Showing 1 - 20 results of 104 for search '"митохондриальная дисфункция"', query time: 0.83s Refine Results
  1. 1
    Academic Journal

    Contributors: Исследование выполнено за счет средств гранта Российского научного фонда, проект № 25-75-10160.

    Source: Complex Issues of Cardiovascular Diseases; Том 14, № 5 (2025); 139-159 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 14, № 5 (2025); 139-159 ; 2587-9537 ; 2306-1278

    File Description: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1782/1096; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1782/2273; Gutierrez G, Lund N, Bryan-Brown CW. Cellular oxygen utilization during multiple organ failure. Crit Care Clin. 1989;5(2):271-287.; Bersten A, Sibbald WJ. Circulatory disturbances in multiple systems organ failure. Crit Care Clin. 1989;5(2):233-254.; Рябов Г.А. Гипоксия критических состояний. Медицина. 1988; Preau, S., Vodovar, D., Jung, B. Energetic dysfunction in sepsis: a narrative review. Ann. Intensive Care 11, 104 (2021). https://doi.org/10.1186/s13613-021-00893-7; Ostergaard L, Granfeldt A, Secher N, Tietze A, Iversen NK, Jensen MS, et al. Microcirculatory dysfunction and tissue oxygenation in critical illness. Acta Anaesthesiol Scand. 2015;59:1246–59; Ince C, Mik EG. Microcirculatory and mitochondrial hypoxia in sepsis, shock, and resuscitation. J Appl Physiol (1985). 2016;120:226–35; Andersen P, Saltin B. Maximal perfusion of skeletal muscle in man. J Physiol. 1985 Sep;366:233-49. doi:10.1113/jphysiol.1985.sp015794. PMID: 4057091; PMCID: PMC1193029.; Fry BC, Roy TK, Secomb TW. Capillary recruitment in a theoretical model for blood flow regulation in heterogeneous microvessel networks. Physiol Rep. 2013 Aug;1(3):e00050. doi:10.1002/phy2.50.; Trzeciak S, Rivers EP. Clinical manifestations of disordered microcirculatory perfusion in severe sepsis. Crit Care. 2005;9 Suppl 4:S20–6; Koning NJ, Simon LE, Asfar P, Baufreton C, Boer C. Systemic microvascular shunting through hyperdynamic capillaries after acute physiological disturbances following cardiopulmonary bypass. Am J Physiol Heart Circ Physiol. 2014;307:H967–75; Segal SS. Regulation of blood flow in the microcirculation. Microcirculation. 2005;12(1):33-45. doi:10.1080/10739680590895028; Jacob, M., & Chappell, D. (2013). Reappraising Starling: the physiology of the microcirculation. Current opinion in critical care, 19(4), 282–289. https://doi.org/10.1097/MCC.0b013e3283632d5e; Hautefort, A., Pfenniger, A., & Kwak, B. R. (2019). Endothelial connexins in vascular function. Vascular biology (Bristol, England), 1(1), H117–H124. https://doi.org/10.1530/VB-19-0015; Levick, J. R., & Michel, C. C. (2010). Microvascular fluid exchange and the revised Starling principle. Cardiovascular research, 87(2), 198–210. https://doi.org/10.1093/cvr/cvq062; Pillinger, N. L., & Kam, P. (2017). Endothelial glycocalyx: basic science and clinical implications. Anaesthesia and intensive care, 45(3), 295–307. https://doi.org/10.1177/0310057X1704500305; Wang, X., Shen, Y., Shang, M., Liu, X., & Munn, L. L. (2023). Endothelial mechanobiology in atherosclerosis. Cardiovascular research, 119(8), 1656–1675. https://doi.org/10.1093/cvr/cvad076; Sukriti, S., Tauseef, M., Yazbeck, P., & Mehta, D. (2014). Mechanisms regulating endothelial permeability. Pulmonary circulation, 4(4), 535–551. https://doi.org/10.1086/677356; Claesson-Welsh L. (2015). Vascular permeability--the essentials. Upsala journal of medical sciences, 120(3), 135–143. https://doi.org/10.3109/03009734.2015.1064501; Baeyens, N., Bandyopadhyay, C., Coon, B. G., Yun, S., & Schwartz, M. A. (2016). Endothelial fluid shear stress sensing in vascular health and disease. The Journal of clinical investigation, 126(3), 821–828. https://doi.org/10.1172/JCI83083; Souilhol, C., Serbanovic-Canic, J., Fragiadaki, M., Chico, T. J., Ridger, V., Roddie, H., & Evans, P. C. (2020). Endothelial responses to shear stress in atherosclerosis: a novel role for developmental genes. Nature reviews. Cardiology, 17(1), 52–63. https://doi.org/10.1038/s41569-019-0239-5; Goldenberg, N. M., Steinberg, B. E., Slutsky, A. S., & Lee, W. L. (2011). Broken barriers: a new take on sepsis pathogenesis. Science translational medicine, 3(88), 88ps25. https://doi.org/10.1126/scitranslmed.3002011; Seppä, A. M. J., Skrifvars, M. B., & Pekkarinen, P. T. (2023). Inflammatory response after out-of-hospital cardiac arrest-Impact on outcome and organ failure development. Acta anaesthesiologica Scandinavica, 67(9), 1273–1287. https://doi.org/10.1111/aas.14291; Hellenthal, K. E. M., Brabenec, L., & Wagner, N. M. (2022). Regulation and Dysregulation of Endothelial Permeability during Systemic Inflammation. Cells, 11(12), 1935. https://doi.org/10.3390/cells11121935; Vu, H. H., Moellmer, S. A., McCarty, O. J. T., & Puy, C. (2025). New mechanisms and therapeutic approaches to regulate vascular permeability in systemic inflammation. Current opinion in hematology, 32(3),130–137; Grundmann, S., Fink, K., Rabadzhieva, L., Bourgeois, N., Schwab, T., Moser, M., Bode, C., & Busch, H. J. (2012). Perturbation of the endothelial glycocalyx in post cardiac arrest syndrome. Resuscitation, 83(6), 715–720. https://doi.org/10.1016/j.resuscitation.2012.01.028; [Ostrowski, S. R., Haase, N., Müller, R. B., Møller, M. H., Pott, F. C., Perner, A., & Johansson, P. I. (2015). Association between biomarkers of endothelial injury and hypocoagulability in patients with severe sepsis: a prospective study. Critical care (London, England), 19(1), 191. https://doi.org/10.1186/s13054-015-0918-5; Ильина Я.Ю., Фот Е.В., Кузьков В.В., Киров М.Ю. Сепсис-индуцированное повреждение эндотелиального гликокаликса (обзор литературы). Вестник интенсивной терапии имени А.И. Салтанова. 2019;(2):32–39. doi:10.21320/1818-474X-2019-2-32-39.; Ryter, S. W., Kim, H. P., Hoetzel, A., Park, J. W., Nakahira, K., Wang, X., & Choi, A. M. (2007). Mechanisms of cell death in oxidative stress. Antioxidants & redox signaling, 9(1), 49–89. https://doi.org/10.1089/ars.2007.9.49; Huet, O., Dupic, L., Harrois, A., & Duranteau, J. (2011). Oxidative stress and endothelial dysfunction during sepsis. Frontiers in bioscience (Landmark edition), 16(5), 1986–1995. https://doi.org/10.2741/3835; Boisramé-Helms, J., Kremer, H., Schini-Kerth, V., & Meziani, F. (2013). Endothelial dysfunction in sepsis. Current vascular pharmacology, 11(2), 150–160.; Johansson, P. I., Stensballe, J., & Ostrowski, S. R. (2017). Shock induced endotheliopathy (SHINE) in acute critical illness - a unifying pathophysiologic mechanism. Critical care (London, England), 21(1), 25. https://doi.org/10.1186/s13054-017-1605-5; Welling, H., Henriksen, H. H., Gonzalez-Rodriguez, E. R., Stensballe, J., Huzar, T. F., Johansson, P. I., & Wade, C. E. (2020). Endothelial glycocalyx shedding in patients with burns. Burns : journal of the International Society for Burn Injuries, 46(2), 386–393. https://doi.org/10.1016/j.burns.2019.05.009; Naumann, D. N., Hazeldine, J., Davies, D. J., Bishop, J., Midwinter, M. J., Belli, A., Harrison, P., & Lord, J. M. (2018). Endotheliopathy of Trauma is an on-Scene Phenomenon, and is Associated with Multiple Organ Dysfunction Syndrome: A Prospective Observational Study. Shock (Augusta, Ga.), 49(4), 420–428. https://doi.org/10.1097/SHK.0000000000000999; Ладожская-Гапеенко Е.Е. Дисфункция микроциркуляции при критических состояниях (обзор литературы). Вестник анестезиологии и реаниматологии. 2024;21(6):116-121. https://doi.org/10.24884/2078-5658-2024-21-6-116-121; den Uil CA, Klijn E, Lagrand WK, Brugts JJ, Ince C, Spronk PE, Simoons ML. The microcirculation in health and critical disease. Prog Cardiovasc Dis. 2008 Sep-Oct;51(2):161-70. doi:10.1016/j.pcad.2008.07.002. PMID: 18774014.; De Backer D, Ortiz JA, Salgado D. Coupling microcirculation to systemic hemodynamics. Curr Opin Crit Care. 2010 Jun;16(3):250-4. doi:10.1097/MCC.0b013e3283383621. PMID: 20179590.; Ince C, Ashruf JF, Avontuur JA, Wieringa PA, Spaan JA, Bruining HA (1993) Heterogeneity of the hypoxic state in rat heart is determined at capillary level.Am J Physiol 264:H294–H301; Revelly JP, Ayuse T, Brienza N, Fessler HE, Robotham JL (1996) Endotoxic shock altersdistribution of blood flow within the intestinal wall. Crit Care Med 24:1345–1351; Schwartz DR, Malhotra A, Fink MP. Microcirculatory weak units--an alternative explanation. Crit Care Med. 2000 Aug;28(8):3127-9. doi:10.1097/00003246-200008000-00103. PMID: 10966332.; Hilty MP, Jung C. Tissue oxygenation: how to measure, how much to target. Intensive Care Med Exp. 2023 Sep 23;11(1):64. doi:10.1186/s40635-023-00551-1. PMID: 37740840; PMCID: PMC10517908.; van Genderen ME, Klijn E, Lima A, de Jonge J, Sleeswijk Visser S, Voorbeijtel J, Bakker J, van Bommel J. Microvascular perfusion as a target for fluid resuscitation in experimental circulatory shock. Crit Care Med. 2014 Feb;42(2):e96-e105. doi:10.1097/CCM.0b013e3182a63fbf. PMID: 24158169.Spronk, P.E. Microcirculatory and Mitochondrial Distress Syndrome (MMDS): A New Look at Sepsis. in Functional Hemodynamic Monitoring: Update in Intensive Care and; Emergency Medicine. (ed. Pinsky, M.R., Payen, D.) 47–67 (Springer, 2005).; Brealey В, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, Davies NA, Cooper CE, Singer M. Association between mitochondrial dysfunction and severity and outcome of septic shock. The Lancet,Volume 360, Issue 9328, 2002: 219-223, https://doi.org/10.1016/S0140-6736(02)09459-X.; Lang, C. H., Bagby, G. J., Ferguson, J. L. & Spritzer, J. J. Cardiac output and redistribution of organ blood flow in hypermetabolic sepsis. Am. J. Physiol. 246, 331–337 (1984).; Protti, A. & Singer, M. Bench-to-bedside review: Potential strategies to protect or reverse mitochondrial dysfunction in sepsis-induced organ failure. Crit. Care. 10, 228. https://doi.org/10.1186/cc5014 (2006).; Donati, A. et al. From macrohemodynamic to the microcirculation. Crit. Care. Res. Pract. 2013, 892710. https://doi.org/10.1155/2013/892710 (2013).; Fink MP. Bench-to-bedside review: Cytopathic hypoxia. Crit Care. 2002 Dec;6(6):491-9. doi:10.1186/cc1824. Epub 2002 Sep 12.; Porta F, Takala J, Weikert C, Bracht H, Kolarova A, Lauterburg BH, et al. Effects of prolonged endotoxemia on liver, skeletal muscle and kidney mitochondrial function. Crit Care. (2006) 10:R118. doi:10.1186/cc5013; Taccone FS, Su F, De Deyne C, Abdellhai A, Pierrakos C, He X, et al. Sepsis is associated with altered cerebral microcirculation and tissue hypoxia in experimental peritonitis. Crit Care Med. (2014) 42:e114–22. doi:10.1097/CCM.0b013e3182a641b8; Singer M. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence. 2014 Jan 1;5(1):66-72. doi:10.4161/viru.26907. Epub 2013 Nov 1.; Carré JE, Orban JC, Re L, Felsmann K, Iffert W, Bauer M, Suliman HB, Piantadosi CA, Mayhew TM, Breen P, Stotz M, Singer M. Survival in critical illness is associated with early activation of mitochondrial biogenesis. Am J Respir Crit Care Med. 2010 Sep 15;182(6):745-51. doi:10.1164/rccm.201003-0326OC. Epub 2010 Jun 10.; Valeanu, L., Bubenek-Turconi, S.-I., Ginghina, C., & Balan, C. (2021). Hemodynamic Monitoring in Sepsis—A Conceptual Framework of Macro- and Microcirculatory Alterations. Diagnostics, 11(9), 1559. https://doi.org/10.3390/diagnostics11091559; Wang, H., Ding, H., Wang, Z.-Y., & Zhang, K. (2024). Research progress on microcirculatory disorders in septic shock: A narrative review. Medicine, 103(8), e37273. https://doi.org/10.1097/MD.0000000000037273; Bultinck J, Sips P, Vakaet L, et al. Systemic NO production during (septic) shock depends on parenchymal and not on hematopoietic cells: in vivo iNOS expression pattern in (septic) shock. FASEB J. 2006;20(13):2363–2365.; Zhang H, Wang Y, Qu M, et al. Neutrophil, neutrophil extracellular traps and endothelial cell dysfunction in sepsis. Clin Transl Med. 2023;13(1):e1170; Anand T, Reyes AA, Sjoquist MC, et al. Resuscitating the endothelial glycocalyx in trauma and hemorrhagic shock. Ann Surg Open. 2023;4(3):e298.; Maneta, E., Aivalioti, E., Tual-Chalot, S., Emini Veseli, B., Gatsiou, A., Stamatelopoulos, K., & Stellos, K. (2023). Endothelial dysfunction and immunothrombosis in sepsis. Frontiers in immunology, 14, 1144229. https://doi.org/10.3389/fimmu.2023.1144229; Jansson, D., Rustenhoven, J., Feng, S., Hurley, D., Oldfield, R. L., Bergin, P. S., Mee, E. W., Faull, R. L., & Dragunow, M. (2014). A role for human brain pericytes in neuroinflammation. Journal of neuroinflammation, 11, 104. https://doi.org/10.1186/1742-2094-11-104; McMullan, R.R., McAuley, D.F., O’Kane, C.M. et al. Vascular leak in sepsis: physiological basis and potential therapeutic advances. Crit Care 28, 97 (2024). https://doi.org/10.1186/s13054-024-04875-6; De Backer, D., Hajjar, L., & Monnet, X. (2024). Vasoconstriction in septic shock. Intensive care medicine, 50(3), 459–462. https://doi.org/10.1007/s00134-024-07332-8; Landry, D. W., & Oliver, J. A. (2001). The pathogenesis of vasodilatory shock. The New England journal of medicine, 345(8), 588–595. https://doi.org/10.1056/NEJMra002709; Burgdorff, A. M., Bucher, M., & Schumann, J. (2018). Vasoplegia in patients with sepsis and septic shock: pathways and mechanisms. The Journal of international medical research, 46(4), 1303–1310. https://doi.org/10.1177/0300060517743836; Bakker J, Ince C. Monitoring coherence between the macro and microcirculation in septic shock. Curr Opin Crit Care. 2020;26(3):267–272.; LeDoux, D., Astiz, M. E., Carpati, C. M., & Rackow, E. C. (2000). Effects of perfusion pressure on tissue perfusion in septic shock. Critical care medicine, 28(8), 2729–2732. https://doi.org/10.1097/00003246-200008000-00007; Dubin, A., Edul, V. S., Pozo, M. O., Murias, G., Canullán, C. M., Martins, E. F., Ferrara, G., Canales, H. S., Laporte, M., Estenssoro, E., & Ince, C. (2008). Persistent villi hypoperfusion explains intramucosal acidosis in sheep endotoxemia. Critical care medicine, 36(2), 535–542. https://doi.org/10.1097/01.CCM.0000300083.74726.43; Hernandez, G., Boerma, E. C., Dubin, A., Bruhn, A., Koopmans, M., Edul, V. K., Ruiz, C., Castro, R., Pozo, M. O., Pedreros, C., Veas, E., Fuentealba, A., Kattan, E., Rovegno, M., & Ince, C. (2013). Severe abnormalities in microvascular perfused vessel density are associated to organ dysfunctions and mortality and can be predicted by hyperlactatemia and norepinephrine requirements in septic shock patients. Journal of critical care, 28(4), 538.e9–538.e5.38E14. https://doi.org/10.1016/j.jcrc.2012.11.022; Trzeciak, S., Dellinger, R. P., Parrillo, J. E., Guglielmi, M., Bajaj, J., Abate, N. L., Arnold, R. C., Colilla, S., Zanotti, S., Hollenberg, S. M., & Microcirculatory Alterations in Resuscitation and Shock Investigators (2007). Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival. Annals of emergency medicine, 49(1), 88–98.e982. https://doi.org/10.1016/j.annemergmed.2006.08.021; Tachon, G., Harrois, A., Tanaka, S., Kato, H., Huet, O., Pottecher, J., Vicaut, E., & Duranteau, J. (2014). Microcirculatory alterations in traumatic hemorrhagic shock. Critical care medicine, 42(6), 1433–1441. https://doi.org/10.1097/CCM.0000000000000223; Sakr, Y., Dubois, M. J., De Backer, D., Creteur, J., & Vincent, J. L. (2004). Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Critical care medicine, 32(9), 1825–1831. https://doi.org/10.1097/01.ccm.0000138558.16257.3f; Stenberg, T. A., Kildal, A. B., Sanden, E., How, O. J., Hagve, M., Ytrehus, K., Larsen, T. S., & Myrmel, T. (2014). The acute phase of experimental cardiogenic shock is counteracted by microcirculatory and mitochondrial adaptations. PloS one, 9(9), e105213. https://doi.org/10.1371/journal.pone.0105213; Elbers, P. W., & Ince, C. (2006). Mechanisms of critical illness--classifying microcirculatory flow abnormalities in distributive shock. Critical care (London, England), 10(4), 221. https://doi.org/10.1186/cc4969; Ince, C., Boerma, E.C., Cecconi, M. et al. Second consensus on the assessment of sublingual microcirculation in critically ill patients: results from a task force of the European Society of Intensive Care Medicine. Intensive Care Med 44, 281–299 (2018). https://doi.org/10.1007/s00134-018-5070-7; Guay CS, Khebir M, Shiva Shahiri T, Szilagyi A, Cole EE, Simoneau G, Badawy M. Evaluation of automated microvascular flow analysis software AVA 4: a validation study. Intensive Care Med Exp. 2021 Apr 2;9(1):15. doi:10.1186/s40635-021-00380-0. PMID: 33796954; PMCID: PMC8017044.; Massey MJ, Shapiro NI. A guide to human in vivo microcirculatory flow image analysis. Crit Care. 2016 Feb 10;20:35. doi:10.1186/s13054-016-1213-9. PMID: 26861691; PMCID: PMC4748457.; Groner W, Winkelman JW, Harris AG, Ince C, Bouma GJ, Messmer K, Nadeau RG. Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat Med. 1999 Oct;5(10):1209-12. doi:10.1038/13529. PMID: 10502828.; Bottino DA and Bouskela E (2023) Non-invasive techniques to access in vivo the skin microcirculation in patients. Front. Med. 9:1099107. doi:10.3389/fmed.2022.1099107; De Backer D, Ospina-Tascon G, Salgado D, Favory R, Creteur J, Vincent JL. Monitoring the microcirculation in the critically ill patient: current methods and future approaches. Intensive Care Med. 2010 Nov;36(11):1813-25. doi:10.1007/s00134-010-2005-3. Epub 2010 Aug 6. PMID: 20689916.; Damiani E, Carsetti A, Casarotta E, et al. Microcirculation-guided resuscitation in sepsis: the next frontier?. Front Med (Lausanne). 2023;10:1212321. Published 2023 Jul 5. doi:10.3389/fmed.2023.1212321; Tafner PFDA, Chen FK, Rabello R Filho, Corrêa TD, Chaves RCF, Serpa A Neto. Recent advances in bedside microcirculation assessment in critically ill patients. Recentes avanços na avaliaçåo da microcirculaçåo à beira do leito em pacientes graves. Rev Bras Ter Intensiva. 2017;29(2):238-247. doi:10.5935/0103-507X.20170033; Tachon G, Harrois A, Tanaka S, et al. Microcirculatory alterations in traumatic hemorrhagic shock. Crit Care Med. 2014;42(6):1433-1441. doi:10.1097/CCM.0000000000000223; Aykut G, Veenstra G, Scorcella C, Ince C, Boerma C. Cytocam-IDF (incident dark field illumination) imaging for bedside monitoring of the microcirculation. Intensive Care Med Exp. 2015 Dec;3(1):40. doi:10.1186/s40635-015-0040-7. Epub 2015 Jan 31.; Kiseleva E., Ryabkov M., Baleev M., Bederina E., Shilyagin P., Moiseev A., Beschastnov V., Romanov I., Gelikonov G., Gladkova N. Prospects of Intraoperative Multimodal OCT Application in Patients with Acute Mesenteric Ischemia // Diagnostics (Basel). 2021. 11(4). 705. doi:10.3390/diagnostics11040705.; Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, et al. Optical coherence tomography. Science. 1991 Nov 22;254(5035):1178-81. doi:10.1126/science.1957169. PMID: 1957169; PMCID: PMC4638169.; Fujimoto JG, Brezinski ME, Tearney GJ, Boppart SA, Bouma B, Hee MR, Southern JF, Swanson EA. Optical biopsy and imaging using optical coherence tomography. Nat Med. 1995 Sep;1(9):970-2. doi:10.1038/nm0995-970. PMID: 7585229.; Nioka S, Chen Y. Optical tecnology developments in biomedicine: history, current and future. Transl Med UniSa. 2011 Oct 17;1:51-150. PMID: 23905030; PMCID: PMC3728850.; Park JR, Lee B, Lee MJ, Kim K, Oh WY. Visualization of three-dimensional microcirculation of rodents' retina and choroid for studies of critical illness using optical coherence tomography angiography. Sci Rep. 2021 Jul 12;11(1):14302. doi:10.1038/s41598-021-93631-9. PMID: 34253747; PMCID: PMC8275781.; Lee B, Kang W, Oh SH, Cho S, Shin I, Oh EJ, Kim YJ, Ahn JS, Yook JM, Jung SJ, Lim JH, Kim YL, Cho JH, Oh WY. In vivo imaging of renal microvasculature in a murine ischemia-reperfusion injury model using optical coherence tomography angiography. Sci Rep. 2023 Apr 19;13(1):6396. doi:10.1038/s41598-023-33295-9. PMID: 37076541; PMCID: PMC10115874.; Hessler, M., Nelis, P., Ertmer, C. et al. Optical coherence tomography angiography as a novel approach to contactless evaluation of sublingual microcirculation: A proof of principle study. Sci Rep 10, 5408 (2020). https://doi.org/10.1038/s41598-020-62128-2; Courtie E, Gilani A, Veenith T and Blanch RJ (2022) Optical coherence tomography angiography as a surrogate marker for end-organ resuscitation in sepsis: A review. Front. Med. 9:1023062. doi:10.3389/fmed.2022.1023062; Hilty MP, Akin S, Boerma C, Donati A, Erdem Ö, Giaccaglia P, Guerci P, Milstein DM, Montomoli J, Toraman F, Uz Z, Veenstra G, Ince C. Automated Algorithm Analysis of Sublingual Microcirculation in an International Multicentral Database Identifies Alterations Associated With Disease and Mechanism of Resuscitation. Crit Care Med. 2020 Oct;48(10):e864-e875. doi:10.1097/CCM.0000000000004491. PMID: 32931192.; Sigg AA, Zivkovic V, Bartussek J, Schuepbach RA, Ince C, Hilty MP. The physiological basis for individualized oxygenation targets in critically ill patients with circulatory shock. Intensive Care Med Exp. 2024 Aug 22;12(1):72. doi:10.1186/s40635-024-00651-6. PMID: 39174691; PMCID: PMC11341514.; Jacquet-Lagrèze M, Magnin M, Allaouchiche B, Abrard S. Is handheld video microscopy really the future of microcirculation monitoring? Crit Care. 2023 Sep 12;27(1):352. doi:10.1186/s13054-023-04642-z. PMID: 37700327; PMCID: PMC10498643.; Dubin A, Kanoore Edul VS, Caminos Eguillor JF, Ferrara G. Monitoring Microcirculation: Utility and Barriers - A Point-of-View Review. Vasc Health Risk Manag. 2020 Dec 31;16:577-589. doi:10.2147/VHRM.S242635. PMID: 33408477; PMCID: PMC7780856.; De Backer, Daniel. Is microcirculatory assessment ready for regular use in clinical practice?. Current Opinion in Critical Care 25(3):p 280-284, June 2019. %7C DOI:10.1097/MCC.0000000000000605; Magnin, M., Foulon, É., Lurier, T., Allaouchiche, B., Bonnet-Garin, J. M., & Junot, S. (2020). Evaluation of microcirculation by Sidestream Dark Field imaging: Impact of hemodynamic status on the occurrence of pressure artifacts - A pilot study. Microvascular research, 131, 104025. https://doi.org/10.1016/j.mvr.2020.104025; Massey, M. J., Larochelle, E., Najarro, G., Karmacharla, A., Arnold, R., Trzeciak, S., Angus, D. C., & Shapiro, N. I. (2013). The microcirculation image quality score: development and preliminary evaluation of a proposed approach to grading quality of image acquisition for bedside videomicroscopy. Journal of critical care, 28(6), 913–917. https://doi.org/10.1016/j.jcrc.2013.06.015; Massey, M.J., Shapiro, N.I. A guide to human in vivo microcirculatory flow image analysis. Crit Care 20, 35 (2015). https://doi.org/10.1186/s13054-016-1213-9; Dobbe, J. G., Streekstra, G. J., Atasever, B., van Zijderveld, R., & Ince, C. (2008). Measurement of functional microcirculatory geometry and velocity distributions using automated image analysis. Medical & biological engineering & computing, 46(7), 659–670. https://doi.org/10.1007/s11517-008-0349-4; Ince C. (2008). The elusive microcirculation. Intensive care medicine, 34(10), 1755–1756. https://doi.org/10.1007/s00134-008-1131-7; Struijker-Boudier, H. A., Rosei, A. E., Bruneval, P., Camici, P. G., Christ, F., Henrion, D., Lévy, B. I., Pries, A., & Vanoverschelde, J. L. (2007). Evaluation of the microcirculation in hypertension and cardiovascular disease. European heart journal, 28(23), 2834–2840. https://doi.org/10.1093/eurheartj/ehm448; Dababneh, L., Cikach, F., Alkukhun, L., Dweik, R. A., & Tonelli, A. R. (2014). Sublingual microcirculation in pulmonary arterial hypertension. Annals of the American Thoracic Society, 11(4), 504–512. https://doi.org/10.1513/AnnalsATS.201308-277OC; Wadowski, P. P., Hülsmann, M., Schörgenhofer, C., Lang, I. M., Wurm, R., Gremmel, T., Koppensteiner, R., Steinlechner, B., Schwameis, M., & Jilma, B. (2018). Sublingual functional capillary rarefaction in chronic heart failure. European journal of clinical investigation, 48(2), 10.1111/eci.12869. https://doi.org/10.1111/eci.12869; Ruzek, L., Svobodova, K., Olson, L. J., Ludka, O., & Cundrle, I., Jr (2017). Increased microcirculatory heterogeneity in patients with obstructive sleep apnea. PloS one, 12(9), e0184291. https://doi.org/10.1371/journal.pone.0184291; Scorcella C, Damiani E, Domizi R, Pierantozzi S, Tondi S, Carsetti A, Ciucani S, Monaldi V, Rogani M, Marini B, Adrario E, Romano R, Ince C, Boerma EC, Donati A. MicroDAIMON study: Microcirculatory DAIly MONitoring in critically ill patients: a prospective observational study. Ann Intensive Care. 2018 May 15;8(1):64. doi:10.1186/s13613-018-0411-9. PMID: 29766322; PMCID: PMC5953911.; Pranskunas A, Koopmans M, Koetsier PM, Pilvinis V, Boerma EC. Microcirculatory blood flow as a tool to select ICU patients eligible for fluid therapy. Intensive Care Med. 2013 Apr;39(4):612-9. doi:10.1007/s00134-012-2793-8. Epub 2012 Dec 20. PMID: 23263029; PMCID: PMC3607718.; Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, Jaeschke R, Mebazaa A, Pinsky MR, Teboul JL, Vincent JL, Rhodes A. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014 Dec;40(12):1795-815. doi:10.1007/s00134-014-3525-z. Epub 2014 Nov 13. PMID: 25392034; PMCID: PMC4239778.

