-
1
-
2
-
3Academic Journal
Authors: A. G. Bega, I. I. Goryacheva, A. V. Moskaev, B. V. Andrianov, А. Г. Бега, И. И. Горячева, А. В. Москаев, Б. В. Андрианов
Contributors: The study was funded by the Russian Science Foundation grant (RSF) No. 24-44-10003, https://rscf.ru/en/ project/24-44-10003/ “Genetic and ecological analysis of populations of the malaria mosquito Anopheles plumbeus as an important potential vector of vector-borne diseases in the Russian Federation and the Republic of Belarus” (the project is implemented by a scientific team together with a foreign scientific team selected by the Belarusian Republican Foundation for Basic Research (BRFBR), grant No. B23RNFM-068).
Source: Vavilov Journal of Genetics and Breeding; Том 29, № 2 (2025); 219-229 ; Вавиловский журнал генетики и селекции; Том 29, № 2 (2025); 219-229 ; 2500-3259 ; 10.18699/vjgb-25-20
Subject Terms: мтДНК, mitochondrial genome, phylogenetic analysis, mtDNA, митохондриальный геном, филогенетический анализ
File Description: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/4540/1929; Battaglia V., Gabrieli P., Brandini S., Capodiferro M.R., Javier P.A., Chen X.G., Achilli A., Semino O., Gomulski L.M., Malacrida A.R., Gasperi G., Torroni A., Olivieri A. The worldwide spread of the tiger mosquito as revealed by mitogenome haplogroup diversity. Front Genet. 2016;7:208. doi 10.3389/fgene.2016.00208; Bega A.G., Vu T., Goryacheva I.I., Moskaev A.V., Andrianov B.V. A barcoding and morphological identification of mosquito species of the genus Aedes (Diptera: Culicidae) of the Russian Far East and Northern Vietnam. Russ J Genet. 2022;58(3):314-325. doi 10.1134/S1022795422030024; Berlov O.E., Berlov E.Y., Artemyeva S.Yu. Findings of the tigermosquito Aedes (Stegomyia) sibiricus Danilov et Filippova, 1978 (Insecta: Diptera, Culicidae) in Irkutsk. Baikal Zoological Journal. 2021;2(30):118-119 (in Russian); Berlov O.E., Kuberskaya O.V. First record of tiger mosquito Aedes flavopictus Yamada, 1921 (Diptera, Culicidae) in the Lower Amur area (Khabarovsk region, Russia). Amurian Zoological Journal. 2021;13(4):550-556. doi 10.33910/2686-9519-2021-13-4-550-556 (in Russian); Brown P.M.J., Thomas C.E., Lombaert E., Jeffries D.L., Estoup A., Handley L.J.L. The global spread of Harmonia axyridis (Coleoptera: Coccinellidae): distribution, dispersal and routes of invasion. BioControl. 2011;56:623-641. doi 10.1007/s10526-011-9379-1; Danilov V.N., Filippova V.N. A new species of mosquito Aedes (Stegomyia) sibiricus sp. n. (Culicidae). Parazitologiia = Parasitology. 1978;12(2):170-176 (in Russian); Fedorova M.V., Shvets O.G., Medyanik I.M., Shaikevich E.V. Genetic diversity of invasive Aedes (Stegomyia) albopictus (Skuse, 1895) population (Diptera, Culicidae) in Krasnodar region, Russia. Parazitologiia = Parasitology. 2019;53(6):518-528. doi 10.1134/S0031184719060073 (in Russian); Guo J., Yan Z.T., Fu W.B., Yuan H., Li X.D., Chen B. Complete mitogenomes of Anopheles peditaeniatus and Anopheles nitidus and phylogenetic relationships within the genus Anopheles inferred from mitogenomes. Parasit Vectors. 2021;14(1):452. doi 10.1186/s13071-021-04963-4; Gutsevich V.A., Monchadskii A.S., Shtakel’berg A.A. Mosquitoes (Culicidae). In: Fauna of the USSR. Diptera. Vol. 3, Iss. 4. Leningrad: Nauka Publ., 1970 (in Russian); Hebert P.D., Cywinska A., Ball S.L., de Waard J.R. Biological identifications through DNA barcodes. Proc Biol Sci. 2003;270(1512): 313-321. doi 10.1098/rspb.2002.2218; Khrabrova N.V., Andreeva Y.V., Sibataev A.K., Alekseeva S.S., Esenbekova P.A. Mosquitoes of Anopheles hyrcanus (Diptera, Culicidae) group: species diagnostic and phylogenetic