения ооцита в период овуляции и оплодотворения (обзор литературы). Проблемы репродукции. 2014;(1):55–8.; Hu Y., Zhang R., Zhang S. et al. Transcriptomic profiles reveal the characteristics of oocytes and cumulus cells at GV, MI, and MII in follicles before ovulation. J Ovarian Res. 2023;16(1):225. https://doi.org/10.1186/s13048-023-01291-2.; Babayev E., Duncan F.E. Age-associated changes in cumulus cells and follicular fluid: the local oocyte microenvironment as a determinant of gamete quality. Biol Reprod. 2022;106(2):351–65. https://doi.org/10.1093/biolre/ioab241.; Krawczyk K., Marynowicz W., Pich K. et al. Persistent organic pollutants affect steroidogenic and apoptotic activities in granulosa cells and reactive oxygen species concentrations in oocytes in the mouse. Reprod Fertil Dev. 2023;35(3):294–305. https://doi.org/10.1071/RD21326.; Yu L., Liu M., Xu S. et al. Follicular fluid steroid and gonadotropic hormone levels and mitochondrial function from exosomes predict embryonic development. Front Endocrinol (Lausanne). 2022;13:1025523. https://doi.org/10.3389/fendo.2022.1025523.; Gasmi A., Bjørklund G., Mujawdiya P.K. et al. Coenzyme Q10 in aging and disease. Crit Rev Food Sci Nutr. 2024;64(12):3907–19. https://doi.org/10.1080/10408398.2022.2137724.; Yang C.X., Liu S., Miao J.K. et al. CoQ10 improves meiotic maturation of pig oocytes through enhancing mitochondrial function and suppressing oxidative stress. Theriogenology. 2021;159:77–86. https://doi.org/10.1016/j.theriogenology.2020.10.009.; Brown A.M., McCarthy H.E. The Effect of CoQ10 supplementation on ART treatment and oocyte quality in older women. Hum Fertil (Camb). 2023;26(6):1544–52. https://doi.org/10.1080/14647273.2023.2194554.; Yang J., Feng T., Li S. et al. Human follicular fluid shows diverse metabolic profiles at different follicle developmental stages. Reprod Biol Endocrinol. 2020;18(1):74. https://doi.org/10.1186/s12958-020-00631-x.; Giannubilo S.R., Orlando P., Silvestri S. et al. CoQ10 Supplementation in patients undergoing IVF-ET: The relationship with follicular fluid content and oocyte maturity. Antioxidants (Basel). 2018;7(10):141. https://doi.org/10.3390/antiox7100141.; Lee C.H., Kang M.K., Sohn D.H. et al. Coenzyme Q10 ameliorates the quality of mouse oocytes during in vitro culture. Zygote. 2022;30(2):249–57. https://doi.org/10.1017/S0967199421000617.; Yang L., Wang H., Song S. et al. Systematic understanding of anti-aging effect of coenzyme Q10 on oocyte through a network pharmacology approach. Front Endocrinol (Lausanne). 2022;13:813772. https://doi.org/10.3389/fendo.2022.813772.; Heydarnejad A., Ostadhosseini S., Varnosfaderani S.R. et al. Supplementation of maturation medium with CoQ10 enhances developmental competence of ovine oocytes through improvement of mitochondrial function. Mol Reprod Dev. 2019;86(7):812–24. https://doi.org/10.1002/mrd.23159.; Ruiz-Conca M., Gardela J., Mogas T. et al. Apoptosis and glucocorticoid-related genes mRNA expression is modulated by coenzyme Q10 supplementation during in vitro maturation and vitrification of bovine oocytes and cumulus cells. Theriogenology. 2022;192:62–72. https://doi.org/10.1016/j.theriogenology.2022.08.030.; Gendelman M., Roth Z. Incorporation of coenzyme Q10 into bovine oocytes improves mitochondrial features and alleviates the effects of summer thermal stress on developmental competence. Biol Reprod. 2012;87(5):118. https://doi.org/10.1095/biolreprod.112.101881.; Miao Y., Cui Z., Gao Q. et al. Nicotinamide mononucleotide supplementation reverses the declining quality of maternally aged oocytes. Cell Rep. 2020;32(5):107987. https://doi.org/10.1016/j.celrep.2020.107987.; Nikalayevich E., Terret M.E. Meiosis: Actin and microtubule networks drive chromosome clustering in oocytes. Curr Biol. 2023;33(7):272–4. https://doi.org/10.1016/j.cub.2023.02.061.; Miao Y., Zhou C., Cui Z. et al. Postovulatory aging causes the deterioration of porcine oocytes via induction of oxidative stress. FASEB J. 2018;32(3):1328–37. https://doi.org/10.1096/fj.201700908R.; Zhang M., Shi Yang X., Zhang Y. et al. Coenzyme Q10 ameliorates the quality of postovulatory aged oocytes by suppressing DNA damage and apoptosis. Free Radic Biol Med. 2019;143:84–94. https://doi.org/10.1016/j.freeradbiomed.2019.08.002.; Shaw E., Talwadekar M., Rashida Z. et al. Anabolic SIRT4 exerts retrograde control over TORC1 signaling by glutamine sparing in the mitochondria. Mol Cell Biol. 2020;40(2):e00212–19. https://doi.org/10.1128/MCB.00212-19.; He L., Liu Q., Cheng J. et al. SIRT4 in ageing. Biogerontology. 2023;24(3):347–62. https://doi.org/10.1007/s10522-023-10022-5.; Xing X., Zhang J., Zhang J. et al. Coenzyme Q10 supplement rescues postovulatory oocyte aging by regulating SIRT4 expression. Curr Mol Pharmacol. 2022;15(1):190–203. https://doi.org/10.2174/1874467214666210420112819.; Ben-Meir A., Burstein E., Borrego-Alvarez A. et al. Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging. Aging Cell. 2015;14(5):887–95. https://doi.org/10.1111/acel.12368.; Del Bianco D., Gentile R., Sallicandro L. et al. Electro-metabolic coupling of cumulus-oocyte complex. Int J Mol Sci. 2024;25(10):5349. https://doi.org/10.3390/ijms25105349.; Ben-Meir A., Kim K., McQuaid R. et al. Co-enzyme Q10 supplementation rescues cumulus cells dysfunction in a maternal aging model. Antioxidants (Basel). 2019;8(3):58. https://doi.org/10.3390/antiox8030058.; Bellusci M., García-Silva M.T., Martínez de Aragón A., Martín M.A. Distal phalangeal erythema in an infant with biallelic PDSS1 mutations: expanding the phenotype of primary Coenzyme Q10 deficiency. JIMD Rep. 2021;62(1):3–5. https://doi.org/10.1002/jmd2.12216.; Li M., Yue Z., Lin H. et al. COQ2 mutation associated isolated nephropathy in two siblings from a Chinese pedigree. Ren Fail. 2021;43(1):97–101. https://doi.org/10.1080/0886022X.2020.1864402.; Laugwitz L., Seibt A., Herebian D. et al. Human COQ4 deficiency: delineating the clinical, metabolic and neuroimaging phenotypes. J Med Genet. 2022;59(9):878–87. https://doi.org/10.1136/jmedgenet-2021-107729.; Wang N., Zheng Y., Zhang L. et al. A family segregating lethal primary coenzyme Q10 deficiency due to two novel COQ6 variants. Front Genet. 2022;12:811833. https://doi.org/10.3389/fgene.2021.811833.; Olgac A., Öztoprak Ü., Kasapkara C.S. et al. A rare case of primary coenzyme Q10 deficiency due to COQ9 mutation. J Pediatr Endocrinol Metab. 2020;33(1):165–70. https://doi.org/10.1515/jpem-2019-0245.; Howden S.E., Vanslambrouck J.M., Wilson S.B. et al. Reporter-based fate mapping in human kidney organoids confirms nephron lineage relationships and reveals synchronous nephron formation. EMBO Rep. 2019;20(4):e47483. https://doi.org/10.15252/embr.201847483.; Drovandi S., Lipska-Ziętkiewicz B.S., Ozaltin F. et al.; PodoNet Consortium; mitoNET Consortium; CCGKDD Consortium; Schaefer F. Variation of the clinical spectrum and genotype-phenotype associations in Coenzyme Q10 deficiency associated glomerulopathy. Kidney Int. 2022;102(3):592–603. https://doi.org/10.1016/j.kint.2022.02.040.; Zhai S.B., Zhang L., Sun B.C. et al. Early-onset COQ8B (ADCK4) glomerulopathy in a child with isolated proteinuria: a case report and literature review. BMC Nephrol. 2020;21(1):406. https://doi.org/10.1186/s12882-020-02038-7.; Stańczyk M., Bałasz-Chmielewska I., Lipska-Ziętkiewicz B., Tkaczyk M. CoQ10-related sustained remission of proteinuria in a child with COQ6 glomerulopathy – a case report. Pediatr Nephrol. 2018;33(12):2383–7. https://doi.org/10.1007/s00467-018-4083-3.; Suciu S.K., Caspary T. Cilia, neural development and disease. Semin Cell Dev Biol. 2021;110:34–42. https://doi.org/10.1016/j.semcdb.2020.07.014.; Zoghbi J.F., Licznerski P., Yang M. et al. Inefficient thermogenic mitochondrial respiration due to futile proton leak in a mouse model of fragile X syndrome. FASEB J. 2020;34(6):7404–26. https://doi.org/10.1096/fj.202000283RR.; Muigg V., Maier M.I., Kuenzli E., Neumayr A. Delayed cerebellar ataxia, a rare post-malaria neurological complication: Case report and review of the literature. Travel Med Infect Dis. 2021;44:102177. https://doi.org/10.1016/j.tmaid.2021.102177.; Monfrini E., Pesini A., Biella F. et al. Whole-exome sequencing study of fibroblasts derived from patients with cerebellar ataxia referred to investigate CoQ10 deficiency. Neurol Genet. 2023;9(2):e200058. https://doi.org/10.1212/NXG.0000000000200058.; Rius R., Bennett N.K., Bhattacharya K. et al. Biallelic pathogenic variants in COX11 are associated with an infantile-onset mitochondrial encephalopathy. Hum Mutat. 2022;43(12):1970–8. https://doi.org/10.1002/humu.24453.; Justine Perrin R., Rousset-Rouvière C., Garaix F. et al. COQ6 mutation in patients with nephrotic syndrome, sensorineural deafness, and optic atrophy. JIMD Rep. 2020;54(1):37–44. https://doi.org/10.1002/jmd2.12068.; Turnis M.E., Kaminska E., Smith K.H. et al. Requirement for antiapoptotic MCL-1 during early erythropoiesis. Blood. 2021;137(14):1945–58. https://doi.org/10.1182/blood.2020006916.; Martinez P.A., Li R., Ramanathan H.N. et al. Smad2/3-pathway ligand trap luspatercept enhances erythroid differentiation in murine β-thalassaemia by increasing GATA-1 availability. J Cell Mol Med. 2020;24(11):6162–77. https://doi.org/10.1111/jcmm.15243.; Martell D.J., Merens H.E., Caulier A. et al. RNA polymerase II pausing temporally coordinates cell cycle progression and erythroid differentiation. Dev Cell. 2023;58(20):2112–2127.e4. https://doi.org/10.1016/j.devcel.2023.07.018.; Rossmann M.P., Hoi K., Chan V. et al. Cell-specific transcriptional control of mitochondrial metabolism by TIF1γ drives erythropoiesis. Science. 2021;372(6543):716–21. https://doi.org/10.1126/science.aaz2740.; Drakhlis L., Biswanath S., Farr C.M. et al. Human heart-forming organoids recapitulate early heart and foregut development. Nat Biotechnol. 2021;39(6):737–46. https://doi.org/10.1038/s41587-021-00815-9.; Yan A., Liu Z., Song L. et al. Idebenone Alleviates neuroinflammation and modulates microglial polarization in LPS-stimulated BV2 cells and MPTP-induced Parkinson's disease mice. Front Cell Neurosci. 