  2. 2
    Academic Journal

    Contributors: This research was conducted without sponsorship. The study was performed using the scientific equipment of the Center for Collective Use of the National Medical Research Center of Oncology, Ministry of Health of Russia (https://ckp-rf.ru/catalog/ckp/3554742)., Исследование проведено без спонсорской поддержки. Исследование выполнено с использованием научного оборудования Центра коллективного пользования ФГБУ «Национальный медицинский исследовательский центр онкологии» Минздрава России (https://ckp-rf.ru/catalog/ckp/3554742).

    Source: Advances in Molecular Oncology; Том 12, № 1 (2025); 76-83 ; Успехи молекулярной онкологии; Том 12, № 1 (2025); 76-83 ; 2413-3787 ; 2313-805X

    File Description: application/pdf

    Relation: https://umo.abvpress.ru/jour/article/view/760/384; Кутилин Д.С., Никитин И.С., Кит О.И. Особенности экспрессии генов некоторых транскрипционных факторов при малигнизации тканей тела матки. Успехи молекулярной онкологии 2019;6(1):57–62. DOI:10.17650/2313-805X-2019-6-1-57-62; World Cancer Report 2014. World Health Organization. Chapter 5.12. Causes, risk factors, and prevention TOPICS - Do we know what causes endometrial cancer? American Cancer Society. Retrieved 5 January 2015.; Кутилин Д.С., Гусарева М.А., Кошелева Н.Г. Уровень копийности генетических локусов и малоинвазивная оценка эффективности лучевой терапии у больных раком прямой кишки. Российский биотерапевтический журнал 2022;21(4):41–9. DOI:10.17650/1726-9784-2022-21-4-41-49; Цандекова М.Р., Порханова Н.В., Кит О.И., Кутилин Д.С. Малоинвазивная молекулярная диагностика серозной аденокарциномы яичника высокой и низкой степени злокачественности. Онкогинекология 2021;4(40):35–49. DOI:10.52313/22278710_2021_4_35; Кутилин Д.С., Гусарева М.А., Кошелева Н.Г. и др. Нарушения в регуляторной сети конкурентно-взаимодействующих РНК и радиорезистентность опухолей прямой кишки. Международный журнал прикладных и фундаментальных исследований 2021;11:12–29. DOI:10.17513/mjpfi.13306; Кутилин Д.С., Айрапетова Т.Г., Анистратов П.А. и др. Изменение копийности генов в опухолевых клетках и внеклеточной ДНК у больных аденокарциномой легкого. Бюллетень экспериментальной биологии и медицины 2019;167(6):731–8. DOI:10.23683/0321-3005-2017-3-2-74-82; Кит О.И., Водолажский Д.И., Кутилин Д.С. и др. Копийность генов GSTP1, NFKB1 и локуса HV2 митохондриальной ДНК при некоторых гистологических типах рака желудка. Успехи современного естествознания 2015;1–6:918–21.; Fernfndes J., Michel V., Camoalinga-Ponce V. et al. Circulating mitochondrial DNA level, a noninvasive biomarker for the early detection of gastric cancer. Cancer Epidemiol Biomarkers Prev 2014;23(11):2430–8. DOI:10.1158/1055-9965.EPI-14-0471; Кутилин Д.С., Айрапетова Т.Г., Анистратов П.А. и др. Изменение относительной копийности генетических локусов во внеклеточной ДНК у пациентов с аденокарциномой легкого. Известия вузов. Северо-Кавказский регион. Естественные науки 2017;3:74–83. DOI:10.23683/0321-3005-2017-3-2-74-82; Xu Y., Zhou J., Yuan Q. et al. Quantitative detection of circulating MT-ND1 as a potential biomarker for colorectal cancer. Bosn J Basic Med Sci 2021;21(5):577–86. DOI:10.17305/bjbms.2021.5576; Xu Y.C., Su J., Zhou J.J. et al. Roles of MT-ND1 in cancer. Curr Med Sci 2023;43(5):869–78. DOI:10.1007/s11596-023-2771-0; Кит О.И., Водолажский Д.И., Кутилин Д.С., Гудуева Е.Н. Изменение копийности генетических локусов при раке желудка. Молекулярная биология 2015;49(4):658–68. DOI:10.7868/S0026898415040096; Ding J., Li X., Hu H. TarPmiR: a new approach for microRNA target site prediction. Bioinformatics 2016;32(18):2768–75. DOI:10.1093/bioinformatics/btw318; Balcells I., Cirera S., Busk P.K. Specific and sensitive quantitative RT-PCR of miRNAs with DNA primers. BMC Biotechnol 2011;11(1):70. DOI:10.1186/1472-6750-11-70; Scatena R. Mitochondria and cancer: a growing role in apoptosis, cancer cell metabolism and dedifferentiation. Adv Exp Med Biol 2012;942:287–308. DOI:10.1007/978-94-007-2869-1_13; Liao L.M., Baccarelli A., Shu X.O. et al. Mitochondrial DNA copy number and risk of gastric cancer: a report from the Shanghai Women’s Health Study. Cancer Epidemiol Biomarkers Prev 2011;20(9):1944–9. DOI:10.1158/1055-9965.EPI-11-0379; Voet D.J., Voet J.G., Pratt C.W. Fundamentals of Biochemistry. Chapter 18. Mitochondrial ATP synthesis. 4th edn. Hoboken, NJ: Wiley, 213. Pp. 581–620.; Flaquer A., Baumbach C., Kriebel J. et al. Mitochondrial genetic variants identified to be associated with BMI in adults. PLoS One. 2014;9(8):e105116. DOI:10.1371/journal.pone.0105116; Faramin Lashkarian M., Hashemipour N., Niaraki N. et al. MicroRNA-122 in human cancers: from mechanistic to clinical perspectives. Cancer Cell Int 2023;23:29. DOI:10.1186/s12935-023-02868-z; Duan Y., Dong Y., Dang R. et al. MiR-122 inhibits epithelial mesenchymal transition by regulating P4HA1 in ovarian cancer cells. Cell Biol Int 2018;42(11):1564–74. DOI:10.1002/cbin.11052; Yang Y., Liu Y., Liu W. et al. MiR-122 inhibits the cervical cancer development by targeting the oncogene RAD21. Biochem Genet 2022;60(1):303–14. DOI:10.1007/s10528-021-10098-z; Xiong H., Chen Z., Chen W. et al. FKBP-related ncRNA-mRNA axis in breast cancer. Genomics 2020;112(6):4595–607. DOI:10.21203/rs.3.rs-16732/v1; https://umo.abvpress.ru/jour/article/view/760

  3. 3
    Academic Journal

    Contributors: Исследование выполнено при финансовой поддержке гранта Российского научного фонда (проект № 23-75- 00009).

    Source: Acta Biomedica Scientifica; Том 10, № 1 (2025); 103-114 ; 2587-9596 ; 2541-9420

