Showing 1 - 20 results of 193 for search '"микроскопические грибы"', query time: 0.76s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
    Academic Journal

    Source: Bulletin of NSAU (Novosibirsk State Agrarian University); № 4 (2023); 201-212 ; Вестник НГАУ (Новосибирский государственный аграрный университет); № 4 (2023); 201-212 ; 2072-6724

    File Description: application/pdf

    Relation: https://vestngau.elpub.ru/jour/article/view/2165/970; Зависимость уровня инфицированности сальмонеллами в популяциях кур от антагонистической активности Lactobacillaceae и Enterococcaceae в отношении Salmonella enterica / В.Н. Афонюшкин, Н.В. Давыдова, И.Н. Троменшлегер [и др.] // Вестник НГАУ (Новосибирский государственный аграрный университет). – 2020. – № 1. – С. 48–55.; Аспергиллез диких птиц. / П. Арне, В. Риско-Кастильо, Г. Жувион [и др.] // Журнал грибов. – 2021. – № 3. – С. 7.; Патоморфогенез микозов экзотических, сельскохозяйственных животных и птиц / Л.И. Дроздова, Н.И. Женихова, У.И. Кундрюкова, Е.И. Попков. – Екатеринбург: Урал. гос. аграр. ун-т, 2022. – 172 с.; El Ghani Avian aspergillosis: a potential occupational zoonotic mycosis, especially in Egypt // Advances in zootechnics and veterinary medicine, Western Asia. – 2019. – N 10. – Р. 1564–1575.; Низкая чувствительность к противогрибковым препаратам у Aspergillus flavus, выделенного из выращенного в неволе окинавского рельса (Hypotaenidia okinawae) / Сост. Кано, М. Цунои, Ю. Накая [и др.] // Журнал ветеринарной медицины. – 2021. – № 83 (1). – С. 28–30.; Козлова С.В. Стафилококкоз птиц // Интеграция науки и практики для развития агропромышленного комплекса : материалы 2-й нац. науч.-практ. конф. – 2019. – С. 128–131.; Борьба и профилактика бактериальных болезней водоплавающих птиц / О.Б. Новикова, Н.В. Никитина, М.А. Павлова [и др.] // Домашняя птица. – 2019. – № 11–12. – С. 93–99.; Новикова О.Б. Контроль и профилактика бактериальных болезней водоплавающей птицы / О.Б. Новикова, Н.В. Никитина, М.А. Павлова [и др.] // Птицеводство. – 2019. – № 11–12. – С. 93–99.; Характеристика продуктивных и гематологических показателей цыплят-бройлеров при использовании в их выращивании разных антимикробных веществ / С.С. Александрова, А.А. Бахарев, О.А. Симонов [и др.] // Кормление сельскохозяйственных животных и кормопроизводство. – 2020. – № 5. – С. 35–44.; Дроздова Л.И., Женихова Н.И., Бадова О.В. Патоморфологические изменения в органах и тканях животных и птиц при микозах, вызываемых плесневыми грибами // Аграрный вестник Урала. – 2014. – № 12. – С. 17–20.; Domatsky V.N., Sivkova E.I. Parasitic reverse zoonosis in Yamalo-Nenets Autonomous Okrug (Russian Federation) // Ukrainian Journal of Ecology. – 2021. – Vol. 11, N 2. – P. 340–345.; Diagnosis and treatment of chronic pulmonary aspergillosis: clinical guidelines of the European Respiratory Society and the European Society for Clinical Microbiology and Infectious Diseases / D.W. Denning, J. Cadrane [et al.] // Pulmonology. – 2016. – 26 p.; Козлова С.