-
1
-
2Academic Journal
Συνεισφορές: Бобрышева, С. Н.
Θεματικοί όροι: Загрязнение окружающей среды, Микропластик, Экосистемы, Переработка, Здоровье человека
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://elib.gstu.by/handle/220612/42896
-
3Academic Journal
Πηγή: Эффективный ответ на современные вызовы с учетом взаимодействия человека и природы, человека и технологий
Θεματικοί όροι: ЗАГРЯЗНЕНИЕ ОКРУЖАЮЩЕЙ СРЕДЫ, RECYCLING, МИКРОПЛАСТИК, УТИЛИЗАЦИЯ, MICROPLASTICS, ENVIRONMENTAL POLLUTION
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://elar.usfeu.ru/handle/123456789/13630
-
4Academic Journal
Συγγραφείς: L. N. Babkina, О. V. Skotarenko
Πηγή: Economics Profession Business; No 1 (2024): Economics Profession Business; 11-19
Экономика Профессия Бизнес; № 1 (2024): Экономика Профессия Бизнес; 11-19Θεματικοί όροι: атмосферный воздух, region, microplastics, мониторинг, охранная экологическая зона, atmospheric air, микропластик, 15. Life on land, 6. Clean water, 12. Responsible consumption, monitoring, quality of life, регион, арктические территории, 13. Climate action, 11. Sustainability, protected ecological zone, deforestation, waste, отходы, качество жизни, Arctic territories, вырубка леса
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://journal.asu.ru/ec/article/view/epb202402
-
5
-
6
-
7Academic Journal
Συγγραφείς: A. О. Nosova, M. V. Uspenskaya
Πηγή: Научно-технический вестник информационных технологий, механики и оптики, Vol 24, Iss 3, Pp 348-356 (2024)
Θεματικοί όροι: микропластик, ксантеновые красители, почва, микроскопия, флуоресценция, родамин с, родамин ж, эозин н, флуоресцеин, фитотесты, Information technology, T58.5-58.64
Περιγραφή αρχείου: electronic resource
Relation: https://ntv.elpub.ru/jour/article/view/251; https://doaj.org/toc/2226-1494; https://doaj.org/toc/2500-0373
Σύνδεσμος πρόσβασης: https://doaj.org/article/a1bd095753c54d5a8c0e8ec09914bf27
-
8Academic Journal
Συγγραφείς: Шкуро, А. Е., Шаркова, А. С., Воронцов, Е. Е.
Πηγή: Эффективный ответ на современные вызовы с учетом взаимодействия человека и природы, человека и технологий
Θεματικοί όροι: МИКРОПЛАСТИК, ЗАГРЯЗНЕНИЕ ОКРУЖАЮЩЕЙ СРЕДЫ, УТИЛИЗАЦИЯ, MICROPLASTICS, ENVIRONMENTAL POLLUTION, RECYCLING
Περιγραφή αρχείου: application/pdf
Relation: Эффективный ответ на современные вызовы с учетом взаимодействия человека и природы, человека и технологий : материалы XVI Международной научно-технической конференции; https://elar.usfeu.ru/handle/123456789/13630
Διαθεσιμότητα: https://elar.usfeu.ru/handle/123456789/13630
-
9Academic Journal
Συγγραφείς: Закировна, Юлдашева Зимфира
Πηγή: JOURNAL OF HEALTHCARE AND LIFE-SCIENCE RESEARCH; Vol. 4 No. 2 (2025): Journal of Healthcare and Life-Science Research; 202-205
Θεματικοί όροι: микропластик, здоровье человека, токсичность
Περιγραφή αρχείου: application/pdf
-
10Academic Journal
Συγγραφείς: Milman, B. L., Zhurkovich, I. K.
Θεματικοί όροι: ТЕРМИНОЛОГИЯ, СЕНСОРЫ, МИКРОПЛАСТИК, MICROPLASTICS, SCIENTOMETRICS, GREEN ANALYTICAL CHEMISTRY, НАУКОМЕТРИЯ, ЗЕЛЕНАЯ АНАЛИТИЧЕСКАЯ ХИМИИ, АНАЛИТИКА, DEVELOPMENT, SENSORS, TERMINOLOGY, РАЗВИТИЕ, ANALYTICS
Σύνδεσμος πρόσβασης: http://elar.urfu.ru/handle/10995/139946
-
11
-
12
-
13Academic Journal
Θεματικοί όροι: микропластик, токсичность микропластика, загрязнения окружающей среды
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://elib.belstu.by/handle/123456789/67673
-
14Academic Journal
-
15
-
16
-
17Academic Journal
Συγγραφείς: D. M. Myalenko, Д. М. Мяленко
Συνεισφορές: The article was prepared as part of research on the state task of Research and Development No. FNSS‑2022–0005 “Development of scientific principles of deep processing and long-term storage of dairy raw materials and products using low-waste resource-saving technologies” of the All-Russian Dairy Research Institute, Статья подготовлена в рамках выполнения НИР по государственному заданию (шифр № FNSS‑2022–0005) «Развитие научных принципов глубокой переработки и обеспечения длительного хранения молочного сырья и продукции с применением малоотходных ресурсосберегающих технологий» Всероссийского научно-исследовательского института молочной промышленности.
