Εμφανίζονται 1 - 20 Αποτελέσματα από 39 για την αναζήτηση '"миофибробласты"', χρόνος αναζήτησης: 0,61δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: Journal Infectology; Том 15, № 1 (2023); 16-24 ; Журнал инфектологии; Том 15, № 1 (2023); 16-24 ; 2072-6732 ; 10.22625/2072-6732-2023-15-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.niidi.ru/jofin/article/view/1466/1034; Tacke F., Trautwein C. Mechanisms of liver fibrosis resolution. J. Hepatol. 2015;63 (4): 1038–1039. DOI:10.1016/j. jhep.2015.03.039; Roehlen N., Crouchet E., Baumert T.F. Liver Fibrosis: Mechanistic Concepts and Therapeutic Perspectives. Cells 2020;9(4):875; doi:10.3390/cells9040875.; Asrani S.K., Devarbhavi H., Eaton J., Kamath P.S. Burden of liver diseases in the world. J. Hepatol.2019;70:151–171. DOI:10.1016/j.jhep.2018.09.014; Campana L.; Iredale J.P. Regression of Liver Fibrosis. Semin. Liver Dis. 2017;37:1–10. DOI:10.1055/s-0036-1597816; Zhou W.C., Zhang Q.B., Qiao L. Pathogenesis of liver cirrhosis. World J. Gastroenterol. 2014;20:7312–7324.doi:10.3748/wjg.v20.i23.7312; Tacke F., Zimmermann H.W. Macrophage heterogeneity in liver injury and fibrosis. J. Hepatol. 2014; 60: 1090–1096. DOI:10.1016/j.jhep.2013.12.025; Ying H.Z., Chen Q., Zhang W.Y. et.al. PDGF signaling pathway in hepatic fibrosis pathogenesis and therapeutics (Review). Mol. Med. Rep. 2017;16:7879–7889. DOI:10.3892/ mmr.2017.7641; Mihm S. Danger-Associated Molecular Patterns (DAMPs): Molecular Triggers for Sterile Inflammation in the Liver. Int. J. Mol. Sci. 2018, 19, 3104. doi:10.3390/ijms19103104; Tsung A., Sahai R., Tanaka H. et al. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemiareperfusion. J. Exp. Med. 2005, 201, 1135–1143. doi:10.1084/ jem.20042614; Li J., Wang F.-P., She W.-M. et.al. Enhanced highmobility group box 1 (HMGB1) modulates regulatory T cells (Treg)/T helper 17 (Th17) balance via toll-like receptor (TLR)-4-interleukin (IL)-6 pathway in patients with chronic hepatitis B. J. Viral Hepat. 2014, 21, 129–140. DOI:10.1111/ jvh.12152; Li J., Zeng C., Zheng B., Liu C. et al. HMGB1-induced autophagy facilitates hepatic stellate cells activation: A new pathway in liver fibrosis. Clin. Sci. 2018, 132, 1645–1667. DOI:10.1042/CS20180177; Huebener P., Pradere J.-P., Hernandez C. et al. The HMGB1/RAGE axis triggers neutrophil-mediated injury amplification following necrosis. J. Clin. Investig. 2015, 125, 539– 550.DOI:10.1172/JCI76887; Musso G., Cassader M., Paschetta E., Gambino R. Bioactive Lipid Species and Metabolic Pathways in Progression and Resolution of Nonalcoholic Steatohepatitis. Gastroenterology 2018, 155, 282–302 e288. DOI:10.1053/j.gastro.2018.06.031; Chiappini F., Coilly A., Kadar H. et al. Metabolism dysregulation induces a specific lipid signature of nonalcoholic steatohepatitis in patients. Sci. Rep. 2017, 7, 46658. DOI:10.1038/ srep46658; Cazanave S.C., Wang X., Zhou H.et al. Degradation of Keap1 activates BH3-only proteins Bim and PUMA during hepatocyte lipoapoptosis. Cell Death Differ. 2014, 21, 1303–1312.; Shi H., Kokoeva M.V., Inouye K. et al.TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Investig. 2006, 116, 3015–3025. DOI:10.1172/JCI28898 17. Ying H.Z., Chen Q., Zhang W.Y. et al. PDGF signaling pathway in hepatic fibrosis pathogenesis and therapeutics (Review). Mol. Med. Rep. 2017; 16(6):7879–7889. DOI:10.3892/ mmr.2017.7641; Ramachandran P., Pellicoro A., Vernon M.A. et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc. Natl. Acad. Sci. USA 2012, 109, 3186–3195. DOI:10.1073/pnas.1119964109; Mosser D.M., Edwards J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 2008, 8, 958– 969. DOI:10.1038/nri2448; Duffield J.S., Forbes S.J., Constandinou C.M. et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J. Clin. Invest. 