В., Краснолобова Е.П., Веремеева С.А. Патоморфологические проявления аспергиллеза у лебедя-шипуна // Вопросы нормативно-правового регулирования в ветеринарии. – 2020. – № 1. – С. 36–38.; Краснолобова Е.П., Козлова С.В., Веремеева С.А. К вопросу о патоморфологических изменениях во внутренних органах лебедей-шипунов при аспергиллезе // Вестник Мичуринского государственного аграрного университета. – 2022. – № 1 (68). – С. 153–158.; Lagerquist J.E., Davison M., Foreith W.J. Lead poisoning and other causes of death of trumpeter swans (Cygnus buccinator) and tundra swans (C. columbianus) in western Washington state // J. Wildl Dis. – 1994. – N 30. – P. 60–64.; Degernes L.A., Frank R.K. Causes of death of trumpeter swans (Cygnus buccinator) in Minnesota // 1986–1989 game. – 1991. – App. 1. – Р. 352–355.; Serological study of waterfowl infections in the swamps of Guadalquivir (Spain). / R.J. Astorga, M.J. Cubero, L. Leon [et al.] // Avian Dis. – 1994. – Vol. 38. – Р. 371–375.; Souza M.J., Degernes L.A. Wild swan deaths from aspergillosis in northwest Washington state 2000–2002 // Journal of Avian Medicine and Surgery. – 2005. – N 2. – P. 98–106.; Кузнецова М.А., Нестеренко О.Н. Анализ причин смертности и заболевания у околоводных и водных птиц Московского зоопарка // Проблемы зоокультуры и экологии : сб. науч. тр. – М.: ГАУ «Московский зоопарк»: ЕАРАЗА, 2021. – Вып. 5. – С. 64–69.; Веремеева С.А., Краснолобова Е.П., Козлова С.В. Параметрические особенности пищеварительной системы лебедей-кликунов // Известия Оренбургского государственного аграрного университета. – 2019. – № 4 (78). – С. 190–193.; Веремеева С.А., Краснолобова Е.П., Козлова С.В. Морфометрические особенности внутренних органов лебедей-кликунов // Вестник Мичуринского государственного аграрного университета. – 2020. – № 1. – С. 171–175.; Case-Method in the structure of training the veterinary physician / O.N. Goncharenko, E.P. Krasnolobova, N.A. Cheremenina [et al.] // Astra Salvensis. – 2018. – Vol. 6. – P. 647–655.; Хонин Г.А., Барашкова С.А., Семченко В.В. Морфологические методы исследования в ветеринарной медицине : учеб. пособие. – Омск: Обл. тип., 2004. – 198 с.; Краснолобова Е.П., Веремеева С.А., Череменина Н.А. Патоморфологические особенности внутренних органов попугая при аспергиллезе // Вестник КрасГАУ (Красноярский государственный аграрный университет). – 2021. – № 12 (177). – С. 179–184. – DOI:10.36718/1819-4036-2021-12-179-184.; https://vestngau.elpub.ru/jour/article/view/2165