relationships. Am J Trop Med Hyg. 2015;93(3):619-622. doi 10.4269/ajtmh.14-0207; Kumar S., Stecher G., Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016; 33(7):1870-1874. doi 10.1093/molbev/msw054; Medlock J.M., Hansford K.M., Schaffner F., Versteirt V., Hendrickx G., Zeller H., Bortel W.V. A review of the invasive mosquitoes in Europe: ecology, public health risks, and control options. Vector Borne Zoonotic Dis. 2012;12(6):435-447. doi 10.1089/vbz.2011.0814; Nei M., Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986;3(5):418-426. doi 10.1093/oxfordjournals.molbev.a040410; Piccinno R., Tatti A., Avosani S., Galla G., Lazazzara V., Pedrazzoli F., Zadra N., Rodeghiero M., Seljak G., Özgen İ., Hauffe H.C., Verrastro V., Stacconi M.V.R., Mazzoni V., Rota-Stabelli O. A multidisciplinary approach to tackling invasive species: barcoding, morphology, and metataxonomy of the leafhopper Arboridia adanae. Sci Rep. 2024;14(1):2229. doi 10.1038/s41598-023-49410-9; Poltoratskaya N.V., Mirzaeva A.G. New records of the rare species Aedes sibiricus Danilov et Filippova, 1978 (Diptera, Culicidae) from West Siberia, Russia. Evraziatskii Entomologicheskii Zhurnal = Euroasian Entomological Journal. 2013;12(2):144-146. (in Russian); Ree H.I. Taxonomic review and revised keys of the Korean mosquitoes (Diptera: Culicidae). Entomol Res. 2003;33(1):39-52. doi 10.1111/j.1748-5967.2003.tb00047.x; Rozen S., Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. In: Misener S., Krawetz S.A. (Eds) Bioinformatics Methods and Protocols. Methods in Molecular Biology. Vol. 132. Humana Press, Totowa, NJ, 2000. doi 10.1385/1-59259-192-2:365; Shin J., Jung J. Comparative population genetics of the invasive mosquito Aedes albopictus and the native mosquito Aedes flavopictus in the Korean peninsula. Parasit Vectors. 2021;14(1):377. doi 10.1186/s13071-021-04873-5; Singh K.R.P. Cell cultures derived from larvae of Aedes albopictus (Skuse) and Aedes aegypti (L.). Curr Sci. 1967;36(19):506-508; Tanaka K.M. A revision of the adult and larval mosquitoes of Japan (including the Ryukyu Archipelago and the Ogasawara Islands) and Korea (Diptera: Culicidae). In: Tanaka K., Mizusawa K., Saugstad E.S. (Eds) Contributions of the American Entomological Institute. APO; San Francisco; California: American Entomological Institute, 1979;987; Thompson J.D., Higgins D.G., Gibson T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22(22):4673-4680. doi 10.1093/nar/22.22.4673; Wang D., Liu F., Wang L., Huang S., Yu J. Nonsynonymous substitution rate (Ka) is a relatively consistent parameter for defining fast-evolving and slow-evolving protein-coding genes. Biol Direct. 2011;6:13. doi 10.1186/1745-6150-6-13; Wang G., Li C., Guo X., Xing D., Dong Y., Wang Z., Zhang Y., Liu M., Zheng Z., Zhang H., Zhu X., Wu Z., Zhao T. Identifying the main mosquito species in China based on DNA barcoding. PLoS One. 2012;7(10):e47051. doi 10.1371/journal.pone.0047051; Weetman D., Kamgang B., Badolo A., Moyes C.L., Shearer F.M., Coulibaly M., Pinto J., Lambrechts L., McCall P.J. Aedes mosquitoes and Aedes-borne arboviruses in Africa: current and future threats. Int J Environ Res Public Health. 2018;15(2):220. doi 10.3390/ijerph15020220; Wilkerson R.C., Linton Y.M., Strickman D. Mosquitoes of the World. Baltimore: Johns Hopkins University Press, 2021 Xing Z.P., Liang X., Wang X., Hu H.Y., Huang Y.X. Novel gene rearrangement pattern in mitochondrial genome of Ooencyrtusplautus Huang & Noyes, 1994: new gene order in Encyrtidae (Hymenoptera, Chalcidoidea). ZooKeys. 