    File Description: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/5219/2966; McDonagh T, Metra M. 2021 рекомендации ESC по диагностике и лечению острой и хронической сердечной недостаточности. Российский кардиологический журнал. 2023; 28(1): 5168. doi:10.15829/1560-4071-2023-5168; Scheffer DDL, Garcia AA, Lee L, Mochly-Rosen D, Ferreira JCB. Mitochondrial fusion, fission, and mitophagy in cardiac diseases: Challenges and therapeutic opportunities. Antioxid Redox Signal. 2022; 36(13-15): 844-863. doi:10.1089/ars.2021.0145; Цыпленкова В.Г. Гистологические и ультраструктурные характеристики миокарда при сердечной недостаточности. Кардиология. 2013; 9: 58-62.; Khoynezhad A, Jalali Z, Tortolani AJ. Apoptosis: Pathophysiology and therapeutic implications for the cardiac surgeon. Ann Thorac Surg. 2004; 78(3): 1109-1118. doi:10.1016/j.athoracsur.2003.06.034; Wiessner M, Maroofian R, Ni MY, Pedroni A, Müller JS, Stucka R, et al. Biallelic variants in HPDL cause pure and complicated hereditary spastic paraplegia. Brain. 2021; 144(5): 1422-1434. doi:10.1093/brain/awab041; Huang L, Chen H, Luo Y, Rivenson Y, Ozcan A. Recurrent neural network-based volumetric fluorescence microscopy. Light Sci Appl. 2021; 10(1): 62. doi:10.1038/s41377-021-00506-9; Судаков Н.П., Клименков И.В., Катышев А.И., Никифоров С.Б., Гольдберг О.А., Пушкарёв Б.Г., и др. Митохондриальная дисфункция при атеросклерозе и инфаркте миокарда: молекулярные и цитохимические маркеры. Acta biomedica scientifica. 2016; 1(3-2): 131-134. doi:10.12737/article_590823a517c941.46556762; Wong HH, Seet SH, Maier M, Gurel A, Traspas RM, Lee C, et al. Loss of C2orf69 defines a fatal autoinflammatory syndrome in humans and zebrafish that evokes a glycogen-storage-associated mitochondriopathy. Am J Hum Genet. 2021; 108(7): 1301-1317. doi:10.1016/j.ajhg.2021.05.003; Fernström J, Ohlsson L, Asp M, Lavant E, Holck A, Grudet C, et al. Plasma circulating cell-free mitochondrial DNA in depressive disorders. PLoS One. 2021; 16(11): e0259591. doi:10.1371/journal.pone.0259591; Pelletier-Galarneau M, Detmer FJ, Petibon Y, Normandin M, Ma C, Alpert NM, et al. Quantification of myocardial mitochondrial membrane potential using PET. Curr Cardiol Rep. 2021; 23(6): 70. doi:10.1007/s11886-021-01500-8; Newman NJ, Yu-Wai-Man P, Carelli V, Moster ML, Biousse V, Vignal-Clermont C, et al. Efficacy and safety of intravitreal gene therapy for Leber hereditary optic neuropathy treated within 6 months of disease onset. Ophthalmology. 2021; 128(5): 649-660. doi:10.1016/j.ophtha.2020.12.012; Kuwahara Y, Roudkenar MH, Suzuki M, Urushihara Y, Fukumoto M, Saito Y, et al. The Involvement of mitochondrial membrane potential in cross-resistance between radiation and docetaxel. Int J Radiat Oncol Biol Phys. 2016; 96(3): 556-565. doi:10.1016/j.ijrobp.2016.07.002; Kadenbach B, Ramzan R, Moosdorf R, Vogt S. The role of mitochondrial membrane potential in ischemic heart failure. Mitochondrion. 2011; 11(5): 700-706. doi:10.1016/j.mito.2011.06.001; Marchi S, Patergnani S, Missiroli S, Morciano G, Rimessi A, Wieckowski MR, et al. Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death. Cell Calcium. 2018; 69: 62-72. doi:10.1016/j.ceca.2017.05.003; Glancy B, Willis WT, Chess DJ, Balaban RS. Effect of calcium on the oxidative phosphorylation cascade in skeletal muscle mitochondria. Biochemistry. 2013; 52(16): 2793-2809. doi:10.1021/bi3015983; Denton RM, McCormack JG, Edgell NJ. Role of calcium ions in the regulation of intramitochondrial metabolism. Effects of Na+, Mg2+ and ruthenium red on the Ca2+-stimulated oxidation of oxoglutarate and on pyruvate dehydrogenase activity in intact rat heart mitochondria. Biochem J. 1980; 190(1): 107-117. doi:10.1042/bj1900107; Bauer TM, Murphy E. Role of mitochondrial calcium and the permeability transition pore in regulating cell death. Circ Res. 2020; 126(2): 280-293. doi:10.1161/CIRCRESAHA.119.316306; Duong QV, Hoffman A, Zhong K, Dessinger MJ, Zhang Y, Bazil JN. Calcium overload decreases net free radical emission in cardiac mitochondria. Mitochondrion. 2020; 51: 126-139. doi:10.1016/j.mito.2020.01.005; Kembro JM, Cortassa S, Aon MA. Complex oscillatory redox dynamics with signaling potential at the edge between normal and pathological mitochondrial function. Front Physiol. 2014; 5: 257. doi:10.3389/fphys.2014.00257; D’Oria R, Schipani R, Leonardini A, Natalicchio A, Perrini S, Cignarelli A, et al. The role of oxidative stress in cardiac disease: From physiological response to injury factor. Oxid Med Cell Longev. 2020; 2020: 5732956. doi:10.1155/2020/5732956; Guo Q, Bi J, Wang H, Zhang X. Mycobacterium tuberculosis ESX-1-secreted substrate protein EspC promotes mycobacterial survival through endoplasmic reticulum stress-mediated apoptosis. Emerg Microbes Infect. 2021; 10(1): 19-36. doi:10.1080/22221751.2020.1861913; Chinopoulos C. Mitochondrial permeability transition pore: Back to the drawing board. Neurochem Int. 2018; 117: 49-54. doi:10.1016/j.neuint.2017.06.010; Briston T, Selwood DL, Szabadkai G, Duchen MR. Mitochondrial permeability transition: A molecular lesion with multiple drug targets. Trends Pharmacol Sci. 2019; 40(1): 50-70. doi:10.1016/j.tips.2018.11.004; Burke PJ. Mitochondria, bioenergetics and apoptosis in cancer. Trends Cancer. 2017; 3(12): 857-870. doi:10.1016/j.trecan.2017.10.006; Shah SS, Lannon H, Dias L, Zhang JY, Alper SL, Pollak MR, et al. APOL1 kidney risk variants induce cell death via mitochondrial translocation and opening of the mitochondrial permeability transition pore. JAm Soc Nephrol. 2019; 30(12): 2355-2368. doi:10.1681/ASN.2019020114; Lee P, Chandel NS, Simon MC. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol. 2020; 21(5): 268-283. doi:10.1038/s41580-020-0227-y; Rambold AS, Pearce EL. Mitochondrial dynamics at the interface of immune cell metabolism and function. Trends Immunol. 2018; 39(1): 6-18. doi:10.1016/j.it.2017.08.006; Guntur AR, Gerencser AA, Le PT, DeMambro VE, Bornstein SA, Mookerjee SA, et al. Osteoblast-like MC3T3-E1 cells prefer glycolysis for ATP production but adipocyte-like 3T3-L1 cells prefer oxidative phosphorylation. J Bone Miner Res. 2018; 33(6): 1052- 1065. doi:10.1002/jbmr.3390; Dorr BM, Fuerst DE. Enzymatic amidation for industrial applications. Curr Opin Chem Biol. 2018; 43: 127-133. doi:10.1016/j.cbpa.2018.01.008; Ishida A, Yamada Y, Kamidate T. Colorimetric method for enzymatic screening assay of ATP using Fe(III)-xylenol orange complex formation. Anal Bioanal Chem. 2008; 392(5): 987-994. doi:10.1007/s00216-008-2334-z; Ušaj M, Moretto L, Vemula V, Salhotra A, Månsson A. Single molecule turnover of fluorescent ATP by myosin and actomyosin unveil elusive enzymatic mechanisms. Commun Biol. 2021; 4(1): 64. doi:10.1038/s42003-020-01574-0; Vasta JD, Corona CR, Wilkinson J, Zimprich CA, Hartnett JR, Ingold MR, et al. Quantitative, wide-spectrum kinase profiling in live cells for assessing the effect of cellular ATP on target engagement. Cell Chem Biol. 2018; 25(2): 206-214.e11. doi:10.1016/j.chembiol.2017.10.010; Mita M, Sugawara I, Harada K, Ito M, Takizawa M, Ishida K, et al. Development of red genetically encoded biosensor for visualization of intracellular glucose dynamics. Cell Chem Biol. 2022; 29(1): 98-108.e4. doi:10.1016/j.chembiol.2021.06.002; Mollazadeh H, Tavana E, Fanni G, Bo S, Banach M, Pirro M, et al. Effects of statins on mitochondrial pathways. J Cachexia Sarcopenia Muscle. 2021; 12(2): 237-251. doi:10.1002/jcsm.12654; Vercellino I, Sazanov LA. The assembly, regulation and function of the mitochondrial respiratory chain. Nat Rev Mol Cell Biol. 2022; 23(2): 141-161. doi:10.1038/s41580-021-00415-0; Ferrari D, Stepczynska A, Los M, Wesselborg S, Schulze-Osthoff K. Differential regulation and ATP requirement for caspase-8 and caspase-3 activation during CD95- and anticancer druginduced apoptosis. J Exp Med. 1998; 188(5): 979-984. doi:10.1084/jem.188.5.979; Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS sources in physiological and pathological conditions. Oxid Med Cell Longev. 2016; 2016: 1245049. doi:10.1155/2016/1245049; Khacho M, Tarabay M, Patten D, Khacho P, MacLaurin JG, Guadagno J, et al. Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival. Nat Commun. 2014; 5: 3550. doi:10.1038/ncomms4550; Wang M, Ren X, Wang L, Lu X, Han L, Zhang X, et al. A functional analysis of mitochondrial respiratory chain cytochrome bc1 complex in Gaeumannomyces tritici by RNA silencing as a possible target of carabrone. Mol Plant Pathol. 2020; 21(12): 1529-1544. doi:10.1111/mpp.12993; Cogliati S, Lorenzi I, Rigoni G, Caicci F, Soriano ME. Regulation of mitochondrial electron transport chain assembly. JMol Biol. 2018; 430(24): 4849-4873. doi:10.1016/j.jmb.2018.09.016; Weinberg SE, Singer BD, Steinert EM, Martinez CA, Mehta MM, Martínez-Reyes I, et al. Mitochondrial complex III is essential for suppressive function of regulatory T cells. Nature. 2019; 565(7740): 495-499. doi:10.1038/s41586-018-0846-z; Nesci S, Pagliarani A, Algieri C, Trombetti F. Mitochondrial F-type ATP synthase: Multiple enzyme functions revealed by the membrane-embedded FO structure. Crit Rev Biochem Mol Biol. 2020; 55(4): 309-321. doi:10.1080/10409238.2020.1784084; Banh RS, Iorio C, Marcotte R, Xu Y, Cojocari D, Rahman AA, et al. PTP1B controls non-mitochondrial oxygen consumption by regulating RNF213 to promote tumour survival during hypoxia. Nat Cell Biol. 2016; 18(7): 803-813. doi:10.1038/ncb3376; Baumann K. mtDNA robs nuclear dNTPs. Nat Rev Mol Cell Biol. 2019; 20(11): 663. doi:10.1038/s41580-019-0182-7; Zhu SC, Chen C, Wu YN, Ahmed M, Kitmitto A, Greenstein AS, et al. Cardiac complex II activity is enhanced by fat and mediates greater mitochondrial oxygen consumption following hypoxic re-oxygenation. Pflugers Arch. 2020; 472(3): 367-374. doi:10.1007/s00424-020-02355-8; Gu X, Ma Y, Liu Y, Wan Q. Measurement of mitochondrial respiration in adherent cells by seahorse XF96 cell mito stress test. STAR Protoc. 2020; 2(1): 100245. doi:10.1016/j.xpro.2020.100245; Eagleson KL, Villaneuva M, Southern RM, Levitt P. Proteomic and mitochondrial adaptations to early-life stress are distinct in juveniles and adults. Neurobiol Stress. 2020; 13: 100251. doi:10.1016/j.ynstr.2020.100251; Nishida M, Yamashita N, Ogawa T, Koseki K, Warabi E, Ohue T, et al. Mitochondrial reactive oxygen species trigger metformin-dependent antitumor immunity via activation of Nrf2/ mTORC1/p62 axis in tumor-infiltrating CD8T lymphocytes. JImmunother Cancer. 2021; 9(9): e002954. doi:10.1136/jitc-2021-002954; Nishida Y, Nawaz A, Kado T, Takikawa A, Igarashi Y, Onogi Y, et al. Astaxanthin stimulates mitochondrial biogenesis in insulin resistant muscle via activation of AMPK pathway. J Cachexia Sarcopenia Muscle. 2020; 11(1): 241-258. doi:10.1002/jcsm.12530; Панов А.В., Дикалов С.И., Даренская М.А., Рычкова Л.В., Колесникова Л.И., Колесников С.И. Митохондрии: старение, метаболический синдром и сердечно-сосудистая патология. Становление новой парадигмы. Acta biomedica scientifica. 2020; 5(4): 33-44. doi:10.29413/ABS.2020-5.4.5; Boengler K, Kosiol M, Mayr M, Schulz R, Rohrbach S. Mitochondria and ageing: Role in heart, skeletal muscle and adi pose tissue. J Cachexia Sarcopenia Muscle. 2017; 8(3): 349-369. doi:10.1002/jcsm.12178; Sanderson TH, Reynolds CA, Kumar R, Przyklenk K, Hüttemann M. Molecular mechanisms of ischemia-reperfusion injury in brain: Pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol. 2013; 47(1): 9-23. doi:10.1007/s12035-012-8344-z; Koch RE, Josefson CC, Hill GE. Mitochondrial function, ornamentation, and immunocompetence. Biol Rev Camb Philos Soc. 2017; 92(3): 1459-1474. doi:10.1111/brv.12291; Zhu X, Liu G, Bu Y, Zhang J, Wang L, Tian Y, et al. In situ monitoring of mitochondria regulating cell viability by the RNAspecific fluorescent photosensitizer. Anal Chem. 2020; 92(15): 10815-10821. doi:10.1021/acs.analchem.0c02298; Yang J, Chen Z, Liu N, Chen Y. Ribosomal protein L10 in mitochondria serves as a regulator for ROS level in pancreatic cancer cells. Redox Biol. 2018; 19: 158-165. doi:10.1016/j.redox.2018.08.016; Jiang X, Wang L, Carroll SL, Chen J, Wang MC, Wang J. Challenges and opportunities for small-molecule fluorescent probes in redox biology applications. Antioxid Redox Signal. 2018; 29(6): 518-540. doi:10.1089/ars.2017.7491; Ortega-Villasante C, Burén S, Blázquez-Castro A, Barón-Sola Á, Hernández LE. Fluorescent in vivo imaging of reactive oxygen species and redox potential in plants. Free Radic Biol Med. 2018; 122: 202-220. doi:10.1016/j.freeradbiomed.2018.04.005; Gotham JP, Li R, Tipple TE, Lancaster JR Jr, Liu T, Li Q. Quantitation of spin probe-detectable oxidants in cells using electron paramagnetic resonance spectroscopy: To probe or to trap? Free Radic Biol Med. 2020; 154: 84-94. doi:10.1016/j.freeradbiomed.2020.04.020; Wanrooij PH, Tran P, Thompson LJ, Carvalho G, Sharma S, Kreisel K, et al. Elimination of rNMPs from mitochondrial DNA has no effect on its stability. Proc Natl Acad Sci U S A. 2020; 117(25): 14306-14313. doi:10.1073/pnas.1916851117; Chiang JL, Shukla P, Pagidas K, Ahmed NS, Karri S, Gunn DD, et al. Mitochondria in ovarian aging and reproductive longevity. Ageing Res Rev. 2020; 63: 101168. doi:10.1016/j.arr.2020.101168; Корепанов В.А., Реброва Т.Ю., Атабеков Т.А., Афанасьев С.А. Возможная роль митохондриальной дисфункции в аритмогенезе при ишемической болезни сердца. Сибирский журнал клинической и экспериментальной медицины. 2023; 38(4): 236-242. doi:10.29001/2073-8552-2023-38-4-236-242; Kuzheleva EA, Garganeeva AA, Tukish OV, Nesova AK, Golubenko MV, Andreev SL, et al. The role of rs2238296 of the mitochondrial DNA polymerase gamma gene in combination with polymorphic variants of antioxidant defense genes in the development of postinfarction left ventricular aneurysm. Russian Journal of Genetics. 2023; 59: 97-103. doi:10.1134/s1022795423010076; Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science. 2005; 309(5733): 481-484. doi:10.1126/science.1112125; Понасенко А.В., Цепокина А.В., Тхоренко Б.А., Голубенко М.В., Губиева Е.К., Трефилова Л.П. Изменчивость митохондриальной ДНК в развитии атеросклероза и инфаркта миокарда (обзор литературы). Комплексные проблемы сердечно-сосудистых заболеваний. 2018; 7(4S): 75-85. doi:10.17802/2306-1278-2018-7-4S-75-85; Wang J, Balciuniene J, Diaz-Miranda MA, McCormick EM, Aref-Eshghi E, Muir AM, et al. Advanced approach for comprehensive mtDNA genome testing in mitochondrial disease. Mol Genet Metab. 2022; 135(1): 93-101. doi:10.1016/j.ymgme.2021.12.006; Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy. 2021; 17(1): 1-382. doi:10.1080/15548627.2020.1797280; Li H, Slone J, Fei L, Huang T. Mitochondrial DNA variants and common diseases: A mathematical model for the diversity of age-related mtDNA mutations. Cells. 2019; 8(6): 608. doi:10.3390/cells8060608; West AP, Shadel GS. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol. 2017; 17(6): 363-375. doi:10.1038/nri.2017.21; Carvalho PA, Chiu ML, Kronauge JF, Kawamura M, Jones AG, Holman BL, et al. Subcellular distribution and analysis of technetium-99m-MIBI in isolated perfused rat hearts. JNucl Med. 1992; 33(8): 1516-1522.; Backus M, Piwnica-Worms D, Hockett D, Kronauge J, Lieberman M, Ingram P, et al. Microprobe analysis of Tc-MIBI in heart cells: Calculation of mitochondrial membrane potential. Am J Physiol. 1993; 265(1 Pt 1): C178-С187. doi:10.1152/ajpcell.1993.265; Kawamoto A, Kato T, Shioi T, Okuda J, Kawashima T, Tamaki Y, et al. Measurement of technetium-99m sestamibi signals in rats administered a mitochondrial uncoupler and in a rat model of heart failure. PLoS One. 2015; 10(1): e0117091. doi:10.1371/journal.pone.0117091; Crane P, Laliberté R, Heminway S, Thoolen M, Orlandi C. Effect of mitochondrial viability and metabolism on technetium-99m-sestamibi myocardial retention. Eur J Nucl Med. 1993; 20(1): 20-25. doi:10.1007/BF02261241; Hayashi D, Ohshima S, Isobe S, Cheng XW, Unno K, Funahashi H, et al. Increased (99m)Tc-sestamibi washout reflects impaired myocardial contractile and relaxation reserve during dobutamine stress due to mitochondrial dysfunction in dilated cardiomyopathy patients. J Am Coll Cardiol. 2013; 61(19): 2007-2017. doi:10.1016/j.jacc.2013.01.074; Tsampasian V, Swift AJ, Assadi H, Chowdhary A, Swoboda P, Sammut E, et al. Myocardial inflammation and energetics by cardiac MRI: A review of emerging techniques. BMC Med Imaging. 2021; 21(1): 164. doi:10.1186/s12880-021-00695-0; Meyerspeer M, Boesch C, Cameron D, Dezortová M, Forbes SC, Heerschap A, et al. 31P magnetic resonance spectroscopy in skeletal muscle: Experts’ consensus recommendations. NMR Biomed. 2020; 34(5): e4246. doi:10.1002/nbm.4246; Holley CT, Long EK, Lindsey ME, McFalls EO, Kelly RF. Recovery of hibernating myocardium: What is the role of surgical revascularization? JCard Surg. 2015; 30(2): 224-231. doi:10.1111/jocs.12477; Bøtker HE, Cabrera-Fuentes HA, Ruiz-Meana M, Heusch G, Ovize M. Translational issues for mitoprotective agents as adjunct to reperfusion therapy in patients with ST-segment elevation myocardial infarction. J Cell Mol Med. 2020; 24(5): 2717-2729. doi:10.1111/jcmm.14953; Unno K, Isobe S, Izawa H, Cheng XW, Kobayashi M, Hirashiki A, et al. Relation of functional and morphological changes in mitochondria to myocardial contractile and relaxation reserves in asymptomatic to mildly symptomatic patients with hypertrophic cardiomyopathy. Eur HeartJ. 2009; 30(15): 1853-1862. doi:10.1093/eurheartj/ehp184; Афанасьев С.А., Муслимова Э.Ф, Реброва Т.Ю., Цапко Л.П., Керчева М.А., Голубенко М.В. Особенности функционального состояния митохондрий лейкоцитов периферической крови у пациентов с острым инфарктом миокарда. Бюллетень экспериментальной биологии и медицины. 2020; 169(4): 435-437. doi:10.1007/s10517-020-04903-9; Tsampasian V, Cameron D, Sobhan R, Bazoukis G, Vassiliou VS. Phosphorus magnetic resonance spectroscopy (31P MRS) and cardiovascular disease: The importance of energy. Medicina (Kaunas). 2023; 59(1): 174. doi:10.3390/medicina59010174; https://www.actabiomedica.ru/jour/article/view/5219

  4. 4
  5. 5
  6. 6
    Academic Journal

    Contributors: The study was not sponsored, Спонсорская поддержка отсутствовала

    Source: PULMONOLOGIYA; Том 34, № 6 (2024); 887-895 ; Пульмонология; Том 34, № 6 (2024); 887-895 ; 2541-9617 ; 0869-0189