  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
    Academic Journal

    Contributors: The work was supported by grant No. 220‐2961‐3099 in accordance with the Decree of the Government of the Russian Federation No. 220., Работа выполнена при поддержке гранта №220‐2961‐3099 согласно Постановлению Правительства РФ №220.

    Source: South of Russia: ecology, development; Том 18, № 2 (2023); 53‐69 ; Юг России: экология, развитие; Том 18, № 2 (2023); 53‐69 ; 2413-0958 ; 1992-1098 ; 10.18470/1992-1098-2023-2

    File Description: application/pdf

    Relation: https://ecodag.elpub.ru/ugro/article/view/2829/1347; Chen S., Sun D., Chung J.S. Treatment of Pesticide Wastewater by Moving‐Bed Biofilm Reactor Combined with Fenton‐Coagulation Pretreatment // J. Hazard. Mater. 2007. V. 144. P. 577–584.; Egorov V.I., Aleyev D.V., Malanev A.V., Khalikova K.F., Galyautdinova G.G., Yamalova G.R., Tremasova A.M., Kadikov I.R., Saifutdinov A.M., Semenov E.I., Shuralev E.A., Smolentsev S.Yu. The use of sorbents for intoxication of chickens with imidacloprid // International Journal of Pharmaceutical Research. 2021. V. 13. N 1. P. 3225–3233.; Nayak S.K., Dash B., Baliyarsingh B. Microbial Remediation of Persistent Agrochemicals by Soil Bacteria: An Overview // Microb. Biotechnol. 2018. P. 275–301.; Abdallah O.I., Hanafi A., Ghani S.B.A., Ghisoni S., Lucini L. Pesticides Contamination in Egyptian Honey Samples // J. Consum. Prot. Food Saf. 2017. V. 12. P. 317–327.; Кузнецова Е.Л. Влияние дециса на кур // Материалы Международной конференции ветеринарных фармакологов и токсикологов, посвящённой 125‐летию Н.А. Сошественского. Казань. 2001. C. 73–74.; Liu C., Qu J., Wu M., Huang X., Li L. Cypermethrin triggers YY1‐mediated testosterone biosynthesis suppression // Ecotoxicol Environ Saf. 2021. V. 225. Article ID: 112792. https://doi.org/10.1016/j.ecoenv.2021.112792; Aldridge W.N. Toxicolody of pyrethroids // Pestic. chem: Hum. Welfare and Environ. Pros.: 5th intern kongr. Kioto. 1982. N 3. P. 485–490.; Grey A.J., Soderlund D.M. Mammalian toxicolody of pyrethroids // Insecticides. Chichester: John Wiley and Sons. 1985. V. 5. P. 207–212.; White G.B. Pyrethroids – why is their use increasing // J. Toxicol. Clin. Toxicol. 1999. V. 37. N 3. Article ID: 361.; Cunha E.O., Reis A.D., Macedo M.B., Machado M.S., Dallegrave E. Braz. Ototoxicity of cypermethrin in Wistar rats // J Otorhinolaryngol. 2020. V. 86. Iss. 5. P. 587–592. https://doi.org/10.1016/j.bjorl.2019.02.007; Chen S., Lin Q., Xiao Y., Deng Y., Chang C., Zhong G., Hu M., Zhang L.H. Monooxygenase, a novel beta‐cypermethrin degrading enzyme from Streptomyces sp. // PLoS ONE. 2013. V. 8. Article ID: 75450.; Valiullin L.R., Titova V.Y., Skvortsov E.V., Muhammadiev R.S., Validov S.Z., Rud V.Y., Davydov V.V., Glinushkin A.P. Search for antagonists to protect plant raw materials from pathogens Earth and Environmental Science // All‐Russian Conference with International Participation Economic and Phytosanitary Rationale for the Introduction of Feed Plants. 2021. Article ID: 012005.; Wang H.X., Zhang R., Li Z., Wang L.S., Yu Y., Wang Q., Ding Z., Zhang J.P., Zhang M.R., Xu L.C. Cypermethrin induces Sertoli cell apoptosis through mitochondrial pathway associated with calcium // Toxicol Res. 2021. V. 10. N 4. P. 742–750. https://doi.org/10.1093/toxres/tfab056; Chen S., Geng P., Xiao Y., Hu M. Bioremediation of βcypermethrin and 3‐phenoxybenzaldehyde contaminated soils using Streptomyces aureus HP‐S‐01 // Appl. Microbiol. Biotechnol. 