2022;1124:1-21. doi 10.3897/zookeys.1124.83811; Yang Z., Bielawski J.R. Statistical methods for detecting molecular adaptation. Trends Ecol Evol. 2000;15(12):496-503. doi 10.1016/s0169-5347(00)01994-7; Ze-Ze L., Borges V., Osório H.C., Machado J., Gomes J.P., Alves M.J. Mitogenome diversity of Aedes (Stegomyia) albopictus: detection of multiple introduction events in Portugal. PLoS Negl Trop Dis. 2020; 14(9):e0008657. doi 10.1371/journal.pntd.0008657; Zhang B., Havird J.C., Wang E., Lv J., Xu X. Massive gene rearrangement in mitogenomes of phytoseiid mites. Int J Biol Macromol. 2021;186:33-39. doi 10.1016/j.ijbiomac.2021.07.011; Zhang H.G., Lv M.H., Yi W.B., Zhu W.B., Bu W.J. Species diversity can be overestimated by a fixed empirical threshold: insights from DNA barcoding of the genus Cletus (Hemiptera: Coreidae) and the meta-analysis of COI data from previous phylogeographical studies. Mol Ecol Resour. 2017;17(2):314-323. doi 10.1111/1755-0998.12571; Zhang Z., Li J., Yu J. Computing Ka and Ks with a consideration of unequal transitional substitutions. BMC Evol Biol. 2006;6:44. doi 10.1186/1471-2148-6-44; Zheng S., Poczai P., Hyvönen J., Tang J., Amiryousefi A. Chloroplot: an online program for the versatile plotting of organelle genomes. Front Genet. 2020;11:576124. doi 10.3389/fgene.2020.576124; https://vavilov.elpub.ru/jour/article/view/4540
-
4Academic Journal
-
5Academic Journal
Subject Terms: желтая караганная тля, тля, митохондриальный геном, фитофаги-вредители
File Description: application/pdf
Access URL: https://rep.vsu.by/handle/123456789/45507
-
6Academic Journal
Authors: S. A. Modina, M. A. Kusliy, D. G. Malikov, A. S. Molodtseva, С. А. Модина, М. А. Куслий, Д. Г. Маликов, А. С. Молодцева
Contributors: This work was supported by Russian Science Foundation grant 23-74-10060, https://rscf.ru/project/23-74-10060/.
Source: Vavilov Journal of Genetics and Breeding; Том 28, № 5 (2024); 571-577 ; Вавиловский журнал генетики и селекции; Том 28, № 5 (2024); 571-577 ; 2500-3259 ; 10.18699/vjgb-24-52
Subject Terms: Южная Сибирь, woolly mammoth, phylogeography, mitochondrial genome, southern Siberia, шерстистый мамонт, филогеография, митохондриальный геном
File Description: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/4239/1864; Barnes I., Shapiro B., Lister A., Kuznetsova T., Sher A., Guthrie D., Thomas M. Genetic structure and extinction of the woolly mammoth, Mammuthus primigenius. Curr. Biol. 2007;17(12):1072-1075. DOI 10.1016/j.cub.2007.05.035; Briggs A.W., Good J.M., Green R.E., Krause J., Maricic T., Stenzel U., Lalueza-Fox C., Rudan P., Brajkovic D., Kucan Z., Gusic I., Schmitz R., Doronichev V.B., Golovanova L.V., Rasilla M., For-tea J., Rosas A., Paabo S. Targeted retrieval and analysis of five neandertal MtDNA genomes. Science. 2009;325(5938):318-321. DOI 10.1126/science.1174462; Brotherton P., Endicott P., Sanchez J.J., Beaumont M., Barnett R., Austin J., Cooper A. Novel high-resolution characterization of ancient DNA reveals C > U-type base modification events as the sole cause of post mortem miscoding lesions. Nucleic Acids Res. 2007;35(17): 5717-5128. DOI 10.1093/nar/gkm588; Capelli C., MacPhee R.D.E., Roca A.L., Brisighelli F., Georgiadis N., O’Brien S.J., Greenwood A.D. A nuclear DNA phylogeny of the woolly mammoth (Mammuthus primigenius). Mol. Phylogen. Evol. 2006;40(2):620-627. DOI 10.1016/j.ympev.2006.03.015; Carpenter M.L., Buenrostro J.D., Valdiosera C., Schroeder H., Allentoft M.E., Sikora M., Rasmussen M., Gravel S., Guillén S., Nekhrizov G., Leshtakov K., Dimitrova D., Theodossiev N., Pettener D., Luiselli D., Sandoval K., Moreno-Estrada A., Li Y., Wang J., Gilbert M.T.P., Willerslev E., Greenleaf W.J., Bustamante C.D. Pulling out the 1 %: whole-genome capture for the targeted enrichment of ancient DNA sequencing libraries. Am. J. Hum. Genet. 