2005, 115, 56–65. DOI:10.1172/JCI22675; Seki E., Minicis S.d., Inokuchi S. et al. CCR2 promotes hepatic fibrosis in mice. Hepatology 2009, 50, 185–197. DOI:10.1002/hep.22952; Sahin H., Trautwein C., Wasmuth H.E. Functional role of chemokines in liver disease models. Nat. Rev. Gastroenterol. Hepatol. 2010, 7, 682–690. DOI:10.1038/nrgastro.2010.168; Фисенко, А.П. Молекулярная диагностика фиброза при диффузных болезнях печени / А.П. Фисенко, И.Е. Смирнов // Российский педиатрический журнал. – 2019. – № 22 (2). – С. 106–115.; Elpek GÖ. Cellular and molecular mechanisms in the pathogenesis of liver fibrosis: An update. World J. Gastroenterol. 2014; 20(23):7260-7276. doi:10.3748/wjg.v20.i23.7260.; Fabregat I., Moreno-Càceres J., Sánchez A. et al. TGF-β signalling and liver disease. FEBS J. 2016, 283, 2219–2232. DOI:10.1111/febs.13665; Цыркунов, В.М. Клиническая цитология печени: звездчатые клетки Ито / В.М. Цыркунов, В.П. Андреев, Р.И. Кравчук // Журнал Гродненского государственного медицинского университета. – 2016. – № 4. – С. 90–99.; Friedman S.L. Hepatic Stellate Cells: Protean, Multifunctional, and Enigmatic Cells of the Liver. Physiol. Rev. 2008, 88, 125–172. DOI:10.1152/physrev.00013.2007; Налобин, Д.С. Регенеративные способности печени млекопитающих / Д.С. Налобин, С.И. Алипкина, М.С. Краснов // Успехи современной биологии. – 2016. – № 136 (1). – С. 13–24.; Киселева, Т. Молекулярные и клеточные механизмы фиброза печени и его регресс / Т. Киселева, Д. Бренер // Nat Rev Gastroenterol Hepatol. – 2021. – № 18. – С. 151– 166.; Кулебина, Е.А. Механизмы формирования фиброза печени: современные представления / Е.А. Кулебина, А.Н. Сурков // Педиатрия. – 2019. – №98(6). – С. 166–170.; Лебедева, Е.И. Клеточно-молекулярные механизмы фиброгенеза печени / Е.И. Лебедева, О.Д. Мяделец // Гепатология и гастроэнтерология. – 2019. – № 3 (2). – С. 119–126.; Chu A.S., Diaz R., Hui, J.-J. et al. Lineage tracing demonstrates no evidence of cholangiocyte epithelial-to-mesenchymal transition in murine models of hepatic fibrosis. Hepatol. (Baltimore, Md.) 2011, 53, 1685–1695. DOI:10.1002/hep.24206; Higashi T., Friedman S.L., Hoshida Y. Hepatic stellate cells as key target in liver fibrosis . Adv.Drug Deliv. Rev., 2017;121:27-42. DOI:10.1016/j.addr.2017.05.007; Полухина, А.В. Фиброгенез печени при HCV-инфекции: современный взгляд на проблему / А.В. Полухина, Е.В. Винницкая, Ю.Г. Сандлер // Высокотехнологичная медицина. – 2018. – №4. – С. – 21–29.; Novo E., Busletta C., Bonzo L.V. et al. Intracellular reactive oxygen species are required for directional migration of resident and bone marrowderived hepatic pro-fibrogenic cells. J. Hepatol. 2011; 54(5):964–974. DOI:10.1016/j.jhep.2010.09.022; Lee S.M., Lee S.D., Wang S.Z. et al. Effect of mesenchymal stem cell in liver regeneration and clinical applications. Hepatoma Res 2021;7:53.doi.org/10.20517/2394-5079.2021.07; Eom Y.W., Shim K.Y., Baik S.K. Mesenchymal stem cell therapy for liver fibrosis. Korean J. Intern. Med. 2015;30(5):580– 589. DOI:10.3904/kjim.2015.30.5.580; Wu H.H., Lee O.K. Exosomes from mesenchymal stem cells induce the conversion of hepatocytes into progenitor oval cells. Stem Cell Res. Ther. 2017;8(1):117.; Park M., Kim Y.H., Woo S.Y. et al. Tonsil-derived mesenchymal stem cells ameliorate CCl4-induced liver fibrosis in mice via autophagy activation. Sci. Rep. 2015;5:8616.; Sun X.E., Zhang X.Q., Liu M.M. Effect of bone marrow mesenchymal stem cells on the TGF-β1/Smad signaling pathway of hepatic stellate. Genet. Mol. Res. 2015;14(3):8744–8754. doi:10.12659/MSM.916428; Luo X.Y., Meng X.J., Cao D.C. et al. Transplantation of bone marrow mesenchymal stromal cells attenuates liver fibrosis in mice by regulating macrophage subtypes. Stem Cell Res. Ther. 2019;10(1):16.; Mardpour S., Hassani S.N., Mardpour S. et al. Extracellular vesicles derived from human embryonic stem cell-MSCs ameliorate cirrhosis in thioacetamide-induced chronic liver injury. J. Cell. Physiol. 