    File Description: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/4326/3724; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4326/2072; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4326/2073; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4326/2074; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4326/2075; Humbert M., Kovacs G., Hoeper M.M. et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: Developed by the task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS). Endorsed by the International Society for Heart and Lung Transplantation (ISHLT) and the European Reference Network on rare respiratory diseases (ERN-LUNG). Eur. Heart J. 2022; 43 (38): 3618–3731. DOI:10.1093/eurheartj/ehac237.; Xiao Y., Chen P.P., Zhou R.L. et al. Pathological mechanisms and potential therapeutic targets of pulmonary arterial hypertension: a review. Aging. Dis. 2020; 11 (6): 1623–1639. DOI:10.14336/AD.2020.0111.; Qaiser K.N., Tonelli A.R. Novel treatment pathways in pulmonary arterial hypertension. Methodist Debakey Cardiovasc. J. 2021; 17 (2): 106–114. DOI:10.14797/CBHS2234.; Guignabert C., Humbert M. Targeting transforming growth factor-β receptors in pulmonary hypertension. Eur. Respir. J. 2021; 57 (2): 2002341. DOI:10.1183/13993003.02341-2020.; Sherman M.L., Borgstein N.G., Mook L. et al. Multiple-dose, safety, pharmacokinetic, and pharmacodynamic study of sotatercept (ActRIIA-IgG1), a novel erythropoietic agent, in healthy postmenopausal women. J. Clin. Pharmacol. 2013; 53 (11): 1121–1130. DOI:10.1002/jcph.160.; Yung L.M., Yang P., Joshi S. et al. ACTRIIA-Fc rebalances activin/GDF versus BMP signaling in pulmonary hypertension. Sci. Transl. Med. 2020; 12 (543): eaaz5660. DOI:10.1126/scitranslmed.aaz5660.; Hoeper M.M., Badesch D.B., Ghofrani H.A. et al. Phase 3 trial of sotatercept for treatment of pulmonary arterial hypertension. N. Engl. J. Med. 2023; 388 (16): 1478–1490. DOI:10.1056/NEJMoa2213558.; Araya A.A., Tasnif Y. Tacrolimus. Treasure Island (FL): StatPearls Publishing; 2023. Available at: https://www.ncbi.nlm.nih.gov/books/NBK544318/; Spiekerkoetter E., Tian X., Cai J. et al. FK506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension. J. Clin. Invest. 2013; 123 (8): 3600–3613. DOI:10.1172/JCI65592.; Spiekerkoetter E., Sung Y.K., Sudheendra D. et al. Randomised placebo-controlled safety and tolerability trial of FK506 (tacrolimus) for pulmonary arterial hypertension. Eur. Respir. J. 2017; 50 (3): 1602449. DOI:10.1183/13993003.02449-2016.; Perros F., Montani D., Dorfmüller P. et al. Platelet-derived growth factor expression and function in idiopathic pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 2008; 178 (1): 81–88. DOI:10.1164/rccm.200707-1037OC.; Medarametla V., Festin S., Sugarragchaa C. et al. PK10453, a nonselective platelet-derived growth factor receptor inhibitor, prevents the progression of pulmonary arterial hypertension. Pulm. Circ. 2014; 4 (1): 82–102. DOI:10.1086/674881.; Schermuly R.T., Dony E., Ghofrani H.A. et al. Reversal of experimental pulmonary hypertension by PDGF inhibition. J. Clin. Invest. 2005; 115 (10): 2811–2821. DOI:10.1172/JCI24838.; Hoeper M.M., Barst R.J., Bourge R.C. et al. Imatinib mesylate as add-on therapy for pulmonary arterial hypertension: results of the randomized IMPRES study. Circulation. 2013; 127 (10): 1128–1138. DOI:10.1161/CIRCULATIONAHA.112.000765.; Shah A.M., Campbell P., Rocha G.Q. et al. Effect of imatinib as add-on therapy on echocardiographic measures of right ventricular function in patients with significant pulmonary arterial hypertension. Eur. Heart J. 2015; 36 (10): 623–632. DOI:10.1093/eurheartj/ehu035.; Frantz R.P., Benza R.L., Channick R.N. et al. TORREY, a Phase 2 study to evaluate the efficacy and safety of inhaled seralutinib for the treatment of pulmonary arterial hypertension. Pulm. Circ. 2021; 11 (4): 20458940211057071. DOI:10.1177/20458940211057071.; Gossamer Bio. Gossamer Bio announces seralutinib meets primary endpoint in phase 2 torrey study in pah. Available at: https://ir.gossamerbio.com/news-releases/news-release-details/gossamer-bio-announces-seralutinib-meets-primary-endpoint-phase/; Archer S.L. Acquired mitochondrial abnormalities, including epigenetic inhibition of superoxide dismutase 2, in pulmonary hypertension and cancer: therapeutic implications. Adv. Exp. Med. Biol. 2016; 903: 29–53. DOI:10.1007/978-1-4899-7678-9_3.; Stephen Y. Chan, Lewis J. Rubin. Metabolic dysfunction in pulmonary hypertension: from basic science to clinical practice. Eur. Respir. Rev. 2017, 26 (146): 170094. DOI:10.1183/16000617.0094-2017.; Michelakis E.D., McMurtry M.S., Wu X.C. et al. Dichloroacetate, a metabolic modulator, prevents and reverses chronic hypoxic pulmonary hypertension in rats: role of increased expression and activity of voltage-gated potassium channels. Circulation. 2002; 105 (2): 244–250. DOI:10.1161/hc0202.101974.; Michelakis E.D., Gurtu V., Webster L. et al. Inhibition of pyruvate dehydrogenase kinase improves pulmonary arterial hypertension in genetically susceptible patients. Sci. Transl. Med. 2017; 9 (413): eaao4583. DOI:10.1126/scitranslmed.aao4583.; Rouhana S., Virsolvy A., Fares N. et al. Ranolazine: an old drug with emerging potential; Lessons from pre-clinical and clinical investigations for possible repositioning. Pharmaceuticals (Basel). 2021; 15 (1): 31. DOI:10.3390/ph15010031.; Han Y., Forfia P., Vaidya A. et al. Ranolazine improves right ventricular function in patients with precapillary pulmonary hypertension: results from a double-blind, randomized, placebo-controlled trial. J. Card. Fail. 2021; 27 (2): 253–257. DOI:10.1016/j.cardfail.2020.10.006.; Zolty R. Novel experimental therapies for treatment of pulmonary arterial hypertension. J. Exp. Pharmacol. 2021; 13: 817–857. DOI:10.2147/JEP.S236743.; Fukumoto Y., Yamada N., Matsubara H. et al. Double-blind, placebo-controlled clinical trial with a rho-kinase inhibitor in pulmonary arterial hypertension. Circ. J. 2013; 77 (10): 2619–2625. DOI:10.1253/circj.cj-13-0443.; ClinicalTrials.gov. Phase 2 study to assess safety, tolerability and efficacy of once weekly SC pemziviptadil (PB1046) in subjects with symptomatic PAH (VIP). 2022; No.NCT03556020. Available at: https://clinicaltrials.gov/study/NCT03556020; Liu Y., Fanburg B.L. Serotonin-induced growth of pulmonary artery smooth muscle requires activation of phosphatidylinositol 3-kinase/serine-threonine protein kinase B/mammalian target of rapamycin/p70 ribosomal S6 kinase 1. Am. J. Respir. Cell Mol. Biol. 2006; 34 (2): 182–191. DOI:10.1165/rcmb.2005-0163OC.; Hervé P., Launay J.M., Scrobohaci M.L. et al. Increased plasma serotonin in primary pulmonary hypertension. Am. J. Med. 1995; 99 (3): 249–254. DOI:10.1016/s0002-9343(99)80156-9.; Lazarus H.M., Denning J., Wring S. et al. A trial design to maximize knowledge of the effects of rodatristat ethyl in the treatment of pulmonary arterial hypertension (ELEVATE 2). Pulm. Circ. 2022; 12 (2): e12088. DOI:10.1002/pul2.12088.; Cassady S.J., Soldin D., Ramani G.V. Novel and emerging therapies in pulmonary arterial hypertension. Front. Drug Dis. 2022; 2. DOI:10.3389/fddsv.2022.1022971.; Kawut S.M., Archer-Chicko C.L., DeMichele A. et al. Anastrozole in pulmonary arterial hypertension: a randomized, double-blind, placebo-controlled trial. Am. J. Respir. Crit. Care Med. 2017; 195 (3): 360–368. DOI:10.1164/rccm.201605-1024OC.; Sitbon O., Gomberg-Maitland M., Granton J. et al. Clinical trial design and new therapies for pulmonary arterial hypertension. Eur. Respir. J. 2019; 53 (1): 1801908. DOI:10.1183/13993003.01908-2018.; ClinicalTrials.gov. Austin E. Tamoxifen Therapy to Treat Pulmonary Arterial Hypertension (T3PAH). 2022; No.NCT03528902. Available at: https://clinicaltrials.gov/study/NCT03528902; Haryono A.; Ramadhiani R.; Ryanto G.R.T. Emoto N. Endothelin and the cardiovascular system: the long journey and where we are going. Biology (Basel). 2022; 11 (5): 759. DOI:10.3390/biology11050759.; Zhang C., Jing S. Therapeutic antibody approach for pulmonary arterial hypertension. Int. J. Cardiol. Cardiovasc. Dis. 2021; 1 (1): 15–19. DOI:10.46439/cardiology.1.002.; Christman B.W., McPherson C.D., Newman J.H. et al. An imbalance between the excretion of thromboxane and prostacyclin metabolites in pulmonary hypertension. N. Engl. J. Med. 1992; 327 (2): 70–75. DOI:10.1056/NEJM199207093270202.; Katugampola S.D., Davenport A.P. Thromboxane receptor density is increased in human cardiovascular disease with evidence for inhibition at therapeutic concentrations by the AT(1) receptor antagonist losartan. Br. J. Pharmacol. 2001; 134 (7): 1385–1392. DOI:10.1038/sj.bjp.0704416.; Mulvaney E.P., Reid H.M., Bialesova L. et al. NTP42, a novel antagonist of the thromboxane receptor, attenuates experimentally induced pulmonary arterial hypertension. BMC Pulm. Med. 2020; 20 (1): 85. DOI:10.1186/s12890-020-1113-2.; Savai R., Pullamsetti S.S., Kolbe J. et al. Immune and inflammatory cell involvement in the pathology of idiopathic pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 2012; 186 (9): 897–908. DOI:10.1164/rccm.201202-0335OC.; Liang S., Desai A.A., Black S.M., Tang H. Cytokines, chemokines, and inflammation in pulmonary arterial hypertension. Adv. Exp. Med. Biol. 2021; 1303: 275–303. DOI:10.1007/978-3-030-63046-1_15.; Prins K.W., Archer S.L., Pritzker M. et al. Interleukin-6 is independently associated with right ventricular function in pulmonary arterial hypertension. J. Heart Lung Transplant. 2018; 37 (3): 376–384. DOI:10.1016/j.healun.2017.08.011.; Toshner M., Rothman A. IL-6 in pulmonary hypertension: why novel is not always best. Eur. Respir. J. 2020; 55 (4): 2000314. DOI:10.1183/13993003.00314-2020.; Trankle C.R., Canada J.M., Kadariya D. et al. IL-1 blockade reduces inflammation in pulmonary arterial hypertension and right ventricular failure: a single-arm, open-label, phase IB/II pilot study. Am. J. Respir. Crit. Care Med. 2019; 199 (3): 381–384. DOI:10.1164/rccm.201809-1631LE.; Bell R.D., White R.J., Garcia-Hernandez M.L. et al. Tumor necrosis factor induces obliterative pulmonary vascular disease in a novel model of connective tissue disease-associated pulmonary arterial hypertension. Arthritis Rheumatol. 2020; 72 (10): 1759–1770. DOI:10.1002/art.41309.; O'Brien J., Hayder H., Zayed Y., Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. (Lausanne). 2018; 9: 402. DOI:10.3389/fendo.2018.00402.; Sindi H.A., Russomanno G., Satta S. et al. Therapeutic potential of KLF2-induced exosomal microRNAs in pulmonary hypertension. Nat. Commun. 2020; 11 (1): 1185. DOI:10.1038/s41467-020-14966-x.; Dhoble S., Patravale V., Weaver E. et al. Comprehensive review on novel targets and emerging therapeutic modalities for pulmonary arterial Hypertension. Int. J. Pharm. 2022; 621: 121792. DOI:10.1016/j.ijpharm.2022.121792.; https://journal.pulmonology.ru/pulm/article/view/4326

  7. 7
    Academic Journal

    Contributors: This study did not have financial support from outside organizations., Данное исследование не имело финансовой поддержки от сторонних организаций.

    Source: Pharmacy & Pharmacology; Том 11, № 6 (2023); 471-481 ; Фармация и фармакология; Том 11, № 6 (2023); 471-481 ; 2413-2241 ; 2307-9266 ; 10.19163/2307-9266-2023-11-6

    File Description: application/pdf

    Relation: https://www.pharmpharm.ru/jour/article/view/1399/1013; https://www.pharmpharm.ru/jour/article/view/1399/1014; 2023 Alzheimer’s disease facts and figures // Alzheimers Dement. – 2023. – Vol. 19, No. 4. – P. 1598–1695. DOI:10.1002/alz.13016; Pasnoori N., Flores-Garcia T., Barkana B.D. Histogram-based features track Alzheimer’s progression in brain MRI // Sci Rep. – 2024. – Vol. 14, No. 1. – Art. ID: 257. DOI:10.1038/s41598-023-50631-1; Rostagno A.A. Pathogenesis of Alzheimer’s Disease // Int J Mol Sci. – 2022. – Vol. 24, No. 1. – P. 107. DOI:10.3390/ijms24010107; Beata B.K., Wojciech J., Johannes K., Piotr L., Barbara M. Alzheimer’s Disease-Biochemical and Psychological Background for Diagnosis and Treatment // Int J Mol Sci. – 2023. – Vol. 24, No. 2. – Art. ID: 1059. DOI:10.3390/ijms24021059; Ashleigh T., Swerdlow R.H., Beal M.F. The role of mitochondrial dysfunction in Alzheimer’s disease pathogenesis // Alzheimers Dement. – 2023. – Vol. 19, No. 1. – P. 333–342. DOI:10.1002/alz.12683; Reiss A.B., Ahmed S., Dayaramani C., Glass A.D., Gomolin I.H., Pinkhasov A., Stecker M.M., Wisniewski T., De Leon J. The role of mitochondrial dysfunction in Alzheimer’s disease: A potential pathway to treatment // Exp Gerontol. – 2022. – Vol. 164. – Art. ID: 111828. DOI:10.1016/j.exger.2022.111828; Zhang B., Zhang C., Wang Y., Cheng L., Wang Y., Qiao Y., Peng D. Alzheimer’s Disease Neuroimaging Initiative. Associations of liver function with plasma biomarkers for Alzheimer’s Disease // Neurol Sci. – 2024. – Vol. 4. – Art. ID: 4. DOI:10.1007/s10072-023-07284-9; Ahmad F., Sachdeva P. Critical appraisal on mitochondrial dysfunction in Alzheimer’s disease // Aging Med (Milton). – 2022. – Vol. 5, No. 4. – P. 272–280. DOI:10.1002/agm2.12217; Bhatia S., Rawal R., Sharma P., Singh T., Singh M., Singh V. Mitochondrial Dysfunction in Alzheimer’s Disease: Opportunities for Drug Development // Curr Neuropharmacol. – 2022. – Vol. 20, No. 4. – P. 675–692. DOI:10.2174/1570159X19666210517114016; Поздняков Д. И. Оксикоричные кислоты как ингибиторы NOX4 в терапии болезни Альцгеймера. Экспериментальное исследование // Вопросы биологической, медицинской и фармацевтической химии. – 2023. – Т. 26, № 6. – С. 45–49. DOI:10.29296/25877313-2023-06-07; Поздняков Д.И. Митохондриальная нейропротекция при болезни Альцгеймера, опосредованная применением глицитеина, в эксперименте // Крымский терапевтический журнал. – 2022. – № 1. – С. 59–64.; Chainoglou E., Hadjipavlou-Litina D. Curcumin in health and diseases: Alzheimer’s disease and curcumin analogues, derivatives, and hybrids // Int J Mol Sci. – 2020. – Vol. 21, No. 6. – Art. ID: 1975. DOI:10.3390/ijms21061975; Percie du Sert N., Hurst V., Ahluwalia A., Alam S., Avey M.T., Baker M., Browne W.J., Clark A., Cuthill I.C., Dirnagl U., Emerson M., Garner P., Holgate S.T., Howells D.W., Karp N.A., Lazic S.E., Lidster K., MacCallum C.J., Macleod M., Pearl E.J., Petersen O.H., Rawle F., Reynolds P., Rooney K., Sena E.S., Silberberg SD., Steckler T., Würbel H. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research // PLoS Biol. – 2020. – Vol. 18, No. 7. – Art. ID: e3000410. DOI:10.1371/journal.pbio.3000410; Kim H.Y., Lee D.K., Chung B.R., Kim H.V., Kim Y. Intracerebroventricular Injection of amyloid-β peptides in normal mice to acutely induce Alzheimer-like cognitive deficits // J Vis Exp. – 2016. – Vol. 106. – Art. ID: 53308. DOI:10.3791/53308; Оганесян Э.Т., Руковицина В.М., Абаев В.Т., Поздняков Д.И. Исследование закономерностей взаимосвязи структура-активность в ряду производных хромона, содержащих заместители в положении с-3 // Медицинский Вестник Башкортостана. – 2023. – Т. 18, № 2 (104). – С. 44–47.; Rukovitsina V., Oganesyan E., Pozdnyakov D. Synthesis and study of the effect of 3-substituted chromone derivatives on changes in the activity of mitochondrial complex III under experimental cerebral ischemia // Journal of Research in Pharmacy. – 2022. – Vol. 26, No. 2. – P. 408–420. DOI:10.29228/jrp.138; Gao Y., Ma K., Zhu Z., Zhang Y., Zhou Q., Wang J., Guo X., Luo L., Wang H., Peng K., Liu M. Modified Erchen decoction ameliorates cognitive dysfunction in vascular dementia rats via inhibiting JAK2/STAT3 and JNK/BAX signaling pathways // Phytomedicine. – 2023. – Vol. 114. – Art. ID: 154797. DOI:10.1016/j.phymed.2023.154797; Connolly N.M.C., Theurey P., Adam-Vizi V., Bazan N.G., Bernardi P., Bolaños J.P., Culmsee C., Dawson V.L., Deshmukh M., Duchen M.R., Düssmann H., Fiskum G., Galindo M.F., Hardingham G.E., Hardwick J.M., Jekabsons M.B., Jonas E.A., Jordán J., Lipton S.A., Manfredi G., Mattson M.P., McLaughlin B., Methner A., Murphy A.N., Murphy M.P., Nicholls D.G., Polster B.M., Pozzan T., Rizzuto R., Satrústegui J., Slack R.S., Swanson RA., Swerdlow R.H., Will Y., Ying Z., Joselin A., Gioran A., Moreira Pinho C., Watters O., Salvucci M., Llorente-Folch I., Park D.S., Bano D., Ankarcrona M., Pizzo P., Prehn J.H.M. Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases // Cell Death Differ. – 2018. – Vol. 25, No. 3. – P. 542–572. DOI:10.1038/s41418-017-0020-4; Воронков А.В., Поздняков Д.И., Нигарян С.А., Хури Е.И., Мирошниченко К.А., Сосновская А.В., Олохова Е.А. Оценка респирометрической функции митохондрий в условиях патологий различного генеза // Фармация и фармакология. – 2019. – Т. 7, № 1. – С. 20–31. DOI:10.19163/2307-9266-2019-7-1-20-31; Воронков А.В., Поздняков Д.И., Аджиахметова С.Л., Червонная Н.М., Мирошниченко К.А., Сосновская А.В., Шерешкова Е.И. Влияние экстракта тыквы обыкновенной (Cucurbita pepo L.) и экстракта бархатцев распростертых (Tagetes patula L.) на функциональную активность митохондрий гиппокампа в условиях экспериментального острого гипометаболизма головного мозга // Фармация и фармакология. – 2019. – Т. 7, № 4. – С. 198–207. DOI:10.19163/2307-9266-2019-7-4-198-207; Поздняков Д.И. Влияние производных хиназолинона на митохондриальную функцию клеток головного мозга крыс с фокальной церебральной ишемией // Экспериментальная и клиническая фармакология. – 2023. – Т. 86, № 5. – С. 24–29. DOI:10.30906/0869-2092-2023-86-5-24-29; Wang H., Huwaimel B., Verma K., Miller J., Germain T.M., Kinarivala N., Pappas D., Brookes P.S., Trippier P.C. Synthesis and antineoplastic evaluation of mitochondrial complex ii (succinate dehydrogenase) inhibitors derived from atpenin A5 // ChemMedChem. – 2017. – Vol. 12, No. 13. – P. 1033–1044. DOI:10.1002/cmdc.201700196; Li Y., D’Aurelio M., Deng J.H., Park J.S., Manfredi G., Hu P., Lu J., Bai Y. An assembled complex IV maintains the stability and activity of complex I in mammalian mitochondria // J Biol Chem. – 2007. – Vol. 282, No. 24. – P. 17557–17762. DOI:10.1074/jbc.M701056200; Grassi M., Laubscher B., Pandey A.V., Tschumi S., Graber F., Schaller A., Janner M., Aeberli D., Hewer E., Nuoffer J.M., Gautschi M. Expanding the p.(Arg85Trp) variant-specific phenotype of HNF4A: Features of glycogen storage disease, liver cirrhosis, impaired mitochondrial function, and glomerular changes // Mol Syndromol. – 2023. – Vol. 14, No. 4. – P. 347–361. DOI:10.1159/000529306; Swerdlow R.H. The Alzheimer’s disease mitochondrial cascade hypothesis: A current overview // J Alzheimers Dis. – 2023. – Vol. 92, No. 3. – P. 751–768. DOI:10.3233/JAD-221286; Swerdlow R.H., Burns J.M., Khan S.M. The Alzheimer’s disease mitochondrial cascade hypothesis // J Alzheimers Dis. – 2010. – Vol. 20, No. S2. – P. 265–279. DOI:10.3233/JAD-2010-100339; Swerdlow R.H. Mitochondria and mitochondrial cascades in Alzheimer’s disease // J Alzheimers Dis. – 2018. – Vol. 62, No. 3. – P. 1403–1416. DOI:10.3233/JAD-170585; Tsering W., Hery G.P., Phillips J.L., Lolo K., Bathe T., Villareal J.A., Ruan I.Y., Prokop S. Transformation of non-neuritic into neuritic plaques during AD progression drives cortical spread of tau pathology via regenerative failure // Acta Neuropathol Commun. – 2023. – Vol. 11, No. 1. – Art. ID: 190. DOI:10.1186/s40478-023-01688-6; Zrinej J.E., Larbi A.M., Lakhlifi T., Bouachrine M. Computational Approach: 3D-QSAR, molecular docking, ADMET, molecular dynamics simulation investigations, and retrosynthesis of some curcumin analogues as PARP-1 inhibitors targeting colon cancer // New J Chem. – 2023. – Vol. 74. – P. 20987–21009. DOI:10.1039/D3NJ03981A; Bhandari S.V., Kuthe P., Patil S.M., Nagras O., Sarkate A.P. A review: Exploring synthetic schemes and structure-activity relationship (SAR) studies of mono-carbonyl curcumin analogues for cytotoxicity inhibitory anticancer activity // Curr Org Synth. – 2023. – Vol. 20, No. 8. – P. 821–837. DOI:10.2174/1570179420666230126142238; Hussain H., Ahmad S., Shah S.W.A., Ullah A., Rahman S.U., Ahmad M., Almehmadi M., Abdulaziz O., Allahyani M., Alsaiari A.A., Halawi M., Alamer E. Synthetic Mono-Carbonyl Curcumin Analogues Attenuate Oxidative Stress in Mouse Models // Biomedicines. – 2022. – Vol. 10, No. 10. – Art. ID: 2597. DOI:10.3390/biomedicines10102597; Li P.A., Hou X., Hao S. Mitochondrial biogenesis in neurodegeneration // J Neurosci Res. – 2017. – Vol. 95, No. 10. – P. 2025–2029. DOI:10.1002/jnr.24042; Chhimpa N., Singh N., Puri N., Kayath H.P. The novel role of mitochondrial citrate synthase and citrate in the pathophysiology of Alzheimer’s disease // J Alzheimers Dis. – 2023. – Vol. 94, No. S1. – P. S453–S472. DOI:10.3233/JAD-220514; Ye C.Y., Lei Y., Tang X.C., Zhang H.Y. Donepezil attenuates Aβ-associated mitochondrial dysfunction and reduces mitochondrial Aβ accumulation in vivo and in vitro // Neuropharmacology. – 2015. – Vol. 95. – P. 29–36. DOI:10.1016/j.neuropharm.2015.02.020; Yan J., Jiang J., He L., Chen L. Mitochondrial superoxide/hydrogen peroxide: An emerging therapeutic target for metabolic diseases // Free Radic Biol Med. – 2020. – Vol. 152. – P. 33–42. DOI:10.1016/j.freeradbiomed.2020.02.029; https://www.pharmpharm.ru/jour/article/view/1399