2013;93(5): 852-864. DOI 10.1016/j.ajhg.2013.10.002; Dabney J., Knapp M., Glocke I., Gansauge M.T., Weihmann A., Nickel B., Valdiosera C., Garcia N., Paabo S., Arsuaga J.L., Meyer M. Complete mitochondrial genome sequence of a middle pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl. Acad. Sci. USA. 2013;110(39):15758-15763. DOI 10.1073/pnas.1314445110; Debruyne R., Chu G., King C.E., Bos K., Kuch M., Schwarz C., Szpak P., Gröcke D.R., Matheus P., Zazula G., Guthrie D., Froese D., Buigues B., Marliave C., Flemming C., Poinar D., Fisher D., Southon J., Tikhonov A.N., MacPhee R.D.E., Poinar H.N. Out of America: ancient DNA evidence for a new world origin of late quaternary woolly mammoths. Curr. Biol. 2008;18(17):1320-1326. DOI 10.1016/j.cub.2008.07.061; Gilbert M.T.P., Tomsho L.P., Rendulic S., Packard M., Drautz D.I., Sher A., Tikhonov A., Dalen L., Kuznetsova T., Kosintsev P., Campos P.F., Higham T., Collins M.J., Wilson A.S., Shidlovskiy F., Buigues B., Ericson P.G.P., Germonpre M., Gotherstrom A., Iacumin P., Nikolaev V., Nowak-Kemp M., Willerslev E., Knight J.R., Irzyk G.P., Perbost C.S., Fredrikson K.M., Harkins T.T., Sheridan S., Miller W., Schuster S.C. Whole-genome shotgun sequencing of mitochondria from ancient hair shafts. Science. 2007;317(5846):1927-1930. DOI 10.1126/science.1146971; Greenwood A.D., Capelli С., Possnert G., Paabo S. Nuclear DNA sequences from late Pleistocene megafauna. Mol. Biol. Evol. 1999; 16(11):1466-1473. DOI 10.1093/oxfordjournals.molbev.a026058; Horn S. Target enrichment via DNA hybridization capture. In: Shapiro B., Hofreiter M. (Eds.) Ancient DNA. Methods in molecular biology. Vol. 840. Humana Press, 2012;177-188. DOI 10.1007/978-1-61779-516-9_21; Krause J., Dear P.H., Pollack J.L., Slatkin M., Spriggs H., Barnes I., Lister A.M., Ebersberger I., Pääbo S., Hofreiter M. Multiplex amplification of the mammoth mitochondrial genome and the evolution of elephantidae. Nature. 2006;439(7077):724-727. DOI 10.1038/nature04432; Kusliy M.A., Vorobieva N.V., Tishkin A.A., Makunin A.I., Druzhkova A.S., Trifonov V.A., Iderkhangai T.O., Graphodatsky A.S. Traces of Late Bronze and Early Iron age Mongolian horse mitochondrial lineages in modern populations. Genes. 2021;12(3):412. DOI 10.3390/genes12030412; Malikov D.G. Large Mammals of the Middle-Late Neopleistocene of the Minusinsk Depression, Stratigraphic Significance and Palaeozoogeography. Cand. geol. and mineral. sci. diss. Tomsk, 2015 (in Russian); Malikov D.G., Svyatko S.V., Pyryaev A.N., Kolobova K.A., Ovchinnikov I.Yu., Malikova E.L. New data on the distribution and isotopic characteristics of woolly mammoth remains, Mammuthus primigenius (Proboscidea, Elephantidae), in the Late Pleistocene of the Minusinsk Depression (South Siberia). Zoologičeskij Žurnal = Journal of Zoology. 2023;102(8):924-938. DOI 10.31857/S004451342308007X (in Russian); Maricic T., Whitten M., Pääbo S. Multiplexed DNA sequence capture of mitochondrial genomes using PCR products. PLoS One. 2010; 5(11):e14004. DOI 10.1371/journal.pone.0014004; Maschenko E.N., Potapova O.R., Vershinina A., Shapiro B., Streletskaya I.D., Vasiliev A.A., Oblogov G.E., Kharlamova A.S., Potapov E., Plicht J., Tikhonov A.N., Serdyuk N.V., Tarasenko K.K. The Zhenya mammoth (Mammuthus primigenius (Blum.)): taphonomy, geology, age, morphology and ancient DNA of a 48,000 year old frozen mummy from western Taimyr, Russia. Quat. Int. 2007;445: 104-134. DOI 10.1016/j.quaint.2017.06.055; Meyer M., Kircher M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010;2010(6):pdb.prot5448-pdb.prot5448; Miller W., Drautz D.I., Ratan A., Pusey B., Qi J., Lesk A.M., Tomsho L.P., Packard M.D., Zhao F., Sher A., Tikhonov A., Raney B., Patterson N., Lindblad-Toh K., Lander E.S., Knight J.R., Irzyk G.P., Fredrikson K.M., Harkins T.T., Sheridan S., Pringle T., Schuster S.C. Sequencing the nuclear genome of the extinct woolly mammoth. Nature. 