2018;233(12):9330–9344. DOI:10.1002/jcp.26413; Паюшина, О.В. Регуляторное влияние мезенхимальных стромальных клеток на развитие фиброза печени: клеточно-молекулярные механизмы и перспективы клинического применения / О.В. Паюшина, Д.А. Цомартова, Е.В. Черешнева // Журнал общей биологии. – 2020. – № 81 (2). – С. 83–95.; Xu X., Li D., Li X. et al. Mesenchymal stem cell conditioned medium alleviates oxidative stress injury induced by hydrogen peroxide via regulating miR143 and its target protein in hepatocytes. BMC Immunol. 2017;18(1): 51.; Hirata M., Ishigami M., Matsushita Y. et al. Multifaceted therapeutic benefits of factors derived from dental pulp stem cells for mouse liver fibrosis. Stem Cells Transl. Med. 2016;5(10):1416–1424.doi:10.5966/sctm.2015-0353; Лызиков, А.Н. Механизмы регенерации печени в норме и при патологии. / А.Н. Лызиков // Проблемы здоровья и экологии. – 2015. – № 1 (43). – С. 4–9.; Mao S.A., Glorioso J.M., Nyberg S.L. Liver regeneration. Transl Res. 2014 Apr; 163(4):352–362.https://doi. org/10.1016/j.trsl.2014.01.005.; Плеханов, А.Н. Регенерация печени: решенные и проблемные вопросы (сообщение 1) / А.Н. Плеханов, А.И. Товарищнов // Хирургия. Журнал им.Н.И.Пирогова. – 2020. – № 11. – С. – 101–106.; Binatti E., Gerussi A., Barisani D., Invernizzi P. The Role of Macrophages in Liver Fibrosis: New Therapeutic Opportunities. Int. J. Mol. Sci. 2022,23, 6649. https://doi.org/10.3390/ ijms23126649.; Глухов, А.А. Влияние экспрессии факторов роста на процесс регенерации печени / А.А. Глухов, А.Ю. Лаптиёва, А.П. Остроушко // Сибирское медицинское обозрение. – 2022. – №1. – С. 15-22.; Chen, F. et al. Broad distribution of hepatocyte proliferation in liver homeostasis and regeneration.Cell Stem Cell.26, 27–33 (2020). DOI:10.1016/j.stem.2019.11.001; Campana L., Esser H., Huch M. Liver regeneration and inflammation: from fundamental science to clinical applications. Nat Rev Mol Cell Biol. 22, 608–624 (2021). https://doi. org/10.1038/s41580-021-00373.; Sun T. et al. AXIN2+ pericentral hepatocytes have limited contributions to liver homeostasis and regeneration. Cell Stem Cell.26, 97–107 (2020). https://doi.org/10.1016/j. stem.2019.10.011; Forbes S. J., Newsome P. N. Liver regeneration-mechanisms and models to clinical application.Nat. Rev. Gastroenterol.Hepatol.13,473–485(2016). DOI:10.1038/nrgastro.2016.97; Tarlow B.D., Pelz C., Naugler W.E. et al. Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell. 2014 Nov 6;15(5):605-18. doi:10.1016/j.stem.2014.09.008.; Kiseleva Ya.V., Zharikov Yu.O., Maslennikov R.V., et al. Molecular factors associated with regression of liver fibrosis of alcoholic etiology. Terapevticheskii Arkhiv (Ter. Arkh.). 2021; 93 (2): 204–208. DOI:10.26442/00403660.2021.02.200617.; Tsay HC, Yuan Q, Balakrishnan A. et al. Hepatocytespecific suppression of microRNA-221-3p mitigates liver fibrosis. J Hepatol. 2019 Apr;70(4):722-734. doi:10.1016/j. jhep.2018.12.016.; Kantari-Mimoun C., Krzywinska E., Castells M. et al. Boosting the hypoxic response in myeloid cells accelerates resolution of fibrosis and regeneration of the liver in mice. Oncotarget. 2017 Feb 28;8(9):15085-15100. doi:10.18632/oncotarget.14749.; https://journal.niidi.ru/jofin/article/view/1466

  2. 2
  3. 3
    Academic Journal

    Συνεισφορές: The study was carried out with the support of the Ministry of Science and Higher Education of the Russian Federation and the Russian Academy of Sciences (Agreement No. 075-15-2021-1075)., Исследование выполнено при поддержке Министерства науки и высшего образования Российской Федерации и Российской академии наук (соглашение № 075-15-2021-1075)

    Πηγή: Translational Medicine; Том 9, № 5 (2022); 96-104 ; Трансляционная медицина; Том 9, № 5 (2022); 96-104 ; 2410-5155 ; 2311-4495

    Περιγραφή αρχείου: application/pdf