2019;12:529. https://doi.org/10.3389/fncel.2018.00529.; Robichaux D.J., Harata M., Murphy E., Karch J. Mitochondrial permeability transition pore-dependent necrosis. J Mol Cell Cardiol. 2023;174:47–55. https://doi.org/10.1016/j.yjmcc.2022.11.003.; Barajas M., Wang A., Griffiths K.K. et al. The newborn Fmr1 knockout mouse: a novel model of excess ubiquinone and closed mitochondrial permeability transition pore in the developing heart. Pediatr Res. 2021;89(3):456–63. https://doi.org/10.1038/s41390-020-1064-6.; Wang Y., Hekimi S. The CoQ biosynthetic di-iron carboxylate hydroxylase COQ7 is inhibited by in vivo metalation with manganese but remains functional by metalation with cobalt. MicroPubl Biol. 2022;2022:10.17912/micropub.biology.000635. https://doi.org/10.17912/micropub.biology.000635.; Smith A.C., Ito Y., Ahmed A. et al.; Care4Rare Canada Consortium. A family segregating lethal neonatal coenzyme Q10 deficiency caused by mutations in COQ9. J Inherit Metab Dis. 2018;41(4):719–29. https://doi.org/10.1007/s10545-017-0122-7.; Danhauser K., Herebian D., Haack T.B. et al. Fatal neonatal encephalopathy and lactic acidosis caused by a homozygous loss-of-function variant in COQ9. Eur J Hum Genet. 2016;24(3):450–4. https://doi.org/10.1038/ejhg.2015.133.; Teran E., Hernández I., Tana L. et al. Mitochondria and coenzyme Q10 in the pathogenesis of preeclampsia. Front Physiol. 2018;9:1561. https://doi.org/10.3389/fphys.2018.01561.; Budani M.C., Tiboni G.M. Effects of supplementation with natural antioxidants on oocytes and preimplantation embryos. Antioxidants (Basel). 2020;9(7):612. https://doi.org/10.3390/antiox9070612.; https://www.gynecology.su/jour/article/view/2136
-
16Academic Journal
Συγγραφείς: E. V. Gerasimova, A. I. Bogatyreva, T. V. Popkova, D. A. Gerasimova, Е. В. Герасимова, А. И. Богатырева, Т. В. Попкова, Д. А. Герасимова
Συνεισφορές: Работа выполнена при финансовой поддержке РНФ, грант № 22-15-00199.
Πηγή: Medical Immunology (Russia); Том 26, № 4 (2024); 771-776 ; Медицинская иммунология; Том 26, № 4 (2024); 771-776 ; 2313-741X ; 1563-0625
Θεματικοί όροι: воспаление, mitochondrial, monocytes, systemic sclerosis, autoimmunity, inflammation, митохондрии, моноциты, системная склеродермия, аутоиммунитет
Περιγραφή αρχείου: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/3048/1975; Ashar F.N., Zhang Y., Longchamps R.J., Lane J., Moes A., Grove M.L., Mychaleckyj J.C., Taylor K.D., Coresh J., Rotter J.I., Boerwinkle E., Pankratz N., Guallar E., Arking D.E. Association of mitochondrial DNA copy number with cardiovascular disease. JAMA Cardiol., 2017, Vol. 2, no. 11, pp. 1247-1255.; Bai R.K., Wong L.J.C. Simultaneous detection and quantification of mitochondrial DNA deletion(s), depletion, and over-replication in patients with mitochondrial disease. J. Mol. Diagn., 2005, Vol. 7, no. 5, pp. 613-622.; Brown M., O’Reilly S. The immunopathogenesis of fibrosis in systemic sclerosis. Clin. Exp. Immunol., 2019, Vol. 195, no. 3, pp. 310-321.; De Benedittis G., Latini A., Colafrancesco S., Priori R., Perricone C., Novelli L., Borgiani P., Ciccacci C. Alteration of mitochondrial DNA copy number and increased expression levels of mitochondrial dynamics-related genes in sjögren’s syndrome. Biomedicines, 2022, Vol. 10, no. 11, 2699. doi:10.3390/biomedicines10112699.; Ding X., Fang T., Pang X., Pan X., Tong A., Lin Z., Zheng S., Zheng N. Mitochondrial DNA abnormalities and metabolic syndrome. Front. Cell Dev. Biol., 2023, Vol. 11, 1153174. doi:10.3389/fcell.2023.1153174.; Faas M.M., de Vos P. Mitochondrial function in immune cells in health and disease. Biochim. Biophys. Acta Mol. Basis Dis., 2020, Vol. 1866, no. 10, 165845. doi:10.1016/j.bbadis.2020.165845.; Fazzini F., Lamina C., Raftopoulou A., Koller A., Fuchsberger C., Pattaro C., del Greco F.M., Döttelmayer P., Fendt L., Fritz J., Meiselbach H., Schönherr S., Forer L., Weissensteiner H., Pramstaller P.P., Eckardt K.U., Hicks A.A., Kronenberg F. Association of mitochondrial DNA copy number with metabolic syndrome and type 2 diabetes in 14 176 individuals. J. Intern. Med., 2021, Vol. 290, no. 1, pp. 190-202.; Fullard N., O’Reilly S. Role of innate immune system in systemic sclerosis. Semin. Immunopathol., 2015, Vol. 37, no. 5, pp. 511-517.; Giaglis S., Daoudlarian D., Voll R.E., Kyburz D., Venhoff N., Walker U.A. Circulating mitochondrial DNA copy numbers represent a sensitive marker for diagnosis and monitoring of disease activity in systemic lupus erythematosus. RMD Open, 2021, Vol. 7, no. 3, e002010. doi:10.1136/RMDOPEN-2021-002010.; Gu F., Chauhan V., Kaur K., Brown W.T., LaFauci G., Wegiel J., Chauhan A. Alterations in mitochondrial DNA copy number and the activities of electron transport chain complexes and pyruvate dehydrogenase in the frontal cortex from subjects with autism. Transl. Psychiatry, 2013, Vol. 3, no. 9, e299. doi:10.1038/TP.2013.68.; Malik A.N. Mitochondrial DNA – novel mechanisms of kidney damage and potential biomarker. Curr. Opin. Nephrol. Hypertens., 