2008;456(7220):387-390. DOI 10.1101/pdb.prot5448; Nasimovich A.A. African Elephant. Moscow: Nauka Publ., 1975 (in Russian); Pääbo S., Poinar H., Serre D., Jaenicke-Despres V., Hebler J., Rohland N., Kuch M., Krause J., Vigilant L., Hofreiter M. Genetic analyses from ancient DNA. Annu. Rev. Genet. 2004;38:645-679. DOI 10.1146/annurev.genet.37.110801.143214; Palkopouloue E., Mallick S., Skoglund P., Enk J., Rohland N., Li H., Omrak A., Vartanyan S., Poinar H., Götherström A., Reich D., Dalén L. Complete genomes reveal signatures of demographic and genetic declines in the woolly mammoth. Curr. Biol. 2015;25(10): 1395-1400. DOI 10.1016/j.cub.2015.04.007; Payne J.L., Finnegan S. The effect of geographic range on extinction risk during background and mass extinction. Proc. Natl. Acad. Sci. USA. 2007;104(25):10506-10511. DOI 10.1073/pnas.0701257104; Poinar H.N., Schwarz C., Qi J., Shapiro B., MacPhee R.D.E., Buigues B., Tikhonov A., Huson D.H., Tomsho L.P., Auch A., Rampp M., Miller W., Schuster S.C. Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science. 2006;311(5759):392-394. DOI 10.1126/science.1123360; Reich D., Green R.E., Kircher M., Krause J., Patterson N., Durand E.Y., Viola B., Briggs A.W., Stenzel U., Johnson P.L.F., Maricic T., Good J.M., Marques-Bonet T., Alkan C., Fu Q., Mallick S., Li H., Meyer M., Eichler E.E., Stoneking M., Richards M., Talamo S., Shunkov M.V., Derevianko A.P., Hublin J.J., Kelso J., Slatkin M., Pääbo S. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature. 2010;468(7327):1053-1060. DOI 10.1038/nature09710; Rogaev E.I., Moliaka Y.K., Malyarchuk B.A., Kondrashov F.A., Derenko M.V., Chumakov I., Grigorenko A.P. Complete mitochondrial genome and phylogeny of pleistocene mammoth Mammuthus primigenius. PLoS Biol. 2006;4(3):e73. DOI 10.1371/journal.pbio.0040073; Thalmann O., Shapiro B., Cui P., Schuenemann V.J., Sawyer S.K., Greenfield D.L., Germonpré M.B., Sablin M.V., López-Giráldez F., Domingo-Roura X., Napierala H., Uerpmann H.P., Loponte D.M., Acosta A.A., Giemsch L., Schmitz R.W., Worthington B., Buikstra J.E., Druzhkova A.S., Graphodatsky A.S., Ovodov N.D., Wahlberg N., Freedman A.H., Schweizer R.M., Koepfli K.P., Leonard J.A., Meyer M., Krause J., Pääbo S., Green R.E., Wayne R.K. Complete mitochondrial genomes of ancient canids suggest a European origin of domestic dogs. Science. 2013;342(6160):871-874. DOI 10.1126/science.1243650; Van der Valk T., Pečnerová P., Díez-del-Molino D., Bergström A., Oppenheimer J., Hartmann S., Xenikoudakis G., Thomas J.A., Dehasque M., Sağlıcan E., Fidan F.R., Barnes I., Liu S., Somel M., Heintzman P.D., Nikolskiy P., Shapiro B., Skoglund P., Hofreiter M., Lister A.M., Götherström A., Dalén L. Million-year-old DNA sheds light on the genomic history of mammoths. Nature. 2021; 591(7849):265-269. DOI 10.1038/s41586-021-03224-9; Vorobieva N.V., Makunin A.I., Druzhkova A.S., Kusliy M.A., Trifonov V.A., Popova K.O., Polosmak N.V., Molodin V.I., Vasiliev S.K., Shunkov M.V., Graphodatsky A.S. High genetic diversity of ancient horses from the Ukok Plateau. Plos One. 2020;15(11):e0241997. DOI 10.1371/journal.pone.0241997; Vorontsov A.A. Regularities of the formation of volcanics of the Minusinsk Basin in the Devonian (according to geological and isotopic-geochemical data). In: Proceedings of the All-Russia Meeting “Modern Problems of Geochemistry”. Irkutsk, 2012;36-39 (in Russian); Wall J., Wittemyer G., Klinkenberg B., LeMay V., Douglas-Hamilton I. Characterizing properties and drivers of long distance movements by elephants (Loxodonta africana) in the Gourma, Mali. Biol. Conserv. 