    Relation: https://transmed.almazovcentre.ru/jour/article/view/720/486; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/720/1507; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/720/1508; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/720/1509; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/720/1510; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/720/1511; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/720/1512; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/720/1513; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/720/1514; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/720/1515; Liu T, Hu B, Choi YY, et al. Notch1 signaling in FIZZ1 induction of myofibroblast differentiation. Am J Pathol. 2009; 174(5):1745–1755. DOI:10.2353/ ajpath.2009.080618.; Aoyagi-Ikeda K, Maeno T, Matsui H, et al. Notch induces myofibroblast differentiation of alveolar epithelial cells via transforming growth factor-{beta}-Smad3 pathway. Am J Respir Cell Mol Biol. 2011; 45(1):136–144. DOI:10.1165/rcmb.2010-0140oc.; Wang YC, Chen Q, Luo JM, et al. Notch1 promotes the pericyte-myofibroblast transition in idiopathic pulmonary fibrosis through the PDGFR/ROCK1 signal pathway. Exp Mol Med. 2019; 51(3):1–11. DOI:10.1038/ s12276-019-0228-0.; Hu B, Phan SH. Notch in fibrosis and as a target of anti-fibrotic therapy. Pharmacol Res. 2016; 108:57–64. DOI:10.1016/j.phrs.2016.04.010.; Vera L, Garcia-Olloqui P, Petri E, et al. Notch3 Deficiency Attenuates Pulmonary Fibrosis and Impedes Lung-Function Decline. Am J Respir Cell Mol Biol. 2021; 64(4):465–476. DOI:10.1165/rcmb.2020-0516OC.; Canalis E. Notch signaling in osteoblasts. Sci Signal. 2008; 1(17):pe17. DOI:10.1126/stke.117pe17.; Barron L, Gharib SA, Duffield JS. Lung Pericytes and Resident Fibroblasts: Busy Multitaskers. Am J Pathol. 2016; 186(10):2519–2531. DOI:10.1016/j.ajpath.2016.07.004.; Horowitz JC, Thannickal VJ. Epithelialmesenchymal interactions in pulmonary fibrosis. Semin Respir Crit Care Med. 2006; 27(6):600–612. DOI:10.1055/ s-2006-957332.; Gopalakrishnan N, Sivasithamparam ND, Devaraj H. Synergistic association of Notch and NFκB signaling and role of Notch signaling in modulating epithelial to mesenchymal transition in colorectal adenocarcinoma. Biochimie. 2014; 107 Pt B:310–318. DOI:10.1016/j. biochi.2014.09.020.; Leong KG, Niessen K, Kulic I, et al. Jagged1- mediated Notch activation induces epithelial-tomesenchymal transition through Slug-induced repression of E-cadherin. J Exp Med. 2007; 204(12):2935–2948. DOI:10.1084/jem.20071082.; Gajjala PR, Madala SK. Notch3: A New Culprit in Fibrotic Lung Disease. Am J Respir Cell Mol Biol. 2021; 64(4):403–404. DOI:10.1165/rcmb.2021-0024ED.; Astarita JL, Acton SE, Turley SJ. Podoplanin: emerging functions in development, the immune system, and cancer. Front Immunol. 2012; 3:283. DOI:10.3389/ fimmu.2012.00283.; Liu Y, Zhang W. The role of HOPX in normal tissues and tumor progression. Biosci Rep. 2020; 40(1):BSR20191953. DOI:10.1042/BSR20191953.; Tanriverdi G, Kaya-Dagistanli F, Ayla S, et al. Resveratrol can prevent CCl4 -induced liver injury by inhibiting Notch signaling pathway. Histol Histopathol. 2016; 31(7):769–784. DOI:10.14670/HH-11-720.; https://transmed.almazovcentre.ru/jour/article/view/720

  4. 4
    Academic Journal

    Συνεισφορές: Работа выполнена при поддержке комплексной программы фундаментальных научных исследований СО РАН в рамках фундаментальной темы НИИ КПССЗ № 0419-2021-001 «Разработка новых фармакологических подходов к экспериментальной терапии атеросклероза и комплексных цифровых решений на основе искусственного интеллекта для автоматизированной диагностики патологий системы кровообращения и определения риска летального исхода» при финансовой поддержке Министерства науки и высшего образования Российской Федерации в рамках национального проекта «Наука и университеты».