2012. V. 94. P. 505–515.; Pankaj, Sharma A., Gangola S., Khati P., Kumar G., Srivastava A. Novel pathway of cypermethrin biodegradation in a Bacillus sp. strain SG2 isolated from cypermethrincontaminated agriculture field // Biotech. 2016. V. 6. Iss. 1. Article number: 45. doi:10.1007/s13205‐016‐0372‐3; Ucar A., Özgeriş F.B., Yeltekin A.Ç., Parlak V., Alak G., Keleş M.S., Atamanalp M. J The effect of N‐acetylcysteine supplementation on the oxidative stress levels, apoptosis, DNA damage, and hematopoietic effect in pesticide‐exposed fish blood // Biochem Mol Toxicol. 2019. V. 6. Article ID: 22311. https://doi.org/10.1002/jbt.22311; Sharma R., Jindal R., Faggio C. Impact of cypermethrin in nephrocytes of freshwater fish Catla catla // Environ Toxicol Pharmacol. 2021. V. 88. Article ID: 103739. https://doi.org/10.1016/j.etap.2021.103739; Бадман Л.А., Волкова Н.В., Грекова Т.Д. и др. Справочное издание. Вредные химические вещества. Неорганические соединения V‐VIII групп. Л.: Химия, 1989. C. 442–473.; Sulaiman N., Chee Beng Y., Ahmad Bustamam F.K., Khairuddin NSK., Muhamad H. Fate of cypermethrin in Malaysian oil palm plantation // Drug Test Anal. 2020. V. 12. Iss. 4. P. 504–513. https://doi.org/10.1002/dta.2760; Yadav A., Tandon A., Seth B., Goyal S., Singh S.J., Tiwari S.K., Agarwal S., Nair S., Chaturvedi R.K. Cypermethrin Impairs Hippocampal Neurogenesis and Cognitive Functions by Altering Neural Fate Decisions in the Rat Brain // Mol Neurobiol. 2021. V. 58. P. 263–280. https://doi.org/10.1007/s12035‐020‐02108‐9; Di Bella G., Mottese A.F., Potortì A.G., Fede M.R., Sabatino G., Cicero N., Beltifa A., Dugo G., Lo Turco V. Organic pollution in PGI and non‐PGI lemons and related soils from Italy and Turkey // Nat Prod Res. 2019. V. 33. Iss. 21. P. 3089–3094. https://doi.org/10.1080/14786419.2018.1519818; Oumbouke W.A., Rowland M., Koffi A.A., Alou LPA., Camara S., N'Guessan R. Evaluation of an alphacypermethrin + PBO mixture long‐lasting insecticidal net VEERALIN® LN against pyrethroid resistant Anopheles gambiae s.s.: an experimental hut trial in M'bé, central Côte d'Ivoire // Parasit Vectors. 2019. V. 15. N 12. Article number: 544. https://doi.org/10.1186/s13071‐019‐3796‐x; Lissenden N., Kont M.D., Essandoh J., Ismail H.M. et. al. Review and Meta‐Analysis of the Evidence for Choosing between Specific Pyrethroids for Programmatic Purposes // Insects. 2021. V. 14. Iss. 12. Article number: 826. https://doi.org/10.3390/insects12090826; Ali M.H., Sumon K.A., Sultana M., Rashid H. Toxicity of cypermethrin on the embryo and larvae of Gangetic mystus, Mystus cavasius // Environ Sci Pollut Res Int. 2018. V. 25. N4. P. 3193–3199. https://doi.org/10.1007/s11356‐017‐9399‐1; Jin S., Yao X., Xu Z., Zhang X., Yang F. Estimation of soilspecific microbial degradation of alpha‐cypermethrin by compound‐specific stable isotope analysis // Environ Sci Pollut Res Int. 2018. V. 23. P. 22736–22743. https://doi.org/10.1007/s11356‐018‐2399‐y; Мельников Н.Н. Методическое указание по определению микроколичеств пестицидов в продуктах питания, кормах и внешней среде. М.: Госхимкомиссия. 1982. ч. 12. 301 c.; Seema J. Comparative assessment of growth and biodegradation potential of soil isolate in the presence of pesticides // J Biol Sci. 2013. V. 20. Iss. 3. P. 257–264. https://doi.org/10.1016/j.sjbs.2013.02.007; Akbar S., Sultan S., Kertesz M. Determination of cypermethrin degradation potential of soil bacteria along with plant growth‐promoting characteristics // Microbiol. 