2023, Vol. 32, no. 6, pp. 528-536.; Malik A.N., Czajka A. Is mitochondrial DNA content a potential biomarker of mitochondrial dysfunction? Mitochondrion, 2013, Vol. 13, no. 5, pp. 481-492.; Movassaghi S., Jafari S., Falahati K., Ataei M., Sanati M.H., Jadali Z. Quantification of mitochondrial DNA damage and copy number in circulating blood of patients with systemic sclerosis by a qPCR-based assay. An. Bras. Dermatol., 2020, Vol. 95, no. 3, pp. 314-319.; Quintero-González D.C., Muñoz-Urbano M., Vásquez G. Mitochondria as a key player in systemic lupus erythematosus. Autoimmunity, 2022, Vol. 55, no. 8, pp. 497-505.; Shoop W.K., Gorsuch C.L., Bacman S.R., Moraes C.T. Precise and simultaneous quantification of mitochondrial DNA heteroplasmy and copy number by digital PCR. J. Biol. Chem., 2022, Vol. 298, no. 11, 102574. doi:10.1016/J.JBC.2022.102574.; Svendsen A.J., Tan Q., Jakobsen M.A., Thyagarajan B., Nygaard M., Christiansen L., Mengel-From J. White blood cell mitochondrial DNA copy number is decreased in rheumatoid arthritis and linked with risk factors. A twin study. J Autoimmun., 2019, Vol. 96, pp. 142-146.; Veale D.J., Orr C., Fearon U. Cellular and molecular perspectives in rheumatoid arthritis. Semin. Immunopathol., 2017, Vol. 39, no. 4, pp. 343-354. 18. Yang S., Zhao M., Jia S. Macrophage: Key player in the pathogenesis of autoimmune diseases. Front. Immunol., 2023, Vol. 14, 1080310. doi:10.3389/fimmu.2023.1080310.; Yang S.Y., Castellani C.A., Longchamps R.J., Pillalamarri V.K., O’rourke B., Guallar E., Arking D.E. Bloodderived mitochondrial DNA copy number is associated with gene expression across multiple tissues and is predictive for incident neurodegenerative disease. Genome Res., 2021, Vol. 31, no. 3, pp. 349-358.; Zank D.C., Bueno M., Mora A.L., Rojas M. Idiopathic pulmonary fibrosis: Aging, mitochondrial dysfunction, and cellular bioenergetics. Front. Med. (Lausanne), 2018, Vol. 5, 10. doi:10.3389/fmed.2018.00010.; https://www.mimmun.ru/mimmun/article/view/3048
-
17Academic Journal
Συγγραφείς: A. A. Garganeeva, E. A. Kuzheleva, O. V. Tukish, K. N. Vitt, S. L. Andreev, E. F. Muslimova, V. A. Korepanov, S. A. Afanasiev, M. O. Gulya, E. E. Syromyatnikova, E. A. Vladimirova, I. V. Stepanov, А. А. Гарганеева, Е. А. Кужелева, О. В. Тукиш, К. Н. Витт, С. Л. Андреев, Э. Ф. Муслимова, В. А. Корепанов, С. А. Афанасьев, М. О. Гуля, Е. Е. Сыромятникова, Е. А. Владимирова, И. В. Степанов
Συνεισφορές: The patient signed an informed consent (grant RSF No. 23-75-00009, protocol approved by LAC, 241 from 09.03.2023), Исследование выполнено за счет гранта Российского научного фонда № 23-75-00009, https://rscf.ru/project/23-75-00009/
Πηγή: Siberian Journal of Clinical and Experimental Medicine; Том 39, № 3 (2024); 51-57 ; Сибирский журнал клинической и экспериментальной медицины; Том 39, № 3 (2024); 51-57 ; 2713-265X ; 2713-2927
Θεματικοί όροι: дыхательная функция митохондрий, ischemic heart disease, mitochondria, electron microscopy, SPECT, spiroveloergometry, respiratory function of mitochondria, ишемическая болезнь сердца, митохондрия, электронная микроскопия, однофотонная эмиссионная компьютерная томография, спировелоэргометрия
Περιγραφή αρχείου: application/pdf
Relation: https://www.sibjcem.ru/jour/article/view/2425/992; Агеев Ф.Т., Арутюнов Г.П., Беграмбекова Ю.Л., Беленков Ю.Н., Бойцов С.А., Васюк Ю.А. и др. Хроническая сердечная недостаточность. Клинические рекомендации 2020. Российский кардиологический журнал. 2020;25(11):4083. DOI:10.15829/1560-4071-2020-4083.; Гарганеева А.А., Бауэр В.А., Борель К.Н. Пандемия XXI века: хроническая сердечная недостаточность – бремя современного общества. Эпидемиологические аспекты (обзор литературы). Сибирский журнал клинической и экспериментальной медицины. 2014;29(3):8–12. DOI:10.29001/2073-8552-2014-29-3-8-12.; Шляхто Е.В., Беленков Ю.Н., Бойцов С.А., Виллевальде С.В., Галявич А.С., Глезер М.Г. и др. Результаты промежуточного анализа проспективного наблюдательного многоцентрового регистрового исследования пациентов с хронической сердечной недостаточностью в Российской Федерации «ПРИОРИТЕТ-ХСН»: исходные характеристики и лечение первых включенных пациентов. Российский кардиологический журнал. 2023;28(10):5593. DOI:10.15829/1560-4071-2023-5593.; Гарганеева А.А., Кужелева Е.А., Кузьмичкина М.А., Рябов В.В., Мареев Ю.В., Мареев В.Ю. Изменения характеристик и лечения больных с хронической сердечной недостаточностью, поступивших в кардиологический стационар в 2002 и 2016 годах. Кардиология. 2018;58(S12):18–26. DOI:10.18087/cardio.2605.; Gewirtz H., Dilsizian V. Myocardial viability: Survival mechanisms and molecular imaging targets in acute and chronic ischemia. Circ. Res. 2017;120(7):1197–1212. DOI:10.1161/CIRCRESAHA.116.307898.; Unno K., Isobe S., Izawa H., Cheng X.W., Kobayashi M., Hirashiki A. et al. Relation of functional and morphological changes in mitochondria to myocardial contractile and relaxation reserves in asymptomatic to mildly symptomatic patients with hypertrophic cardiomyopathy. Eur. Heart J. 2009;30(15):1853–1862. DOI:10.1093/eurheartj/ehp184.; Корепанов В.