-
1Academic Journal
Source: Клиническая онкогематология, Vol 18, Iss 3 (2025)
-
2Academic Journal
-
3Academic Journal
Authors: Е. Н. Паровичникова, К. А. Никифорова, Ю. О. Давыдова, Н. М. Капранов, И. А. Лукьянова, А. А. Иевлева, Ю. А. Чабаева, З. Т. Фидарова, Л. А. Кузьмина, В. В. Троицкая, Т. В. Гапонова, С. М. Куликов
Source: Клиническая онкогематология, Vol 18, Iss 4 (2025)
Subject Terms: острые миелоидные лейкозы, минимальная остаточная болезнь, проточная цитометрия, Neoplasms. Tumors. Oncology. Including cancer and carcinogens, RC254-282
Relation: https://bloodjournal.ru/index.php/coh/article/view/723; https://doaj.org/toc/1997-6933; https://doaj.org/toc/2500-2139; https://doaj.org/article/77f5ae0112954afc962a219d52a1a299
-
4Academic Journal
Authors: М. В. Бурундукова, И. А. Кузнецова, П. С. Орлов, А. М. Нестерец, С. В. Минних, В. Н. Максимов, Т. И. Поспелова
Source: Клиническая онкогематология, Vol 18, Iss 4 (2025)
Subject Terms: острые миелоидные лейкозы, свободно циркулирующая ДНК, индекс целостности, минимальная остаточная болезнь, Neoplasms. Tumors. Oncology. Including cancer and carcinogens, RC254-282
Relation: https://bloodjournal.ru/index.php/coh/article/view/724; https://doaj.org/toc/1997-6933; https://doaj.org/toc/2500-2139; https://doaj.org/article/7205733ac20b44909295d7b04ef4f2e7
-
5Academic Journal
Authors: E. N. Voropaeva, M. V. Burundukova, A. A. Lyzlova, I. A. Chukhontseva, V. N. Maksimov, T. I. Pospelova, Е. Н. Воропаева, М. В. Бурундукова, А. А. Лызлова, И. A. Чухонцева, В. Н. Максимов, Т. И. Поспелова
Contributors: This work was supported by the State task on the budget topic No. FWNR-2024-0004., Работа выполнена за счет средств Государственного задания по бюджетной теме № FWNR-2024-0004.
Source: Siberian journal of oncology; Том 24, № 1 (2025); 125-141 ; Сибирский онкологический журнал; Том 24, № 1 (2025); 125-141 ; 2312-3168 ; 1814-4861
Subject Terms: таргетное лечение, clonal evolution, mutation hotspots, NPM1, IDH1, IDH2, FLT3, DNMT3A, prognosis, minimal residual disease, targeted treatment, клональная эволюция, «горячие» точки мутаций, прогноз, минимальная остаточная болезнь
File Description: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/3458/1317; Клинические рекомендации: Острые миелоидные лейкозы. 2024. [cited 2025 Feb 10]. URL: https://cr.minzdrav.gov.ru/preview-cr/131_2.; Zhou Y., Huang G., Cai X., Liu Y., Qian B., Li D. Global, regional, and national burden of acute myeloid leukemia, 1990–2021: a systematic analysis for the global burden of disease study 2021. Biomark Res. 2024; 12(1): 101. doi:10.1186/s40364-024-00649-y.; Состояние онкологической помощи населению России в 2022 году. Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М., 2023. 252 с.; Anderson L.J., Girguis M., Kim E., Shewale J., Braunlin M., Werther W., Hidalgo-Lopez J.E., Zaman F., Kim C. A temporal and multinational assessment of acute myeloid leukemia (AML) cancer incidence, survival, and disease burden. Leuk Lymphoma. 2024; 65(10): 1482–92. doi:10.1080/10428194.2024.2360536.; Khoury J.D., Solary E., Abla O., Akkari Y., Alaggio R., Apperley J.F., Bejar R., Berti E., Busque L., Chan J.K.C., Chen W., Chen X., Chng W.J., Choi J.K., Colmenero I., Coupland S.E., Cross N.C.P., De Jong D., Elghetany M.T., Takahashi E., Emile J.F., Ferry J. Fogelstrand L., Fontenay M., Germing U., Gujral S., Haferlach T., Harrison C., Hodge J.C., Hu S., Jansen J.H., Kanagal-Shamanna R., Kantarjian H.M., Kratz C.P., Li X.Q., Lim M.S., Loeb K., Loghavi S., Marcogliese A., Meshinchi S., Michaels P., Naresh K.N., Natkunam Y., Nejati R., Ott G., Padron E., Patel K.P., Patkar N., Picarsic J., Platzbecker U., Roberts I., Schuh A., Sewell W., Siebert R., Tembhare P., Tyner J., Verstovsek S., Wang W., Wood B., Xiao W., Yeung C., Hochhaus A. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia. 2022; 36(7): 1703–19. doi:10.1038/s41375-022-01613-1.; Montoro J., Balaguer-Roselló A., Sanz J. Recent advances in allogeneic transplantation for acute myeloid leukemia. Curr Opin Oncol. 2023; 35(6): 564–73. doi:10.1097/CCO.0000000000000992.; Yu J., Li Y., Zhang D., Wan D., Jiang Z. Clinical implications of recurrent gene mutations in acute myeloid leukemia. Exp Hematol Oncol. 2020; 9: 4. doi:10.1186/s40164-020-00161-7.; Виноградов А.В., Резайкин А.В., Салахов Д.Р., Иощенко С.Е., Сергеев А.Г. Сравнительный анализ результатов типирования молекулярных повреждений гена NPM1 при острых миелоидных лейкозах с использованием прямого автоматического секвенирования и иммуногистохимического метода. Вестник Уральской медицинской академической науки. 2013; 4: 124–27. EDN: RUGZCT.; Виноградов А.В., Резайкин А.В., Сазонов С.В., Сергеев А.Г. Клинико-патогенетическая характеристика мутаций генов DNMT3A, FLT3, KIT, NPM1, NRAS, TP53 и WT1 у больных острыми миелоидными лейкозами в возрастной группе 15–45 лет. Гены и клетки. 2018; XIII(3): 70–74. doi:10.23868/201811036. EDN: YXDIUX.; Кашлакова А.И., Паровичникова Е.Н., Бидерман Б.В., Сидорова Ю.В., Чабаева Ю.А., Троицкая В.В., Лукьянова И.А., Кохно А.В., Соколов А.Н., Судариков А.Б., Обухова Т.Н., Савченко В.Г. Определение молекулярно-генетического профиля у взрослых больных острыми миелоидными лейкозами методом секвенирования нового поколения. Гематология и трансфузиология. 2020; 65(4): 444–59. doi:10.35754/0234-5730-2020-65-4-444-459. EDN: TXIHDT.; Раджабова А.М., Волошин С.В., Мартынкевич И.С., Кузяева А.А., Шуваев ВА., Мотыко Е.В., Кувшинов А.Ю., Фоминых М.С., Шмидт А.В., Полушкина Л.Б., Бакай М.П., Тиранова С.А., Потихонова Н.А., Зенина М.Н., Кудряшова С.А., Балашова В.А., Чубукина Ж.В., Успенская О.С., Карягина Е.В., Богданов А.Н., Чечеткин А.В. Роль мутаций гена FLT3 при острых миелоидных лейкозах: влияние на течение заболевания и результаты терапии. Гены и клетки. 2019; 14(1): 55–61. doi:10.23868/201903007. EDN: UZRFBM.; Петрова Е.В., Мартынкевич И.С., Полушкина Л.Б., Мартыненко Л.С., Иванова М.П., Цыбакова Н.Ю., Клеина Е.В., Шабанова Е.С., Чечеткин А.В., Абдулкадыров К.М. Клинические, гематологические и молекулярно-генетические особенности острых миелоидных лейкозов с мутациями в генах FLT3, CKIT, NRAS и NPM1. Гематология и трансфузиология. 2016; 61(2): 72–80. doi:10.18821/0234-5730-2016-61-2-72-80. EDN: VZVYAD.; Виноградов А.В., Резайкин А.В., Салахов Д.Р., Изотов Д.В., Иощенко С.Е., Сергеев А.Г. Детекция мутаций генов DNMT3A, FLT3, KIT, KRAS, NRAS, NPM1, TP53 и WT1 при острых миелоидных лейкозах с нормальным кариотипом бластных клеток. Вестник уральской медицинской академической науки. 2016; 2: 89–101. doi:10.22138/2500-0918-2016-14-2-89-101. EDN: WJBJHV.; Gao J.,Aksoy B.A., Dogrusoz U., Dresdner G., Gross B., Sumer S.O., Sun Y., Jacobsen A., Sinha R., Larsson E., Cerami E., Sander C., Schultz N. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013; 6(269). doi:10.1126/scisignal.2004088.; DiNardo C.D., Cortes J.E. Mutations in AML: prognostic and therapeutic implications. Hematology Am Soc Hematol Educ Program. 2016; (1): 348–55. doi:10.1182/asheducation-2016.1.348.; Döhner H., Wei A.H., Appelbaum F.R., Craddock C., DiNardo C.D., Dombret H., Ebert B.L., Fenaux P., Godley L.A., Hasserjian R.P., Larson R.A., Levine R.L., Miyazaki Y., Niederwieser D., Ossenkoppele G., Röllig C., Sierra J., Stein E.M., Tallman M.S., Tien H.F., Wang J., Wierzbowska A., Löwenberg B. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022; 140(12): 1345–77. doi:10.1182/blood.2022016867.; Bouligny I.M., Maher K.R., Grant S. Secondary-Type Mutations in Acute Myeloid Leukemia: Updates from ELN 2022. Cancers (Basel). 2023; 15(13): 3292. doi:10.3390/cancers15133292.; Byun J.M., Yoo S.J., Kim H.J., Ahn J.S., Koh Y., Jang J.H., Yoon S.S. IDH1/2 mutations in acute myeloid leukemia. Blood Res. 2022; 57(1): 13–19. doi:10.5045/br.2021.2021152.; Greif P.A., Konstandin N.P., Metzeler K.H., Herold T., Pasalic Z., Ksienzyk B., Dufour A., Schneider F., Schneider S., Kakadia P.M., Braess J., Sauerland M.C., Berdel W.E., Büchner T., Woermann B.J., Hiddemann W., Spiekermann K., Bohlander S.K. RUNX1 mutations in cytogenetically normal acute myeloid leukemia are associated with a poor prognosis and up-regulation of lymphoid genes. Haematologica. 2012; 97(12): 1909–15. doi:10.3324/haematol.2012.064667.; Welch J.S. Patterns of mutations in TP53 mutated AML. Best Pract Res Clin Haematol. 2018; 31(4): 379–83. doi:10.1016/j.beha.2018.09.010.; Su L., Shi Y.Y., Liu Z.Y., Gao S.J. Acute Myeloid Leukemia With CEBPA Mutations: Current Progress and Future Directions. Front Oncol. 2022; 12. doi:10.3389/fonc.2022.806137.; Stubbins R.J., Francis A., Kuchenbauer F.C., Sanford D. Management of Acute Myeloid Leukemia: A Review for General Practitioners in Oncology. Curr. Oncol. 2022; 29(9): 6245–59. doi.:10.3390/curroncol29090491.; Liao M., Chen R., Yang Y., He H., Xu L., Jiang Y., Guo Z., He W., Jiang H., Wang J. Aging-elevated inflammation promotes DNMT3A R878H-driven clonal hematopoiesis. Acta Pharm Sin B. 2022; 12(2): 678–91. doi:10.1016/j.apsb.2021.09.015.; Sendžikaitė G., Hanna C.W., Stewart-Morgan K.R., Ivanova E., Kelsey G. A DNMT3A PWWP mutation leads to methylation of bivalent chromatin and growth retardation in mice. Nat Commun. 2019; 10(1): 1884. doi:10.1038/s41467-019-09713-w.; Anteneh H., Fang J., Song J. Structural basis for impairment of DNA methylation by the DNMT3AR882H mutation. Nat Commun. 2020; 11(1): 2294. doi:10.1038/s41467-020-16213-9.; Emperle M., Adam S., Kunert S., Dukatz M., Baude A., Plass C., Rathert P., Bashtrykov P., Jeltsch A. Mutations of R882 change flanking sequence preferences of the DNA methyltransferase DNMT3A and cellular methylation patterns. Nucleic Acids Res. 2019; 47(21): 11355–67. doi:10.1093/nar/gkz911.; Wakita S., Marumo A., Morita K., Kako S., Toya T., Najima Y., Doki N., Kanda J., Kuroda J., Mori S., Satake A., Usuki K., Ueki T., Uoshima N., Kobayashi Y., Kawata E., Nakayama K., Nagao Y., Shono K., Shibusawa M., Tadokoro J., Hagihara M., Uchiyama H., Uchida N., Kubota Y., Kimura S., Nagoshi H., Ichinohe T., Kurosawa S., Motomura S., Hashimoto A., Muto H., Sato E., Ogata M., Mitsuhashi K., Ando J., Tashiro H., Sakaguchi M., Yui S., Arai K., Kitano T., Miyata M., Arai H., Kanda M., Itabashi K., Fukuda T., Kanda Y., Yamaguchi H. Mutational analysis of DNMT3A improves the prognostic stratification of patients with acute myeloid leukemia. Cancer Sci. 2023; 14(4): 1297–308. doi:10.1111/cas.15720.; Yang X., Wang X., Yang Y., Li Z., Chen Y., Shang S., Wang Y. DNMT3Amutation promotes leukemia development through NAM-NAD metabolic reprogramming. J Transl Med. 2023; 21(1): 481. doi:10.1186/s12967-023-04323-z.; Oñate G., Bataller A., Garrido A., Hoyos M., Arnan M., Vives S., Coll R., Tormo M., Sampol A., Escoda L., Salamero O., Garcia A., Bargay J., Aljarilla A., Nomdedeu J.F., Esteve J., Sierra J., Pratcorona M. Prognostic impact of DNMT3A mutation in acute myeloid leukemia with mutated NPM1. Blood Adv. 2022; 6(3): 882–90. doi:10.1182/bloodadvances.2020004136.; Metzeler K.H., Walker A., Geyer S., Garzon R., Klisovic R.B., Bloomfield C.D., Blum W., Marcucci G. DNMT3Amutations and response to the hypomethylating agent decitabine in acute myeloid leukemia. Leukemia. 2012; 26(5): 1106–7. doi:10.1038/leu.2011.342.; Chu X., Zhong L., Dan W., Wang X., Zhang Z., Liu Z., Lu Y., Shao X., Zhou Z., Chen S., Liu B. DNMT3A R882H mutation drives daunorubicin resistance in acute myeloid leukemia via regulating NRF2/ NQO1 pathway. Cell Commun Signal. 2022; 20(1): 168. doi:10.1186/s12964-022-00978-1.; Sharma N., Liesveld J.L. NPM 1 Mutations in AML-The Landscape in 2023. Cancers (Basel). 2023; 15(4): 1177. doi:10.3390/cancers15041177.; Stein E.M., DiNardo C.D., Fathi A.T., Pollyea D.A., Stone R.M., Altman J.K., Roboz G.J., Patel M.R., Collins R., Flinn I.W., Sekeres M.A., Stein A.S., Kantarjian H.M., Levine R.L., Vyas P., MacBeth K.J., Tosolini A., VanOostendorp J., Xu Q., Gupta I., Lila T., Risueno A., Yen K.E., Wu B., Attar E.C., Tallman M.S., de Botton S. Molecular remission and response patterns in patients with mutant-IDH2 acute myeloid leukemia treated with enasidenib. Blood. 2019; 133(7): 676–87. doi:10.1182/blood-2018-08-869008.; Gilliland D.G., Griffin J.D. The roles of FLT3 in hematopoiesis and leukemia. Blood. 2002; 100(5): 1532–42. doi:10.1182/blood-2002-02-0492.; Daver N., Schlenk R.F., Russell N.H., Levis M.J. Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia. 2019; 33(2): 299–312. doi:10.1038/s41375-018-0357-9.; Kiyoi H., Kawashima N., Ishikawa Y. FLT3 mutations in acute myeloid leukemia: Therapeutic paradigm beyond inhibitor development. Cancer Sci. 2020; 111(2): 312–22. doi:10.1111/cas.14274.; Linch D.C., Hills R.K., Burnett A.K., Khwaja A., Gale R.E. Impact of FLT3(ITD) mutant allele level on relapse risk in intermediate-risk acute myeloid leukemia. Blood. 2014; 124(2): 273–6. doi:10.1182/blood-2014-02-554667.; Oran B., Cortes J., Beitinjaneh A., Chen H.C., de Lima M., Patel K., Ravandi F., Wang X., Brandt M., Andersson B.S., Ciurea S., Santos F.P., de Padua Silva L., Shpall E.J., Champlin R.E., Kantarjian H., Borthakur G. Allogeneic Transplantation in First Remission Improves Outcomes Irrespective of FLT3-ITD Allelic Ratio in FLT3-ITD-Positive Acute Myelogenous Leukemia. Biol Blood Marrow Transplant. 