  8. 8
    Academic Journal

    Source: Neurology, Neuropsychiatry, Psychosomatics; Vol 16, No 1 (2024); 57-64 ; Неврология, нейропсихиатрия, психосоматика; Vol 16, No 1 (2024); 57-64 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2024-1

    File Description: application/pdf

    Relation: https://nnp.ima-press.net/nnp/article/view/2183/1629; Акарачкова ЕС. Хроническая усталость и подходы к ее лечению. Журнал неврологии и психиатрии им. С.С. Корсакова. 2010;110(11-2):48-54.; Котова ОВ, Акарачкова ЕС. Астенический синдром в практике невролога и семейного врача. РМЖ. 2016;(13):824-9.; Vincent A, Brimmer DJ, Whipple MO, et al. Prevalence, incidence, and classification of chronic fatigue syndrome in Olmsted County, Minnesota, as estimated using the Rochester Epidemiology Project. Mayo Clin Proc. 2012 Dec;87(12):1145-52. doi:10.1016/j.mayocp.2012.08.015. Epub 2012 Nov 8.; Bretherick AD, McGrath SJ, Devereux-Cooke A, et al. Typing myalgic encephalomyelitis by infection at onset: A DecodeME study [version 4; peer review: 2 approved]. NIHR Open Res. 2023;3:20.; Чутко ЛС, Сурушкина СЮ. Астенические расстройства. История и современность. Журнал неврологии и психиатрии им. С.С. Корсакова. 2020;120(6):131-6. doi:10.17116/jnevro2020120061131; Лобзин ВС. Систематика и дифференциация астенических состояний. Журнал невропатологии и психиатрии. 1989;(11):7-12.; Gottschalk CG, Peterson D, Armstrong J, et al. Potential molecular mechanisms of chronic fatigue in long haul COVID and other viral diseases. Infect Agent Cancer. 2023 Feb 7;18(1):7. doi:10.1186/s13027-023-00485-z. Erratum in: Infect Agent Cancer. 2023 Apr 24;18(1):23.; O’Mahoney LL, Routen A, Gillies C, et al. The prevalence and long-term health effects of Long Covid among hospitalised and nonhospitalised populations: A systematic review and meta-analysis. EClinicalMedicine. 2022 Dec 1;55:101762. doi:10.1016/j.eclinm.2022.101762. Erratum in: EClinicalMedicine. 2023 May;59:101959.; Путилина МВ, Мутовина ЗЮ, Курушина ОВ и др. Определение распространенности постковидного синдрома и оценка эффективности препарата Кортексин в терапии неврологических нарушений у пациентов с постковидным синдромом. Результаты многоцентровой наблюдательной программы КОРТЕКС. Журнал неврологии и психиатрии им. С.С. Корсакова. 2022;122(1):84-90. doi:10.17116/jnevro202212201184; Nalbandian A, Sehgal K, Gupta A, et al. Post-acute COVID-19 syndrome. Nat Med. 2021 Apr;27(4):601-5. doi:10.1038/s41591-021-01283-z. Epub 2021 Mar 22.; Щукин ИА. Возможности коррекции церебральной ишемии с помощью ключевого метаболита дыхательной цепи митохондрий – цитохрома С. Эффективная фармакотерапия. 2022;18(26):14-22.; Ващенко ВИ, Хансон КП, Шабанов ПД. Цитохром С как лекарственное средство: прошлое, настоящее и будущее. Обзоры по клинической фармакологии и лекарственной терапии. 2005;4(1):27-37.; Зинченко ВА. Терапия гипоксических нарушений при расстройствах мозгового кровообращения и применение цитохрома С в их коррекции. В кн.: Цитохром С и его клиническое применение. Ленинград: ЛНИИГиПК; 1990.; Ивкин ДЮ, Оковитый СВ. Цитохром С как средство комплексной патогенетической терапии различных заболеваний. Современная медицина. 2017;4(8):81-4.; Юлдашев КЮ, Самандаров МЯ, Велизаде ЭМ. Влияние цитохрома с на показатели Центральной гемодинамики при остром инфаркте миокарда. Поликлиника. 2010;(2):57-8.; Яковлев ГМ, Ардашев ВН. Применение препарата цитохрома С для превентивной терапии осложнений острого инфаркта миокарда. В сб.: Цитохром С и его клиническое применение: Сб. научных трудов. Ленинград; 1990. С. 37.; Smets EM, Garssen B, Bonke B, De Haes JC. The Multidimensional Fatigue Inventory (MFI) psychometric qualities of an instrument to assess fatigue. J Psychosom Res. 1995 Apr;39(3):315-25. doi:10.1016/0022-3999(94)00125-o; Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep. 1991 Dec;14(6):540-5. doi:10.1093/sleep/14.6.540; Michielsen HJ, De Vries J, Van Heck GL. Psychometric qualities of a brief self-rated fatigue measure: The Fatigue Assessment Scale. J Psychosom Res. 2003 Apr;54(4):345-52. doi:10.1016/s0022-3999(02)00392-6; Путилина МВ. Опыт применения препарата Цитохром С у пациента с постковидной астенией. Эффективная фармакотерапия. 2022;18(23):28-32. doi:10.33978/2307-3586-2022-18-23-28-32; Емелин АЮ, Лобзин ВЮ. Возможности комбинированного применения пептидов в терапии постинсультной астении. Неврология, нейропсихиатрия, психосоматика. 2023;15(5):117-24. doi:10.14412/2074-2711-2023-5-117-124; Kaisari S, Rom O, Aizenbud D, Reznick AZ. Involvement of NF-κB and muscle specific E3 ubiquitin ligase MuRF1 in cigarette smoke-induced catabolism in C2 myotubes. Adv Exp Med Biol. 2013;788:7-17. doi:10.1007/978-94-007-6627-3_2

  9. 9
    Academic Journal

    File Description: application/pdf

  10. 10
  11. 11
    Academic Journal

    Source: Neurology, Neuropsychiatry, Psychosomatics; Vol 14, No 4 (2022); 68-74 ; Неврология, нейропсихиатрия, психосоматика; Vol 14, No 4 (2022); 68-74 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2022-4