А., Реброва Т.Ю., Афанасьев С.А. Активность дыхания изолированных кардиомиоцитов и микровязкость их мембран у крыс разных возрастов при сердечной недостаточности. Бюллетень сибирской медицины. 2023;22(1):51–56. DOI:10.20538/1682-0363-2023-1-51-56.; Еремеев С.А., Ягужинский Л.С. О локальном сопряжении систем электронного транспорта и синтеза АТФ в митохондриях. Теория и эксперимент. Биохимия. 2015;80(5):682–688.; Hayashi D., Ohshima S., Isobe S., Cheng X.W., Unno K., Funahashi H. et al. Increased (99m)Tc-sestamibi washout reflects impaired myocardial contractile and relaxation reserve during dobutamine stress due to mitochondrial dysfunction in dilated cardiomyopathy patients. J. Am. Coll. Cardiol. 2013;14;61(19):2007–2017. DOI:10.1016/j.jacc.2013.01.074.; Иванченко М.В., Твердохлеб И.В. Характер образования межмитохондриальных контактов в процессе онтогенетического формирования митохондриального аппарата в норме и в условиях гипоксического повреждения кардиогенеза. Рос. мед.-биол. вестн. им. акад. И.П. Павлова. 2014;2.; Huang X., Sun L., Ji S., Zhao T., Zhang W., Xu J. et al. Kissing and nanotunneling mediate intermitochondrial communication in the heart. Proc. Natl. Acad. Sci. USA. 2013;110(8):2846–2851. DOI:10.1073/pnas.1300741110.; Бакеева Л.Е., Сударикова Ю.В., Цыпленкова В.Г. Межмитохондриальные контакты как специальная межмембранная контактная структура, объединяющая митохондрии в единую морфофункциональную систему. Информационный бюллетень РФФИ. Биология, медицинская наука. 1999;7.; https://www.sibjcem.ru/jour/article/view/2425
-
18Academic Journal
Συγγραφείς: V. A. Korepanov, T. Y. Rebrova, T. A. Atabekov, S. A. Afanasiev, В. А. Корепанов, Т. Ю. Реброва, Т. А. Атабеков, С. А. Афанасьев
Πηγή: Siberian Journal of Clinical and Experimental Medicine; Том 38, № 4 (2023); 236-242 ; Сибирский журнал клинической и экспериментальной медицины; Том 38, № 4 (2023); 236-242 ; 2713-265X ; 2713-2927
Θεματικοί όροι: активность дыхания, cardiac rhythm disorder, mitochondria, palmitic acid, oxygen consumption, respiratory activity, нарушение ритма сердца, митохондрии, пальмитиновая кислота, потребление кислорода
Περιγραφή αρχείου: application/pdf
Relation: https://www.sibjcem.ru/jour/article/view/2073/913; Бойцов С.А., Зайратьянц О.В., Андреев Е.М., Самородская И.В. Сравнение показателей смертности от ишемической болезни сердца среди мужчин и женщин старше 50 лет в России и США. Российский кардиологический журнал. 2017;(6):100–107. DOI:10.15829/1560-4071-2017-6-100-107.; Байдюк Е.В., Сакута Г.А., Кислякова Л.П., Кисляков Ю.Я., Оковитый С.В., Кудрявцев Б.Н. Структурно-функциональные характеристики сердца и параметры газообмена у крыс после экспериментального инфаркта миокарда. Цитология. 2014;56(10):735–740.; van Bilsen M., van Nieuwenhoven F.A., van der Vusse G.J. Metabolic remodelling of the failing heart: beneficial or detrimental? Cardiovasc. Res. 2009;81(3):420–428. DOI:10.1093/cvr/cvn282.; Liang F., Wang Y. Coronary heart disease and atrial fibrillation: a vicious cycle. Am. J. Physiol. Heart Circ. Physiol. 2021;320(1):H1–H12. DOI:10.1152/ajpheart.00702.2020.; Сотников О.С., Васягина Т.И. Митохондрии кардиомиоцитов после избыточной физической нагрузки. Кардиологический вестник. 2022;17(3):44–50. DOI:10.17116/Cardiobulletin20221703144.; Pascual F., Coleman R.A. Fuel availability and fate in cardiac metabolism: A tale of two substrates. Biochim. Biophys. Acta. 2016;1861(10):1425– 1433. DOI:10.1016/j.bbalip.2016.03.014.; Jiang M., Xie X., Cao F., Wang Y. Mitochondrial metabolism in myocardial remodeling and mechanical unloading: Implications for ischemic heart disease. Front. Cardiovasc. Med. 2021;8:789267. DOI:10.3389/ fcvm.2021.789267.; Бокерия Л.А., Неминущий Н.М., Постол А.С. Имплантируемые кардиовертеры-дефибрилляторы – основное звено в современной концепции профилактики внезапной сердечной смерти: проблемы и перспективы развития метода. Кардиология. 2018;58(12):76–84. DOI:10.18087/cardio.2018.12.10197.; Филиппов Е.В., Якушин С.С. Внезапная сердечная смерть: проблема стратификации риска и выбора лекарственного препарата. Рациональная фармакотерапия в кардиологии. 2011;7(2):212–218. DOI:10.20996/1819-6446-2011-7-2212-218.; Rose S., Carvalho E., Diaz E.C., Cotter M., Bennuri S.C., Azhar G., Frye R.E., Adams S.H., Børsheim E. A comparative study of mitochondrial respiration in circulating blood cells and skeletal muscle fibers in women. Am. J. Physiol. Endocrinol. Metab. 2019;317:E503–E512. DOI:10.1152/ajpendo.00084.2019.; Ost M., Doerrier C., Gama-Perez P., Moreno-Gomez S. Analysis of mitochondrial respiratory function in tissue biopsies and blood cells. Curr. Opin. Clin. Nutr. Metab. Care. 2018;21:336–342. DOI:10.1097/MCO.0000000000000486.; Li P., Wang B., Sun F., Li Y., Li Q., Lang H. et al. Mitochondrial respiratory dysfunctions of blood mononuclear cells link with cardiac disturbance in patients with early-stage heart failure. Sci. Rep. 2015;5:10229. DOI:10.1038/srep10229.; Coluccia R., Raffa S., Ranieri D., Micaloni A., Valente S., Salerno G. et al. Chronic heart failure is characterized by altered mitochondrial function and structure in circulating leucocytes. Oncotarget. 