2016; 22(7): 1218–26. doi:10.1016/j.bbmt.2016.03.027.; Bill M., Jentzsch M., Bischof L., Kohlschmidt J., Grimm J., Schmalbrock L.K., Backhaus D., Brauer D., Goldmann K., Franke G.N., Vucinic V., Niederwieser D., Mims A.S., Platzbecker U., Eisfeld A.K., Schwind S. Impact of IDH1 and IDH2 mutation detection at diagnosis and in remission in patients withAMLreceiving allogeneic transplantation. Blood Adv. 2023; 7(3): 436–44. doi:10.1182/bloodadvances.2021005789.; Yanada M., Matsuo K., Suzuki T., Kiyoi H., Naoe T. Prognostic significance of FLT3 internal tandem duplication and tyrosine kinase domain mutations for acute myeloid leukemia: a meta‐analysis. Leukemia. 2005; 19(8): 1345–49. doi:10.1038/sj.leu.2403838.; DiNardo C.D., Stein E.M., de Botton S., Roboz G.J., Altman J.K., Mims A.S., Swords R., Collins R.H., Mannis G.N., Pollyea D.A., Donnellan W., Fathi A.T., Pigneux A., Erba H.P., Prince G.T., Stein A.S., Uy G.L., Foran J.M., Traer E., Stuart R.K., Arellano M.L., Slack J.L., Sekeres M.A., Willekens C., Choe S., Wang H., Zhang V., Yen K.E., Kapsalis S.M., Yang H., Dai D., Fan B., Goldwasser M., Liu H., Agresta S., Wu B., Attar E.C., Tallman M.S., Stone R.M., Kantarjian H.M. Durable Remissions with Ivosidenib in IDH1-Mutated Relapsed or Refractory AML. N Engl J Med. 2018; 378(25): 2386–98. doi:10.1056/NEJMoa1716984.; Lu C., Ward P.S., Kapoor G.S., Rohle D., Turcan S.,Abdel-Wahab O., Edwards C.R., Khanin R., Figueroa M.E., Melnick A., Wellen K.E., O’Rourke D.M., Berger S.L., Chan T.A., Levine R.L., Mellinghoff I.K., Thompson C.B. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature. 2012; 483(7390): 474–78. doi:10.1038/nature10860.; Махачева Ф.А., Валиев Т.Т. Лечение острых миелоидных лейкозов у детей: современный взгляд на проблему. Онкогематология. 2020; 15(1): 10–27. doi:10.17650/1818-8346-2020-15-1-10-27. EDN: JKSRWR.; Xu Q., Li Y., Lv N., Jing Y., Xu Y., Li Y., Li W., Yao Z., Chen X., Huang S., Wang L., Li Y., Yu L. Correlation Between Isocitrate Dehydrogenase Gene Aberrations and Prognosis of Patients with Acute Myeloid Leukemia: A Systematic Review and Meta-Analysis. Clin Cancer Res. 2017; 23(15): 4511–22. doi:10.1158/1078-0432.CCR-16-2628.; Molenaar R.J., Thota S., Nagata Y., Patel B., Clemente M., Przychodzen B., Hirsh C., Viny A.D., Hosano N., Bleeker F.E., Meggendorfer M., Alpermann T., Shiraishi Y., Chiba K., Tanaka H., van Noorden C.J., Radivoyevitch T., Carraway H.E., Makishima H., Miyano S., Sekeres M.A., Ogawa S., Haferlach T., Maciejewski J.P. Clinical and biological implications of ancestral and non-ancestral IDH1 and IDH2 mutations in myeloid neoplasms. Leukemia. 2015; 29(11): 2134–42. doi:10.1038/leu.2015.91.; Meggendorfer M., Cappelli L.V., Walter W., Haferlach C., Kern W., Falini B., Haferlach T. IDH1R132, IDH2R140 and IDH2R172 in AML: different genetic landscapes correlate with outcome and may influence targeted treatment strategies. Leukemia. 2018; 32(5): 1249–53. doi:10.1038/s41375-018-0026-z.; Middeke J.M., Metzeler K.H., Röllig C., Krämer M., Eckardt J.N., Stasik S., Greif P.A., Spiekermann K., Rothenberg-Thurley M., Krug U., Braess J., Krämer A., Hochhaus A., Brümmendorf T.H., Naumann R., Steffen B., Einsele H., Schaich M., Burchert A., Neubauer A., Görlich D., Sauerland C., Schäfer-Eckart K., Schliemann C., Krause S.W., Hänel M., Frickhofen N., Noppeney R., Kaiser U., Kaufmann M., Kunadt D., Wörmann B., Sockel K., von Bonin M., Herold T., Müller-Tidow C., Platzbecker U., Berdel W.E., Serve H., Baldus C.D., Ehninger G., Schetelig J., Hiddemann W., Bornhäuser M., Stölzel F., Thiede C. Differential impact of IDH1/2 mutational subclasses on outcome in adult AML: results from a large multicenter study. Blood Adv. 2022; 6(5): 1394–405. doi:10.1182/bloodadvances.2021004934.; Kunadt D., Stasik S., Metzeler K.H., Röllig C., Schliemann C., Greif P.A., Spiekermann K., Rothenberg-Thurley M., Krug U., Braess J., Krämer A., Hochhaus A., Scholl S., Hilgendorf I., Brümmendorf T.H., Jost E., Steffen B., Bug G., Einsele H., Görlich D., Sauerland C., Schäfer-Eckart K., Krause S.W., Hänel M., Hanoun M., Kaufmann M., Wörmann B., Kramer M., Sockel K., Egger-Heidrich K., Herold T., Ehninger G., Burchert A., Platzbecker U., Berdel W.E., Müller-Tidow C., Hiddemann W., Serve H., Stelljes M., Baldus C.D., Neubauer A., Schetelig J., Thiede C., Bornhäuser M., Middeke J.M., Stölzel F.; A. M. L. Cooperative Group (AMLCG), Study Alliance Leukemia (SAL). Impact of IDH1 and IDH2 mutational subgroups inAMLpatients after allogeneic stem cell transplantation. J Hematol Oncol. 2022; 15(1): 126. doi:10.1186/s13045-022-01339-8.; Pourrajab F., Zare-Khormizi M.R., Hashemi A.S., Hekmatimoghaddam S. Genetic Characterization and Risk Stratification of Acute Myeloid Leukemia. Cancer Manag Res. 2020; 12: 2231–53. doi:10.2147/CMAR.S242479.; Amatangelo M.D., Quek L., Shih A., Stein E.M., Roshal M., David M.D., Marteyn B., Farnoud N.R., de Botton S., Bernard O.A., Wu B., Yen K.E., Tallman M.S., Papaemmanuil E., Penard-Lacronique V., Thakurta A., Vyas P., Levine R.L. Enasidenib induces acute myeloid leukemia cell differentiation to promote clinical response. Blood. 2017; 130(6): 732–41. doi:10.1182/blood-2017-04-779447.; Fathi A.T., DiNardo C.D., Kline I., Kenvin L., Gupta I., Attar E.C., Stein E.M., de Botton S.; AG221-C-001 Study Investigators. Differentiation Syndrome Associated With Enasidenib, a Selective Inhibitor of Mutant Isocitrate Dehydrogenase 2: Analysis of a Phase 1/2 Study. JAMA Oncol. 2018; 4(8): 1106–10. doi:10.1001/jamaoncol.2017.4695.; Choe S., Wang H., DiNardo C.D., Stein E.M., de Botton S., Roboz G.J., Altman J.K., Mims A.S., Watts J.M., Pollyea D.A., Fathi A.T., Tallman M.S., Kantarjian H.M., Stone R.M., Quek L., Konteatis Z., Dang L., Nicolay B., Nejad P., Liu G., Zhang V., Liu H., Goldwasser M., Liu W., Marks K., Bowden C., Biller S.A., Attar E.C., Wu B. Molecular mechanisms mediating relapse following ivosidenib monotherapy in IDH1-mutant relapsed or refractoryAML. BloodAdv. 2020; 4(9): 1894–905. doi:10.1182/bloodadvances.2020001503.; Mosele F., Remon J., Mateo J., Westphalen C.B., Barlesi F., Lolkema M.P., Normanno N., Scarpa A., Robson M., Meric-Bernstam F., Wagle N., Stenzinger A., Bonastre J., Bayle A., Michiels S., Bièche I., Rouleau E., Jezdic S., Douillard J.Y., Reis-Filho J.S., Dienstmann R., André F. Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO Precision Medicine Working Group. Ann Oncol. 2020; 31(11): 1491–505. doi:10.1016/j.annonc.2020.07.014.; Ferreira-Gonzalez A., Hocum B., Ko G., Shuvo S., Appukkuttan S., Babajanyan S. Next-Generation Sequencing Trends among Adult Patients with Select Advanced Tumor Types:AReal-World Evidence Evaluation. J Mol Diagn. 2024; 26(4): 292–303. doi:10.1016/j.jmoldx.2024.01.005.; Mat Yusoff Y., Ahid F., Abu Seman Z., Abdullah J., Kamaluddin N.R., Esa E., Zakaria Z. Comprehensive analysis of mutations and clonal evolution patterns in a cohort of patients with cytogenetically normal acute myeloid leukemia. Mol Cytogenet. 