Εμφανίζονται 1 - 3 Αποτελέσματα από 3 για την αναζήτηση '"микрофлуориметрия"', χρόνος αναζήτησης: 0,40δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: VII Пущинская конференция «Биохимия, физиология и биосферная роль микроорганизмов», шко- ла-конференция для молодых ученых, аспирантов и студентов «Генетические технологии в микробио- логии и микробное разнообразие».

  2. 2
    Academic Journal

    Συνεισφορές: The research was funded by Russian Science Foundation, project number 23-24-00353., Работа выполнена при финансовой поддержке Российского научного фонда (проект №23-24- 00353).

    Πηγή: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 78, № 3 (2023); 170-177 ; Вестник Московского университета. Серия 16. Биология; Том 78, № 3 (2023); 170-177 ; 0137-0952

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/1258/630; Bender M.L., Grande K.D., Johnson K.M., Marra J.F., Williams P.J., Sieburth J.M., Pilson M.E., Langdon C., Hitchcock G.L., Orchardo J., Hunt C.P., Donaghay P.L., Heinemann K. A comparison of four methods for determining planktonic community production 1. Limnol. Oceanogr. 1987;32(5):1085–1098.; Kelly C.A., Fee E., Ramlal P.S., Rudd J.W.M., Hesslein R.H., Anema C., and Schindler E.U. Natural variability of carbon dioxide and net epilimnetic production in the surface waters of boreal lakes of different sizes. Limnol. Oceanogr. 2001;46(5):1054–1064.; del Giorgio P.A., Williams P.J. Respiration in aquatic ecosystems: history and background. Respiration in Aquatic Ecosystems. Eds. P.A. del Giorgio and P.J. Williams. N.Y.: Oxford Univ. Press; 2023:1–17.; Маторин Д.Н., Горячев С.Н. Флуоресценция хлорофилла микроводорослей в биотестировании загрязнений. М.: Альтекс; 2017. 142 с.; Погосян С.И., Конюхов И.В., Рубин А.Б. Проблемы экологической биофизики. М. – Ижевск: АНО Ижевский институт компьютерных исследований; 2017. 270 с.; Schreiber U. Pulse-Amplitude-Modulation (PAM) fluorometry and saturation pulse method: An overview. Chlorophyll a fluorescence. A signature of photosynthesis. Advances in photosynthesis and respiration, vol. 19. Eds. G.C. Papageorgiou and Govindjee. Berlin.: Springer; 2004:279–319.; Papageorgiou G.C., Tsimilli-Michael M., Stamatakis K. The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint. Photosynth. Res. 2007;94(2–3):275–290.; Stirbet A., Govindjee Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J–I–P rise. Photosynth. Res. 2012; 113(1–3):15–61.; Lazár D. The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. Funct. Plant Biol. 2006; 33(1):9–30.; Schansker G., Tóth S.Z., Kovács L., Holzwarth A.R., Garab G. Evidence for a fluorescence yield change driven by a light-induced conformational change within photosystem II during the fast chlorophyll a fluorescence rise. Biochim. Biophys. Acta. 2011;1807(9):1032–1043.; Vredenberg W.J., Bulychev A. Photoelectric effects on chlorophyll fluorescence of photosystem II in vivo. Kinetics in the absence and presence of valinomycin. Bioelectrochemistry. 2003;60(1–2):87–95.; Sipka G., Magyar M., Mezzetti A., Akhtar P., Zhu Q., Xiao Y., Han G., Santabarbara S., Shen J.-R., Lambrev P.H., Garab G. Light-adapted charge-separated state of photosystem II: Structural and functional dynamics of the closed reaction center. Plant Cell. 2021;33(4):1286–1302.; Murchie E.H., Lawson T. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot. 2013;64(13):3983–98.; Kuznetsov A.G., Konyukhov I.V., Pogosyan S.I., Rubin A.B. Microfluorimeter for studying the state of photosynthetic apparatus of individual cells of microalgae. Oceanology. 2021;61(6):1055–1063.; Volgusheva A.A., Todorenko D.A., Konyukhov I.V., Voronova E.N., Pogosyan S.I., Plyusnina T.Y., Khruschev S.S., Antal T.K. Acclimation response of green microalgae Chlorella sorokiniana to 2,3’,4,4’,6-pentachlorobiphenyl. Photochem. Photobiol. 2022; 99(4):1106–1114.; Strasser R.J., Tsimilli-Michael M., Srivastava A. Analysis of the chlorophyll а fluorescence transient. Chlorophyll a fluorescence. A signature of photosynthesis. Advances in photosynthesis and respiration, vol. 19. Eds. G.C. Papageorgiou and Govindjee. Dordrecht.: Springer; 2004:321–362.; Rippka R., Deruelles J., Waterbury J., Herdman M., Stanier R. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 1979; 111(1):1–61.; Harris E.H. The Chlamydomonas sourcebook: A comprehensive guide to biology and laboratory use. San Diego: Academic Press; 1989. 780 pp.; Antal T.K., Osipov V., Matorin D.N., Rubin A.B. Membrane potential is involved in regulation of photosynthetic reactions in the marine diatom Thalassiosira weissflogii. J. Photochem. Photobiol. B. 2011;102(2):169–173.; Vanharanta M., Elovaara S., Franklin D.J., Spilling K., Tamelander T. Viability of picoand nanophytoplankton in the Baltic Sea during spring. Aquat. Ecol. 2020;54:119–135.; Swoczyna T., Kalaji H.M., Bussotti F., Mojski J., Pollastrini M. Environmental stress – what can we learn from chlorophyll a fluorescence analysis in woody plants? A review. Front. Plant Sci. 2022;13:1048582.; Kalaji H.M., Jajoo A., Oukarroum A., Brestic M., Zivcak M., Samborska I., Cetner M.D., I. Lukasik, Goltsev V. and Ladle R.J. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol Plant. 2016; 38(4):102.; Sasi S., Venkatesh J., Daneshi R.F., Gururani M.A. Photosystem II extrinsic proteins and their putative role in abiotic stress tolerance in higher plants. Plants. 2018;7(4):100.; Behrenfeld M.J., Milligan A.J. Photophysiological expressions of iron stress in phytoplankton. Ann. Rev. Mar. Sci. 2013;5:217–246.; Van de Waal D.B., Litchman E. Multiple global change stressor effects on phytoplankton nutrient acquisition in a future ocean. Philos. Trans R Soc. Lond. B Biol. Sci. 2020;375(1798):20190706.; Antal T.K., Krendeleva T.E., Tyystjärvi E. Multiple regulatory mechanisms in the chloroplast of green algae: relation to hydrogen production. Photosynth. Res. 2015;125(3):357–381.; Петрова Е.В., Кукарских Г.П., Кренделева Т., Антал, Т.К. О механизмах и роли фотосинтетического образования водорода у зеленых микроводорослей. Микробиол. 2020;89(3):259–275.

  3. 3