2018;9(80):35028– 35040. DOI:10.18632/oncotarget.26164.; Афанасьев С.А., Егорова М.В., Кондратьева Д.С., Реброва Т.Ю., Козлов Б.Н., Попов С.В. К вопросу о возможной метаболической составляющей аритмогенной резистентности миокарда при сочетанном развитии постинфарктного ремоделирования сердечной мышцы и сахарного диабета. Вестник аритмол. 2010;60:65–69.; Афанасьев С.А., Муслимова Э.Ф., Реброва Т.Ю., Цапко Л.П., Керчева М.А., Голубенко М.В. Особенности функционального состояния митохондрий лейкоцитов периферической крови пациентов с острым инфарктом миокарда. Бюллетень экспериментальной биологии и медицины. 2020;169(4):416–418. DOI:10.1007/s10517-020-04903-9.; Егорова М.В., Афанасьев С.А. Выделение митохондрий из клеток и тканей животных и человека: современные методические приемы. Сибирский журнал клинической и экспериментальной медицины. 2011;26(1–1):22–28.; Rebrova T.Y., Korepanov V.A., Afanasiev S.A. Age peculiarities of respiratory activity and membrane microviscosity of mitochondria from rat cardiomyocytes. Bull. Exp. Biol. Med. 2021;170(3):368–370. DOI:10.1007/s10517-021-05069-8.; Carta G., Murru E., Banni S., Manca C. Palmitic acid: physiological role, metabolism and nutritional implications. Front. Physiol. 2017;8:902. DOI:10.3389/fphys.2017.00902.; Егорова М.В., Афанасьев С.А. Регуляторная роль свободных жирных кислот в поддержании мембранного гомеостаза митохондрий сердца при экспериментальной ишемии миокарда. Бюллетень сибирской медицины. 2012;11(3):31–37. DOI:10.20538/1682-0363-2012-3-31-37.; Hadrava Vanova K., Kraus M., Neuzil J., Rohlena J. Mitochondrial complex II and reactive oxygen species in disease and therapy. Redox Rep. 2020;25(1):26–32. DOI:10.1080/13510002.2020.1752002.; Мохова Е.Н., Хайлова Л.С. Участие анионных переносчиков внутренней мембраны митохондрий в разобщающем действии жирных кислот. Биохимия. 2005;70(2):197–202.; Sharpe M.A., Cooper C.E., Wrigglesworth J.M. Transport of K + and cations across phospholipid membranes by nonesterified fatty acids. J. Membr. Biol. 1994;41:21–28.; Habbane M., Montoya J., Rhouda T., Sbaoui Y., Radallah D., Emperador S. Human mitochondrial DNA: Particularities and diseases. Biomedicines. 2021;9(10):1364. DOI:10.3390/biomedicines9101364.; Wang F., Zhang D., Zhang D., Li P., Gao Y. Mitochondrial protein translation: emerging roles and clinical significance in disease. Front. Cell. Dev. Biol. 2021;9:675465. DOI:10.3389/fcell.2021.675465.; https://www.sibjcem.ru/jour/article/view/2073
-
19Academic Journal
Συγγραφείς: A. A. Kurochkin, T. I. Kuzmina, A. O. Prituzhalova, А. А. Курочкин, Т. И. Кузьмина, А. О. Притужалова
Συνεισφορές: the research was carried out under the financial support of the Ministry of Science and Higher Education, of the Russian Federation within the state assignment of the Federal Research Center for Animal Husbandry named after Academy Member L. K. Ernst (theme НИОКТР 124020200127-7). The authors thank the reviewers for their contribution to the expert evaluation of this work., работа выполнена при поддержке Минобрнауки РФ в рамках Государственного задания ФГБНУ «Федеральный исследовательский центр животноводства – ВИЖ имени академика Л. К. Эрнста» (тема НИОКТР 124020200127-7). Авторы благодарят рецензентов за их вклад в экспертную оценку этой работы.
Πηγή: Agricultural Science Euro-North-East; Том 25, № 5 (2024); 899–905 ; Аграрная наука Евро-Северо-Востока; Том 25, № 5 (2024); 899–905 ; 2500-1396 ; 2072-9081
Θεματικοί όροι: гаметы, mitochondria, reactive oxygen species, apoptosis, gametes, митохондрии, активные формы кислорода, апоптоз
Περιγραφή αρχείου: application/pdf
Relation: https://www.agronauka-sv.ru/jour/article/view/1768/822; Udrayana S. B., Kasianto K., Iswati I., Bintari I. G. Evaluating sperm quality characteristics obtained through the female teaser method in native chicken breeds. Livestock and Animal Research. 2023;21(3):127–135. DOI: https://doi.org/10.20961/lar.v21i3.66495; Wolc A., Arango J., Settar P., Fulton J. E., O’Sullivan N. P., Dekkers J. C. M. Genetics of male reproductive performance in White Leghorns. Poultry Science. 2019;98(7):2729–2733. DOI: https://doi.org/10.3382/ps/pez077; Surai P. F., Kutz E., Wishart G. J., Noble R. C., Speake B. K. The relationship between the dietary provision of alpha-tocopherol and the concentration of this vitamin in the semen of chicken: effects on lipid composition and susceptibility to peroxidation. Journal of reproduction and fertility. 1997;110(1):47–51. DOI: https://doi.org/10.1530/jrf.0.1100047; Khan R. Antioxidant and poultry semen quality. World’s Poultry Science Journal. 2011;67(2):297–308. DOI: https://doi.org/10.1017/S0043933911000316; Santiago-Moreno J., Bernal B., Pérez-Cerezales S., Castaño C., Toledano-Díaz A., Esteso M. C., et al. Seminal plasma amino acid profile in different breeds of chicken: Role of seminal plasma on sperm cryoresistance. Plos one. 2019;14(1):e0209910. DOI: https://doi.org/10.1371/journal.pone.0209910; Zagoskin M. V., Davis R. E., Mukha D. V. Double Stranded RNA in Human Seminal Plasma. Frontiers in genetics. 