2021; 14(1): 45. doi:10.1186/s13039-021-00561-2.; Stacey S.N., Zink F., Halldorsson G.H., Stefansdottir L., Gudjonsson S.A., Einarsson G., Hjörleifsson G., Eiriksdottir T., Helgadottir A., Björnsdottir G., Thorgeirsson T.E., Olafsdottir T.A., Jonsdottir I., Gretarsdottir S., Tragante V., Magnusson M.K., Jonsson H., Gudmundsson J., Olafsson S., Holm H., Gudbjartsson D.F., Sulem P., Helgason A., Thorsteinsdottir U., Tryggvadottir L., Rafnar T., Melsted P., Ulfarsson M.Ö., Vidarsson B., Thorleifsson G., Stefansson K. Genetics and epidemiology of mutational barcode-defined clonal hematopoiesis. Nat Genet. 2023; 55(12): 2149–59. doi:10.1038/s41588-023-01555-z.; Morita K., Wang F., Jahn K., Hu T., Tanaka T., Sasaki Y., Kuipers J., Loghavi S., Wang S.A., Yan Y., Furudate K., Matthews J., Little L., Gumbs C., Zhang J., Song X., Thompson E., Patel K.P., Bueso-Ramos C.E., DiNardo C.D., Ravandi F., Jabbour E., Andreeff M., Cortes J., Bhalla K., Garcia-Manero G., Kantarjian H., Konopleva M., Nakada D., Navin N., Beerenwinkel N., Futreal P.A., Takahashi K. Clonal evolution of acute myeloid leukemia revealed by high-throughput single-cell genomics. Nat Commun. 2020; 11(1): 5327. doi:10.1038/s41467-020-19119-8.; Yao Y., Lin X., Wang C., Gu Y., Jin J., Zhu Y., Wang H. Identification of a novel NPM1 mutation in acute myeloid leukemia. Exp Hematol Oncol. 2023; 12(1): 87. doi:10.1186/s40164-023-00449-4.; Schmalbrock L.K., Dolnik A., Cocciardi S., Sträng E., Theis F., Jahn N., Panina E., Blätte T.J., Herzig J., Skambraks S., Rücker F.G., Gaidzik V.I., Paschka P., Fiedler W., Salih H.R., Wulf G., Schroeder T., Lübbert M., Schlenk R.F., Thol F., Heuser M., Larson R.A., Ganser A., Stunnenberg H.G., Minucci S., Stone R.M., Bloomfield C.D., Döhner H., Döhner K., Bullinger L. Clonal evolution of acute myeloid leukemia with FLT3-ITD mutation under treatment with midostaurin. Blood. 2021; 137(22): 3093–104. doi:10.1182/blood.2020007626.; Miles L.A., Bowman R.L., Merlinsky T.R., Csete I.S., Ooi A.T., Durruthy-Durruthy R., Bowman M., Famulare C., Patel M.A., Mendez P., Ainali C., Demaree B., Delley C.L., Abate A.R., Manivannan M., Sahu S., Goldberg A.D., Bolton K.L., Zehir A., Rampal R., Carroll M.P., Meyer S.E., Viny A.D., Levine R.L. Single-cell mutation analysis of clonal evolution in myeloid malignancies. Nature. 2020; 587(7834): 477–82. doi:10.1038/s41586-020-2864-x.; Grimm J., Bill M., Jentzsch M., Beinicke S., Häntschel J., Goldmann K., Schulz J., Cross M., Franke G.N., Behre G., Vucinic V., Pönisch W., Lange T., Niederwieser D., Schwind S. Clinical impact of clonal hematopoiesis in acute myeloid leukemia patients receiving allogeneic transplantation. Bone Marrow Transplant. 2019; 54(8): 1189–97. doi:10.1038/s41409-018-0413-0.; Heuser M., Freeman S.D., Ossenkoppele G.J., Buccisano F., Hourigan C.S., Ngai L.L., Tettero J.M., Bachas C., Baer C., Béné M.C., Bücklein V., Czyz A., Denys B., Dillon R., Feuring-Buske M., Guzman M.L., Haferlach T., Han L., Herzig J.K., Jorgensen J.L., Kern W., Konopleva M.Y., Lacombe F., Libura M., Majchrzak A., Maurillo L., Ofran Y., Philippe J., Plesa A., Preudhomme C., Ravandi F., Roumier C., Subklewe M., Thol F., van de Loosdrecht A.A., van der Reijden B.A., Venditti A., Wierzbowska A., Valk P.J.M., Wood B.L., Walter R.B., Thiede C., Döhner K., Roboz G.J., Cloos J. 2021 Update on MRD in acute myeloid leukemia: a consensus document from the European LeukemiaNet MRD Working Party. Blood. 2021; 138(26): 2753–67. doi:10.1182/blood.2021013626.; Walter R.B., Ofran Y., Wierzbowska A., Ravandi F., Hourigan C.S., Ngai L.L., Venditti A., Buccisano F., Ossenkoppele G.J., Roboz G.J. Measurable residual disease as a biomarker in acute myeloid leukemia: theoretical and practical considerations. Leukemia. 2021; 35(6): 1529–38. doi:10.1038/s41375-021-01230-4.; Thol F., Gabdoulline R., Liebich A., Klement P., Schiller J., Kandziora C., Hambach L., Stadler M., Koenecke C., Flintrop M., Pankratz M., Wichmann M., Neziri B., Büttner K., Heida B., Klesse S., Chaturvedi A., Kloos A., Göhring G., Schlegelberger B., Gaidzik V.I., Bullinger L., Fiedler W., Heim A., Hamwi I., Eder M., Krauter J., Schlenk R.F., Paschka P., Döhner K., Döhner H., Ganser A., Heuser M. Measurable residual disease monitoring by NGS before allogeneic hematopoietic cell transplantation in AML. Blood. 2018; 132(16): 1703–13. doi:10.1182/blood-2018-02-829911.; Volchkov E.V., Khozyainova A.A., Gurzhikhanova M.K., Larionova I.V., Matveev V.E., Evseev D.A., Ignatova A.K., Menyailo M.E., Venyov D.A., Vorobev R.S., Semchenkova A.A., Olshanskaya Y.V., Denisov E.V., Maschan M.A. Potential value of high-throughput single-cell DNAsequencing of Juvenile myelomonocytic leukemia: report of two cases. NPJ Syst Biol Appl. 2023; 9(1): 41. doi:10.1038/s41540-023-00303-7.; García-Álvarez M., Yeguas A., Jiménez C., Medina-Herrera A., González-Calle V., Hernández-Ruano M., Maldonado R., Aires I., Casquero C., Sánchez-Villares I., Balanzategui A., Sarasquete M.E., Alcoceba M., Vidriales M.B., González-Díaz M., García-Sanz R., Chillón M.C. Single-Cell DNA Sequencing and Immunophenotypic Profiling to Track Clonal Evolution in an Acute Myeloid Leukemia Patient. Biomedicines. 2023; 12(1): 66. doi:10.3390/biomedicines12010066.; https://www.siboncoj.ru/jour/article/view/3458
-
6Academic Journal
Source: Клиническая онкогематология, Vol 15, Iss 4 (2022)
Subject Terms: 0301 basic medicine, 03 medical and health sciences, плазматические клетки, костный мозг, 0302 clinical medicine, минимальная остаточная болезнь, Neoplasms. Tumors. Oncology. Including cancer and carcinogens, множественная миелома, многоцветная проточная цитометрия, RC254-282, 3. Good health
-
7Academic Journal
Source: Клиническая онкогематология, Vol 15, Iss 4 (2022)
Subject Terms: 0301 basic medicine, 03 medical and health sciences, 0302 clinical medicine, минимальная остаточная болезнь, Neoplasms. Tumors. Oncology. Including cancer and carcinogens, множественная миелома, иммунофенотипирование, многоцветная проточная цитометрия, RC254-282, гейтирование, 3. Good health
-
8Academic Journal
Source: Клиническая онкогематология, Vol 15, Iss 2 (2022)
-
9Academic Journal
Authors: Andrey V. Orekhva, E. A. Shlyakhtunov, V. M. Semenov, I. V. Zhiltsov, A. V. Erushevich, G. M. Shappo, Ya. N. Lyakh, Alina V. Orekhva, Андрей В. Орехва, Е. А. Шляхтунов, В. М. Семенов, И. В. Жильцов, А. В. Ерушевич, Г. М. Шаппо, Я. Н. Лях, Алина В. Орехва
Contributors: The work was carried out in accordance with the scientific research plan of the Vitebsk State Medical University. The authors did not receive financial support from drug manufacturers., Работа выполнялась в соответствии с планом научных исследований УО «Витебский государственный медицинский университет». Финансовой поддержки со стороны компаний-производителей лекарственных препаратов авторы не получали.