    File Description: application/pdf

    Relation: https://nnp.ima-press.net/nnp/article/view/1864/1441; Shi X, Ohta Y, Liu X, et al. Chronic Cerebral Hypoperfusion Activates the Coagulation and Complement Cascades in Alzheimer's Disease Mice. Neuroscience. 2019;416:126-36. doi:10.1016/J.NEUROSCIENCE.2019.07.050; 2019 ALZHEIMER'S DISEASE FACTS AND FIGURES Includes a Special Report on Alzheimer's Detection in the Primary Care Setting: Connecting Patients and Physicians. Available from: https://www.alz.org/media/Documents/alzheimers-facts-and-figures-2019-r.pdf; DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer's disease. Mol Neurodegener. 2019 Aug 2;14(1):32. doi:10.1186/s13024-019-0333-5; Collin F, Cheignon C, Hureau C. Oxidative stress as a biomarker for Alzheimer's disease. Biomark Med. 2018 Mar;12(3):201-3. doi:10.2217/bmm-2017-0456. Epub 2018 Feb 13.; Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239-59. doi:10.1007/BF00308809; Van der Kant R, Goldstein LSB, Ossenkoppele R. Amyloid-β-independent regulators of tau pathology in Alzheimer disease. Nat Rev Neurosci. 2020 Jan;21(1):21-35. doi:10.1038/s41583-019-0240-3. Epub 2019 Nov 28.; Cruchaga C, Haller G, Chakraverty S, et al; NIA-LOAD/NCRAD Family Study Consortium. Rare variants in APP, PSEN1 and PSEN2 increase risk for AD in late-onset Alzheimer's disease families. PLoS One. 2012;7(2):e31039. doi:10.1371/journal.pone.0031039. Epub 2012 Feb 1.; Wolfe MS. When loss is gain: reduced presenilin proteolytic function leads to increased Abeta42/Abeta40. Talking Point on the role of presenilin mutations in Alzheimer disease. EMBO Reports. 2007;8(2):136-40. doi:10.1038/SJ.EMBOR.7400896; Thies W, Bleiler L. Alzheimer's Association. 2011 Alzheimer's disease facts and figures. Alzheimers Dement. 2011 Mar;7(2):208-44. doi:10.1016/j.jalz.2011.02.004; Beam CR, Kaneshiro C, Jang JY, et al. Differences Between Women and Men in Incidence Rates of Dementia and Alzheimer's Disease. J Alzheimers Dis. 2018;64(4):1077-83. doi:10.3233/JAD-180141; Abyadeh M, Djafarian K, Heydarinejad F, et al. Association between Apolipoprotein E Gene Polymorphism and Alzheimer's Disease in an Iranian Population: A Meta-Analysis. J Alzheimers Dis. 2018;64(4):1077-83. doi:10.3233/JAD-180141; Vetrivel KS, Thinakaran G. Amyloidogenic processing of beta-amyloid precursor protein in intracellular compartments. Neurology. 2006 Jan 24;66(2 Suppl 1):S69-73. doi:10.1212/01.wnl.0000192107.17175.39; Hooli BV, Mohapatra G, Mattheisen M, et al. Role of common and rare APP DNA sequence variants in Alzheimer disease. Neurology. 2012;78(16):1250-7. doi:10.1212/WNL.0B013E3182515972; Uddin MS, Kabir MT. Oxidative Stress in Alzheimer's Disease: Molecular Hallmarks of Underlying Vulnerability. In: Ashraf G, Alexiou A, editors. Biological, Diagnostic and Therapeutic Advances in Alzheimer's Disease. Singapure: Springer; 2019. P. 91-115. doi:10.1007/978-981-13-9636-6_5; Nunomura A, Perry G. RNA and oxidative stress in Alzheimer's disease: Focus on microRNAs. Oxid Med Cell Longev. 2020 Nov 30;2020:2638130. doi:10.1155/2020/2638130; Boutajangout A, Wisniewski T. Tau-based therapeutic approaches for Alzheimer's disease – a mini-review. Gerontology. 2014;60(5):381-5. doi:10.1159/000358875; Wippold FJ, Cairns N, Vo K, et al. Neuropathology for the neuroradiologist: plaques and tangles. AJNR Am J Neuroradiol. 2008;29(1):18-22. doi:10.3174/AJNR.A0781; Begcevic I, Brinc D, Brown M, et al. Brain-related proteins as potential CSF biomarkers of Alzheimer's disease: A targeted mass spectrometry approach. J Proteom. 2018;182:12-20. doi:10.1016/J.JPROT.2018.04.027; Misrani A, Tabassum S, Yang L. Mitochondrial Dysfunction and Oxidative Stress in Alzheimer's Disease. Front Aging Neurosci. 2021 Feb 18;13:617588. doi:10.3389/fnagi.2021.617588. eCollection 2021.; Ionescu-Tucker A, Cotman CW. Emerging roles of oxidative stress in brain aging and Alzheimer's disease. Neurobiol Aging. 2021;107:86-95. doi:10.1016/J.NEUROBIOLAGING.2021.07.014; Bello-Medina PC, Gonzalez-Franco DA, Vargas-Rodriguez I, Diaz-Cintra S. Oxidative stress, the immune response, synaptic plasticity, and cognition in transgenic models of Alzheimer disease. Neurologia (Barcelona). 2021. doi:10.1016/J.NRLENG.2019.06.008; Martins RN, Villemagne V, Sohrabi HR, et al. Alzheimer's Disease: A Journey from Amyloid Peptides and Oxidative Stress, to Biomarker Technologies and Disease Prevention Strategies-Gains from AIBL and DIAN Cohort Studies. J Alzheimers Dis JAD. 2018;62(3):965-92. doi:10.3233/JAD171145; Poprac P, Jomova K, Simunkova M, et al. Targeting Free Radicals in Oxidative StressRelated Human Diseases. Trends Pharmacol Sci. 2017;38(7):592-607. doi:10.1016/J.TIPS.2017.04.005; Gella A, Durany N. Oxidative stress in Alzheimer disease. Cell Adhes Migrat. 2009;3(1):88-93. doi:10.4161/CAM.3.1.7402; Croteau E, Castellano CA, Fortier M, et al. A cross-sectional comparison of brain glucose and ketone metabolism in cognitively healthy older adults, mild cognitive impairment and early Alzheimer's disease. Exper Gerontol. 2018;107:18-26. doi:10.1016/J.EXGER.2017.07.004; Gordon BA, Blazey TM, Su Y, et al. Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer's disease: a longitudinal study. Lancet Neurol. 2018;17(3):241-50. doi:10.1016/S1474-4422(18)30028-0; Torres LL, Quaglio NB, De Souza GT, et al. Peripheral oxidative stress biomarkers in mild cognitive impairment and Alzheimer's disease. J Alzheimers Dis. 2011;26(1):59-68. doi:10.3233/JAD-2011-110284; Zhao Y, Zhao B. Oxidative stress and the pathogenesis of Alzheimer's disease. Oxid Med Cell Longev. 2013;2013:316523. doi:10.1155/2013/316523. Epub 2013 Jul 25.; Butterfield DA, Halliwell B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci. 2019;20(3):148-60. doi:10.1038/S41583-019-0132-6; Perrotte M, Le Page A, Fournet M, et al. Blood-based redox-signature and their association to the cognitive scores in MCI and Alzheimer's disease patients. Free Rad Biol Med. 2019;130:499-511. doi:10.1016/J.FREERADBIOMED.2018.10.452; Skoumalova A, Hort J. Blood markers of oxidative stress in Alzheimer's disease. J Cell Mol Med. 2012;16(10):2291-300. doi:10.1111/J.1582-4934.2012.01585.X; Jadoon S, Malik A. A Comprehensive Review Article on Isoprostanes as Biological Markers. Biochem Pharmacol. 2018;7(2):1-8. doi:10.4172/2167-0501.1000246; Ahmed N, Ahmed U, Thornalley PJ, et al. Protein glycation, oxidation and nitration adduct residues and free adducts of cerebrospinal fluid in Alzheimer's disease and link to cognitive impairment. J Neurochem. 2005;92(2):255-63. doi:10.1111/J.1471-4159.2004.02864.X; Butterfield DA, Reed TT, Perluigi M, et al. Elevated levels of 3-nitrotyrosine in brain from subjects with amnestic mild cognitive impairment: implications for the role of nitration in the progression of Alzheimer's disease. Brain Res. 2007;1148:243-8. doi:10.1016/J.BRAINRES.2007.02.084; Santos RX, Correia SC, Zhu X, et al. Mitochondrial DNA oxidative damage and repair in aging and Alzheimer's disease. Antioxidant Redox Sign. 2013;18(18):2444-57. doi:10.1089/ARS.2012.5039; Federico A, Cardaioli E, Da Pozzo P, et al. Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci. 2012;322(1-2):254-62. doi:10.1016/J.JNS.2012.05.030; Zhao Y, Jaber V, Alexandrov PN, et al. microRNA-Based Biomarkers in Alzheimer's Disease (AD). Front Neurosci. 2020;14:585432. doi:10.3389/FNINS.2020.585432; Angelucci F, Cechova K, Valis M, et al. MicroRNAs in Alzheimer's disease: Diagnostic markers or therapeutic agents? Front Pharmacol. 2019;10(Jun):665. doi:10.3389/FPHAR.2019.00665/BIBTEX; Uddin MS, Kabir MT, Jeandet P, et al. Novel Anti-Alzheimer's Therapeutic Molecules Targeting Amyloid Precursor Protein Processing. Oxidat Med Cell Long. 2020;2020. doi:10.1155/2020/7039138; Swerdlow RH. Mitochondria and Mitochondrial Cascades in Alzheimer's Disease. J Alzheimers Dis. 2018;62(3):1403-16. doi:10.3233/JAD-170585; Swerdlow RH, Khan SM. A 'mitochondrial cascade hypothesis' for sporadic Alzheimer's disease. Med Hypot. 2004;63(1):8-20. doi:10.1016/J.MEHY.2003.12.045; Swerdlow RH, Burns JM, Khan SM. The Alzheimer's disease mitochondrial cascade hypothesis: progress and perspectives. Biochim Biophys Acta. 2014;1842(8):1219-31. doi:10.1016/J.BBADIS.2013.09.010; Cenini G, Voos W. Mitochondria as potential targets in Alzheimer disease therapy: An update. Front Pharmacol. 2019;10(Jul):902. doi:10.3389/FPHAR.2019.00902/BIBTEX; Anantharaman M, Tangpong J, Keller JN, et al. Beta-amyloid mediated nitration of manganese superoxide dismutase: implication for oxidative stress in a APPNLH/NLH X PS-1P264L/P264L double knock-in mouse model of Alzheimer's disease. Am J Pathol. 2006;168(5):1608-18. doi:10.2353/AJPATH.2006.051223; Hansson Petersen CA, Alikhani N, Behbahani H, et al. The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):13145-50. doi:10.1073/pnas.0806192105. Epub 2008 Aug 29.; Hirai K, Aliev G, Nunomura A, et al. Mitochondrial abnormalities in Alzheimer's disease. J Neurosci. 2001;21(9):3017-23. doi:10.1523/JNEUROSCI.21-09-03017.2001; Wang X, Su B, Fujioka H, Zhu X. Dynamin-like protein 1 reduction underlies mitochondrial morphology and distribution abnormalities in fibroblasts from sporadic Alzheimer's disease patients. Am J Pathol. 2008;173(2):470-82. doi:10.2353/AJPATH.2008.071208; Wu Z, Zhang J, Zhao B. Superoxide anion regulates the mitochondrial free Ca2+ through uncoupling proteins. Antioxidant Redox Sign. 2009;11(8):1805-18. doi:10.1089/ARS.2009.2427; Soltys DT, Pereira CPM, Rowies FT, et al. Lower mitochondrial DNA content but not increased mutagenesis associates with decreased base excision repair activity in brains of AD subjects. Neurobiol Aging. 2019;73:161-70. doi:10.1016/J.NEUROBIOLAGING.2018.09.015; Kumar A, Singh A. A review on mitochondrial restorative mechanism of antioxidants in Alzheimer's disease and other neurological conditions. Front Pharmacol. 2015 Sep 24;6:206. doi:10.3389/FPHAR.2015.00206; Ayton S, Lei P, Bush AI. Biometals and their therapeutic implications in Alzheimer's disease. Neurotherapeutics. 2015 Jan;12(1):109-20. doi:10.1007/s13311-014-0312-z; Greenough MA, Camakaris J, Bush AI. Metal dyshomeostasis and oxidative stress in Alzheimer's disease. Neurochem Int. 2013;62(5):540-55. doi:10.1016/J.NEUINT.2012.08.014; Jomova K, Vondrakova D, Lawson M, Valko M. Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem. 2010;345(1-2):91-104. doi:10.1007/S11010-010-0563-X; Altamura S, Muckenthaler MU. Iron toxicity in diseases of aging: Alzheimer's disease, Parkinson's disease and atherosclerosis. J Alzheimers Dis. 2009;16(4):879-95. doi:10.3233/JAD-2009-1010; Yoshiike Y, Tanemura K, Murayama O, et al. New insights on how metals disrupt amyloid beta-aggregation and their effects on amyloid-beta cytotoxicity. J Biol Chem. 2001;276(34):32293-9. doi:10.1074/JBC.M010706200; Mo ZY, Zhu YZ, Zhu HL, et al. Low micromolar zinc accelerates the fibrillization of human tau via bridging of Cys-291 and Cys-322. J Biol Chem. 2009;284(50):34648-57. doi:10.1074/JBC.M109.058883; Elipenahli C, Stack C, Jainuddin S, et al. Behavioral improvement after chronic administration of coenzyme Q10 in P301S transgenic mice. J Alzheimers Dis. 2012;28(1):173-82. doi:10.3233/JAD-2011-111190; Schulz E, Wenzel P, Münzel T, Daiber A. Mitochondrial redox signaling: Interaction of mitochondrial reactive oxygen species with other sources of oxidative stress. Antioxid Redox Signal. 2014 Jan 10;20(2):308-24. doi:10.1089/ars.2012.4609. Epub 2012 Jul 13.; Moreira PI, Nunomura A, Nakamura M, et al. Nucleic acid oxidation in Alzheimer disease. Free Radical Biol Med. 2008;44(8):1493-505. doi:10.1016/J.FREERADBIOMED.2008.01.002; Ishii T, Hayakawa H, Igawa T, et al. Specific binding of PCBP1 to heavily oxidized RNA to induce cell death. Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):6715-20. doi:10.1073/pnas.1806912115. Epub 2018 Jun 11.; Tanaka M, Jaruga P, KЯpfer PA, et al. RNA oxidation catalyzed by cytochrome c leads to its depurination and cross-linking, which may facilitate cytochrome c release from mitochondria. Free Radical Biol Med. 2012;53(4):854-62. doi:10.1016/J.FREERADBIOMED.2012.05.044; Park JH, Hong JH, Lee SW, et al. The effect of chronic cerebral hypoperfusion on the pathology of Alzheimer's disease: A positron emission tomography study in rats. Sci Rep. 2019;9(1):1-9. doi:10.1038/s41598-019-50681-4; Austin BP, Nair VA, Meier TB, et al. Effects of Hypoperfusion in Alzheimer's Disease. J Alzheimers Dis. 2011;26(Suppl 3):123. doi:10.3233/JAD-2011-0010; Solis E, Hascup KN, Hascup ER. Alzheimer's Disease: The Link Between Amyloid-β and Neurovascular Dysfunction. J Alzheimers Dis. 2020;76(4):1179. doi:10.3233/JAD-200473; Shang J, Yamashita T, Tian F, et al. Chronic cerebral hypoperfusion alters amyloid-β transport related proteins in the cortical blood vessels of Alzheimer's disease model mouse. Brain Res. 2019 Nov 15;1723:146379. doi:10.1016/j.brainres.2019.146379. Epub 2019 Aug 12.; Takahashi M, Oda Y, Sato K, Shirayama Y. Vascular risk factors and the relationships between cognitive impairment and hypoperfusion in late-onset Alzheimer's disease. Acta Neuropsychiatr. 2018 Dec;30(6):350-8. doi:10.1017/neu.2018.17. Epub 2018 Aug 22.; Govaerts K, Lechat B, Struys T, et al. Longitudinal assessment of cerebral perfusion and vascular response to hypoventilation in a bigenic mouse model of Alzheimer's disease with amyloid and tau pathology. NMR Biomed. 2019 Feb;32(2):e4037. doi:10.1002/nbm.4037. Epub 2018 Nov 29.; Wang B, Han S. Inhibition of Inducible Nitric Oxide Synthase Attenuates Deficits in Synaptic Plasticity and Brain Functions Following Traumatic Brain Injury. Cerebellum. 2018 Aug;17(4):477-84. doi:10.1007/s12311-018-0934-5; Miners JS, Schulz I, Love S. Differing associations between Aβ accumulation, hypoperfusion, blood-brain barrier dysfunction and loss of PDGFRB pericyte marker in the precuneus and parietal white matter in Alzheimer's disease. J Cereb Blood Flow Metab. 2018 Jan;38(1):103-15. doi:10.1177/0271678X17690761. Epub 2017 Feb 2.; Herrera MI, Udovin LD, Toro-Urrego N, et al. Neuroprotection Targeting Protein Misfolding on Chronic Cerebral Hypoperfusion in the Context of Metabolic Syndrome. Front Neurosci. 2018 May 31;12:339. doi:10.3389/fnins.2018.00339; Wang W, Zhao F, Ma X, et al. Mitochondria dysfunction in the pathogenesis of Alzheimer's disease: recent advances. Mol Neurodegener. 2020 May 29;15(1):30. doi:10.1186/s13024-020-00376-6

  12. 12
    Academic Journal

    Source: Meditsinskiy sovet = Medical Council; № 6 (2022); 13-22 ; Медицинский Совет; № 6 (2022); 13-22 ; 2658-5790 ; 2079-701X

    File Description: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/6805/6136; Мареев В.Ю., Фомин И.В., Агеев Ф.Т., Беграмбекова Ю.Л., Васюк Ю.А., Шляхто Е.В. и др. Клинические рекомендации ОССН – РКО – РНМОТ. Сердечная недостаточность: хроническая (ХСН) и острая декомпенсированная (ОДСН). Диагностика, профилактика и лечение. Кардиология. 2018;58(6S):8–158. https://doi.org/10.18087/cardio.2475.; Малявин А.Г., Мартынов А.И., Адашева Т.В., Арутюнов Г.П., Бабак С.Л., Бойцов С.А. и др. Диагностика и лечение пациентов с хронической обструктивной болезнью легких и хронической сердечной недостаточностью: национальные клинические рекомендации. М.; 2018. Режим доступа: https://www.rnmot.ru/public/uploads/RNMOT/clinical/2018/%D0%A5%D0%9E%D0%91%D0%9B%20%D0%B8%20%20%D0%A5%D0%A1%D0%9D%20%D1%80%D0%B5%D0%BA%D0%BE%D0%BC%D0%B5%D0%BD%D0%B4%D0%B0%D1%86%D0%B8%D0%B8%20%D0%BF%D1%80%D0%BE%D0%B5%D0%BA%D1%82.pdf.; Токмачев Р.Е., Мухортова М.С., Будневский А.В., Токмачев Е.В., Овсянников Е.С. Коморбидность хронической сердечной недостаточности и хронической обструктивной болезни легких: особенности патогенеза, клиники и диагностики. Кардиоваскулярная терапия и профилактика. 2018;17(6):62–68. https://doi.org/10.15829/1728-8800-2018-6-62-68.; Газизянова В.М., Булашова О.В., Хазова Е.В., Хасанов Н.Р., Ослопов В.Н. Особенности клинического фенотипа и прогноза хронической сердечной недостаточности в сочетании с хронической обструктивной болезнью легких. Кардиология. 2019;59(6S):51–60. https://doi.org/10.18087/cardio.2674.; Кароли Н.А., Бородкин А.В., Ребров А.П. Особенности клиники и диагностики хронической сердечной недостаточности у больных хронической обструктивной болезнью легких. Кардиология. 2019;59(2S):47–55. https://doi.org/10.18087/cardio.2486.; Долбин С.С., Адашева Т.В., Саморукова Е.И., Малявин А.Г., Ли В.В., Высоцкая Н.В., Задионченко В.С. Стратификация сердечно-сосудистого риска у больных хронической обструктивной болезнью легких. Терапия. 2020;(5):69–77. https://doi.org/10.18565/therapy.2020.5.69-77.; Тепляков А.Т., Калюжин В.В., Калюжина Е.В. Патология периферического кровообращения при хронической сердечной недостаточности. Бюллетень сибирской медицины. 2017;16(1): 162–178. https://doi.org/10.20538/1682-0363-2017-1-162-178.; Жила О.В., Шапорова Н.Л., Меншутина М.А., Ачкасова В.В., Кадинская М.И., Галкина О.В. Эндотелиальная дисфункция в патогенезе хронической обструктивной болезни легких на фоне курения и отказа от него. Регионарное кровообращение и микроциркуляция. 2012;11(1):15–20. (In Russ.) Available at: https://www.microcirc.ru/jour/article/view/471.; Almagro P., Acosta E., Navarro A., Murillo M.F., Valdivielso S., de la Sierra A. Study of arterial stiffness in patients with an acute coronary event and chronic obstructive pulmonary disease confirmed by spirometry. Rev Clin Esp. 2019;219(5):251–255. https://doi.org/10.1016/j.rceng.2019.01.007.; Бородкин А.В., Кароли Н.А., Ребров А.П. Особенности хронической сердечной недостаточности у больных с наличием и с отсутствием хронической обструктивной болезни легких. Современные проблемы науки и образования. 2015;(4). Режим доступа: https://science-education.ru/ru/article/view?id=21327.; Стаценко М.Е., Лопушкова Ю.Е., Деревянченко М.В. Изучение жесткости магистральных артерий и уровня C-реактивного белка у пациентов с хронической сердечной недостаточностью и хронической обструктивной болезнью легких. Терапия. 2019;(1):107–111. https://doi.org/10.18565/therapy.2019.1.107-111.; Стаценко М.Е., Лопушкова Ю.Е. Изучение вариабельности ритма сердца у больных хронической сердечной недостаточностью и хронической обструктивной болезнью легких. Архивъ внутренней медицины. 2021;11(4): 277–283. https://doi.org/10.20514/2226-6704-2021-11-4-277-283.; Chistiakov D.A., Shkurat T.P., Melnichenko A.A., Grechko A.V., Orekhov A.N. The role of mitochondrial dysfunction in cardiovascular disease: a brief review. Annals of Medicine. 2018;50(2):121–127. https://doi.org/10.1080/07853890.2017.1417631.; Zhunina O.A., Yabbarov N.G., Grechko A.V., Starodubova A.V., Ivanova E., Nikiforov N.G., Orekhov A.N. The Role of Mitochondrial Dysfunction in Vascular Disease, Tumorigenesis, and Diabetes. Front Mol Biosci. 2021;(8):671908. https://doi.org/10.3389/fmolb.2021.671908.; Bahaghighat H.K., Darwesh A.M., Sosnowski D.K., Seubert J.M. Mitochondrial Dysfunction and Inflammaging in Heart Failure: Novel Roles of CYP-Derived Epoxylipids. Cells. 2020;9(7):1565. https://doi.org/10.3390/cells9071565.; Ryter S.W., Rosas I.O., Owen C.A., Martinez F.J., Choi M.E., Lee C.G. et al. Mitochondrial Dysfunction as a Pathogenic Mediator of Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis. Annals of the American Thoracic Society. Ann Am Thorac Soc. 2018;15(4):266–272. https://doi.org/10.1513/AnnalsATS.201808-585MG.; Cloonan S.M., Kim K., Esteves P., Trian T., Barnes P.J. Mitochondrial dysfunction in lung ageing and disease. Eur Res Rev. 2020;29:200165. https://doi.org/10.1183/16000617.0165-2020.; Лобанова О.А., Голованова Н.Э., Гайковая Л.Б. Роль митохондриальной дисфункции и нарушений энергетического обмена в патогенезе хронической сердечной недостаточности. Российский физиологический журнал им. И.М. Сеченова. 2017;103(6):606–616. Режим доступа: https://www.elibrary.ru/item.asp?id=29404824.; Zhou B., Tian R. Mitochondrial dysfunction in pathophysiology of heart failure. J Clin Invest. 2018;128(9):3716–3726. https://doi.org/10.1172/JCI120849.; Li H., Hastings M.H., Rhee J., Trager L.E., Roh J.D., Rosenzweig A. Targeting Age-Related Pathways in Heart Failure. Circ Res. 2020;126(4):533–551. https://doi.org/10.1161/CIRCRESAHA.119.315889.; Miyamoto S. Autophagy and cardiac aging. Cell Death Differ. 2019;26(4):653–664. https://doi.org/10.1038/s41418-019-0286-9.; Barnes P.J. Cellular and molecular mechanisms of chronic obstructive pulmonary disease. Clin Chest Med. 2014;35(1):71–86. https://doi.org/10.1016/j.ccm.2013.10.004.; Theodorakopoulou M., Alexandrou M., Bakaloudi D., Pitsiou G., Stanopoulos I., Kontakiotis T., Boutou A. Endothelial dysfunction in COPD: a systematic review and meta-analysis of studies using different functional assessment methods. ERJ Open Research. 2021;7(2):00983–2020. https://doi.org/10.1183/23120541.00983-2020.; Кремис И.С., Букреева Е.Б., Геренг Е.А., Боярко В.В., Буланова А.А., Зенгер Г.В. Морфометрическая характеристика сосудов микроциркуляторного русла бронхиального дерева у курящих лиц, страдающих и не страдающих хронической обструктивной болезнью легких. Сибирский журнал клинической и экспериментальной медицины. 2018;33(1):79–85. https://doi.org/10.29001/2073-8552-2018-33-1-79-85.; Ахминеева А.Х., Полунина О.С., Севостьянова И.В., Воронина Л.П. Патогенетические особенности дисфункции эндотелия при респираторно-кардиальной коморбидности. Кубанский научный медицинский вестник. 2014;(4):11–15. https://doi.org/10.25207/1608-6228-2014-4-11-15.; Стаценко М.Е., Туркина С.В., Лопушкова Ю.Е. Новые данные о хорошо известном препарате: фокус на мельдоний. Медицинский совет. 2021;(14):44–51. https://doi.org/10.21518/2079-701X-2021-14-110-117.; Dzerve V. A Dose-Dependent Improvement in Exercise Tolerance in Patients With Stable Angina Treated With Mildronate: A Clinical Trial “MILSS I”. Medicina (Kaunas). 2011;47(10):544–551. Available at: https://pubmed.ncbi.nlm.nih.gov/22186118.; Беловол А.Н., Князькова И.И. Терапевтический потенциал мельдония при остром коронарном синдроме. Ліки України. Кардіоневрологія. 2012;1(57):48–53. Режим доступа: https://repo.knmu.edu.ua/handle/123456789/1730.; Стаценко М.Е., Туркина С.В., Шилина Н.Н. Роль рFox-ингибиторов в лечении больных с острой ишемией миокарда. Терапевтический архив. 2014;(86)1:54–59. Режим доступа: https://omnidoctor.ru/library/izdaniya-dlya-vrachey/terapevticheskiy-arkhiv/ta2014/ta2014_1_pp/rolrfox-ingibitorov-v-lechenii-bolnykh-s-ostroy-ishemiey-miokarda.; Стаценко М.Е., Туркина С.В., Фабрицкая С.В., Шилина Н.Н. Эффективность краткосрочной терапии мельдонием у больных с хронической сердечной недостаточностью ишемической этиологии и сахарным диабетом 2 типа. Кардиология. 2017;57(4):58–63. https://doi.org/10.18565/cardio.2017.4.58-63.; Стаценко М.Е., Туркина С.В., Тыщенко И.А., Фабрицкая С.В., Полетаева Л.В. Возможности медикаментозной коррекции вторичной митохондриальной дисфункции у пациентов с ишемической болезнью сердца и коморбидной патологией. Фарматека. 2017;(339):75–80. Режим доступа: https://pharmateca.ru/ru/archive/article/34751.; Суслина З.А., Максимова М.Ю., Кистенев Б.А., Федорова Т.Н. Нейропротекция при ишемическом инсульте: эффективность Милдроната. Фарматека. 2005;(13):99–104. Режим доступа: https://pharmateca.ru/ru/archive/article/6266.; Логина И.П., Калвиньш И.Я. Милдронат в неврологии. Рига; 2012. Режим доступа: https://white-medicine.com/files/pubfiles/_u1k1lpf7.pdf. Loginina I.P., Kalvinsh I.Ya. Mildronate in neurology. Riga; 2012. Available at: https://white-medicine.com/files/pubfiles/_u1k1lpf7.pdf.; Танашян М.М., Максимова М.Ю., Шабалина А.А., Федин П.А., Медведев Р.Б., Болотова Т.А. Хронические формы нарушений мозгового кровообращения и нейропротекция: клиническая эффективность применения мельдония (Милдронат). Журнал неврологии и психиатрии им. С.С. Корсакова. 2020;120(10):14–21. https://doi.org/10.17116/jnevro202012010114.; Эбзеева Е.Ю., Остроумова О.Д., Миронова Е.В. Эффективность и безопасность применения Милдроната при постинфекционном астеническом синдроме (клинические примеры). Медицинский алфавит. 2020;(2):61–66. (In Russ.) https://doi.org/10.33667/2078-5631-2020-2-61-66.; Morgan A.D., Zakeri R., Quint J.K. Defining the relationship between COPD and CVD: what are the implications for clinical practice?. Ther Adv Respir Dis. 2018;12:1753465817750524. https://doi.org/10.1177/1753465817750524.; Токмачев Р.Е., Кравченко А.Я., Будневский А.В., Кожевникова С.А. Хроническая сердечная недостаточность и метаболический синдром: особенности клинико-инструментального, лабораторного статуса и качество жизни больных с сочетанной патологией. Врач-аспирант. 2017;82(3):52–59. Режим доступа: https://www.elibrary.ru/item.asp?id=29060818.; Либис Р.А., Душина А.Г., Олейник Е.А. Особенности течения хронической сердечной недостаточности с сохраненной фракцией выброса у пациентов с эссенциальной артериальной гипертензией. Артериальная гипертензия. 2013;19(6):513–519. https://doi.org/10.18705/1607-419X-2013-19-6-513-519.; Орынбасарова Б.А., Шалгумбаева Г.М., Даутов Д.Х., Петрова Ю.В., Юрковская О.А., Жазыкбаева Л.К. Оценка качества жизни пациентов с хронической сердечной недостаточностью с сохраненным сердечным выбросом. Наука и здравоохранение. 2020;22(2):93–99. https://doi.org/10.34689/SH.2020.22.2.011.; Лопушкова Ю.Е., Шилина Н.Н. Особенности эндотелиальной функции у больных хронической сердечной недостаточностью и хронической обструктивной болезнью легких. Вестник ВолгГМУ. 2017;62(2):74–77. Режим доступа: https://www.volgmed.ru/uploads/journals/articles/1499680067-vestnik-2017-2-2930.pdf.; Дзерве В.Я., Калвиньш И.Я. Милдронат в кардиологии. Обзор исследований. Рига: АО Гриндекс; 2013. Режим доступа https://whitemedicine.com/files/pubfiles/_zlmf4se9.pdf.; Верткин А.Л., Сычева А.С., Кебина А.Л., Носова А.В., Урянская К.А., Газикова Х.М. Возможности метаболической поддержки при коронавирусной инфекции. Терапия. 2020;(7):146–155. https://doi.org/10.18565/therapy.2020.7.146-155.; Недогода С.В. Мельдоний как наднозологический препарат. Consilium Medicum. 2020;22(5):57–61. Режим доступа: https://consilium.orscience.ru/2075-1753/article/view/95278.; Шишкова В.Н., Мартынов А.И. Современные возможности терапии метаболической кардиомиопатии и сердечной недостаточности. Терапия. 2020;40(6):139–149. https://doi.org/10.18565/therapy.2020.6.139-149.; Мышкина И.Н., Абдукаримова Г., Абитова Р., Агибалов С., Исламова Г., Шируллаев И. Оптимальные подходы к метаболической реабилитации больных хронической обструктивной болезнью легких в условиях поликлиники. Вестник КазНМУ. 2014;2(2):29–31. Режим доступа: https://news.kaznmu.kz/wp-content/uploads/2014/06/ВестникКазНМУ-№-22-2014.pdf.; Сычева А.С., Царегородцев С.В., Кебина А.Л., Верткин А.Л. Эффективность применения мельдония в комплексном лечении пациентов с декомпенсацией хронической сердечной недостаточности. Лечащий врач. 2019;(2):11. Режим доступа: https://journal.lvrach.ru/jour/article/view/677/667.; Дзерве В. Эффективность Милдроната в лечении ишемической болезни сердца: результаты исследования MILSS II. Здоров’я України. 2010;(7):24–25. Режим доступа: https://www.health-ua.com/article/14279-effektivnostmildronata-v-lechenii-ishemicheskoj-bolezni-serdtca-rezultaty-.; Castellon X., Bodanova V. Chronic Inflammatory Diseases and Endotelian Dusfunction. Eging Dis. 2016;7(1):81–89. https://doi.org/10.14336/D.2015.0803.; Стаценко М.Е., Лопушкова Ю.Е., Деревянченко М.В., Урлапова Е.И. Влияние мельдония на жесткость артерий и уровень С-реактивного белка в комплексной терапии хронической сердечной недостаточности и хронической обструктивной болезни легких. Терапия. 2020;(5):94– 101. https://doi.org/10.18565/therapy.2020.5.94-101.; Лопушкова Ю.Е. Эндотелиальная дисфункция у больных хронической обструктивной болезнью легких и хронической сердечной недостаточностью. В: Петров В.И. (ред.). Актуальные проблемы экспериментальной и клинической медицины: материалы 75-й открытой научно-практической конференции молодых ученых и студентов ВолгГМУ с международным участием. Волгоград. 19–22 апреля 2017 г. Волгоград: Изд-во ВолгГМУ; 2017. 864 с. Режим доступа: https://www.volgmed.ru/uploads/files/2017-12/77385-sbornik_75_konferencii_volggmu_-_19-22_aprelya_2017.pdf.; Стаценко М.Е., Лопушкова Ю.Е. Особенности эндотелиальной функции и микроциркуляторных нарушений у пациентов с хронической сердечной недостаточностью и хронической обструктивной болезнью легких. В: ХV Национальный конгресс терапевтов (с международным участием): сборник тезисов. Москва, 18–20 ноября 2020 г. М.; 2020. Режим доступа https://congress2020.rnmot.ru/nkt-menu/congress-rmaterial.html.; Premer C., Kanelidis A., Hare J., Schulman I. Rethinking Endothelial Dysfunction as a Crucial Target in Fighting Heart Failure. Mayo Clinic Proceedings: Innovations, Quality & Outcomes. 2019;3(1):1–13. https://doi.org/10.1016/j.mayocpiqo.2018.12.006.; Хейло Т.С., Данилогорская Ю.А., Назаренко Г.Б., Мартынов А.И. Оценка влияния 6-недельной терапии мельдонием (Милдронат®) на показатели бульбарной капилляроскопии у пациентки с хронической ишемической болезнью сердца и головного мозга. Терапия. 2020;(3):105–110. https://doi.org/10.18565/therapy.2020.3.105-110.; Зыков К.А., Викентьев В.В., Голобородова И.В., Копченов И.И., Бондарец О.В., Гусева Т.Ф., Соколов Е.И. Применение короткодействующих бронходилататоров у пациентов с хронической бронхообструктивной патологией на современном этапе. Медицинский совет. 2021;(12):91–99. https://doi.org/10.21518/2079-701X-2021-12-91-99.