Πηγή: Food systems; Vol 7, No 3 (2024); 394-402 ; Пищевые системы; Vol 7, No 3 (2024); 394-402 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2024-7-3
Θεματικοί όροι: биоразлагаемая упаковка, microplastics, identification, biodegradable packaging, микропластик, идентификация
Περιγραφή αρχείου: application/pdf
Relation: https://www.fsjour.com/jour/article/view/567/336; Strategy, P. (2018). A European strategy for plastics in a circular economy. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Brussels 12. Retrieved from http://gretere.miigaik.ru/sites/default/files/materials/2_00_A%20European%20Strategy%20for%20Plastics%20in%20a%20Circular%20Economy%20(Brussels,%2016.1.2018).pdf Accessed February 25, 2024; Henderson, L., Green, C. (2020). Making sense of microplastics? Public understandings of plastic pollution. Marine Pollution Bulletin, 152, Article 110908. https://doi.org/10.1016/j.marpolbul.2020.110908; Hartley, B. L., Pahl, S., Veiga, J., Vlachogianni, T., Vasconcelos, L., Maes, T. et al. (2018). Exploring public views on marine litter in Europe: Perceived causes, consequences and pathways to change. Marine Pollution Bulletin, 133, 945–955. https://doi.org/10.1016/j.marpolbul.2018.05.061; Fraunhofer-Gesellschaft (2018). Impact through research: Applied research for Europe’s future. Retrieved from https://www.fraunhofer.de/en/press/research-news/2018/november/the-rto-summit.html Accessed May 11, 2023.; European Bioplastics EV (2018). European bioplastic. The Plastics Strategy — the contribution of bioplastics to a sustainable plastics circular economy. Berlin, Germany. Retrieved from https://www.european-bioplastics.org/plastics-strategy-contribution-of-bioplastics-to-a-sustainable-circular-plastics-economy/ Accessed February 25, 2024; Steensgaard, I. M., Syberg, K., Rist, S., Hartmann, N. B., Boldrin, A., Hansen, S. F. (2017). From macro-to microplastics-Analysis of EU regulation along the life cycle of plastic bags. Environmental Pollution, 224, 289–299. https://doi.org/10.1016/j.envpol.2017.02.007; European Commission (2019). Press Report. Plastic Waste: A European Strategy to Protect the Planet, Defend Our Citizensand Empower Our Industries: Strasbourgh. Retrieved from https://plasticseurope.org/wp-content/uploads/2021/10/2019-Plastics-the-facts.pdf Accessed February 25, 2024; Correia, M., Loeschner, K. (2018). Detection of nanoplastics in food by asymmetric flow field-flow fractionation coupled to multi-angle light scattering: Possibilities, challenges and analytical limitations. Analytical and Bioanalytical Chemistry, 410(22), 5603–5615. https://doi.org/10.1007/s00216-018-0919-8; Vighi, M., Bayo, J., Fernández-Piñas, F., Gago, J., Gómez, M., Hernández-Borges, J. et al. (2021). Micro and nano-plastics in the environment: Research priorities for the near future. Reviews of Environmental Contamination and Toxicology, 257, 163–218. https://doi.org/10.1007/398_2021_69; Anderson, A. G., Grose, J., Pahl, S., Thompson, R. C., Wyles, K. J. (2016). Microplastics in personal care products: Exploring perceptions of environmentalists, beauticians and students. Marine Pollution Bulletin, 113(1–2), 454–460. https://doi.org/10.1016/j.marpolbul.2016.10.048; Proshad, R., Kormoker, T., Islam, S., Haque, M. A., Rahman, M., Mithu, M. R. (2018). Toxic effects of plastic on human health and environment: A consequences of health risk assessment in Bangladesh. International Journal of Health, 6(1), 1–5. https://doi.org/10.14419/ijh.v6i1.8655; Wong, J. K. H., Lee, K. K., Tang, K. H. D., Yap, P. -S. (2020). Microplastics in the freshwater and terrestrial environments: Prevalence, fates, impacts and sustainable solutions. Science of the Total Environment, 719, Article 137512. https://doi.org/10.1016/j.scitotenv.2020.137512; Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A. et al. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223), 768–771. https://doi.org/10.1126/science.1260352; Shen, M., Song, B., Zeng, G., Zhang, Y., Huang, W., Wen, X. et al. (2020). Are biodegradable plastics a promising solution to solve the global plastic pollution? Environmental Pollution, 263, Article 114469. https://doi.org/10.1016/j.envpol.2020.114469; Prata, J. C., da Costa, J. P., Lopes, I., Duarte, A. C., Rocha-Santos, T. (2020). Environmental exposure to microplastics: An overview on possible human health effects. Science of the Total Environment, 702, Article 134455. https://doi.org/10.1016/j.scitotenv.2019.134455; Luo, T., Zhang, Y., Wang, C., Wang, X., Zhou, J., Shen, M. et al. (2019). Maternal exposure to different sizes of polystyrene microplastics during gestation causes metabolic