Source: Surgery and Oncology; Том 13, № 4 (2023); 17-37 ; Хирургия и онкология; Том 13, № 4 (2023); 17-37 ; 2949-5857
Subject Terms: колоректальный рак, survivin, minimal residual disease, circulating tumor cells, colorectal cancer, сурвивин, минимальная остаточная болезнь, циркулирующие опухолевые клетки
File Description: application/pdf
Relation: https://www.onco-surgery.info/jour/article/view/654/443; Bettegowda C., Sausen M., Leary R.J. et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 2014;6(224):224ra24. DOI:10.1126/scitranslmed.3007094; Tie J., Wang Y., Tomasetti C. et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci Transl Med 2016;8(346):346ra92. DOI:10.1126/scitranslmed.aaf6219; Tarazona N., Gimeno-Valiente F., Gambardella V. et al. Targeted next-generation sequencing of circulating-tumor DNA for tracking minimal residual disease in localized colon cancer. Ann Oncol 2019;30(11):1804–12. DOI:10.1093/annonc/mdz390; Tan Y., Wu H. The significant prognostic value of circulating tumor cells in colorectal cancer: A systematic review and meta-analysis. Curr Probl Cancer 2018;42(1):95–106. DOI:10.1016/j.currproblcancer.2017.11.002; Alberter B., Klein Ch.A., Polzer B. Single-cell analysis of CTCs with diagnostic precision: opportunities and challenges for personalized medicine. Expert Rev Mol Diagn 2016:16(1):25–38. DOI:10.1586/14737159.2016.1121099; Marcuello M., Vymetalkova V., Neves R.P. et al. Circulating biomarkers for early detection and clinical management of colorectal cancer. Mol Aspects Med 2019;69:107–22. DOI:10.1016/j.mam.2019.06.002; Andersen M.H., Svane I.M., Becker J.C. et al. The universal character of the tumor-associated antigen survivin. Clin Cancer Res 2007;13(20):5991–4. DOI:10.1158/1078-0432.CCR-07-0686; Shintani M., Sangawa A., Yamao N. et al. Immunohistochemical expression of nuclear and cytoplasmic survivin in gastrointestinal carcinoma. Int J Clin Exp Pathol 2013;6(12):2919–27.; Choi J., Chang H. The expression of MAGE and SSX, and correlation of COX2, VEGF, and survivin in colorectal cancer. Anticancer Res 2012;32(2):559–64.; Miura K., Fujibuchi W., Ishida K. et al. Inhibitor of apoptosis protein family as diagnostic markers and therapeutic targets of colorectal cancer. Surg Today 2011;41(2):175–82. DOI:10.1007/s00595-010-4390-1; Qi G., Tuncel H., Aoki E. et al. Intracellular localization of survivin determines biological behavior in colorectal cancer. Oncol Rep 2009;22(3):557–62. DOI:10.3892/or_00000471; Okada E., Murai Y., Matsui K. et al. Survivin expression in tumor cell nuclei is predictive of a favorable prognosis in gastric cancer patients. Cancer Lett 2001;163(1):109–16. DOI:10.1016/s0304-3835(00)00677-7; Jakubowska K., Pryczynicz A., Dymicka-Piekarska V. et al. Immunohistochemical expression and serum level of survivin protein in colorectal cancer patients. Oncol Lett 2016;12(5):3591–97. DOI:10.3892/ol.2016.5075; Devetzi M., Kosmidou V., Vlassi M. et al. Death receptor 5 (DR5) and a 5-gene apoptotic biomarker panel with significant differential diagnostic potential in colorectal cancer. Sci Rep 2016;6:36532. DOI:10.1038/srep36532; Kim J., Ahn S., Kim K. et al. Prognostic significance of survivin expression and combined analysis with cancer stem cell and epithelial-mesenchymal transition-related markers in patients with rectal cancer undergoing preoperative chemoradiotherapy. Anticancer Res 2018;38(12):6881–9. DOI:10.21873/anticanres.13064л; Krieg A., Werner T.A., Verde P.E. et al. Prognostic and clinicopathological significance of survivin in colorectal cancer: a meta-analysis. PLoS One 2013;8(6):e65338. DOI:10.1371/journal.pone.0065338; Huang Y.J., Qi W.X., He A.N. et al. The prognostic value of survivin expression in patients with colorectal carcinoma: a meta-analysis. Jpn J Clin Oncol 2013;43(10):988–95. DOI:10.1093/jjco/hyt103
-
10Academic Journal
Source: Клиническая онкогематология, Vol 14, Iss 4 (2021)
Subject Terms: 0301 basic medicine, 0303 health sciences, 03 medical and health sciences, хронический миелолейкоз, минимальная остаточная болезнь, ингибиторы тирозинкиназ, Neoplasms. Tumors. Oncology. Including cancer and carcinogens, ремиссия без лечения, глубокий молекулярный ответ, RC254-282, 3. Good health
-
11Academic Journal
Source: Клиническая онкогематология, Vol 14, Iss 4 (2021)
-
12Academic Journal
Source: Клиническая онкогематология, Vol 14, Iss 4 (2021)
-
13Academic Journal
Authors: I. A. Demidova
Source: Онкогематология, Vol 0, Iss 4, Pp 17-25 (2022)
Subject Terms: острый лейкоз, опухолевые маркеры, минимальная остаточная болезнь, Diseases of the blood and blood-forming organs, RC633-647.5
File Description: electronic resource
-
14Academic Journal
Authors: N. N. Savva, O. V. Kras'ko, M. V. Belevtcev, V. P. Savitckiy, N. V. Migal, O. V. Aleinikova
Source: Онкогематология, Vol 0, Iss 2, Pp 17-21 (2022)
Subject Terms: минимальная остаточная болезнь, дети, острый лимфобластный лейкоз, прогноз, безрецидивная выживаемость, Diseases of the blood and blood-forming organs, RC633-647.5
File Description: electronic resource
-
15
-
16Academic Journal
Source: Евразийский онкологический журнал. :146-158
Subject Terms: молекулярно-генетический маркер, 03 medical and health sciences, 0302 clinical medicine, molecular- genetic marker, циркулирующие опухолевые клетки, минимальная остаточная болезнь, колоректальный рак, minimal residual disease, colorectal cancer, circulating tumor cells, survivin, сурвивин, 3. Good health
-
17Academic Journal
Authors: O. N. Selyutina, I. B. Lysenko, N. K. Guskova, I. A. Novikova, E. Yu. Zlatnik, T. F. Pushkareva, N. V. Nikolaeva, I. A. Kamaeva, N. Yu. Samaneva, E. A. Kapuza, О. Н. Селютина, И. Б. Лысенко, Н. К. Гуськова, И. А. Новикова, Е. Ю. Златник, Т. Ф. Пушкарева, Н. В. Николаева, И. А. Камаева, Н. Ю. Саманева, Е. А. Капуза
Source: Siberian journal of oncology; Том 22, № 2 (2023); 34-42 ; Сибирский онкологический журнал; Том 22, № 2 (2023); 34-42 ; 2312-3168 ; 1814-4861
Subject Terms: иммунохимиотерапия, flow cytometry, LAG-3, minimal residual disease, immunophenotypic prognostic markers, immunochemotherapy, проточная цитофлуориметрия, минимальная остаточная болезнь, иммунофенотипические прогностические маркеры
File Description: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/2527/1093; Kipps T.J., Stevenson F.K., Wu C.J., Croce C.M., Packham G., Wierda W.G., O’Brien S., Gribben J., Rai K. Chronic lymphocytic leukaemia. Nat Rev Dis Primers. 2017; 3: 1–22. doi:10.1038/nrdp.2016.96.; Chiorazzi N., Rai K.R., Ferrarini M. Chronic lymphocytic leukemia. N Engl J Med. 2005; 352(8): 804–15. doi:10.1056/NEJMra041720.; Yosifov D.Y., Wolf C., Stilgenbauer S., Mertens D. From Biology to Therapy: The CLL Success Story. Hemasphere. 2019; 3(2). doi:10.1097/HS9.0000000000000175.; Кравченко Д.В., Свирновский А.И. Хронический лимфоцитарный лейкоз: клиника, диагностика, лечение. Гомель, 2017. 117 с.; Craig F.E., Foon K.A. Flow cytometric immunophenotyping for hematologic neoplasms. Blood. 2008; 111(8): 3941–67. doi:10.1182/blood-2007-11-120535.; Гуськова Н.К., Селютина О.Н., Новикова И.А., Максимов А.Ю., Ноздричева А.С., Абакумова С.В. Морфологические и иммунофенотипические особенности моноклональной популяции В-лимфоцитов при хроническом лимфолейкозе. Южно-Российский онкологический журнал. 2020; 1(3): 27–35. doi:10.37748/2687-0533-2020-1-3-3.; Rodríguez-Vicente A.E., Díaz M.G., Hernández-Rivas J.M. Chronic lymphocytic leukemia: a clinical and molecular heterogenous disease. Cancer Genet. 