2013;157:60-68. DOI 10.1016/j.biocon.2012.07.019; Yang H., Golenberg E.M., Shoshani J. Phylogenetic resolution within the Elephantidae using fossil DNA sequence from the American mastodon (Mammut americanum) as an outgroup. Proc. Natl. Acad. Sci. USA. 1996;93(3):1190-1194. DOI 10.1073/pnas.93.3.1190; https://vavilov.elpub.ru/jour/article/view/4239
-
7Academic Journal
Authors: Igor V. Karyakin, Ludmila S. Zinevich, Darja N. Rozhkova, Elvira G. Nikolenko, Elena P. Shnayder, Eugenie I. Sarychev, Irina R. Beme
Source: Пернатые хищники и их охрана, Vol 0, Iss 35, Pp 176-192 (2018)
Subject Terms: пернатые хищники, хищные птицы, балобан, Falco cherrug, реинтродукция, молекулярные исследования, митохондриальный геном, Алтае-Саянский регион, General. Including nature conservation, geographical distribution, QH1-199.5, Zoology, QL1-991
File Description: electronic resource
-
8Academic Journal
Source: ZHurnal «Patologicheskaia fiziologiia i eksperimental`naia terapiia». :92-97
Subject Terms: цибриды, rho0-cells, митохондриальная дисфункция, mitochondrial genome, mtDNA, cybrids, mitochondrial dysfunction, rho0-клетки, cell line, мутация, mutation, митохондриальный геном, клеточная линия, мтДНК
Access URL: https://pfiet.ru/article/view/416
-
9Academic Journal
Authors: M. S. Kozin, I. S. Kiselev, A. N. Boyko, O. G. Kulakova, O. O. Favorova, М. С. Козин, И. С. Киселев, А. Н. Бойко, О. Г. Кулакова, О. О. Фаворова
Contributors: The work has been prepared under State Assignment AAAA-A19-119042590026-5, Работа подготовлена в рамках Государственного задания АААА-А19-119042590026-5.
Source: Neurology, Neuropsychiatry, Psychosomatics; Vol 12, No 1S (2020): Спецвыпуск: рассеянный склероз; 15-19 ; Неврология, нейропсихиатрия, психосоматика; Vol 12, No 1S (2020): Спецвыпуск: рассеянный склероз; 15-19 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2020-1S
Subject Terms: мультилокусный анализ, genetic polymorphism, mitochondrial genome, nuclear genome, association analysis, multilocus analysis, генетический полиморфизм, митохондриальный геном, ядерный геном, анализ ассоциации
File Description: application/pdf
Relation: https://nnp.ima-press.net/nnp/article/view/1396/1076; https://nnp.ima-press.net/nnp/article/view/1396/1084; Karussis D. The Diagnosis of Multiple Sclerosis and the Various Related Demyelinating Syndromes: A Critical Review. J Autoimmun. Feb-Mar 2014;48-49:134-42. doi:10.1016/j.jaut.2014.01.022. Epub 2014 Feb 10.; International Multiple Sclerosis Genetics Consortium. Multiple Sclerosis Genomic Map Implicates Peripheral Immune Cells and Microglia in Susceptibility. Science. 2019 Sep 27;365 (6460):eaav7188. doi:10.1126/science.aav7188.; Maher B. Personal Genomes: The Case of the Missing Heritability. Nature. 2008 Nov 6;456(7218):18-21. doi:10.1038/456018a.; Campbell G, Mahad DJ. Mitochondrial Dysfunction and Axon Degeneration in Progressive Multiple Sclerosis. FEBS Lett. 2018 Apr;592(7):1113-1121. doi:10.1002/1873-3468.13013. Epub 2018 Mar 25.; Kozin MS, Kulakova OG, Favorova OO. Involvement of Mitochondria in Neurodegeneration in Multiple Sclerosis. Biochemistry (Mosc). 2018 Jul;83(7):813-830. doi:10.1134/S0006297918070052.; Lvovs D, Favorova OO, Favorov AV. A Polygenic Approach to the Study of Polygenic Diseases. Acta Naturae. 2012 Jul;4(3):59-71.; Dobler R, Dowling DK, Morrow EH, et al. A Systematic Review and Meta-Analysis Reveals Pervasive Effects of Germline Mitochondrial Replacement on Components of Health. Hum Reprod Update. 