disorders in their offspring. Environmental Pollution, 255, Article 113122. https://doi.org/10.1016/j.envpol.2019.113122; Rani, L., Kaur, G., Sood, P., Kaushal, J., Srivastav, A. L. (2024). Remediation strategies for the removal of microplastics from the water. Chapter in a book: Role of Green Chemistry in Ecosystem Restoration to Achieve Environmental Sustainability. Elsevier, 2024. https://doi.org/10.1016/B978-0-443-15291-7.00004-3; Andrady, A. L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62(8), 1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030; Zarfl, C., Matthies, M. (2010). Are marine plastic particles transport vectors for organic pollutants to the Arctic? Marine Pollution Bulletin, 60(10), 1810–1814. https://doi.org/10.1016/j.marpolbul.2010.05.026; Europe, P. (2016). Plastics–the facts 2016: An analysis of European plastics production, demand and waste data. Association of Plastics Manufacturers. Retrieved from https://pdffox.com/plastics-a-the-facts-2016-plastics-europe-pdffree-647a6db69802e.html Accessed July 25, 2024; Lehner, R., Weder, C., Petri-Fink, A., Rothen-Rutishauser, B. (2019). Emergence of nanoplastic in the environment and possible impact on human health. Environmental Science and Technology, 53(4), 1748–1765. https://doi.org/10.1021/acs.est.8b05512; Picó, Y., Barceló, D. (2019). Analysis and prevention of microplastics pollution in water: Current perspectives and future directions. ACS Omega, 4(4), 6709–6719. https://doi.org/10.1021/acsomega.9b00222; Carpenter, E. J., Smith Jr, K. L. (1972). Plastics on the Sargasso Sea surface. Science, 175(4027), 1240–1241. https://doi.org/10.1126/science.175.4027.1240; Verschoor, A., De Poorter, L., Roex, E., Bellert, B. (2014). Quick scan and prioritization of microplastic sources and emissions. National Institute for Public Health and the Environment (RIVM), Advisory Letter 250012001.; Kole, P. J., Löhr, A. J., Van Belleghem, F. G., Ragas, A. M. (2017). Wear and tear of tyres: A stealthy source of microplastics in the environment. International Journal of Environmental Research and Public Health, 14(10), Article 1265. https://doi.org/10.3390/ijerph14101265; Amato-Lourenço, L. F., dos Santos Galvão, L., de Weger, L. A., Hiemstra, P. S., Vijver, M. G., Mauad, T. (2020). An emerging class of air pollutants: Potential effects of microplastics to respiratory human health? Science of the Total Environment, 749, Article 141676. https://doi.org/10.1016/j.scitotenv.2020.141676; Rillig, M. C., Ingraffia, R., de Souza Machado, A. A. (2017). Microplastic incorporation into soil in agroecosystems. Frontiers in Plant Science, 8, Article 1805. https://doi.org/10.3389/fpls.2017.01805; Cole, M., Lindeque, P., Halsband, C., Galloway, T. S. (2011). Microplastics as contaminants in the marine environment: A review. Marine Pollution Bulletin, 62(12), 2588–2597. https://doi.org/10.1016/j.marpolbul.2011.09.025; Yaroslavov, A. A., Arzhakov, M. S., Khokhlov, A. R. (2022). The life cycle of polymer materials: Problems and prospects. Herald of the Russian Academy of Sciences, 92(1), 18–24. https://doi.org/10.1134/S1019331622010087; GESAMP (2016). Sources, fate and effects of microplastics in the marine environment: Part two of a global assessment (IMO/FAO/UNESCO-IOC/UNIDO/ WMO/IAEA/UN/UNEP/UNDP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection). Rep. Stud. GESAMP, 2016; Lebreton, L. C. M., van der Zwet, J., Damsteeg, J.-W., Slat, B., Andrady, A., Reisser, J. (2017). River plastic emissions to the world’s oceans. Nature Communications, 8(1), Article 15611. https://doi.org/10.1038/ncomms15611; Meijer, L. J. J., van Emmerik, T., van der Ent, R., Schmidt, C., Lebreton, L. (2021). More than 1000 rivers account for 80% of global riverine plastic emissions into the ocean. Science Advances, 7(18), Article eaaz5803. https://doi.org/10.1126/sciadv.aaz5803; Liu, Y., Yang, Z.-H., Song, P.-P., Xu, R., Wang, H. (2018). Facile synthesis of Bi2MoO6/ZnSnO3 heterojunction with enhanced visible light photocatalytic degradation of methylene blue. Applied Surface Science, 430, 561–570. https://doi.org/10.1016/j.apsusc.2017.06.231; Ершова, А. А., Еремина, Т. Р., Дунаев, А. Л., Макеева, И. Н., Татаренко, Ю. А. (2021). Исследование загрязнения микропластиком морей российской Арктики и Дальнего Востока. Арктика: экология и экономика, 11(2), 164–177.; Gall, S. C., Thompson, R. C. (2015). The impact of debris on marine life. Marine Pollution Bulletin, 92(1–2), 170–179. https://doi.org/10.1016/j.marpolbul.2014.12.041; Li, J., Green, C., Reynolds, A., Shi, H., Rotchell, J. M. (2018). Microplastics in mussels sampled from coastal waters and supermarkets in the United Kingdom. Environmental Pollution, 241, 35–44. https://doi.org/10.1016/j.envpol.2018.05.03; Bergmann, M., Gutow, L., Klages, M. (2015). Marine anthropogenic litter Springer International Publishing, 2015. http://doi.org/10.1007/978-3-319-16510-3; Mato, Y., Isobe, T., Takada, H., Kanehiro, H., Ohtake, C., Kaminuma, T. (2001). Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environmental Science and Technology, 35(2), 31–8324. https://doi.org/10.1021/es0010498; Rios, L. M., Moore, C., Jones, P. R. (2007). Persistent organic pollutants carried by synthetic polymers in the ocean environment. Marine Pollution Bulletin, 54(8), 1230–1237. https://doi.org/10.1016/j.marpolbul.2007.03.022; Mato, Y., Isobe, T., Takada, H., Kanehiro, H., Ohtake, C., Kaminuma, T. (2001). Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environmental Science and Technology, 35(2), 318–324. https://doi.org/10.1021/es0010498; Ryan, P. G., Connell, A. D., Gardner, B. D. (1988). Plastic ingestion and PCBs in seabirds: Is there a relationship? Marine Pollution Bulletin, 19(4), 174–176. https://doi.org/10.1016/0025-326X(88)90674-1; WHO Regional Office for Europe, Copenhagen, Denmark, (2000). Chapter 5.10 Polychlorinated biphenyls (PCBs) Air Quality Guidelines — Second Edition. Retrieved from https://pdf4pro.com/view/chapter-5–10-polychlorinated-biphenyls-pcbs-37a6a0.html Accessed July 18, 2024; Thompson, R. C., Moore, C. J., vom Saal, F. S., Swan, S. H. (2009). Plastics, the environment and human health: Current consensus and future trends. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2153–2166. https://doi.org/10.1098/rstb.2009.0053; Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E., Svendsen, C. (2017). Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of the Total Environment, 586, 127–141. https://doi.org/10.1016/j.scitotenv.2017.01.190; Nizzetto, L., Futter, M., Langaas, S. (2016). Are agricultural soils dumps for microplastics of urban origin? Environmental Science and Technology, 50(20), 10777–10779. https://doi.org/10.1021/acs.est.6b04140; Geyer, R., Jambeck, J. R., Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), Article e1700782. https://doi.org/10.1126/sciadv.1700782; de Souza Machado, A. A., Kloas, W., Zarfl, C., Hempel, S., Rillig, M. C. (2018). Microplastics as an emerging threat to terrestrial ecosystems. Global Change Biology, 24(4), 1405–1416. https://doi.org/10.1111/gcb.14020; Sohoni, P., Sumpter, J. P. (1998). Several environmental oestrogens are also antiandrogens. Journal of Endocrinology, 158(3), 327–340. https://doi.org/10.1677/joe.0.1580327; Forte, M., Iachetta, G., Tussellino, M., Carotenuto, R., Prisco, M., De Falco, M. et al. (2016). Polystyrene nanoparticles internalization in human gastric adenocarcinoma cells. Toxicology in Vitro, 31, 126–136. https://doi.org/10.1016/j.tiv.2015.11.006; Hamoir, J., Nemmar, A., Halloy, D., Wirth, D., Vincke, G., Vanderplasschen, A. et al. (2003). Effect of polystyrene particles on lung microvascular permeability in isolated perfused rabbit lungs: Role of size and surface properties. Toxicology and Applied Pharmacology, 190(3), 278–285. https://doi.org/10.1016/S0041-008X(03)00192-3; Jeong, C.-B., Won, E.-J., Kang, H.-M., Lee, M.-C., Hwang, D.-S., Hwang, U.-K. et al. (2016). Microplastic size-dependent toxicity, oxidative stress induction, and pJNK and p-p38 activation in the monogonont rotifer (Brachionus koreanus). Environmental Science and Technology, 50(16), 8849–8857. https://doi.org/10.1021/acs.est.6b01441; Oberdürster, G. (2000). Toxicology of ultrafine particles: In vivo studies. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 358(1775), 2719–2740. https://doi.org/10.1098/rsta.2000.0680; Mattsson, K., Johnson, E. V., Malmendal, A., Linse, S., Hansson, L. A., Cedervall, T. (2017). Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Scientific Reports, 7(1), Article 11452. https://doi.org/10.1038/s41598-017-10813-0; Huerta Lwanga, E., Gertsen, H., Gooren, H., Peters, P., Salánki, T., van der Ploeg, M. et al. (2016). Microplastics in the terrestrial ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environmental Science and Technology, 50(5), 2685–2691. https://doi.org/10.1021/acs.est.5b05478; Schmid, O., Stoeger, T. (2016). Surface area is the biologically most effective dose metric for acute nanoparticle toxicity in the lung. Journal of Aerosol Science, 99, 133–143. https://doi.org/10.1016/j.jaerosci.2015.12.006; Dris, R., Gasperi, J., Saad, M., Mirande, C., Tassin, B. (2016). Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? Marine Pollution Bulletin, 104(1–2), 290–293. https://doi.org/10.1016/j.marpolbul.2016.01.006; Dris, R., Gasperi, J., Rocher, V., Saad, M., Renault, N., Tassin, B. (2015). Microplastic contamination in an urban area: A case study in Greater Paris. Environmental Chemistry, 12(5), 592–599. https://doi.org/10.1071/EN14167; Cai, L., Wang, J., Peng, J., Tan, Z., Zhan, Z., Tan, X. et al. (2017). Characteristic of microplastics in the atmospheric fallout from Dongguan city, China: Preliminary research and first evidence. Environmental Science and Pollution Research, 24(32), 24928–24935. https://doi.org/10.1007/s11356-017-0116-x; Liu, K., Wang, X., Fang, T., Xu, P., Zhu, L., Li, D. (2019). Source and potential risk assessment of suspended atmospheric microplastics in Shanghai. Science of the Total Environment, 675, 462–471. https://doi.org/10.1016/j.scitotenv.2019.04.110; Wright, S. L., Ulke, J., Font, A., Chan, K. L. A., Kelly, F. J. (2020). Atmospheric microplastic deposition in an urban environment and an evaluation of transport. Environment International, 136, Article 105411. https://doi.org/10.1016/j.envint.2019.105411; Abbasi, S., Keshavarzi, B., Moore, F., Turner, A., Kelly, F. J., Dominguez, A. O. et al. (2019). Distribution and potential health impacts of microplastics and microrubbers in air and street dusts from Asaluyeh County, Iran. Environmental Pollution, 244, 153–164. https://doi.org/10.1016/j.envpol.2018.10.039; Dehghani, S., Moore, F., Akhbarizadeh, R. (2017). Microplastic pollution in deposited urban dust, Tehran metropolis, Iran. Environmental Science and Pollution Research, 24(25), 20360–20371. https://doi.org/10.1007/s11356-017-9674-1; Vianello, A., Jensen, R. L., Liu, L., Vollertsen, J. (2019). Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin. Scientific Reports, 9(1), Article 8670. https://doi.org/10.1038/s41598-019-45054-w; Gasperi, J., Dris, R., Mirande-Bret, C., Mandin, C., Langlois, V., Tassin, B. (20– 24 September, 2015). First overview of microplastics in indoor and outdoor air. 15th EuCheMS International Conference on Chemistry and the Environment. Leipzig, Germany, 2015.; Dris, R., Gasperi, J., Mirande, C., Mandin, C., Guerrouache, M., Langlois, V. et al. (2017). A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environmental Pollution, 221, 453–458. https://doi.org/10.1016/j.envpol.2016.12.013; Sridharan, S., Kumar, M., Singh, L., Bolan, N. S., Saha, M. (2021). Microplastics as an emerging source of particulate air pollution: A critical review. Journal of Hazardous Materials, 418, Article 126245. https://doi.org/10.1016/j.jhazmat.2021.126245; Catarino, A. I., Macchia, V., Sanderson, W. G., Thompson, R. C., Henry, T. B. (2018). Low levels of microplastics (MP) in wild mussels indicate that MP ingestion by humans is minimal compared to exposure via household fibres fallout during a meal. Environmental Pollution, 237, 675–684. https://doi.org/10.1016/j.envpol.2018.02.069; Alfaro-Núñez, A., Astorga, D., Cáceres-Farías, L., Bastidas, L., Soto Villegas, C., Macay, K. et al. (2021). Microplastic pollution in seawater and marine organisms across the Tropical Eastern Pacific and Galápagos. Scientific Reports, 11(1), Article 6424. https://doi.org/10.1038/s41598-021-85939-3; Mason, S. A., Welch, V. G., Neratko, J. (2018). Synthetic polymer contamination in bottled water. Frontiers in Chemistry, 6, Article 407. https://doi.org/10.3389/fchem.2018.00407; Mintenig, S. M., Löder, M. G., Primpke, S., Gerdts, G. (2019). Low numbers of microplastics detected in drinking water from ground water sources. Science of the Total Environment, 648, 631–635. https://doi.org/10.1016/j.scitotenv.2018.08.178; World Wide Fund For Nature (2019). No plastic in nature: Assessing plastic ingestion from nature to people. Retrieved from https://wwfint.awsassets.panda.org/downloads/plastic_ingestion_web_spreads.pdf Accessed April 15, 2024.; Lithner, D., Larsson, Å., Dave, G. (2011). Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Science of the Total Environment, 409(18), 3309–3324. https://doi.org/10.1016/j.scitotenv.2011.04.038; Li, J., Yang, D., Li, L., Jabeen, K., Shi, H. (2015). Microplastics in commercial bivalves from China. Environmental Pollution, 207, 190–195. https://doi.org/10.1016/j.envpol.2015.09.018; Devriese, L. I., van der Meulen, M. D., Maes, T., Bekaert, K., Paul-Pont, I., Frère, L. et al. (2015). Microplastic contamination in brown shrimp (Crangon crangon, Linnaeus 1758) from coastal waters of the Southern North Sea and Channel area. Marine Pollution Bulletin, 98(1–2), 179–187. https://doi.org/10.1016/j.marpolbul.2015.06.051; Liebezeit, G., Liebezeit, E. (2014). Synthetic particles