2015. V. 70. N 1. P. 75–84. https://doi.org/10.1007/s00284‐014‐0684‐7; Amin M., Raza Gurmani A., Rafique M., Ullah Khan S., Mehmood A., Muhammad D., Hussain Syed J.Saudi. Investigating the degradation behavior of Cypermethrin (CYP) and Chlorpyrifos (CPP) in peach orchard soils using organic/inorganic amendments // J Biol Sci. 2021. V. 28. Iss. 10. P. 5890–5896. https://doi.org/10.1016/j.sjbs.2021.06.035; Jiang W., Yao G., Jing X., Liu X., Liu D., Zhou Z. Effects of Cd2+ and Pb2+ on enantioselective degradation behavior of αcypermethrin in soils and their combined effect on activities of soil enzymes // Environ Sci Pollut Res Int. 2021. V. 28. Iss. 34. P. 47099–47106. https://doi.org/10.1007/s11356‐021‐13929‐z; Мельников Н.Н. Химия и технология пестицидов. М.: Наука, 1974. C. 209–226.; Yao G., Jing X., Liu C., Wang P., Liu X., Hou Y., Zhou Z., Liu D. Enantioselective degradation of alpha‐cypermethrin and detection of its metabolites in bullfrog (rana catesbeiana) // Ecotoxicol Environ Saf. 2017. V. 141. P. 93–97. https://doi.org/10.1016/j.ecoenv.2017.03.019; Jiang W., Gao J., Cheng Z., Zhai W., Liu D., Zhou Z., Wang P. The influence of oxytetracycline on the degradation and enantioselectivity of the chiral pesticide beta‐cypermethrin in soil // Environ Pollut. 2019. V. 255. Part 1. Article ID: 113215. https://doi.org/10.1016/j.envpol.2019.113215; Kanyika‐Mbewe C., Thole B., Makwinja R., Kaonga C.C. Monitoring of carbaryl and cypermethrin concentrations in water and soil in Southern Malawi // Environ Monit Assess. 2020. V. 192. Iss. 9. Article number: 595. https://doi.org/10.1007/s10661‐020‐08557‐y; Lu J., Wu Q., Yang Q., Li G., Wang R., Liu Y., Duan C., Duan S., He X., Huang Z., Peng X., Yan W., Jiang J. Molecular mechanism of reproductive toxicity induced by betacypermethrin in zebrafish // Comp Biochem Physiol C Toxicol Pharmacol. 2021. V. 239. Article ID: 108894. https://doi.org/10.1016/j.cbpc.2020.108894; Saied E., Fouda A., Alemam A.M., Sultan M.H., et. al. Evaluate the Toxicity of Pyrethroid Insecticide Cypermethrin before and after Biodegradation by Lysinibacillus cresolivuorans Strain HIS7 // Plants (Basel). 2021. V. 10. Iss. 9. Article ID: 1903. https://doi.org/10.3390/plants10091903; Yang Y., Ma S., Liu F., Wang Q., Wang X., et. al. Acute and chronic toxicity of acetamiprid, carbaryl, cypermethrin and deltamethrin to Apis mellifera larvae reared in vitro // Pest Manag Sci. 2020. V. 76. N 3. P. 978–985. https://doi.org/10.1002/ps.5606; Seven B., Kültiğin, Çavuşoğlu, Yalçin E., Acar A. Investigation of cypermethrin toxicity in Swiss albino mice with physiological, genetic and biochemical approaches // Sci Rep. 2022. V. 12. Article number: 11439. https://doi.org/10.1038/s41598‐022‐15800‐8; Raginov I.S., Egorov V.I., Valiullin L.R., Watanabe D., Balakin K.V., Murinov Y.I. Morphological and functional evaluation of the effect of novel pyrimidine derivatives on regeneration of the sciatic nerve in rats // Neurosci Lett. 2019. V. 706. P. 110–113. https://doi.org/10.1016/j.neulet.2019.05.008; Akelma H., Kilic E.T., Salik F., Bicak E.A., Yektas A. Pyrethroid intoxication: A rare case report and literature review // J Clin Pract. 