  13. 13
    Academic Journal

    Contributors: Исследование выполнено при частичной грантовой поддержке научно-исследовательских проектов, выполняемых молодыми учёными («Роль генов репарации в патогенезе болезни Паркинсона, болезни Гентингтона и нормального (здорового) старения», 2021–2023 гг.) Работа выполнена при частичном финансировании Государственного задания Министерства науки и высшего образования № 122020300041-7.

    Source: Acta Biomedica Scientifica; Том 7, № 6 (2022); 12-21 ; 2587-9596 ; 2541-9420

    File Description: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/3878/2460; Elbaz A, Carcaillon L, Kab S, Moisan F. Epidemiology of Parkinson’s disease. Rev Neurol (Paris). 2016; 172(1): 14-26. doi:10.1016/j.neurol.2015.09.012; Siitonen A, Nalls MA, Hernandez D, Gibbs JR, Ding J, Ylikotila P, et al. Genetics of early-onset Parkinson’s disease in Finland: Exome sequencing and genome-wide association study. Neurobiol Aging. 2017; 53: 195.e7-195.e10. doi:10.1016/j.neurobiolaging.2017.01.019; Cherian A, Divya KP. Genetics of Parkinson’s disease. Acta Neurol Belg. 2020; 120(6): 1297-1305. doi:10.1007/s13760-020-01473-5; Bloem BR, Okun MS, Klein C. Parkinson’s disease. Lancet. 2021; 397(10291): 2284-2303. doi:10.1016/S0140-6736(21)00218-X; Schormair B, Kemlink D, Mollenhauer B, Fiala O, Machetanz G, Roth J, et al. Diagnostic exome sequencing in early-onset Parkinson’s disease confirms VPS13C as a rare cause of autosomal-recessive Parkinson’s disease. Clin Genet. 2018; 93(3): 603-612. doi:10.1111/cge.13124; Puschmann A. New genes causing hereditary Parkinson’s disease or Parkinsonism. Curr Neurol Neurosci Rep. 2017; 17(9): 66. doi:10.1007/s11910-017-0780-8; Lin CH, Chen PL, Tai CH, Lin HI, Chen CS, Chen ML, et al. A clinical and genetic study of early-onset and familial parkinsonism in Taiwan: An integrated approach combining gene dosage analysis and next-generation sequencing. Mov Disord. 2019; 34(4): 506-515. doi:10.1002/mds.27633; Li N, Wang L, Zhang J, Tan EK, Li J, Peng J, et al. Wholeexome sequencing in early-onset Parkinson’s disease among ethnic Chinese. Neurobiol Aging. 2020; 90: 150.e5-150.e11. doi:10.1016/j.neurobiolaging.2019.12.023; OMIM. URL: https://www.ncbi.nlm.nih.gov/omim [date of access: 16.05.2022].; Wu YY, Kuo HC. Functional roles and networks of noncoding RNAs in the pathogenesis of neurodegenerative diseases. J Biomed Sci. 2020; 27(1): 49. doi:10.1186/s12929-020-00636-z; Angelova PR, Abramov AY. Role of mitochondrial ROS in the brain: From physiology to neurodegeneration. FEBS Lett. 2018; 592(5): 692-702. doi:10.1002/1873-3468.12964; Vodickova A, Koren SA, Wojtovich AP. Site-specific mitochondrial dysfunction in neurodegeneration. Mitochondrion. 2022; 64: 1-18. doi:10.1016/j.mito.2022.02.004; Celsi F, Pizzo P, Brini M, Leo S, Fotino C, Pinton P, et al. Mitochondria, calcium and cell death: A deadly triad in neurodegeneration. Biochim Biophys Acta. 2009; 1787(5): 335-344. doi:10.1016/j.bbabio.2009.02.021; Subramaniam SR, Chesselet MF. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog Neurobiol. 2013; 106-107: 17-32. doi:10.1016/j.pneurobio.2013.04.004; Paillusson S, Gomez-Suaga P, Stoica R, Little D, Gissen P, Devine MJ, et al. α-Synuclein binds to the ER-mitochondria tethering protein VAPB to disrupt Ca2+ homeostasis and mitochondrial ATP production. Acta Neuropathol. 2017; 134(1): 129-149. doi:10.1007/s00401-017-1704-z; Chan DC. Mitochondrial dynamics and its involvement in disease. Annu Rev Pathol. 2020; 15: 235-259. doi:10.1146/annurev-pathmechdis-012419-032711; Iwata R, Casimir P, Vanderhaeghen P. Mitochondrial dynamics in postmitotic cells regulate neurogenesis. Science. 2020; 369(6505): 858-862. doi:10.1126/science.aba9760; Bose A, Beal MF. Mitochondrial dysfunction in Parkinson’s disease. J Neurochem. 2016; 139(Suppl 1): 216-231. doi:10.1111/jnc.13731; Franco R, Rivas-Santisteban R, Navarro G, Pinna A, ReyesResina I. Genes implicated in familial Parkinson’s disease provide a dual picture of nigral dopaminergic neurodegeneration with mitochondria taking center stage. Int J Mol Sci. 2021; 22(9): 4643. doi:10.3390/ijms22094643; Flones IH, Tzoulis C. Mitochondrial respiratory chain dysfunction – A hallmark pathology of idiopathic Parkinson’s disease? Front Cell Dev Biol. 2022; 10: 874596. doi:10.3389/fcell.2022.874596; Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD. Mitochondrial complex I deficiency in Parkinson’s disease. Lancet. 1989; 1(8649): 1269. doi:10.1016/s0140-6736(89)92366-0; Hoglinger GU, Lannuzel A, Khondiker ME, Michel PP, Duyckaerts C, Feger J, et al. The mitochondrial complex I inhibitor rotenone triggers a cerebral tauopathy. J Neurochem. 2005; 95(4): 930-939. doi:10.1111/j.1471-4159.2005.03493.x; Rocha EM, De Miranda B, Sanders LH. Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurobiol Dis. 2018; 109(Pt B): 249-257. doi:10.1016/j.nbd.2017.04.004; Zambon F, Cherubini M, Fernandes HJR, Lang C, Ryan BJ, Volpato V, et al. Cellular α-synuclein pathology is associated with bioenergetic dysfunction in Parkinson’s iPSC-derived dopamine neurons. Hum Mol Genet. 2019; 28(12): 2001-2013. doi:10.1093/hmg/ddz038; Liu J, Liu W, Li R, Yang H. Mitophagy in Parkinson’s disease: From pathogenesis to treatment. Cells. 2019; 8(7): 712. doi:10.3390/cells8070712; Van Laar VS, Berman SB. Mitochondrial dynamics in Parkinson’s disease. Exp Neurol. 2009; 218(2): 247-256. doi:10.1016/j.expneurol.2009.03.019; Trimmer PA, Swerdlow RH, Parks JK, Keeney P, Bennett JP Jr, Miller SW, et al. Abnormal mitochondrial morphology in sporadic Parkinson’s and Alzheimer’s disease cybrid cell lines. Exp Neurol. 2000; 162(1): 37-50. doi:10.1006/exnr.2000.7333; Malpartida AB, Williamson M, Narendra DP, Wade-Martins R, Ryan BJ. Mitochondrial dysfunction and mitophagy in Parkinson’s disease: From mechanism to therapy. Trends Biochem Sci. 2021; 46(4): 329-343. doi:10.1016/j.tibs.2020.11.007; Ra D, Sa B, Sl B, Js M, Sj M, Da D, et al. Is exposure to BMAA a risk factor for neurodegenerative diseases? A response to a critical review of the BMAA hypothesis. Neurotox Res. 2021; 39(1): 81-106. doi:10.1007/s12640-020-00302-0; Song S, Pursell ZF, Copeland WC, Longley MJ, Kunkel TA, Mathews CK. DNA precursor asymmetries in mammalian tissue mitochondria and possible contribution to mutagenesis through reduced replication fidelity. PNAS USA. 2005; 102: 4990-4995. doi:10.1073/pnas.0500253102; Vasileiou PVS, Mourouzis I, Pantos C. Principal aspects regarding the maintenance of mammalian mitochondrial genome integrity. Int J Mol Sci. 2017; 18: 1821. doi:10.3390/ijms18081821; Storr SJ, Woolston CM, Martin SG. Base excision repair, the redox environment and therapeutic implications. Curr Mol Pharmacol. 2012; 5: 88-101.; Zinovkina LA. Mechanisms of mitochondrial DNA repair in mammals. Biochemistry (Mosc). 2018; 83(3): 233-249. doi:10.1134/S0006297918030045; Valentin-Vega YA, Maclean KH, Tait-Mulder J, Milasta S, Steeves M, Dorsey FC, et al. Mitochondrial dysfunction in ataxiatelangiectasia. Blood. 2012; 119: 1490-1500. doi:10.1182/blood-2011-08-373639; Rashid S. Targeting the mitochondria for the treatment of MLH1-deficient disease: Thesis. 2017. URL: http://qmro.qmul.ac.uk/xmlui/handle/123456789/30924 [date of access: 16.05.2022].; Rashid S, Freitas MO, Cucchi D, Bridge G, Yao Z, Gay L, et al. MLH1 deficiency leads to deregulated mitochondrial metabolism. Cell Death Dis. 2019; 10(11): 795. doi:10.1038/s41419-019-2018-y; Coene ED, Hollinshead MS, Waeytens AA, Schelfhout VR, Eechaute WP, Shaw MK, et al. Phosphorylated BRCA1 is predominantly located in the nucleus and mitochondria. Mol Biol Cell. 2005; 16: 997-1010. doi:10.1091/mbc.e04-10-0895; Tadi SK, Sebastian R, Dahal S, Babu RK, Choudhary B, Raghavan SC. Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions. Mol Biol Cell. 2016; 27: 223-235. doi:10.1091/mbc.E15-05-0260; Seol JH, Shim EY, Lee SE. Microhomology-mediated end joining: Good, bad and ugly. Mutat Res. 2018; 809: 81-87. doi:10.1016/j.mrfmmm.2017.07.002; Maciejczyk M, Mikoluc B, Pietrucha B, HeropolitanskaPliszka E, Pac M, Motkowski R, et al. Oxidative stress, mitochondrial abnormalities and antioxidant defense in Ataxia-telangiectasia, Bloom syndrome and Nijmegen breakage syndrome. Redox Biol. 2017; 11: 375-383. doi:10.1016/j.redox.2016.12.030; Choy KR, Watters DJ. Neurodegeneration in ataxia-telangiectasia: Multiple roles of ATM kinase in cellular homeostasis. Dev Dyn. 2018; 247: 33-46. doi:10.1002/dvdy.24522; Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord. 2015; 30(12): 1591-601. doi:10.1002/mds.26424; Manual guide. Applied Biosystems user bulletin: Using the SNaPshot® Multiplex System. 2005. URL: https://tools.thermofisher.com/content/sfs/manuals/cms_041203.pdf [date of access: 20.05.2022].; Resseguie EA, Staversky RJ, Brookes PS, O’Reilly MA. Hyperoxia activates ATM independent from mitochondrial ROS and dysfunction. Redox Biol. 2015; 5: 176-185. doi:10.1016/j.redox.2015.04.012; Shimura T. ATM-mediated mitochondrial radiation responses of human fibroblasts. Genes (Basel). 2021; 12(7): 1015. doi:10.3390/genes12071015; Lee JH, Paull TT. Cellular functions of the protein kinase ATM and their relevance to human disease. Nat Rev Mol Cell Biol. 2021; 22(12): 796-814. doi:10.1038/s41580-021-00394-2; Lee JH, Mand MR, Kao CH, Zhou Y, Ryu SW, Richards AL, et al. ATM directs DNA damage responses and proteostasis via genetically separable pathways. Sci Signal. 2018; 11(512): eaan5598. doi:10.1126/scisignal.aan5598; Mootha VK, Bunkenborg J, Olsen JV, Hjerrild M, Wisniewski JR, Stahl E, et al. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell. 2003; 115(5): 629-640. doi:10.1016/s0092-8674(03)00926-7; Brown KD, Rathi A, Kamath R, Beardsley DI, Zhan Q, Mannino JL, et al. The mismatch repair system is required for S-phase checkpoint activation.Nat Genet. 2003; 33: 80-84. doi:10.1038/ng1052; https://www.actabiomedica.ru/jour/article/view/3878

  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
    Academic Journal

    Contributors: The study was performed without external funding., Работа выполнена без спонсорской поддержки.