2013; 206(3): 49–62. doi:10.1016/j.cancergen.2013.01.003.; Eichhorst B., Robak T., Montserrat E., Ghia P., Niemann C.U., Kater A.P., Gregor M., Cymbalista F., Buske C., Hillmen P., Hallek M., Mey U.; ESMO Guidelines Committee. Chronic lymphocytic leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2021; 32(1): 23–33. doi:10.1016/j.annonc.2020.09.019.; Baliakas P., Mattsson M., Stamatopoulos K., Rosenquist R. Prognostic indices in chronic lymphocytic leukaemia: where do we stand how do we proceed? J Intern Med. 2016; 279(4): 347–57. doi:10.1111/joim.12455.; Brown J.R., Hillmen P., O’Brien S., Barrientos J.C., Reddy N.M., Coutre S.E., Tam C.S., Mulligan S.P., Jaeger U., Barr P.M., Furman R.R., Kipps T.J., Cymbalista F., Thornton P., Caligaris-Cappio F., Delgado J., Montillo M., DeVos S., Moreno C., Pagel J.M., Munir T., Burger J.A., Chung D., Lin J., Gau L., Chang B., Cole G., Hsu E., James D.F., Byrd J.C. Extended follow-up and impact of high-risk prognostic factors from the phase 3 RESONATE study in patients with previously treated CLL/SLL. Leukemia. 2018; 32(1): 83–91. doi:10.1038/leu.2017.175.; Taghiloo S., Allahmoradi E., Ebadi R., Tehrani M., HosseiniKhah Z., Janbabaei G., Shekarriz R., Asgarian-Omran H. Upregulation of Galectin-9 and PD-L1 Immune Checkpoints Molecules in Patients with Chronic Lymphocytic Leukemia. Asian Pac J Cancer Prev. 2017; 18(8): 2269–74. doi:10.22034/APJCP.2017.18.8.2269.; Mohammed Basabaeen A.A., Abdelgader E.A., Babekir E.A., Abdelrahim S.O., Eltayeb N.H., Altayeb O.A., Fadul E.A., Sabo A., Ibrahim I.K. TP53 Gene 72 Arg/Pro (rs1042522) Single Nucleotide Polymorphism Contribute to Increase the Risk of B-Chronic Lymphocytic Leukemia in the Sudanese Population. Asian Pac J Cancer Prev. 2019; 20(5): 1579–85. doi:10.31557/APJCP.2019.20.5.1579.; Joshi N.S., Cui W., Chandele A., Lee H.K., Urso D.R., Hagman J., Gapin L., Kaech S.M. Inflammation directs memory precursor and short-lived efector CD8(+) T cell fates via the graded expression of Tbet transcription factor. Immunity. 2007; 27(2): 281–95. doi:10.1016/j.immuni.2007.07.010.; Fischer K., Bahlo J., Fink A.M., Goede V., Herling C.D., Cramer P., Langerbeins P., von Tresckow J., Engelke A., Maurer C., Kovacs G., Herling M., Tausch E., Kreuzer K.A., Eichhorst B., Böttcher S., Seymour J.F., Ghia P., Marlton P., Kneba M., Wendtner C.M., Döhner H., Stilgenbauer S., Hallek M. Long-term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL: updated results of the CLL8 trial. Blood. 2016; 127(2): 208–15. doi:10.1182/blood-2015-06-651125.; Fischer K., Cramer P., Busch R., Böttcher S., Bahlo J., Schubert J., Pfüger K.H., Schott S., Goede V., Isfort S., von Tresckow J., Fink A.M., Bühler A., Winkler D., Kreuzer K.A., Staib P., Ritgen M., Kneba M., Döhner H., Eichhorst B.F., Hallek M., Stilgenbauer S., Wendtner C.M. Bendamustine in combination with rituximab for previously untreated patients with chronic lymphocytic leukemia: a multicenter phase II trial of the German Chronic Lymphocytic Leukemia Study Group. J Clin Oncol. 2012; 30(26): 3209–16. doi:10.1200/JCO.2011.39.2688.; Eichhorst B., Fink A.M., Bahlo J., Busch R., Kovacs G., Maurer C., Lange E., Köppler H., Kiehl M., Sökler M., Schlag R., Vehling-Kaiser U., Köchling G., Plöger C., Gregor M., Plesner T., Trneny M., Fischer K., Döhner H., Kneba M., Wendtner C.M., Klapper W., Kreuzer K.A., Stilgenbauer S., Böttcher S., Hallek M.; international group of investigators; German CLL Study Group (GCLLSG). First-line chemoimmunotherapy with bendamustine and rituximab versus fludarabine, cyclophosphamide, and rituximab in patients with advanced chronic lymphocytic leukaemia (CLL10): an international, open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol. 2016; 17(7): 928–42. doi:10.1016/S1470-2045(16)30051-1.; Al-Sawaf O., Hallek M., Fischer K. The role of minimal residual disease in chronic lymphocytic leukemia. Clin Adv Hematol Oncol. 2022; 20(2): 97–103.; Böttcher S., Ritgen M., Fischer K., Stilgenbauer S., Busch R.M., Fingerle-Rowson G., Fink A.M., Bühler A., Zenz T., Wenger M.K., Men-dila M., Wendtner C.M., Eichhorst B.F., Döhner H., Hallek M.J., Kneba M. Minimal residual disease quantifcation is an independent predictor of progression-free and overall survival in chronic lymphocytic leukemia: a multivariate analysis from the randomized GCLLSG CLL8 trial. J Clin Oncol. 2012; 30(9): 980–8. doi:10.1200/JCO.2011.36.9348.; Goede V., Fischer K., Busch R., Engelke A., Eichhorst B., Wendtner C.M., Chagorova T., de la Serna J., Dilhuydy M.S., Illmer T., Opat S., Owen C.J., Samoylova O., Kreuzer K.A., Stilgenbauer S., Döhner H., Langerak A.W., Ritgen M., Kneba M., Asikanius E., Humphrey K., Wenger M., Hallek M. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med. 2014; 370(12): 1101–10. doi:10.1056/NEJMoa1313984.; Kovacs G., Robrecht S., Fink A.M., Bahlo J., Cramer P., von Tresckow J., Maurer C., Langerbeins P., Fingerle-Rowson G., Ritgen M., Kneba M., Döhner H., Stilgenbauer S., Klapper W., Wendtner C.M., Fischer K., Hallek M., Eichhorst B., Böttcher S. Minimal Residual Disease Assessment Improves Prediction of Outcome in Patients With Chronic Lymphocytic Leukemia (CLL) Who Achieve Partial Response: Comprehensive Analysis of Two Phase III Studies of the German CLL Study Group. J Clin Oncol. 2016; 34(31): 3758–65. doi:10.1200/JCO.2016.67.1305.; Dimier N., Delmar P., Ward C., Morariu-Zamfr R., Fingerle-Rowson G., Bahlo J., Fischer K., Eichhorst B., Goede V., van Dongen J.J.M., Ritgen M., Böttcher S., Langerak A.W., Kneba M., Hallek M. A model for predicting efect of treatment on progression-free survival using MRD as a surrogate end point in CLL. Blood. 2018; 131(9): 955–62. doi:10.1182/blood-2017-06-792333.; Molica S., Giannarelli D., Montserrat E. Minimal Residual Disease and Survival Outcomes in Patients With Chronic Lymphocytic Leukemia: A Systematic Review and Meta-analysis. Clin Lymphoma Myeloma Leuk. 2019; 19(7): 423–30. doi:10.1016/j.clml.2019.03.014.; Huard B., Tournier M., Hercend T., Triebel F., Faure F. Lymphocyte-activation gene 3/major histocompatibility complex class II interaction modulates the antigenic response of CD4+ T lymphocytes. Eur J Immunol. 1994; 24(12): 3216–21. doi:10.1002/eji.1830241246.; Shapiro M., Herishanu Y., Katz B.Z., Dezorella N., Sun C., Kay S., Polliack A., Avivi I., Wiestner A., Perry C. Lymphocyte activation gene 3: a novel therapeutic target in chronic lymphocytic leukemia. Haematologica. 2017; 102(5): 874–82. doi:10.3324/haematol.2016.148965.; Kotaskova J., Tichy B., Trbusek M., Francova H.S., Kabathova J., Malcikova J., Doubek M., Brychtova Y., Mayer J., Pospisilova S. High expression of lymphocyte-activation gene 3 (LAG3) in chronic lymphocytic leukemia cells is associated with unmutated immunoglobulin variable heavy chain region (IGHV) gene and reduced treatment-free survival. J Mol Diagn. 2010; 12(3): 328–34. doi:10.2353/jmoldx.2010.090100.; Никитин Е.А., Бялик Т.Е., Зарицкий А.Ю., Исебер Л., Капланов К.Д., Лопаткина Т.Н., Луговская С.А., Мухортова О.В., Османов Е.А., Поддубная И.В., Самойлова О.С., Стадник Е.А., Фалалеева Н.А., Байков В.В., Ковригина А.М., Невольских А.А., Иванов С.А., Хайлова Ж.В., Геворкян Т.Г. Хронический лимфоцитарный лейкоз/лимфома из малых лимфоцитов. Клинические рекомендации. Современная Онкология. 