2018 Sep 1; 24(5):519-34.; Sloan DB, Fields PD, Havird JC. Mitonuclear Linkage Disequilibrium in Human Populations. Proc Biol Sci. 2015 Sep 22;282(1815): 20151704.; Zaidi AA, Makova KD. Investigating Mitonuclear Interactions in Human Admixed Populations. Nat Ecol Evol. 2019 Feb;3(2):213-22.; Morrow EH, Camus MF. Mitonuclear Epistasis and Mitochondrial Disease. Mitochondrion. 2017 Jul;35:119-122. doi:10.1016/j.mito.2017.06.001. Epub 2017 Jun 7.; Andrews SJ, Fulton-Howard B, Patterson C, et al. Mitonuclear interactions influence Alzheimer’s disease risk. Neurobiol Aging. 2020 Mar;87:138.e7-138.e14. doi:10.1016/j.neurobiolaging.2019.09.007. Epub 2019 Sep 24.; Schulmann A, Ryu E, Goncalves V, et al. Novel Complex Interactions Between Mitochondrial and Nuclear DNA in Schizophrenia and Bipolar Disorder. Mol Neuropsychiatry. 2019 Mar;5(1):13-27. doi:10.1159/000495658. Epub 2019 Feb 5.; Kozin MS, Kulakova OG, Kiselev IS, et al. Variants of Mitochondrial Genome and Risk of Multiple Sclerosis Development in Russians. Acta Naturae. Oct-Dec 2018;10(4):79-86.; Kiselev I, Bashinskaya V, Baulina N, et al. Genetic Differences Between Primary Progressive and Relapsing-Remitting Multiple Sclerosis: The Impact of Immune-Related Genes Variability. Mult Scler Relat Disord. 2019 Apr;29:130-136. doi:10.1016/j.msard.2019.01.033. Epub 2019 Jan 24.; Polman CH, Reingold SC, Banwell B, et al. Diagnostic Criteria for Multiple Sclerosis: 2010 Revisions to the McDonald Criteria. Ann Neurol. 2011 Feb;69(2):292-302. doi:10.1002/ana.22366.; Barsova RM, Lvovs D, Titov BV, et al. Variants of the Coagulation and Inflammation Genes Are Replicably Associated With Myocardial Infarction and Epistatically Interact in Russians. PLoS One. 2015 Dec 10;10(12): e0144190. doi:10.1371/journal.pone.0144190. eCollection 2015.; Yu X, Koczan D, Sulonen AM, et al. mtDNA nt13708A Variant Increases the Risk of Multiple Sclerosis. PLoS One. 2008 Feb 13;3(2): e1530. doi:10.1371/journal.pone.0001530.; Tranah GJ, Santaniello A, Caillier SJ, et al. Mitochondrial DNA Sequence Variation in Multiple Sclerosis. Neurology. 2015 Jul 28;85(4): 325-30. doi:10.1212/WNL.0000000000001744. Epub 2015 Jul 1.
-
10Academic Journal
Authors: Мохорова, А. С., Левыкина, С. С., Воронова-Барте, Н. В.
Subject Terms: желтая караганная тля, митохондриальный геном, тля, фитофаги-вредители
File Description: application/pdf
Relation: 6040393faefe38662fe64e36aeb17a97; https://rep.vsu.by/handle/123456789/45507
Availability: https://rep.vsu.by/handle/123456789/45507
-
11Academic Journal
Authors: Kurashenko A.V., Samoilova E.O., Baleva M.V., Chicherin I.V., Petrov D.Yu., Kamenski P.A., Levitskii S.A.
Source: Bulletin of Russian State Medical University. :62-65
Subject Terms: 0301 basic medicine, 0303 health sciences, 03 medical and health sciences, mitochondria, mitochondrial genome, Abf2p, recombination, митохондрия, митохондриальный геном, Abf2p, рекомбинация, 16. Peace & justice, 3. Good health
File Description: text/html
-
12Academic Journal
Source: Vavilov Journal of Genetics and Breeding; Том 23, № 7 (2019); 809-816 ; Вавиловский журнал генетики и селекции; Том 23, № 7 (2019); 809-816 ; 2500-3259
Subject Terms: РНК-интерференция, ecotypes, mitochondrial genome, nuclear genome, CRISPR cassette, cas genes, homology of CRISPR spacers, plant virus genome, adaptive immunity, RNA interference, экотипы, митохондриальный геном, ядерный геном, CRISPR-кассета, гены cas, гомология CRISPR-спейсеров, геном растительного вируса, адаптивный иммунитет
File Description: application/pdf
-
13Academic Journal
Authors: Левыкина, С.С., Спасюк, Е.А.