2019. V. 22. N 3. P. 442–444. DOI:10.4103/njcp.njcp_241_18; Ruan Z.Y., Zhai Y., Song J.L., Shi Y.H., Li K., Zhao B., et al. Molecular cloning and characterization of a newly isolated pyrethroid‐degrading esterase gene from a genomic library of Ochrobactrum anthropi YZ‐1 // PLoS One. 2013. V. 8, Article ID: e77329. https://doi.org/10.1371/journal.pone.0077329; Liu F.F., Chi Y.L., Wu S., Jia D.Y., Yao K. Simultaneous degradation of cypermethrin and its metabolite, 3phenoxybenzoic acid, by the cooperation of Bacillus licheniformis B‐1 and Sphingomonas sp. SC‐1 // J. Agric. Food Chem. 2014. V. 62. P. 8256–8262. https://doi.org/10.1021/jf502835n; Zhao J.Y., Chi Y.L., Xu Y.C., Jia D.Y., Yao K. Co‐metabolic degradation of β‐cypermethrin and 3‐phenoxybenzoic acid by co‐culture of Bacillus licheniformis B‐1 and Aspergillus oryzae M‐4 // PLoS One. 2016. V. 11. Article number: e0166796. https://doi.org/10.1371/journal.pone.0166796; Pavelyev R.S., Zaripova Y.F., Yarkovoi V.V., Vinogradova S.S., et. al. Performance of Waterborne Polyurethanes in Inhibition of Gas Hydrate Formation and Corrosion: Influence of Hydrophobic Fragments // Molecules. 2020. V. 25. Iss. 23. Article ID: 5664. https://doi.org/10.3390/molecules25235664; Zhan H., Huang Y.H., Lin Z.Q., Bhatt P., Chen S.H. New insights into the microbial degradation and catalytic mechanism of synthetic pyrethroids // Environ. Res. 2020. V. 182. Article ID: 109138. https://doi.org/10.1016/j.envres.2020.109138; Gaughan L.C., Unai T., Gasida I.E. Permetrin metabolism in rats // Agric. Food. Chem. 1977. V. 25. P. 9–17.; Xu Z., Shen X., Zhang X.C., Liu W., Yang F. Microbial degradation of alpha‐cypermethrin in soil by compoundspecific stable isotope analysis // J Hazard Mater. 2015. V. 295. P. 37–42. https://doi.org/10.1016/j.jhazmat.2015.03.062; Хоула Дж. Определитель бактерий Берджи: в 2 т. М.: Мир, 1997.; Miller G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar // Analytical Chemistry. 1959. V. 31. N 3. P. 426–428.; Najafi M.F., Deobagkar D., Deobagkar D. Purification and characterization of an extracellular amylase from Bacillus subtilis AX20 // Protein Exp. Purif. 2005. V. 41. P. 349–354.; Schuerg T., et al. Xylose induces cellulase production in Thermoascus aurantiacus // Biotechnol Biofuels. 2017. V. 10. Article number: 271. https://doi.org/10.1186/s13068‐017‐0965‐z; Gabriel R., et al. Development of genetic tools for the thermophilic filamentous fungus Thermoascus aurantiacus // Biotechnol Biofuels. 2020. V. 13. Article ID: 167. https://doi.org/10.1186/s13068‐020‐01804‐x; Cupp‐Enyard C. Sigma’s non‐specific protease activity assay – casein as a substrate // J. Vis. Exp. 2008. V. 19. Article ID: e899. DOI:10.3791/899; Gabriel R., et al. The F‐box protein gene exo‐1 is a target for reverse engineering enzyme hypersecretion in filamentous fungi // PNAS. 2021. V. 118. Iss. 26. Article number: e2025689118. https://doi.org/10.1073/pnas.2025689118; Berg G., Hallmann J., Schulz B.J.E., Boyle C.J.C., Sieber T.N. Control of plant pathogenic fungi with bacterial endophytes. Berlin: Springer, 2006, pp. 53–69.; Chen Y., Gao X., Chen Y., Qin H., Huang L., Han Q. Inhibitory efficacy of endophytic Bacillus subtilis EDR4 against Sclerotinia access to microbial diversity for drug discovery from natural products. 2014. vol. 69. P. 49–55.; Mohamad O.A.A., Li L., Ma J.B., et.al. Evaluation of the Antimicrobial Activity of Endophytic Bacterial Populations From Chinese Traditional Medicinal Plant Licorice and Characterization of the Bioactive Secondary Metabolites Produced by Bacillus atrophaeus Against Verticillium dahlia // Front Microbiol. 2018. V. 9. Article ID: 924. https://doi.org/10.3389/fmicb.2018.00924; Mukhammadiev R.S., Mukhammadieva A.S., Skvortsov E.V., Valiullin L.R., Glinushkin A.P. Antagonistic properties and biocompatibility as important principles for development of effective and biosafety probiotic drugs iop // All‐Russian Conference with International Participation Economic and Phytosanitary Rationale for the Introduction of Feed Plants. 