    Πηγή: Complex Issues of Cardiovascular Diseases; Том 11, № 3 (2022); 97-114 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 11, № 3 (2022); 97-114 ; 2587-9537 ; 2306-1278

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1165/699; Li Y., Lui K.O., Zhou B. Reassessing endothelial-to-mesenchymal transition in cardiovascular diseases. Nat Rev Cardiol. 2018;15(8):445-456. doi:10.1038/s41569-018-0023-y.; Kovacic J.C., Dimmeler S., Harvey R.P., Finkel T.,Aikawa E., Krenning G., Baker A.H. Endothelial to Mesenchymal Transition in Cardiovascular Disease: JACC State-of-the-Art Review. J Am Coll Cardiol. 2019;73(2):190-209. doi:10.1016/j.jacc.2018.09.089.; Chen P.Y., Schwartz M.A., Simons M. Endothelial-to-Mesenchymal Transition, Vascular Inflammation, and Atherosclerosis. Front Cardiovasc Med. 2020;7:53. doi:10.3389/fcvm.2020.00053.; Alvandi Z., Bischoff J. Endothelial-Mesenchymal Transition in Cardiovascular Disease. Arterioscler Thromb Vasc Biol. 2021;41(9):2357-2369. doi:10.1161/ATVBAHA.121.313788.; Peng Q., Shan D., Cui K., Li K., Zhu B., Wu H., Wang B., Wong S., Norton V., Dong Y., Lu Y.W., Zhou C., Chen H. The Role of Endothelial-to-Mesenchymal Transition in Cardiovascular Disease. Cells. 2022;11(11):1834. doi:10.3390/cells11111834.; Kutikhin A.G., Shishkova D.K., Velikanova E.A., Sinitsky M.Y., Sinitskaya A.V., Markova V.E. Endothelial Dysfunction in the Context of Blood-Brain Barrier Modeling. J Evol Biochem Physiol. 2022;58(3):781-806. doi:10.1134/S0022093022030139.; Kutikhin A.G., Tupikin A.E., Matveeva V.G., Shishkova D.K., Antonova L.V., Kabilov M.R., Velikanova E.A. Human Peripheral Blood-Derived Endothelial Colony-Forming Cells Are Highly Similar to Mature Vascular Endothelial Cells yet Demonstrate a Transitional Transcriptomic Signature. Cells. 2020;9(4):876. doi:10.3390/cells9040876.; Ханова М.Ю., Великанова Е.А., Матвеева В.Г., Кривкина Е.О., Глушкова Т.В., Севостьянова В.В., Кутихин А.Г., Антонова Л.В. Формирование монослоя эндотелиальных клеток на поверхности сосудистого протеза малого диаметра в условиях потока. Вестник трансплантологии и искусственных органов. 2021. Т. 23. № 3. С. 101-114. doi:10.15825/1995-1191-2021-3-101-114.; Mukhamadiyarov R.A., Bogdanov L.A., Glushkova T.V., Shishkova D.K., Kostyunin A.E., Koshelev V.A., Shabaev A.R., Frolov A.V., Stasev A.N., Lyapin A.A., Kutikhin A.G. EMbedding and Backscattered Scanning Electron Microscopy: A Detailed Protocol for the Whole-Specimen, High-Resolution Analysis of Cardiovascular Tissues. Front Cardiovasc Med. 2021;8:739549. doi:10.3389/fcvm.2021.739549.; Ma J., Sanchez-Duffhues G., Goumans M.J., Ten Dijke P. TGF-β-Induced Endothelial to Mesenchymal Transition in Disease and Tissue Engineering. Front Cell Dev Biol. 2020;8:260. doi:10.3389/fcell.2020.00260.; Ma J., van der Zon G., Gonçalves M.A.F.V., van Dinther M., Thorikay M., Sanchez-Duffhues G., Ten Dijke P. TGF-β-Induced Endothelial to Mesenchymal Transition Is Determined by a Balance Between SNAIL and ID Factors. Front Cell Dev Biol. 2021;9:616610. doi:10.3389/fcell.2021.616610.; Ma J., van der Zon G., Sanchez-Duffhues G., Ten Dijke P. TGF-β-mediated Endothelial to Mesenchymal Transition (EndMT) and the Functional Assessment of EndMT Effectors using CRISPR/Cas9 Gene Editing. J Vis Exp. 2021;(168). doi:10.3791/62198.; Krishnamoorthi M.K., Thandavarayan R.A., Youker K.A., Bhimaraj A. An In Vitro Platform to Study Reversible Endothelial-to-Mesenchymal Transition. Front Pharmacol. 2022;13:912660. doi:10.3389/fphar.2022.912660.; Tang R., Li Q., Lv L., Dai H., Zheng M., Ma K., Liu B. Angiotensin II mediates the high-glucose-induced endothelial-to-mesenchymal transition in human aortic endothelial cells. Cardiovasc Diabetol. 