Subject Terms: Hemiptera, митохондриальный геном
File Description: application/pdf
Availability: https://rep.polessu.by/handle/123456789/30150
-
14Academic Journal
Authors: А. В. Курашенко, Е. О. Самойлова, М. В. Балева, И. В. Чичерин, Д. Ю. Петров, Петр Андреевич Каменский, С. А. Левицкий
Subject Terms: митохондрия, митохондриальный геном, Abf2p, рекомбинация
File Description: text/html
-
15Academic Journal
Source: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; № 4 (2010); 36-38 ; Вестник Московского университета. Серия 16. Биология; № 4 (2010); 36-38 ; 0137-0952 ; 10.1234/XXXX-XXXX-2010-4
Subject Terms: эволюция, polymorphism, mitochondrial genome, evolution, полиморфизм, митохондриальный геном
File Description: application/pdf
Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/197/196; Yamane K., Yasui Y, Ohnishi O. Intraspecific cpDNA gopyrum cymosum (Polygonaceae) // Am. J. Bot. 2003. Vol. 90. variation of diploid and tetraploid perennial buckwheat, Fa- P. 339—346.; Campbell C.G. Buckwheat. Fagopyrum esculentum Moench // International Plant Genetic Resources Institute. Rome, Italy, 1997. 95 p.; Ohsako T., Yamane K., Ohnishi O. Two new Fagopyrum (Polygonaceae) species F.gracilipedoides and F.jinshaense from Yunnan, China // Genes and Genet. Syst. 2002. N 77. P. 399—408.; Yasui Y., Ohnishi O. Interspecific relationships in Fagopyrum (Polygonaceae) revealed by the nucleotide sequen¬ces of the rbcL and accD genes and their intergenic region // Am. J. Bot. 1998a. Vol. 85. P. 1134—1142.; Cameron K.M. On the value of nuclear and mitochon- drial gene sequences for reconstructing the phylogeny of vanilloid orchids (Vanilloideae, Orchidaceae) // Ann. Bot. 2009. Vol. 104(3). P. 377—385.; Edwards K., Johnstone C., Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis // Nucl. Acids Res. 1991. Vol. 19(6). Ð. 1349.; Demesure B., Sodzi N., Petit R.J. A set of universal primers for amplication of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants // Molec. Ecol. 1995. Vol.4. P. 129—131.; Sharma T.R., Jana S. Species relationships in Fago- pyrum revealed by PCR-based DNA fingerprinting // Theor. Appl. Genet. 2002. Vol. 105. P. 306—312.
-
16Academic Journal
Authors: Баринова, В., Синев, В., Рыжкова, А., Трубинов, С., Желанкин, А., Митрофанов, К., Орехов, А., Постнов, А., Собенин, И., Сазонова, М.
Subject Terms: МИТОХОНДРИАЛЬНЫЙ ГЕНОМ, МУТАЦИЯ, УРОВЕНЬ ГЕТЕРОПЛАЗМИИ, ИНТИМА АОРТЫ, ЛИПОФИБРОЗНАЯ БЛЯШКА, АТЕРОСКЛЕРОЗ, ГЕН ЦИТОХРОМА В
File Description: text/html
-
17Academic Journal
Authors: Klimenko, E., Koulintchenko, M., Grebnev, P., Dietrich, A., Konstantinov, Yu
Subject Terms: MITOCHONDRIA,DNA IMPORT,SOLANUM TUBEROSUM,LINEAR MITOCHONDRIAL PLASMIDS,PLANT MITOCHONDRIA GENOME, митохондрии, импорт ДНК, Solanum tuberosum, линейные митохондриальные плазмиды, митохондриальный геном растений
File Description: text/html
-
18Academic Journal
Source: Вестник Российского государственного медицинского университета.
Subject Terms: митохондрия, митохондриальный геном, Abf2p, рекомбинация
File Description: text/html
-
19Academic Journal
Authors: Митрофанов, К., Желанкин, А., Сазонова, М., Собенин, И., Постнов, А.
Subject Terms: МУТАЦИЯ, АМИНОКИСЛОТА, МИТОХОНДРИАЛЬНЫЙ ГЕНОМ, ИНФАРКТ МИОКАРДА
File Description: text/html
-
20Academic Journal
Authors: Желанкин, А., Синёв, В., Хасанова, З., Баринова, В., Постнов, А., Сазонова, М., Орехов, А., Собенин, И.
Subject Terms: АТЕРОСКЛЕРОЗ, ГАПЛОГРУППА, МИТОХОНДРИАЛЬНЫЙ ГЕНОМ, СЕКВЕНИРОВАНИЕ НОВОГО ПОКОЛЕНИЯ
File Description: text/html