2021, Article ID: 012008.; Diabankana R.G.C., Afordoanyi D.M., Safin R.I., Nizamov R.M., Karimova L.Z., Validov S.Z. Antifungal Properties, Abiotic Stress Resistance, and Biocontrol Ability of Bacillus mojavensis PS17 // Curr Microbiol. 2021. V. 78. N 8. P. 3124–3132. https://doi.org/10.1007/s00284‐021‐02578‐7; Kelland M.A., Production Chemicals for the Oil and Gas Industry. CRC, Boca Raton, FL. 2014.; Erguven G.O., Yildirim N. The Evaluation of Imidacloprid Remediation in Soil Media by Two Bacterial Strains // Curr Microbiol. 2019. V. 76. N 12. P. 1461–1466. https://doi.org/10.1007/s00284‐019‐01774‐w; РД 52.24.421‐2012 Химическое потребление кислорода в водах. Методика выполнения измерений титриметрическим методом. Федеральная служба по гидрометеорологии и мониторингу окружающей среды (Росгидромет). Ростов‐на‐Дону, 2012. 20 с.; van Loon L.C. Plant responses to plant growth promoting rhizobacteria // Eur. J. Plant Pathol. 2007. V. 119. P. 243–254.; TariqJaveed M., Farooq T., Al‐Hazmi A.S., Hussain M.D., Rehman A.U. Role of Trichoderma as a biocontrol agent (BCA) of phytoparasitic nematodes and plant growth inducer // J Invertebr Pathol. 2021. V. 183. Article ID: 107626. https://doi.org/10.1016/j.jip.2021.107626; Alfiky A., Weisskopf L.J Deciphering Trichoderma‐PlantPathogen Interactions for Better Development of Biocontrol Applications // Fungi (Basel). 2021. V. 7. N 1. Article ID: 61. https://doi.org/10.3390/jof7010061; Apha AWWA, WPCF American Public Health Association, American Water Works Association, Water Pollution Control Federation, Washington. 2005.; Cove J.H., Holland K.T., Cunliffe W.J. Effects of Oxygen Concentration on Biomass Production, Maximum Specific Growth Rate and Extracellular Enzyme Production by Three Species of Cutaneous Propionibacteria Grown in Continuous Culture // Journal of General Microbiology. 1983. V. 129. P. 3327–3334.; Sa‐Pereira P., Costa‐Ferreira M., Aires‐Barros M.R. Enzymatic properties of a neutral endo‐ 1, 3 (4) ‐ xylanase Xyl II from Bacillus subtilis // Journal of Biotechnology. 2002. V. 94. N 3. P. 245–275.; Hasan B. Fermentation of fish silage using Lactobacillus pentosus // J Natur Indones. 2003. V. 4. N 1. P. 11–15.; Simova E., Simov Z., Beshkova D., Frengova G., Dimitrov Z., Spasov Z. Aminoacid profiles of lactic acid bacteria, isolated from kefir grains and kefir starter made from them // Int J Food Microbiol. 2004. V. 107. N 2. P. 112–123.; Savijoki K., Ingmer H., Varmanen P. Proteolytic systems of lactic acid bacteria // Appl Microbiol Biotechnol. 2004. V. 71. P. 394–404.; Chebotar V.K., Makarova N.M., Shaposhnikov A.I., Kravchenko L.V. Antifungal and phytostimulating characteristics of Bacillus subtilis Ch‐13 rhizospheric strain, producer biopreparations // Appl. Biochem. Microbiol. 2009. V. 45. N 4. P. 419–423.; Lim Y.H., Foo H.L., Loh T.C., Mohamad R., Abdullah N. Comparative studies of versatile extracellular proteolytic activities of lactic acid bacteria and their potential for extracellular amino acid productions as feed supplements // Journal of Animal Science and Biotechnology. 2019. V. 10. Iss. 15. P. 2–13.; Jin X.L., Jing M., Chen X., Zhuang Z.X., Wang X.R., Lee F.S. A study on the relationship between BOD(5) and COD in a coastal seawater environment with a rapid BOD measurement system // Water Sci Technol. 2010. V. 61. Iss. 6. P. 1499–1503. https://doi.org/10.2166/wst.2010.810; https://ecodag.elpub.ru/ugro/article/view/2829