2020; 22(3): 24–44. doi:10.26442/18151434.2020.3.200385.; Rawstron A.C., Villamor N., Ritgen M., Böttcher S., Ghia P., Zehnder J.L., Lozanski G., Colomer D., Moreno C., Geuna M., Evans P.A., Natkunam Y., Coutre S.E., Avery E.D., Rassenti L.Z., Kipps T.J., CaligarisCappio F., Kneba M., Byrd J.C., Hallek M.J., Montserrat E., Hillmen P. International standardized approach for fow cytometric residual disease monitoring in chronic lymphocytic leukaemia. Leukemia. 2007; 21(5): 956–64. doi:10.1038/sj.leu.2404584.; Кит О.И., Тимофеева С.В., Ситковская А.О., Новикова И.А., Колесников Е.Н. Биобанк ФГБУ «НМИЦ онкологии» Минздрава России как ресурс для проведения исследований в области персонифицированной медицины. Современная онкология. 2022; 24(1): 6–11. doi:10.26442/18151434.2022.1.201384.; Wierz M., Pierson S., Guyonnet L., Viry E., Lequeux A., Oudin A., Niclou S.P., Ollert M., Berchem G., Janji B., Guérin C., Paggetti J., Moussay E. Dual PD1/LAG3 immune checkpoint blockade limits tumor development in a murine model of chronic lymphocytic leukemia. Blood. 2018; 131(14): 1617–21. doi:10.1182/blood-2017-06-792267.; Sordo-Bahamonde C., Lorenzo-Herrero S., González-Rodríguez A.P., Payer Á.R., González-García E., López-Soto A., Gonzalez S. LAG-3 Blockade with Relatlimab (BMS-986016) Restores Anti-Leukemic Responses in Chronic Lymphocytic Leukemia. Cancers (Basel). 2021; 13(9): 2112. doi:10.3390/cancers13092112.; Woo S.R., Turnis M.E., Goldberg M.V., Bankoti J., Selby M., Nirschl C.J., Bettini M.L., Gravano D.M., Vogel P., Liu C.L., Tangsombatvisit S., Grosso J.F., Netto G., Smeltzer M.P., Chaux A., Utz P.J., Workman C.J., Pardoll D.M., Korman A.J., Drake C.G., Vignali D.A. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 2012; 72(4): 917–27. doi:10.1158/0008-5472.CAN-11-1620.; Grosso J.F., Kelleher C.C., Harris T.J., Maris C.H., Hipkiss E.L., De Marzo A., Anders R., Netto G., Getnet D., Bruno T.C., Goldberg M.V., Pardoll D.M., Drake C.G. LAG-3 regulates CD8+ T cell accumulation and efector function in murine self- and tumor-tolerance systems. J Clin Invest. 2007; 117(11): 3383–92. doi:10.1172/JCI31184.; Qi Y., Chen L., Liu Q., Kong X., Fang Y., Wang J. Research Progress Concerning Dual Blockade of Lymphocyte-Activation Gene 3 and Programmed Death-1/Programmed Death-1 Ligand-1 Blockade in Cancer Immunotherapy: Preclinical and Clinical Evidence of This Potentially More Efective Immunotherapy Strategy. Front Immunol. 2021; 11. doi:10.3389/fmmu.2020.563258.; Liu D. Cancer biomarkers for targeted therapy. Biomark Res. 2019; 7: 25. doi:10.1186/s40364-019-0178-7.; Grzywnowicz M., Karabon L., Karczmarczyk A., Zajac M., Skorka K., Zaleska J., Wlasiuk P., Chocholska S., Tomczak W., BojarskaJunak A., Dmoszynska A., Frydecka I., Giannopoulos K. The function of a novel immunophenotype candidate molecule PD-1 in chronic lymphocytic leukemia. Leuk Lymphoma. 2015; 56(10): 2908–13. doi:10.3109/10428194.2015.1017820.; Li M., Sun X.H., Zhu X.J., Jin S.G., Zeng Z.J., Zhou Z.H., Yu Z., Gao Y.Q. HBcAg induces PD-1 upregulation on CD4+T cells through activation of JNK, ERK and PI3K/AKT pathways in chronic hepatitisB-infected patients. Lab Invest. 2012; 92(2): 295–304. doi:10.1038/labinvest.2011.157.; McClanahan F., Riches J.C., Miller S., Day W.P., Kotsiou E., Neuberg D., Croce C.M., Capasso M., Gribben J.G. Mechanisms of PDL1/PD-1-mediated CD8 T-cell dysfunction in the context of aging-related immune defects in the Eµ-TCL1 CLL mouse model. Blood. 2015; 126(2): 212–21. doi:10.1182/blood-2015-02-626754.; Ramsay A.G., Clear A.J., Fatah R., Gribben J.G. Multiple inhibitory ligands induce impaired T-cell immunologic synapse function in chronic lymphocytic leukemia that can be blocked with lenalidomide: establishing a reversible immune evasion mechanism in human cancer. Blood. 2012; 120(7): 1412–21. doi:10.1182/blood-2012-02-411678.; Табаков Д.В., Заботина Т.Н., Чантурия Н.В., Захарова Е.Н., Воротников И.К., Сельчук В.Ю., Соколовский В.В., Петровский А.В. Взаимосвязь экспрессии GITR, Lag-3 и PD-1 с основными показателями системного и локального иммунитета у больных раком молочной железы. Современная онкология. 2021; 23(3): 457–65. doi:10.26442/18151434.2021.3.200809.; Wang Q., Zhang J., Tu H., Liang D., Chang D.W., Ye Y., Wu X. Soluble immune checkpoint-related proteins as predictors of tumor recurrence, survival, and T cell phenotypes in clear cell renal cell carcinoma patients. J Immunother Cancer. 2019; 7(1): 334. doi:10.1186/s40425-019-0810-y.; He Y., Wang Y., Zhao S., Zhao C., Zhou C., Hirsch F.R. sLAG-3 in non-small-cell lung cancer patients’ serum. Onco Targets Ther. 2018; 11: 4781–4. doi:10.2147/OTT.S164178.; Eichhorst B., Fink A.M., Busch R., Kovacs G., Maurer C., Lange E., Köppler H., Kiehl M.G., Soekler M., Schlag R., Vehling-Kaiser U., Köchling G.R.A., Plöger C., Gregor M., Plesner T., Trneny M., Fischer K., Döhner H., Kneba M., Wendtner C.M., Klapper W., Kreuzer K.A., Stilgenbauer S., Böttcher S., Hallek M. Frontline chemoimmunotherapy with fudarabine (F), cyclophosphamide (C), and rituximab (R) (FCR) shows superior efcacy in comparison to bendamustine (B) and rituximab (BR) in previously untreated and physically ft patients (pts) with advanced chronic lymphocytic leukemia (CLL): Final analysis of an international, randomized study of the German CLL Study Group (GCLLSG) (CLL10 study). Blood. 2014; 124 (21): 19. doi:10.1182/blood.V124.21.19.19.; https://www.siboncoj.ru/jour/article/view/2527
-
18Academic Journal
Authors: K. A. Sergeenko, T. Z. Aliev, I. O. Kostareva, Yu. V. Lozovan, M. D. Malova, N. A. Batmanova, T. T. Valiev, E. B. Machneva, K. I. Kirgizov, К. А. Сергеенко, Т. З. Алиев, И. О. Костарева, Ю. В. Лозован, М. Д. Малова, Н. А. Батманова, Т. Т. Валиев, Е. Б. Мачнева, К. И. Киргизов
Source: Russian Journal of Pediatric Hematology and Oncology; Том 9, № 2 (2022); 85-92 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 9, № 2 (2022); 85-92 ; 2413-5496 ; 2311-1267
Subject Terms: блинатумомаб, inotuzumab ozogamicin, venoocclusive disease, minimal residual disease, blinatumomab, инотузумаб озогамицин, веноокклюзионная болезнь, минимальная остаточная болезнь
File Description: application/pdf
Relation: https://journal.nodgo.org/jour/article/view/833/738; Bunn H.F., Aster J.C. Acute Leukemias. In: Pathophysiology of Blood Disorders. The McGraw-Hill Companies, Inc., 2011. Pp. 244–259.; Bhojwani D., Pui C.H. Relapsed childhood acute lymphoblastic leukaemia. Lancet Oncol. 2013;14:e205–17. doi:10.1016/S1470-2045(12)70580-6.; Sun W., Malvar J., Sposto R., Verma A., Wilkes J.J., Dennis R. Outcome of children with multiply relapsed B-cell acute lymphoblastic leukemia: a therapeutic advances in childhood leukemia & lymphoma study. Leukemia. 2018;32(11):2316–25. doi:10.1038/s41375-018-0094-0.; Ko R.H., Ji L., Barnette P., Bostrom B., Hutchinson R., Raetz E. Outcome of patients treated for relapsed or refractory acute lymphoblastic leukemia: a Therapeutic Advances in Childhood Leukemia Consortium study. J Clin Oncol. 2010;28:648–54. doi:10.1200/JCO.2009.22.2950.; Dahl J., Marx K., Jabbour E. Inotuzumab ozogamicin in the treatment of acute lymphoblastic leukemia. Expert Rev Hematol. 2016;9:329–34. doi:10.1586/17474086.2016.1143771.; Tedder T.F., Poe J.C., Haas K.M. CD22: a multifunctional receptor that regulates B lymphocyte survival and signal transduction. Adv Immunol. 2005;88:1–50. doi:10.1016/S0065-2776(05)88001-0.; Shah N.N., Stevenson M.S., Yuan C.M., Richards K., Delbrook C., Kreitman R.J. Characterization of CD22 expression in acute lymphoblastic leukemia. Pediatr Blood Cancer. 