2010;9:31. doi:10.1186/1475-2840-9-31; Noseda M., McLean G., Niessen K., Chang L., Pollet I., Montpetit R., Shahidi R., Dorovini-Zis K., Li L., Beckstead B., Durand R.E., Hoodless P.A., Karsan A. Notch activation results in phenotypic and functional changes consistent with endothelial-to-mesenchymal transformation. Circ Res. 2004;94(7):910-7. doi:10.1161/01.RES.0000124300.76171.C9.; Chang A.C., Fu Y., Garside V.C., Niessen K., Chang L., Fuller M., Setiadi A., Smrz J., Kyle A., Minchinton A., Marra M., Hoodless P.A., Karsan A. Notch initiates the endothelial-to-mesenchymal transition in the atrioventricular canal through autocrine activation of soluble guanylyl cyclase. Dev Cell. 2011;21(2):288-300. doi:10.1016/j.devcel.2011.06.022.; Kostina A.S., Uspensky V.Е., Irtyuga O.B., Ignatieva E.V., Freylikhman O., Gavriliuk N.D., Moiseeva O.M., Zhuk S., Tomilin A., Kostareva А.А., Malashicheva A.B. Notch-dependent EMT is attenuated in patients with aortic aneurysm and bicuspid aortic valve. Biochim Biophys Acta. 2016;1862(4):733-740. doi:10.1016/j.bbadis.2016.02.006.; Xu X., Tan X., Tampe B., Sanchez E., Zeisberg M., Zeisberg E.M. Snail Is a Direct Target of Hypoxia-inducible Factor 1α (HIF1α) in Hypoxia-induced Endothelial to Mesenchymal Transition of Human Coronary Endothelial Cells. J Biol Chem. 2015;290(27):16653-64. doi:10.1074/jbc.M115.636944.; Tang H., Babicheva A., McDermott K.M., Gu Y., Ayon R.J., Song S., Wang Z., GuptaA., Zhou T., Sun X., Dash S., Wang Z., Balistrieri A., Zheng Q., Cordery A.G., Desai A.A., Rischard F., Khalpey Z., Wang J., Black S.M., Garcia J.G.N., Makino A., Yuan J.X. Endothelial HIF-2α contributes to severe pulmonary hypertension due to endothelial-to-mesenchymal transition. Am J Physiol Lung Cell Mol Physiol. 2018;314(2):L256-L275. doi:10.1152/ajplung.00096.2017.; Dejana E., Hirschi K.K., Simons M. The molecular basis of endothelial cell plasticity. Nat Commun. 2017;8:14361. doi:10.1038/ncomms14361.; Piera-Velazquez S., Jimenez S.A. Endothelial to Mesenchymal Transition: Role in Physiology and in the PathogenesisofHumanDiseases.PhysiolRev.2019;99(2):1281-1324. doi:10.1152/physrev.00021.2018.; Gao Y., Galis Z.S. Exploring the Role of Endothelial Cell Resilience in Cardiovascular Health and Disease. Arterioscler Thromb Vasc Biol. 2021;41(1):179-185. doi:10.1161/ATVBAHA.120.314346.; Greenspan L.J., Weinstein B.M. To be or not to be: endothelial cell plasticity in development, repair, and disease. Angiogenesis. 2021;24(2):251-269. doi:10.1007/s10456-020-09761-7.; Великанова Е.А., Кутихин А.Г., Матвеева В.Г., Тупикин А.Е., Кабилов М.Р., Антонова Л.В. Сравнение профиля генной экспрессии колониеформирующих эндотелиальных клеток из периферической крови человека и эндотелиальных клеток коронарной артерии. Комплексные проблемы сердечно-сосудистых заболеваний. 2020; 9(2): 74-81. doi:10.17802/2306-1278-2020-9-2-74-81.; Niklason L., Dai G. Arterial Venous Differentiation for Vascular Bioengineering. Annu Rev Biomed Eng. 2018;20:431-447. doi:10.1146/annurev-bioeng-062117-121231.; Wolf K., Hu H., Isaji T., Dardik A. Molecular identity of arteries, veins, and lymphatics. J Vasc Surg. 2019;69(1):253-262. doi:10.1016/j.jvs.2018.06.195.; Marziano C., Genet G., Hirschi K.K. Vascular endothelial cell specification in health and disease. Angiogenesis. 2021;24(2):213-236. doi:10.1007/s10456-021-09785-7.; Corbett A.H. Post-transcriptional regulation of gene expression and human disease. Curr Opin Cell Biol. 2018;52:96-104. doi:10.1016/j.ceb.2018.02.011.; Evrard S.M., Lecce L., Michelis K.C., Nomura-Kitabayashi A., Pandey G., Purushothaman K.R., d'Escamard V., Li J.R., Hadri L., Fujitani K., Moreno P.R., Benard L., Rimmele P., Cohain A., Mecham B., Randolph G.J., Nabel E.G., Hajjar R., Fuster V., Boehm M., Kovacic J.C. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat Commun. 2016;7:11853. doi:10.1038/ncomms11853.; Yap C., MieremetA., de Vries C.J.M., Micha D., de Waard V. Six Shades of Vascular Smooth Muscle Cells Illuminated by KLF4 (Krüppel-Like Factor 4). Arterioscler Thromb Vasc Biol. 2021;41(11):2693-2707. doi:10.1161/ATVBAHA.121.316600.