as contaminants in German beers. Food Additives and Contaminants: Part A, 31(9), 1574–1578. https://doi.org/10.1080/19440049.2014.945099; Liebezeit, G., Liebezeit, E. (2013). Non-pollen particulates in honey and sugar. Food Additives and Contaminants: Part A, 30(12), 2136–2140. https://doi.org/10.1080/19440049.2013.843025; Yang, D., Shi, H., Li, L., Li, J., Jabeen, K., Kolandhasamy, P. (2015). Microplastic pollution in table salts from China. Environmental Science and Technology, 49(22), 13622–13627. https://doi.org/10.1021/acs.est.5b03163; Schneider, M., Stracke, F., Hansen, S., Schaefer, U. F. (2009). Nanoparticles and their interactions with the dermal barrier. Dermato-Endocrinology, 1(4), 197– 206. https://doi.org/10.4161/derm.1.4.9501; Alvarez-Román, R., Naik, A., Kalia, Y. N., Guy, R. H., Fessi, H. (2004). Skin penetration and distribution of polymeric nanoparticles. Journal of Controlled Release, 99(1), 53–62. https://doi.org/10.1016/j.jconrel.2004.06.015; Campbell, C. S. J., Contreras-Rojas, L. R., Delgado-Charro, M. B., Guy, R. H. (2012). Objective assessment of nanoparticle disposition in mammalian skin after topical exposure. Journal of Controlled Release, 162(1), 201–207. https://doi.org/10.1016/j.jconrel.2012.06.024; Hernandez, L. M., Yousefi, N., Tufenkji, N. (2017). Are there nanoplastics in your personal care products? Environmental Science and Technology Letters, 4(7), 280– 285. https://doi.org/10.1021/acs.estlett.7b00187; Gehr, P., Bachofen, M., Weibel, E. R. (1978). The normal human lung: Ultrastructure and morphometric estimation of diffusion capacity. Respiration Physiology, 32(2), 121–140. https://doi.org/10.1016/0034-5687(78)90104-4; Rothen-Rutishauser, B., Blank, F., Mühlfeld, C., Gehr, P. (2008). In vitro models of the human epithelial airway barrier to study the toxic potential of particulate matter. Expert Opinion on Drug Metabolism and Toxicology, 4(8), 1075–1089. https://doi.org/10.1517/17425255.4.8.1075; Borm, P. J. A., Kreyling, W. (2004). Toxicological hazards of inhaled nanoparticles — potential implications for drug delivery. Journal of Nanoscience and Nanotechnology, 4(5), 521–531. https://doi.org/10.1166/jnn.2004.081; Huang, D., Tao, J., Cheng, M., Deng, R., Chen, S., Yin, L. et al. (2021). Microplastics and nanoplastics in the environment: Macroscopic transport and effects on creatures. Journal of Hazardous Materials, 407, Article 124399. https://doi.org/10.1016/j.jhazmat.2020.124399; Wang, C., Zhao, J., Xing, B. (2021). Environmental source, fate, and toxicity of microplastics. Journal of Hazardous Materials, 407, Article 124357. https://doi.org/10.1016/j.jhazmat.2020.124357; Yaka, M., Ehirchiou, A., Alkandry, T. T. S., Sair, K. (2015). Huge plastic bezoar: A rare cause of gastrointestinal obstruction. Pan African Medical Journal, 21(1), Article 286. https://doi.org/10.11604/pamj.2015.21.286.7169; Ramasamy, B. S. S., Palanisamy, S. (2021). A review on occurrence, characteristics, toxicology and treatment of nanoplastic waste in the environment. Environmental Science and Pollution Research, 28(32), 43258–43273. https://doi.org/10.1007/s11356-021-14883-6; Adeniran, A. A., Shakantu, W. (2022). The health and environmental impact of plastic waste disposal in South African Townships: A review. International Journal of Environmental Research and Public Health, 19(2), Article 779. https://doi.org/10.3390/ijerph19020779; Valsesia, A., Parot, J., Ponti, J., Mehn, D., Marino, R., Melillo, D. et al. (2021). Detection, counting and characterization of nanoplastics in marine bioindicators: A proof of principle study. Microplastics and Nanoplastics, 1(1), Article 5. https://doi.org/10.1186/s43591-021-00005-z; Mahler, G. J., Esch, M. B., Tako, E., Southard, T. L., Archer, S. D., Glahn, R. P. et al. (2012). Oral exposure to polystyrene nanoparticles affects iron absorption. Nature Nanotechnology, 7(4), 264–271. https://doi.org/10.1038/nnano.2012.3; World Health Organization. (2019). Microplastics in drinking-water. Retrieved from https://www.geatech.eu/wp-content/uploads/2019/08/MICROPLASTICS-IN-DRINKING-WATER.pdf Accessed April 15, 2024; Benford, D., Bolger, P. M., Carthew, P., Coulet, M., DiNovi, M., Leblanc, J.-C. et al. (2010). Application of the Margin of Exposure (MOE) approach to substances in food that are genotoxic and carcinogenic. Food and Chemical Toxicology, 48, S2–S24. https://doi.org/10.1016/j.fct.2009.11.003; Ragusa, A., Svelato, A., Santacroce, C., Catalano, P., Notarstefano, V., Carnevali, O. et al. (2021). Plasticenta: First evidence of microplastics in human placenta. Environment International, 146, Article 106274. https://doi.org/10.1016/j.envint.2020.106274; Pironti, C., Ricciardi, M., Motta, O., Miele, Y., Proto, A., Montano, L. (2021). Microplastics in the environment: Intake through the food web, human exposure and toxicological effects. Toxics, 9(9), Article 224. https://doi.org/10.3390/toxics9090224; Fries, E., Dekiff, J. H., Willmeyer, J., Nuelle, M. T., Ebert, M., Remy, D. (2013). Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environmental Science: Processes and Impacts, 15(10), 1949–1956. https://doi.org/10.1039/c3em00214d; Ricciardi, M., Pironti, C., Motta, O., Miele, Y., Proto, A., Montano, L. (2021). Microplastics in the aquatic environment: Occurrence, persistence, analysis, and human exposure. Water, 13(7), Article 973. https://doi.org/10.3390/w13070973; Srivastava, A., Srivastava, A. (2020). Microplastics: An Emerging Threat to the Aquatic Ecosystem. Chapter in a book: Environmental Biotechnology Vol. 1. Environmental Chemistry for a Sustainable World. Springer, Cham. https://doi.org/10.1007/978-3-030-38192-9_5; Arzhakova, O. G., Arzhakov, M. S., Badamshina, E. R., Bryuzgina, E. B., Bryuzgin, E. V., Bystrova, A. V. E. et al. (2022). Polymers for the future. Russian Chemical Reviews, 91(12), Article RCR5062. https://doi.org/10.57634/RCR5062; Thompson, R. C., Olsen, Y., Mitchell, R. P., Davis, A., Rowland, S. J., John, A. W. G. et al. (2004). Lost at sea: Where is all the plastic? Science, 304(5672), 838–838. https://doi.org/10.1126/science.1094559; Frias, J. P. G. L., Otero, V., Sobral, P. (2014). Evidence of microplastics in samples of zooplankton from Portuguese coastal waters. Marine Environmental Research, 95, 89–95. https://doi.org/10.1016/j.marenvres.2014.01.001; Vianello, A., Boldrin, A., Guerriero, P., Moschino, V., Rella, R., Sturaro, A. et al. (2013). Microplastic particles in sediments of Lagoon of Venice, Italy: First observations on occurrence, spatial patterns and identification. Estuarine, Coastal and Shelf Science, 130, 54–61. https://doi.org/10.1016/j.ecss.2013.03.022; Reddy, M. S., Shaik Basha, Adimurthy, S., Ramachandraiah, G. (2006). Description of the small plastics fragments in marine sediments along the AlangSosiya ship-breaking yard, India. Estuarine, Coastal and Shelf Science, 68(3–4), 656–660. https://doi.org/10.1016/j.ecss.2006.03.018; Ярославов, А. А., Аржаков, М. С., Хохлов, А. Р. (2022). Одноразовая полимерная упаковка: проблема без решения? Вестник Российской Академии Наук, 92(10), 961–970.; Harrison, J. P., Ojeda, J. J., Romero-González, M. E. (2012). The applicability of reflectance micro-Fourier-transform infrared spectroscopy for the detection of synthetic microplastics in marine sediments. Science of the Total Environment, 416, 455–463. https://doi.org/10.1016/j.scitotenv.2011.11.078; Wenning, M., Seiler, H., Scherer, S. (2002). Fourier-transform infrared microspectroscopy, a novel and rapid tool for identification of yeasts. Applied and Environmental Microbiology, 68(10), 4717–4721. https://doi.org/10.1128/AEM.68.10.4717-4721.2002; Ojeda, J. J., Romero-Gonzalez, M. E., Banwart, S. A. (2009). Analysis of bacteria on steel surfaces using reflectance micro-Fourier transform infrared spectroscopy. Analytical Chemistry, 81(15), 6467–6473. https://doi.org/10.1021/ac900841c; Wesch, C., Elert, A. M., Wörner, M., Braun, U., Klein, R., Paulus, M. (2017). Assuring quality in microplastic monitoring: About the value of clean-air devices as essentials for verified data. Scientific Reports, 7(1), Article 5424. https://doi.org/10.1038/s41598-017-05838-4; PhysicsOpenLab (2022). Polymer Analysis using Raman Spectroscopy. Retrieved from https://physicsopenlab.org/2022/05/08/polymer-analysis-usingraman-spectroscopy/ Accessed April 15, 2024; Kwak, J. I., An, Y.-J. (2021). Microplastic digestion generates fragmented nanoplastics in soils and damages earthworm spermatogenesis and coelomocyte viability. Journal of Hazardous Materials, 402, Article 124034. https://doi.org/10.1016/j.jhazmat.2020.124034; Liu, Z., Li, Y., Pérez, E., Jiang, Q., Chen, Q., Jiao, Y. et al. (2021). Polystyrene nanoplastic induces oxidative stress, immune defense, and glycometabolism change in Daphnia pulex: Application of transcriptome profiling in risk assessment of nanoplastics. Journal of Hazardous Materials, 402, Article 123778. https://doi.org/10.1016/j.jhazmat.2020.123778; Hidalgo-Ruz, V., Gutow, L., Thompson, R. C., Thiel, M. (2012). Microplastics in the marine environment: A review of the methods used for identification and quantification. Environmental Science and Technology, 46(6), 3060–3075. https://doi.org/10.1021/es2031505; Horton, A. A., Svendsen, C., Williams, R. J., Spurgeon, D. J., Lahive, E. (2017). Large