2017;8:00154. DOI: https://doi.org/10.3389/fgene.2017.00154; Li H., Huang S. Y., Zhou H., Liao A. H., Xiong C. L. Quick recovery and characterization of cell-free DNA in seminal plasma of normozoospermia and azoospermia: implications for non-invasive genetic utilities. Asian journal of andrology. 2009;11(6):703–709. DOI: https://doi.org/10.1038/aja.2009.65; Huang S., Li H., Ding X., Xiong C. Presence and characterization of cell-free seminal RNA in healthy individuals: implications for noninvasive disease diagnosis and gene expression studies of the male reproductive system. Clinical Chemistry. 2009;55(11):1967–1976. DOI: https://doi.org/10.1373/clinchem.2009.131128; Di Pizio P., Celton N., Menoud P. A., Belloc S., Cohen Bacrie M., Belhadri‐Mansouri N., et al. Seminal cell‐free DNA and sperm characteristic’s: An added biomarker for male infertility investigation. Andrologia. 2020;53(1). DOI: https://doi.org/10.1111/and.13822; Costa F., Barbisan F., Assmann C. E., Araújo N. K. F., de Oliveira A. R., Signori J. P., et al. Seminal cell-free DNA levels measured by PicoGreen fluorochrome are associated with sperm fertility criteria. Zygote. 2017;25(2):111–119. DOI: https://doi.org/10.1017/s0967199416000307; Chou J. S., Jacobson J. D., Patton W. C., King A., Chan P. J. Modified isocratic capillary electrophoresis detection of cell-free DNA in semen. Journal of Assisted Reproduction and Genetics. 2004;21:397–400. DOI: https://doi.org/10.1007/s10815-004-7527-6; Qasemi M., Mahdian R., Amidi F. Cell-free DNA discoveries in human reproductive medicine: providing a new tool for biomarker and genetic assays in ART. Journal of assisted reproduction and genetics. 2021;38:277–288. DOI: https://doi.org/10.1007/s10815-020-02038-4; Froman D. P., Kirby J. D. Sperm Mobility: Phenotype in Roosters (Gallus domesticus) Determined by Mitochondrial Function. Biology of reproduction. 2005;72(3):562–567. DOI: https://doi.org/10.1095/biolreprod.104.035113; Meyers S., Bulkeley E., Foutouhi A. Sperm mitochondrial regulation in motility and fertility in horses. Reproduction in Domestic Animals. 2019;54(S3):22–28. DOI: https://doi.org/10.1111/rda.13461; Li H. G., Huang S. Y., Zhou H., Liao A. H., Xiong C. L. Quick recovery and characterization of cell-free DNA in seminal plasma of normozoospermia and azoospermia: implications for non-invasive genetic utilities. Asian Journal of Andrology. 2009;11(6):703–709. DOI: https://doi.org/10.1038/aja.2009.65
-
20Academic Journal
Συγγραφείς: V. A. Protopopov, A. V. Sekunov, A. V. Panov, I. G. Bryndina, В. А. Протопопов, А. В. Секунов, А. В. Панов, И. Г. Брындина
Πηγή: Acta Biomedica Scientifica; Том 9, № 2 (2024); 228-242 ; 2587-9596 ; 2541-9420
Θεματικοί όροι: митохондрии, functional unloading, atrophy, sphingomyelinase/ ceramide, oxidative stress, mitochondria, функциональная разгрузка, атрофия, сфингомиелиназа/церамид, окислительный стресс
Περιγραφή αρχείου: application/pdf
Relation: https://www.actabiomedica.ru/jour/article/view/4745/2777; Bouviere J, Fortunato RS, Dupuy C, Werneck-de-Castro JP, Carvalho DP, Louzada RA. Exercise-stimulated ROS sensitive signaling pathways in skeletal muscle. Antioxidants (Basel). 2021; 10(4): 537. doi:10.3390/antiox10040537; Gomez-Cabrera MC, Arc-Chagnaud C, Salvador-Pascual A, Brioche T, Chopard A, Olaso-Gonzalez G, et al. Redox modulation of muscle mass and function. Redox Biology. 2020; 35: 101531. doi:10.1016/j.redox.2020.101531; Ferreira LF, Laitano O. Regulation of NADPH oxidases in skeletal muscle. Free Radic Biol Med. 2016; 98: 18-28. doi:10.1016/j.freeradbiomed.2016.05.011; Hord JM, Garcia MM, Farris KR, Guzzoni V, Lee Y, Lawler MS, et al. Nox2 signaling and muscle fiber remodeling are attenuated by losartan administration during skeletal muscle unloading. Physiol Rep. 2021; 9(1): e14606. doi:10.14814/phy2.14606; Kadoguchi T, Shimada K, Koide H, Miyazaki T, Shiozawa T, Takahashi S, et al. Possible role of NADPH oxidase 4 in angiotensin II-induced muscle wasting in mice. Front Physiol. 2018; 9: 340. doi:10.3389/fphys.2018.00340; Lawler JM, Hord JM, Ryan P, Holly D, Janini Gomes M, Rodriguez D, et al. Nox2 inhibition regulates stress response and mitigates skeletal muscle fiber atrophy during simulated microgravity. Int J Mol Sci. 2021; 22(6): 3252. doi:10.3390/ijms22063252; Trevino MB, Zhang X, Standley RA, Wang M, Han X, Reis FCG, et al. Loss of mitochondrial energetics is associated with poor recovery of muscle function but not mass following disuse atrophy. Am J Physiol Endocrinol Metab. 2019; 317(5): E899-E910. doi:10.1152/ajpendo.00161.2019; Chaurasia B, Summers SA. Ceramides in metabolism: Key lipotoxic players. Ann Rev Physiol. 2021; 83: 303-330. doi:10.1146/annurev-physiol-031620-093815; Diaz-Vegas A, Madsen S, Cooke KC, Carroll L, Khor JXY, Turner N, et al. Mitochondrial electron transport chain, ceramide and coenzyme Q are linked in a pathway that drives insulin resistance in skeletal muscle. eLife. 