  5. 5
  6. 6
    Academic Journal

    Πηγή: Meditsinskiy sovet = Medical Council; № 17 (2020); 99-106 ; Медицинский Совет; № 17 (2020); 99-106 ; 2658-5790 ; 2079-701X

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/5882/5367; Brown K.K., Martinez F.J., Walsh S.L.F., Thannickal V.J., Antje P., SchlenkerHerceg R. et al. The natural history of progressive fibrosing interstitial lung diseases. Eur Respir J. 2020;55(6):2000085. doi:10.1183/13993003.00085-2020.; Cottin V., Wollin L., Fischer A., Quaresma M., Stowasser S., Harari S. Fibrosing interstitial lung disease: knowns and unknowns. Eur Respir Rev. 2019;28(151):180100. doi:10.1183/16000617.0100-2018.; Wong A.W., Ryerson C.J., Guler S.A. Progression of fibrosing interstitial lung disease. Respir Res. 2020;21(1):32. doi:10.1186/s12931-020-1296-3.; Harari S. Beyond idiopathic pulmonary fibrosis: the world of progressivefibrosing interstitial lung disease. Eur Respir Rev. 2018;27(150):180110. doi:10.1183/16000617.0110-2018.; Cottin V., Hirani N.A., Hotchkin D.L., Nambiar A.M., Ogura T., Otaola M. et al. Presentation, diagnosis and clinical course of the spectrum of progressive-fibrosing interstitial lung diseases. Eur Respir Rev. 2018;27(150):180076. doi:10.1183/16000617.0076-2018.; Olson A.M., Gifford A.H., Inase N., Fernández Pérez E.R., Suda T. The epidemiology of idiopathic pulmonary fibrosis and interstitial lung diseases at risk of a progressive-fibrosing phenotype. Eur Respir Rev. 2018;27(150):180077. doi:10.1183/16000617.0077-2018.; Kolb M., Vašáková M. The natural history of progressive fibrosing interstitial lung diseases. Respir Res. 2019;20(1):57. doi:10.1186/s12931-019-1022-1.; Elhai M., Meune C., Boubaya M., Avouac J., Hachulla E., Balbir-Gurnan A. et al. Mapping and predicting mortality from systemic sclerosis. Ann Rheum Dis. 2017;76(11):1897–1905. doi:10.1136/annrheumdis-2017-211448.; Solomon J.J., Chung J.H., Cosgrove G.P., Dernoruelle M.K., Fernandez-Perez E.R., Fischer A. et al. Predictors of mortality in rheumatoid arthritis-associated lung disease. Eur Respir J. 2016;47(2):588–596. doi:10.1183/13993003.00357-2015.; Fernandez-Perez E.R., Kong A.M., Raimundo K., Koelsch T.L., Kulkarni R., Cole A.L. Epidemiology of hypersensitivity pneumonitis among an insured population in the United States: a claim-based cohort analysis. Ann Am Thorac Soc. 2018;15(4):460–469. doi:10.1513/AnnalsATS.201704-288OC.; Park I.N., Jegal Y., Kim D.S., Do K.H., Yoo B., Shim T.S. et al. Clinical course and lung function change of idiopathic nonspecific interstitial pneumonia. Eur Respir J. 2009;33(1):68–76. doi:10.1183/09031936.00158507.; Wynn T.A., Ramalingam T.R. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med. 2012;18(7):1028–1040. doi:10.1038/nm.2807.; Huang E., Peng N., Xiao F., Hu D., Wang X., Lu L. The roles of immune cells in the pathogenesis of fibrosis. Int J Mol Sci. 2020;21(15):5203. doi:10.3390/ijms21155203.; Шурыгина И.А., Шурыгин М.Г., Аюшинова Н.И., Каня О.В. Фибробласты и их роль в развитии соединительной ткани. Сибирский медицинский журнал. 2012;(3):8–12. Режим доступа: https://elibrary.ru/item.asp?id=17761929.; Hironaka T., Ueno T., Mae K., Yoshimura C., MorinagaT., Horii Y. et al. Drebrin is induced during myofibroblast differentiation and enhances the production of fibrosis-related genes. Biochem Biophys Res Commun. 2020;529(2):224–230. doi:10.1016/j.bbrc.2020.05.110.; Hinz B. Formation and function of the myofibroblast during tissue repair. J Invest Dermatol. 2007;127(3):526–537. doi:10.1038/sj.jid.5700613.; Hu B., Wu Z., Phan S.H. Smad3 mediates transforming growth factor-betainduced alpha-smooth muscle actin expression. Am J Respir Cell Mol Biol. 29(3 Pt 1):397–404. doi:10.1165/rcmb.2003-0063OC.; Mukherjee S., Kolb M.R.J., Duan F., Janssen L.J. Transforming growth factorß evokes Ca2+ wavwes and enhances gene expression in human pulmonary fibroblasts. Am J Cell Mol Biol. 2012;46(6):757–764. doi:10.1165/rcmb.2011-0223OC.; Merkt W., Bueno M., Mora A.L., Lagares D. Senotherapeutics: Targeting senescence in idiopathic pulmonary fibrosis. Semin Cell Dev Biol. 2020;101:104–110. doi:10.1016/j.semcdb.2019.12.008.; Ley B., Liu S., Elicker B.M., Henry T.S., Vittinghoff E., Golden1 J.A. et al. Telomere length in patients with unclassifiable interstitial lung disease: a cohort study. Eur Respir J. 2020;56(2):2000268. doi:10.1183/13993003.00268-2020.; Maity S., Muhamed J., Sarikhani M., Kumar S., Ahamed F., Spurthi K.M. et al. Sirtuin 6 deficiency transcriptionally up-regulates TGF-β signaling and induces fibrosis in mice. J Biol Chem. 2020;295(2):415–434. doi:10.1074/jbc.RA118.007212.; Juge P.A., Lee J.S., Ebstein E., Furukawa H., Dobrinskikh E., Gazal S. et al. MUC5B promoter variant and rheumatoid arthritis with interstitial lung disease. N Engl J Med. 2018;379(23):2209–2219. doi:10.1056/NEJMoa1801562.; Ley B., Newton C.A., Arnould I., Elicker B.M., Henry T.S., Vittinghoff E. et al. The MUC5B promoter polymorphism and thelomere length in patients with chronic hypersensitivity pneumonitis: an observational cohort-control study. Lancet Respir Med. 2017;5(8):639–647. doi:10.1016/S2213-2600(17)30216-3.; Otoupalova E., Smith S., Cheng G., Thannickal V.J. Oxidative Stress in Pulmonary Fibrosis. Compr Physiol. 