2015;62:964–9. doi:10.1002/pbc.25410.; DeAngelo D.J., Stock W., Stein A.S., Shustov A., Liedtke M., Schiff er C.A. Inotuzumab ozogamicin in adults with relapsed or refractory CD22-positive acute lymphoblastic leukemia: a phase 1/2 study. Blood Adv. 2017;1:1167–80. doi:10.1182/bloodadvances.2016001925.; Kantarjian H., Thomas D., Jorgensen J., Jabbour E., Kebriaei P., Rytting M. Inotuzumab ozogamicin, an anti-CD22- calecheamicin conjugate, for refractory and relapsed acute lymphocytic leukaemia: a phase 2 study. Lancet Oncol. 2012;13:403–11. doi:10.1016/S1470-2045(11)70386-2.; Benjamin J.E., Stein A.S. The role of blinatumomab in patients with relapsed/refractory acute lymphoblastic leukemia. Ther Adv Hematol. 2016;7(3):142–56. doi:10.1177/2040620716640422.; Locatelly F., Whitlock J., Peters C., Chen-Santel C., Chia V., Dennis R.M., Heym K.M., Katz A.J., Kelsh M.A., Sposto R., Tu H., Tuglus C.A., Verma A., Vinti L., Wilkes J.J., Zubarovskaja N., Zugmaier G., von Stackelberg A., Sun W. Blinatumomab versus historical standard therapy in pediatric patients with relapsed/refractory Ph-negative B-cell precursor acute lymphoblastic leukemia. Leukemia. 2020;34(9):2473–8. doi:10.1038/s41375-020-0770-8.; Батманова Н.А., Валиев Т.Т., Киргизов К.И., Варфоломеева С.Р. Применение блинатумомаба в терапии острого лимфобластного лейкоза у детей: особенности организации терапии, обеспечения препаратом и токсичность лечения. Обзор литературы и собственный опыт. Российский журнал детской гематологии и онкологии. 2021;8(4):39–46. doi:10.21682/2311-1267-2021-8-4-39-46.; Hoff man L.M., Gore L. Blinatumomab, a bi-specific anti-CD19/CD3 BiTE® antibody for the treatment of acute lymphoblastic leukemia: perspectives and current pediatric applications. Front Oncol. 2014;4:63. doi:10.3389/fonc.2014.00063.; Nagorsen D., Kufer P., Baeuerle P.A., Bargou R. Blinatumomab: a historical perspective. Pharmacol Ther. 2012;136(3):334–42. doi:10.1016/j.pharmthera.2012.07.013.; von Stackelberg A., Locatelli F., Zugmaier G., Handgretinger R., Trippett T.M., Rizzari C., Bader P., OʼBrien M.M., Brethon B., Bhojwani D., Schlegel P.G., Borkhardt A., Rheingold S.R., Cooper T.M., Zwaan C.M., Barnette P., Messina C., Michel G., DuBois S.G., Hu K., Zhu M., Whitlock J.A., Gore L. Phase I/Phase II Study of Blinatumomab in Pediatric Patients With Relapsed/Refractory Acute Lymphoblastic Leukemia. J Clin Oncol. 2016;34(36):4381–9. doi:10.1200/JCO.2016.67.3301.; Gokbuget N., Zugmaier G., Klinger M., Kufer P., Stelljes M., Viardot A., Horst H.A., Neumann S., Brüggemann M., Ottmann O.G., Burmeister T., Wessiepe D., Topp M.S., Bargou R. Long-term relapsefree survival in a phase 2 study of blinatumomab for the treatment of patients with minimal residual disease in B-lineage acute lymphoblastic leukemia. Haematologica. 2017;102(4):e132–5. doi:10.3324/haematol.2016.153957.; Jasinski S., De Los Reyes F., Yametti G.C., Pierro J., Raetz E., Caroll W.L. Immunotherapy in pediatric B-acute lymphoblastic leukemia: Advances and ongoing challenges. Paediatr Drugs. 2020;22(5):485–99. doi:10.1007/s40272-020-00413-3.; Yurkiewicz I.R., Muffl y L., Liedtke M. Inotuzumab ozogamicin: a CD22 mAb-drug conjugate for adult relapsed or refractory B-cell precursor acute lymphoblastic leukemia. Drug Des Devel Ther. 2018;12:2293–300. doi:10.2147/DDDT.S150317.; DiJoseph J.F., Armellino D.C., Boghaert E.R., Khandke K., Dougher M.M., Sridharan L., Kunz A., Hamann P.R., Gorovits B., Udata C., Moran J.K., Popplewell A.G., Stephens S., Frost P., Damle N.K. Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood. 2004;103(5):1807–14. doi:10.1182/blood-2003-07-2466.; Shor B., Gerber H.P., Sapra P. Preclinical and clinical development of inotuzumab-ozogamicin in hematological malignancies. Mol Immunol. 2015;67:107–16. doi:10.1016/j.molimm.2014.09.014.; Boue D.R., LeBien T.W. Expression and structure of CD22 in acute leukemia. Blood. 1988;71(5):1480–6. PMID: 3258772.; Thota S., Advani A. Inotuzumab ozogamicin in relapsed B-cell acute lymphoblastic leukemia. Eur J Haematol. 2017;98(5):425–34. doi:10.1111/ejh.12862.; Haso W., Lee D.W., Shah N.N., Stetler-Stevenson M., Yuan C.M., Pastan I.H., Dimitrov D.S., Morgan R.A., FitzGerald D.J., Barrett D.M., Wayne A.S., Mackall C.L., Orentas R.J. Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia. Blood. 2013;121(7):1165–74. doi:10.1182/blood-2012-06-438002.; De Vries J.F., Zwaan C.M., De Bie M., Voerman J.S.A., den Boer M.L., van Dongen J.J.M., van der Velden V.H.J. The novel calicheamicin-conjugated CD22 antibody inotuzumab ozogamicin (CMC-544) eff ectively kills primary pediatric acute lymphoblastic leukemia cells. Leukemia. 2012;26(2):255–64. doi:10.1038/leu.2011.206.; Giles F.J., Kantarjian H.M., Kornblau S.M., Thomas D.A., Garcia-Manero G., Waddelow T.A., David C.L., Phan A.T., Colburn D.E., Rashid A., Estey E.H. Mylotarg (gemtuzumab ozogamicin) therapy is associated with hepatic venoocclusive disease in patients who have not received stem cell transplantation. Cancer. 2001;92(2):406–13. doi:10.1002/10970142(20010715)92:23.0.co;2-u.; McKoy J.M., Angelotta C., Bennett C.L., Tallman M.S., Wadleigh M., Evens A.M., Kuzel T.M., Trifi lio S.M., Raisch D.W., Kell J., DeAngelo D.J., Giles F.J. Gemtuzumab ozogamicin-associated sinusoidal obstructive syndrome (SOS): an overview from the research on adverse drug events and reports (RADAR) project. Leuk Res. 2007;31(5):599–604. doi:10.1016/j.leukres.2006.07.005.; Godwin C.D., McDonald G.B., Walter R.B. Sinusoidal obstruction syndrome following CD33-targeted therapy in acute myeloid leukemia. Blood. 2017;129(16):2330–2. doi:10.1182/blood-2017-01-762419.; Kantarjian H.M., DeAngelo D.J., Stelljes M., Martinelli G., Liedtke M., Stock W., Gökbuget N., O’Brien S., Wang K., Wang T., Paccagnella M.L., Sleight B., Vandendries E., Advani A.S. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med. 2016;375:740–53. doi:10.1056/NEJMoa1509277.; Pfi zer Ltd. BESPONSA™ (inotuzumab ozogamicin) summary of product characteristics, 2020.; Lamb Y.N. Inotuzumab Ozogamicin: First Global Approval. Drugs. 2017;77(14):1603–10. doi:10.1007/s40265-017-0802-5.; Rytting M., Triche L., Thomas D. Initial experience with CMC544 (inotuzumab ozogamicin) in pediatric patients with relapsed B cell acute lymphoblastic leukemia. Pediatr Blood. 2014;544:369–72. doi:10.1002/pbc.24721.; Bhojwani D., Sposto R., Shah N.N., Rodriguez V., Yuan C., Stetler-Stevenson M., O’Brien M.M., McNeer J.L., Quereshi A., Cabannes A., Schlegel P., Rossig C., Dalla-Pozza L., August K., Alexander S., Bourquin J.-P., Zwaan M., Raetz E.A., Loh M.L., Rheingold S.R. Inotuzumab ozogamicin in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. Leukemia. 2018;33(4):884–92. doi:10.1038/s41375-018-0265-z.; https://journal.nodgo.org/jour/article/view/833
-
19Academic Journal
Authors: Permikin, Zh. V., Verzhbitskaya, T. Yu., Popov, A. M., Riger, T. O., Tsaur, G. A., Fechina, L. G., Saveliev, L. I., Tsvirenko, S. V., Пермикин, Ж. В., Вержбицкая, Т. Ю., Попов, А. М., Ригер, Т. О., Цаур, Г. А., Фечина, Л. Г., Савельев, Л. И., Цвиренко, С. В.
Source: Сборник статей
Subject Terms: ACUTE LYMPHOBLASTIC LEUKEMIA, MINIMAL RESIDUAL DISEASE, ОСТРЫЙ ЛИМФОБЛАСТНЫЙ ЛЕЙКОЗ, МИНИМАЛЬНАЯ ОСТАТОЧНАЯ БОЛЕЗНЬ
File Description: application/pdf
Relation: Актуальные вопросы современной медицинской науки и здравоохранения: Материалы VI Международной научно-практической конференции молодых учёных и студентов, посвященной году науки и технологий, (Екатеринбург, 8-9 апреля 2021): в 3-х т.; http://elib.usma.ru/handle/usma/6911
Availability: http://elib.usma.ru/handle/usma/6911
-
20