2023; 12: RP87340. doi:10.7554/eLife.87340.2; Gudz TI, Tserng KY, Hoppel CL. Direct inhibition of mitochondrial respiratory chain complex III by cell-permeable ceramide. J Biol Chem. 1997; 272(39): 24154-24158. doi:10.1074/jbc.272.39.24154; Kogot-Levin A, Saada A. Ceramide and the mitochondrial respiratory chain. Biochimie. 2014; 100: 88-94. doi:10.1016/j.biochi.2013.07.027; Брындина И.Г., Шалагина М.Н., Овечкин С.В., Овчинина Н.Г. Сфинголипиды скелетных мышц у мышей C57B1/6 в условиях непродолжительной моделированной гипогравитации. Российский физиологический журнал им. И.М. Сеченова. 2014; 100(11): 1280-1286. doi:10.31857/s0869813921060170; Zhang Y, Li X, Becker KA, Gulbins E. Ceramide-enriched membrane domains – Structure and function. Biochim Biophys Acta. 2009; 1788(1): 178-183. doi:10.1016/j.bbamem.2008.07.030; Bryndina IG, Protopopov VA, Sergeev VG, Shalagina MN, Ovechkin SV, Yakovlev AA. Ceramide enriched membrane domains in rat skeletal muscle exposed to short-term hypogravitational unloading. Front Physiol. 2018; 9. doi:10.3389/conf.fphys.2018.26.00028; Petrov AM, Shalagina MN, Protopopov VA, Sergeev VG, Ovechkin SV, Ovchinina NG, et al. Changes in membrane ceramide pools in rat soleus muscle in response to short-term disuse. Int J Mol Sci. 2019; 20(19): 4860. doi:10.3390/ijms20194860; Bryndina IG, Shalagina MN, Protopopov VA, Sekunov AV, Zefirov AL, Zakirjanova GF, et al. Early lipid raft-related changes: Interplay between unilateral denervation and hindlimb suspension. Int J Mol Sci. 2021; 22(5): 2239. doi:10.3390/ijms22052239; Шалагина М.Н., Протопопов В.А., Яковлев А.А., Овечкин С.В., Брындина И.Г. НАДФН-оксидаза и супероксиддисмутаза в камбаловидной мышце грызунов в условиях моделирования эффектов гипогравитации и коррекции обмена сфинголипидов. Вестник Удмуртского университета. Серия Биология. Науки о Земле. 2017; 27(4): 492-496.; Секунов А.В., Протопопов В.А., Скурыгин В.В., Шалагина М.Н., Брындина И.Г. Мышечная пластичность в условиях функциональной разгрузки: эффекты ингибитора кислой сфингомиелиназы кломипрамина. Российский физиологический журнал им. И.М. Сеченова. 2021; 107(6-7): 911-924. doi:10.31857/s0869813921060170; Wei J, Xu L, Du YN, Tang XF, Ye MQ, Wu YJ, et al. Membrane raft redox signalling contributes to endothelial dysfunction and vascular remodelling of thoracic aorta in angiotensin II-infused rats. Exp Physiol. 2019; 104(6): 946-956. doi:10.1113/EP087335; Liu R, Duan T, Yu L, Tang Y, Liu S, Wang C, et al. Acid sphingomyelinase promotes diabetic cardiomyopathy via NADPH oxidase 4 mediated apoptosis. Cardiovasc Diabetol. 2023; 22(1): 25. doi:10.1186/s12933-023-01747-1; Loehr JA, Abo-Zahrah R, Pal R, Rodney GG. Sphingomyelinase promotes oxidant production and skeletal muscle contractile dysfunction through activation of NADPH oxidase. Front Physiol. 2015; 5: 530. doi:10.3389/fphys.2014.00530; Li X, Gulbins E, Zhang Y. Oxidative stress triggers Ca-dependent lysosome trafficking and activation of acid sphingomyelinase. Cell Physiol Biochem. 2012; 30(4): 815-826. doi:10.1159/000341460; Levitsky Y, Hammer SS, Fisher KP, Huang C, Gentles TL, Pegouske DJ, et al. Mitochondrial ceramide effects on the retinal pigment epithelium in diabetes. Int J Mol Sci. 2020; 21(11): 3830. doi:10.3390/ijms21113830; Babiychuk EB, Atanassoff AP, Monastyrskaya K, Brandenberger C, Studer D, Allemann C, et al. The targeting of plasmalemmal ceramide to mitochondria during apoptosis. PLoS One. 2011; 6(8): e23706. doi:10.1371/journal.pone.0023706; Stiban J, Caputo L, Colombini M. Ceramide synthesis in the endoplasmic reticulum can permeabilize mitochondria to proapoptotic proteins. J Lipid Res. 2008; 49(3): 625-634. doi:10.1194/jlr.M700480-JLR200; Kwon OS, Nelson DS, Barrows KM, O’Connell RM, Drummond MJ. Intramyocellular ceramides and skeletal muscle mitochondrial respiration are partially regulated by Tolllike receptor 4 during hindlimb unloading. Am J Physiol Regul Integr Comp Physiol. 2016; 311(5): R879-R887. doi:10.1152/ajpregu.00253.2016; Бабенко Н.А., Стороженко Г.В. Роль церамида в снижении содержания кардиолипина в сердце у крыс с возрастом. Успехи геронтологии. 2017; 30(1): 43-48.; Panov AV, Darenskaya MA, Dikalov SI, Kolesnikov SI. Metabolic syndrome as the first stage of eldership; the beginning of real aging. Update in Geriatrics. 2021; 37-67. doi:10.5772/intechopen.95464; Panov A, Mayorov VI, Dikalov S. Metabolic syndrome and β-oxidation of long-chain fatty acids in the brain, heart, and kidney mitochondria. Int J Mol Sci. 2022; 23(7): 4047. doi:10.3390/ijms23074047; Kanazashi M, Tanaka M, Nakanishi R, Maeshige N, Fujino H. Effects of astaxanthin supplementation and electrical stimulation on muscle atrophy and decreased oxidative capacity in soleus muscle during hindlimb unloading in rats. J Physiol Sci. 2019; 69(5): 757-767. doi:10.1007/s12576-019-00692-7; https://www.actabiomedica.ru/jour/article/view/4745