2020;10(2):509–547. doi:10.1002/cphy.c190017.; Richeldi L., Varone F., Bergna M., de Andrade J., Falk J., Hallowell R. et al. Pharmacological management of progressive-fibrosing interstitial lung diseases: a review of the current evidence. Eur Respir Rev. 2018;27(150):180074. doi:10.1183/16000617.0074-2018.; Cassone G., Sebastiani M., Vacchi C., Cerri S., Salvarani C., Manfredi A. Pirfenidone for the treatment of interstitial lung disease associated to rheumatoid arthritis: a new scenario is coming? Respir Med Case Rep. 2020;30:101051. doi:10.1016/j.rmcr.2020.101051.; Collins B.F., Raghu G. Antifibrotic therapy for fibrotic lung disease beyond idiopathic pulmonary fibrosis. Eur Respir Rev. 2019;28(153):190022. doi:10.1183/16000617.0022-2019.; Wollin L., Distler J.H.W., Redente E.F., Riches D.W.H., Stowasser S., Schlenker-Herceg R. et al. Potential of nintedanib in treatment of progressive fibrosing interstitial lung diseases. Eur Respir J. 2019;54(3):1900161. doi:10.1183/13993003.00161-2019.; Torrisi S.E., Kahn N., Wälscher J., Sarmand N., Polke M., Lars K. et al.Possible value of antifibrotic drugs in patients with progressive fibrosing non-IPF interstitial lung diseases. BMC Pulm Med. 2019;19(1):213. doi:10.1186/s12890-019-0937-0.; Gulati S., Luckhardt T.L. Updated Evaluation of the Safety, Efficacy and Tolerability of Pirfenidone in the Treatment of Idiopathic Pulmonary Fibrosis. Drug Healthc Patient Saf. 2020;12:85–94. doi:10.2147/DHPS.S224007.; Noble P.W., Albera C., Bradford W.Z., Costabel U., Glassberg M.K., Kardatzke D. et al. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet Lond Engl. 2011;377(9779):1760–1769. doi:10.1016/S0140-6736(11)60405-4.; King T.E., Bradford W.Z., Castro-Bernardini S., Fagan E.A., Сlaspole I., Glassberg M.K. et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2083–2092. doi:10.1056/NEJMoa1402582.; Cassone G., Manfredi A., Vacchi C., Luppi F., Coppi F., Salvarani C., Sebastiani M. Treatment of Rheumatoid Arthritis-Associated Interstitial Lung Disease: Lights and Shadows. J Clin Med. 2020;9(4):1082. doi:10.3390/jcm9041082.; Wind S., Schmid U., Freiwald M., Marzin K., Lotz R., Ebner T. et al. Clinical Pharmacokinetics and Pharmacodynamics of Nintedanib. Clin Pharmacokinet. 2019;58(9):1131–1147. doi:10.1007/s40262-019-00766-0.; Wollin L., Ostermann A., Williams C. Nintedanib inhibits pro-fibrotic mediators from T cells with relevance to connective tissue disease-associated interstitial lung disease. Eur Respir J. 2017;50(61):PA903. doi:10.1183/1393003.congress-2017.PA903.; Mazzei M., Richeldi L., Collard H.R. Nintedanib in the treatment of idiopathic pulmonary fibrosis. Ther Adv Respir Dis. 2015;9(3):121–129. doi:10.1177/1753465815579365.; Richeldi L., Cottin V., du Bois R.M., Selman M., Kimura T., Bailes Z. et al. Nintedanib in patients with idiopathic pulmonary fibrosis: Combined evidence from the TOMORROW and INPULSIS® trials. Respir Med. 2016;113:74–79. doi:10.1016/j.rmed.2016.02.001.; Vasakova M., Sterclova M., Mogulkoc N., Lawandowska K., Müller V., Hajkova M. et al. Long-term overall survival and progression-free survival in idiopathic pulmonary fibrosis treated by pirfenidone or nintedanib or their switch. Real world data from the EMPIRE registry. Eur Respir J. 2019;54(Suppl. 63):PA4720. doi:10.1183/13993003.congress-2019.PA4720.; Бровко М.Ю., Акулкина Л.А., Шоломова В.И., Новиков П.И., Янакаева А.Ш., Моисеев С.В. Новые подходы к лечению фиброзирующих интерстициальных заболеваний легких. Клиническая фармакология и терапия. 2020;29(1):61–66. doi:10.32756/0869-5490-2020-1-61-66.; Wells A.U., Flaherty K.R., Brown K.K., Inoue Y., Devaraj A., Richeldi L. et al. Nintedanib in patients with progressive fibrosing interstitial lung diseases-subgroup analyses by interstitial lung disease diagnosis in the INBUILD trial: a randomised, double-blind, placebo-controlled, parallelgroup trial. Lancet Respir Med. 2020;8(5):453–460. doi:10.1016/S2213-2600(20)30036-9.

  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20