  14. 14
    Academic Journal

    Source: Russian Journal of Parasitology; Том 17, № 4 (2023); 527-534 ; Российский паразитологический журнал; Том 17, № 4 (2023); 527-534 ; 2541-7843 ; 1998-8435 ; 10.31016/1998-8435-2023-17-4

    File Description: application/pdf

    Relation: https://vniigis.elpub.ru/jour/article/view/1097/791; Беляева М. И., Степанова Т. Ф. О дезинвазии жидкого навоза и навозных стоков в субъектах РФ // Инфекция и иммунитет. 2017. № S. С. 853.; Брюханов А. Ю., Попов В. Д., Васильев Э. В., Шалавина Е. В., Уваров Р. А. Анализ и решения экологических проблем в животноводстве // Сельскохозяйственные машины и технологии. 2021. Т. 15. № 4. С. 48-55. https://doi.org/10.22314/2073-7599-2021-15-4-48-55.; Суховский Д. А., Шкрабак Р. В. Обеспечение экологической безопасности в животноводстве и птицеводстве // «Научное обеспечение развития АПК в условиях импортозамещения»: сборник научных трудов по материалам международной научно-практической конференции. Санкт-Петербург: Санкт-Петербургский государственный аграрный университет, 2022. С. 234-237.; Хуторянина И. В., Думбадзе О. С., Димидова Л. Л. Методы обеззараживания (дезинвазии) навоза и навозных стоков // «Теория и практика борьбы с паразитарными болезнями»: сборник научных статей по материалам международной научной конференции. 2020. Вып. 21. С. 465-470. https://doi.org/10.31016/978-5-9902341-5-4.2020.21.465-470.; Avila L. F. C., Telmo P. L., Martins L. H. R., Glaeser T. A., Conceição F. R., Leite F. P. L., Scaini C. J. Protective effect of the probiotic Saccharomyces boulardii in Toxocara canis infection is not due to direct action on the larvae. Rev. Inst. Med. Trop. Sao Paulo. 2013; 55 (5): 363-365. https://doi.org/10.1590/S0036-46652013000500012.; Cadore P. S., Walcher D. L., Sousa N. F. G. C. D., Martins L. H. R., Hora V. P. D., Groll A. V., Scaini C. J. Protective effect of the probiotic Lactobacillus acidophilus ATCC 4356 in BALB/c mice infected with Toxocara canis. Rev. Inst. Med. Trop. São Paulo. 2021; 63: е9. https://doi.org/10.1590/S1678-9946202163009.; Chiodo P. G., Sparo M. D., Pezzani B. C., Minvielle M. C., Basualdo J. A. In vitro and in vivo effects of Enterococcus faecalis CECT7121 on Toxocara canis. Memórias do Instituto Oswaldo Cruz. 2010; 105: 615-620.; Reda A. A. Probiotics for the Control of Helminth Zoonosis. Journal of Veterinary Medicine. 2018; 2018. 9. https://doi.org/10.1155/2018/4178986.; Walcher D. L., Cruz L. A. X., de Lima Telmo P., Martins L. H. R., da Costa de Avila L. F., Berne M. E. A., Scaini C. J. Lactobacillus rhamnosus reduces parasite load on Toxocara canis experimental infection in mice, but has no effect on the parasite in vitro. Parasitol. Res. 2018; 117. 597–602. https://doi.org/10.1007/s00436-017-5712-7).; Walcher D. L., de Sousa N. F. G. C., Rocha L. S., Mattos G. T., Klafke G. B., Scaini J. L. R., Scaini C. J. Larvicide Activity of Lactobacillus spp. and Saccharomyces boulardii Supernatants on Toxocara canis. The Journal of Parasitology. 2023; 109 (1): 15-19. https://doi.org/10.1645/20-161; https://vniigis.elpub.ru/jour/article/view/1097

  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
    Academic Journal

    Source: Deutsche internationale Zeitschrift für zeitgenössische Wissenschaft 19 (1) 9-13

    File Description: application/pdf

    Relation: info:eu-repo/grantAgreement/EC/FP7/17200/EU/Eficientizarea utilizării resurselor de sol și a diversității microbiene prin aplicarea elementelor agriculturii biologice organice/20.80009.5107.08; https://ibn.idsi.md/vizualizare_articol/167803; urn:issn:27018369

  20. 20