    Source: Safety and Risk of Pharmacotherapy; Том 8, № 2 (2020); 66-76 ; Безопасность и риск фармакотерапии; Том 8, № 2 (2020); 66-76 ; 2619-1164 ; 2312-7821 ; 10.30895/2312-7821-2020-8-2

    File Description: application/pdf

    Relation: https://www.risksafety.ru/jour/article/view/177/252; Chalasani NP, Hayashi PH, Bonkovsky HL, Navarro VJ, Lee WM, Fontana RJ, Practice Parameters Committee of the American College of Gastroenterology. ACG Clinical Guideline: the diagnosis and management of idiosyncratic drug-induced liver injury. Am J Gastroenterol. 2014;109(7):950–66; quiz 967. https://doi.org/10.1038/ajg.2014.131; Björnsson ES. Epidemiology and risk factors for idiosyncratic drug-induced liver injury. Semin Liver Dis. 2014;34(2):115–22. https://doi.org/10.1055/s-0034-1375953; Лазебник ЛБ, Голованова ЕВ, Хлынова ОВ, Алексеенко СА, Арямкина ОЛ, Бакулин ИГ и др. Лекарственные поражения печени (ЛПП) у взрослых. Экспериментальная и клиническая гастроэнтерология. 2020;174(2):29–54. https://doi.org/10.31146/1682-8658-ecg-174-2-29-54; Буеверов АО. Лекарственные поражения печени. РМЖ. 2012;(3):107.; Fisher K, Vuppalanchi R, Saxena R. Drug-induced liver injury. Arch Pathol Lab Med. 2015;139(7):876–87. https://doi.org/10.5858/arpa.2014-0214-RA; Chen M, Suzuki A, Borlak J, Andrade RJ, Lucena MI. Druginduced liver injury: interactions between drug properties and host factors. J Hepatol. 2015;63(2):503–14. https://doi.org/10.1016/j.jhep.2015.04.016; Галимова СФ. Лекарственные поражения печени (Часть 1). Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2012;22(3):38–48.; Баласанянц ГС. Гепатотоксические реакции и гепатопротективная терапия во фтизиатрии. Туберкулез и болезни легких. 2015;(8):48–53.; Мордык АВ, Иванова ОГ, Нагибина ЛА, Ситникова СВ, Марьехина ОА. Лекарственные поражения печени и их лечение в клинике туберкулеза. Туберкулез и болезни легких. 2015;(9):47–53.; Иванова ДА. Лекарственное поражение печени на фоне противотуберкулезной химиотерапии: вопросы эпидемиологии, диагностический подход. Медицинский альянс. 2015;(1):98–9.; European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Drug-induced liver injury. J Hepatol. 2019;70(6):1222–61. https://doi.org/10.1016/j.jhep.2019.02.014; Malinowski SS, Riche DM. Chapter 38. Hepatic and cholestatic diseases. In: Tisdale JE, Miller DA. Drug-induced diseases: prevention, detection, and management. 3rd ed. Bethesda: American Society of Health-System Pharmacists; 2018. P. 845–76.; Тулгаа Л, Цэрэндаш Б, Игнатьева ЛП. Жировой гепатоз — как один из актуальных вопросов гепатологии. Сибирский медицинский журнал (Иркутск). 2005;(4):17–22.; Miele L, Liguori A, Marrone G, Biolato M, Araneo C, Vaccaro FG, et al. Fatty liver and drugs: the two sides of the same coin. Eur Rev Med Pharmacol Sci. 2017;21(1 Suppl):86–94.; Rabinowich L, Shibolet O. Drug induced steatohepatitis: an uncommon culprit of a common disease. Biomed Res Int. 2015;2015:168905. https://doi.org/10.1155/2015/168905; Satapathy SK, Kuwajima V, Nadelson J, Atiq O, Sanyal AJ. Drug-induced fatty liver disease: an overview of pathogenesis and management. Ann Hepatol. 2015;14(6):789–806. https://doi.org/10.5604/16652681.1171749; Dash A, Figler RA, Sanyal AJ, Wamhoff BR. Drug-induced steatohepatitis. Expert Opin Drug Metab Toxicol. 2017;13(2):193–204. https://doi.org/10.1080/17425255.2017.1246534; Breiden B, Sandhoff K. Emerging mechanisms of drug-induced phospholipidosis. Biol Chem. 2019;401(1):31–46. https://doi.org/10.1515/hsz-2019-0270; Ивашкин ВТ, Барановский АЮ, Рай хельсон КЛ, Пальгова ЛК, Маевская МВ, Кондрашина ЭА и др. Лекарственные поражения печени (клинические рекомендации для врачей ). Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2019;29(1):101–31. https://doi.org/10.22416/1382-4376-2019-29-1-101-131; Pavlik L, Regev A, Ardayfi o PA, Chalasani NP. Drug-Induced Steatosis and Steatohepatitis: The search for novel serum biomarkers among potential biomarkers for non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. Drug Saf. 2019;42(6):701–11. https://doi.org/10.1007/s40264-018-00790-2; Yang L, Zhong X, Li Q, Zhang X, Wang Y, Yang K, et al. From the cover: potentiation of drug-induced phospholipidosis in vitro through PEGlyated graphene oxide as the nanocarrier. Toxicol Sci. 2017;156(1):39–53. https://doi.org/10.1093/toxsci/kfw233; Коренская ЕГ, Парамонова ОВ. Лекарственные поражения печени — одна из важных проблем у коморбидного пациента. Consilium Medicum. 2019;21(8):78–83. https://doi.org/10.26442/20751753.2019.8.190355; Пиманов СИ, Макаренко ЕВ. Идиосинкразические лекарственные поражения печени: диагностика и лечение. Медицинский Совет. 2017;(5):100–7. https://doi.org/10.21518/2079-701X-2017-5-100-107; Aithal GP. Pharmacogenetic testing in idiosyncratic druginduced liver injury: current role in clinical practice. Liver Int. 2015;35(7):1801–8. https://doi.org/10.1111/liv.12836; Tsuda T, Tada H, Tanaka Y, Nishida N, Yoshida T, Sawada T, et al. Amiodarone-induced reversible and irreversible hepatotoxicity: two case reports. J Med Case Rep. 2018;12(1):95. https://doi.org/10.1186/s13256-018-1629-8; Kum LC, Chan WW, Hui HH, Wong GW, Ho SS, Sanderson JE, et al. Prevalence of amiodarone-related hepatotoxicity in 720 Chinese patients with or without baseline liver dysfunction. Clin Cardiol. 2006;29(7):295–9. https://doi.org/10.1002/clc.4960290705; Goldschlager N, Epstein AE, Naccarelli GV, Olshansky B, Singh B, Collard HR, et al. A practical guide for clinicians who treat patients with amiodarone: 2007. Heart Rhythm. 2007;4(9):1250–9. https://doi.org/10.1016/j.hrthm.2007.07.020; Huang CH, Lai YY, Kuo YJ, Yang SC, Chang YJ, Chang KK, et al. Amiodarone and risk of liver cirrhosis: a nationwide, population-based study. Ther Clin Risk Manag. 2019;15:103–12. https://doi.org/10.2147/TCRM.S174868; In brief: FDA warning on dronedarone (Multaq). Med Lett Drugs Ther. 2011;53(1359):17.; Kim TH, Kim YB, Cheong JY, Cho SW, Kim SS. Tamoxifeninduced non-alcoholic steatohepatitis cirrhosis. Soonchunhyang Med Sci. 2018;24(1):81–4. https://doi.org/10.15746/sms.18.014; Shimizu H, Shimizu T, Takahashi D, Asano T, Arai R, Takakuwa Y, et al. Corticosteroid dose increase is a risk factor for nonalcoholic fatty liver disease and contralateral osteonecrosis of the femoral head: a case report. BMC Musculoskelet Disord. 2019;20(1):88. https://doi.org/10.1186/s12891-019-2468-5; Gayam V, Mandal AK, Khalid M, Shrestha B, Garlapati P, Khalid M. Valproic acid induced acute liver injury resulting in hepatic encephalopathy—a case report and literature review. J Community Hosp Intern Med Perspect. 2018;8(5):311–4. https://doi.org/10.1080/20009666.2018.1514933; Najafi N, Heidari R, Jamshidzadeh A, Fallahzadeh H, Omidi M, Abdoli N, et al. Valproic acid-induced hepatotoxicity and the protective role of thiol reductants. Trends in Pharmaceutical Sciences. 2017;3(2):63–70.; Трухан ДИ. Роль и место L-карнитина в цитопротекции и коррекции метаболических процессов у пациентов с метаболическим синдромом. Медицинский совет. 2017;(12):182–7. https://doi.org/10.21518/2079-701X-2017-12-182-187; Neukam K, Mira JA, Collado A, Rivero-Juárez A, Monje-Agudo P, Ruiz-Morales J, et al. Liver toxicity of current antiretroviral regimens in HIV-infected patients with chronic viral hepatitis in a real-life setting: the HEPAVIR SEG-HEP Cohort. PLoS One. 2016;11(2):e0148104. https://doi.org/10.1371/journal.pone.0148104; Conway R, Carey JJ. Risk of liver disease in methotrexate treated patients. World J Hepatol. 2017;9(26):1092–100. https://doi.org/10.4254/wjh.v9.i26.1092; https://www.risksafety.ru/jour/article/view/177

  19. 19
    Academic Journal

    Source: Pharmacy & Pharmacology; Том 8, № 2 (2020); 100-111 ; Фармация и фармакология; Том 8, № 2 (2020); 100-111 ; 2413-2241 ; 2307-9266 ; 10.19163/2307-9266-2020-8-2

    File Description: application/pdf

    Relation: https://www.pharmpharm.ru/jour/article/view/687/602; https://www.pharmpharm.ru/jour/article/view/687/605; Zárate A, Manuel-Apolinar L, Basurto L, De la Chesnaye E, Saldívar I. Cholesterol and atherosclerosis. Historical considerations and treatment. Arch Cardiol Mex. 2016; 86(2):163-9. DOI:10.1016/j.acmx.2015.12.002.; Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation; 2004; 109(23):27‐32. doi:10.1161/01.CIR.0000131515.03336.f8.; Davies PF. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat ClinPractCardiovasc Med. 2009; 6(1):16‐26. DOI:10.1038/ncpcardio1397.; Sorokin A, Kotani K, Bushueva O, Taniguchi N, Lazarenko V. The cardio-ankle vascular index and ankle-brachial index in young Russians . Journal of atherosclerosis and thrombosis. 2015; 22(2):211-8. DOI:10.5551/jat.26104.; Polonikov A., Bykanova M, Ponomarenko I, Sirotina S, Bocharova A, Vagaytseva K, Shvetsov Y. The contribution of CYP2C gene subfamily involved in epoxygenase pathway of arachidonic acids metabolism to hypertension susceptibility in Russian population. Clinical and Experimental Hypertension. 2017; 39(4):306-311. DOI:10.1080/10641963.2016.1246562.; Bennett M.R, Sinha S, Owens G.K. Vascular Smooth Muscle Cells in Atherosclerosis. Circ Res. 2016; 118(4):692‐702. DOI:10.1161/CIRCRESAHA.115.306361.; Kattoor AJ, Pothineni NVK, Palagiri D, Mehta JL. Oxidative Stress in Atherosclerosis. CurrAtheroscler Rep. 2017; 19(11):42s DOI:10.1007/s11883-017-0678-6.; Quintero M, Colombo SL, Godfrey A, Moncada S. Mitochondria as signaling organelles in the vascular endothelium. Proc. Natl. Acad. Sci. U.S.A. 2006; 103:5379–5384. DOI:10.1073/pnas.0601026103.; Brines M, Patel NS, Villa P, et al. Nonerythropoietic, tissue-protective peptides derived from the tertiary structure of erythropoietin. Proc Natl AcadSci U S A. 2008; 105(31):10925-10930. DOI:10.1073/pnas.0805594105.; Korokin MV, Soldatov VO, Tietze AA, Golubev MV, Belykh AE, Kubekina MV, Puchenkova OA, Denisyuk TA, Gureyev VV, Pokrovskaya TG, Gudyrev OS, Zhuchenko MA, Zatolokina MA, Pokrovskiy MV. 11-amino acid peptide imitating the structure of erythropoietin α-helix b improves endothelial function, but stimulates thrombosis in rats. Pharmacy & Pharmacology. 2019; 7(6):312-320. Russian. DOI:10.19163/2307-9266-2019-7-6-312-320.; Korokin M, Gureev V, Gudyrev O, Golubev I, Korokina L, Peresypkina A, Pokrovskaia T, Lazareva G, Soldatov V, Zatolokina M, Pobeda A, Avdeeva E, Beskhmelnitsyna E, Denisyuk T, Avdeeva N, Bushueva O, Pokrovskii M. Erythropoietin Mimetic Peptide (pHBSP) Corrects Endothelial Dysfunction in a Rat Model of Preeclampsia. Int. J. Mol. Sci. 2020; 21:6759. DOI:10.3390/ijms21186759.; Golubev IV, Gureev VV, Korokin MV, Zatolokina MA, Avdeeva EV, Gureeva AV, Rozhkov IS, Serdyuk EA, Soldatova VA. Preclinical study of innovative peptides mimicking the tertiary structure of the α-helix B of erythropoietin. Research Results in Pharmacology. 2020; 6(2):85-96. DOI:10.3897/rrpharmacology.6.55385.; Trifunovic A, Wredenberg A, Falkenberg M. et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature. 2004; 429:417–423. DOI:10.1038/nature02517.; Kujoth GC, Hiona A, Pugh TD, et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science. 2005. 309(5733):481-484. DOI:10.1126/science.1112125.; Zvartsev RV, Korshunova DS, Gorshkova EA., et al. Neonatal Lethality and Inflammatory Phenotype of the New Transgenic Mice with Overexpression of Human Interleukin-6 in Myeloid Cells. DoklBiochemBiophys. 2018; 483(1):344-347. DOI:10.1134/S1607672918060157.; Stubbendorff M, Hua X, Deuse T, et al. Inducing myointimal hyperplasia versus atherosclerosis in mice: an introduction of two valid models. J Vis Exp. 2014; 87:51459. DOI:10.3791/51459.; Tediashvili G, Wang D, Reichenspurner H, Deuse T, Schrepfer S. Balloon-based Injury to Induce Myointimal Hyperplasia in the Mouse Abdominal Aorta. J Vis Exp. 2018; 132:56477. DOI:10.3791/56477.; Molina-Sánchez P, Andrés V. Isolation of Mouse Primary Aortic Endothelial Cells by Selection with Specific Antibodies. Methods in Mouse Atherosclerosis. Methods in Molecular Biology. Humana Press, New York, NY. 2015; 1339. DOI:10.1007/978-1-4939-2929-0_7.; Stumpf JD, Saneto RP, Copeland WC. Clinical and molecular features of POLG-related mitochondrial; Kusov P, Deikin A. Developing Novel Transgenic Mice Model Of Atherogenesis With Conditional Oxidative Stress By Introduction Of Epithelium-Specific Inducible Mitochondrial Polg With Mutagenic Activity. Atherosclerosis. 2019; 287:99 s.DOI:10.1016/j.atherosclerosis.2019.06.287.; Poznyak AV, Silaeva YY, Orekhov AN, Deykin AV. Animal models of human atherosclerosis: current progress. Braz J Med Biol Res. 2020. 53(6):9557 s. DOI:10.1590/1414-431x20209557.; Mushenkova NV, Summerhill VI, Silaeva YY, Deykin AV, Orekhov AN. Modelling of atherosclerosis in genetically modified animals. Am J Transl Res. 2019.11(8):4614-4633.; Volobueva AS, Orekhov AN, Deykin AV. An update on the tools for creating transgenic animal models of human diseases - focus on atherosclerosis. Braz J Med Biol Res. 2019; 52(5):8108. DOI:10.1590/1414-431X20198108.; Bittorf T, Jaster R, Lüdtke B, Kamper B, Brock J. Requirement for JAK2 in erythropoietin-induced signalling pathways . Cell Signal. 1997; 9(1):85-89. DOI:10.1016/s0898-6568(96)00121-0.; Peng B, Kong G, Yang C. et al. Erythropoietin and its derivatives: from tissue protection to immune regulation. Cell Death Dis. 2020; 11(79). DOI:10.1038/s41419-020-2276-8.; Warren JS, Zhao Y, Yung R, Desai A. Recombinant human erythropoietin suppresses endothelial cell apoptosis and reduces the ratio of Bax to Bcl-2 proteins in the aortas of apolipoprotein E-deficient mice. Journal of Cardiovascular Pharmacology. 2011; 57(4):424-433. DOI:10.1097/fjc.0b013e31820d92fd.; Bäck M, Yurdagul A, Tabas I. et al. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat Rev Cardiol. 2019; 16:389–406. DOI:10.1038/s41569-019-0169-2.; Ley K, Huo Y. VCAM-1 is critical in atherosclerosis. J Clin Invest. 2001; 107(10):1209-1210. DOI:10.1172/JCI13005.; Fatkhullina AR, Peshkova IO, Koltsova EK. The Role of Cytokines in the Development of Atherosclerosis. Biochemistry (Mosc). 2016; 81(11):1358-1370. DOI:10.1134/S0006297916110134.; Fotis L, Agrogiannis G, Vlachos IS, Pantopoulou A, Margoni A, Kostaki M, Verikokos C, Tzivras D, Mikhailidis DP, Perrea D. Intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 at the early stages of atherosclerosis in a rat model. In Vivo. 2012; 26:243–250.; Nairz M, Sonnweber T, Schroll A, Theurl I, Weiss G. The pleiotropic effects of erythropoietin in infection and inflammation. Microbes Infect. 2012; 14(3):238-246. DOI:10.1016/j.micinf.2011.10.005.; Liu Y, Luo B, Shi R, et al. Nonerythropoietic Erythropoietin-Derived Peptide Suppresses Adipogenesis, Inflammation, Obesity and Insulin Resistance. Sci Rep. 2015:515134. DOI:10.1038/srep15134.; Kimáková P, Solár P, Solárová Z, Komel R, Debeljak N. Erythropoietin and Its Angiogenic Activity Int J Mol Sci. 2017; 18(7):1519. DOI:10.3390/ijms18071519.; Michel JB, Martin-Ventura JL, Nicoletti A, Ho-Tin-Noe B. Pathology of human plaque vulnerability: mechanisms and consequences of intraplaquehaemorrhages. Atherosclerosis. 2014; 234(2) 311–319.; Camaré C, Pucelle M, Nègre-Salvayre A, Salvayre R. Angiogenesis in the atherosclerotic plaque. Redox Biol. 2017; 12:18-34. DOI:10.1016/j.redox.2017.01.007.; https://www.pharmpharm.ru/jour/article/view/687

  20. 20