microplastic particles in sediments of tributaries of the River Thames, UK–Abundance, sources and methods for effective quantification. Marine Pollution Bulletin, 114(1), 218–226. https://doi.org/10.1016/j.marpolbul.2016.09.004; Primpke, S., Lorenz, C., Rascher-Friesenhausen, R., Gerdts, G. (2017). An automated approach for microplastics analysis using focal plane array (FPA) FTIR microscopy and image analysis. Analytical Methods, 9(9), 1499–1511. https://doi.org/10.1039/c6ay02476a; Koelmans, A. A., Besseling, E., Shim, W. J. (2015). Nanoplastics in the aquatic environment. Critical review. Chapter in a book: Marine anthropogenic litter. Springer, Cham, 2015. https://doi.org/10.1007/978-3-319-16510-3_12; https://www.fsjour.com/jour/article/view/567
-
18Academic Journal
Συγγραφείς: S. V. Kakareka, T. I. Kukharchyk, K. I. Rabychyn, С. В. Какарека, Т. И. Кухарчик, К. О. Рябычин
Πηγή: Doklady of the National Academy of Sciences of Belarus; Том 68, № 1 (2024); 72-78 ; Доклады Национальной академии наук Беларуси; Том 68, № 1 (2024); 72-78 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2024-68-1
Θεματικοί όροι: Антарктида, microplastics, particles, fibers, Antarctica, микропластик, частицы, волокна
Περιγραφή αρχείου: application/pdf
Relation: https://doklady.belnauka.by/jour/article/view/1177/1178; Bonner, W. N. Neck collars on fur seals, Arctocephalus gazella at South Georgia / W. N. Bonner, T. S. McCann // British Antarctic Survey Bulletin. – 1982. – Vol. 57. – P. 73–77.; Croxall, J. Entanglement in man-made debris of Antarctic fur seals at Bird Island, South Georgia / J. Croxall, S. Rodwell, I. Boyd // Marine Mammal Science. – 1990. – Vol. 6, N 3. – P. 221–233. https://doi.org/10.1111/j.1748-7692.1990.tb00246.x; High abundances of microplastic pollution in deep-sea sediments: evidence from Antarctica and the Southern Ocean / E. M. Cunningham [et al.] // Environmental Science Technology. – 2020. – Vol. 54, N 21. – P. 13661–13671. https://doi.org/10.1021/acs.est.0c03441; Zhang, M. Marine plastic pollution in the polar south: Responses from Antarctic Treaty System / M. Zhang, M. Haward, J. McGee // Polar Record. – 2020. – Vol. 56, N 36. – P. 1–9. https://doi.org/10.1017/s0032247420000388; Plastics everywhere: first evidence of polystyrene fragments inside the common Antarctic collembolan Cryptopygus antarcticus / E. Bergami [et al.] // Biology Letters. – 2020. – Vol. 16, N 6. https://doi.org/10.1098/rsbl.2020.0093; Macroand Microplastics in the Antarctic Environment: Ongoing Assessment and Perspectives / E. Rota [et al.] // Environments. – 2022. – Vol. 9, N 7. – Art. 93. https://doi.org/10.3390/environments9070093; Microplastic in the surface waters of the Ross Sea (Antarctica): occurrence, distribution and characterization by FTIR / A. Cincinelli [et al.] // Chemosphere. – 2017. – Vol. 175. – P. 391–400. https://doi.org/10.1016/j.chemosphere.2017.02.024; Microplastics in marine sediments near Rothera Research Station, Antarctica / S. Reed [et al.] // Marine Pollution Bulletin. – 2018. – Vol. 133. – P. 460–463. https://doi.org/10.1016/j.marpolbul.2018.05.068; Plastics in sea surface waters around the Antarctic Peninsula / A. L. d. F. Lacerda [et al.] // Scientific Reports. – 2019. – Vol. 9. – Art. 3977. https://doi.org/10.1038/s41598-019-40311-4; Microplastics in the Weddell Sea (Antarctica): a forensic approach for discrimination between environmental and vessel-induced microplastics / C. Leistenschneider [et al.] // Environmental Science & Technology. – 2021. – Vol. 55, N 23. – P. 15900–15911. https://doi.org/10.1021/acs.est.1c05207; First detection of microplastics in the freshwater of an Antarctic Specially Protected Area / M. González-Pleiter [et al.] // Marine Pollution Bulletin. – 2020. – Vol. 161. – Art. 111811. https://doi.org/10.1016/j.marpolbul.2020.111811; A pilot study about microplastics and mesopelagic in an Antarctic glacier / M. González-Pleiter [et al.] // The Cryosphere. – 2021. – Vol. 15, N 6. – P. 2531–2539. https://doi.org/10.5194/tc-15-2531-2021; First evidence of microplastics in Antarctic snow / A. R. Aves [et al.] // The Cryosphere. – 2022. – Vol. 16, N 6. – P. 2127–2145. https://doi.org/10.5194/tc-16-2127-2022; Major and trace elements content in freshwater lakes of Vecherny Oasis, Enderby Land, East Antarctica / S. Kakareka [et al.] // Environmental Pollution. – 2019. – Vol. 255, N 1. – Art. 113126. https://doi.org/10.1016/j.envpol.2019.113126; Preliminary investigation on effects of size, polymer type, and surface behavior on the vertical mobility of microplastics in a porous media / V. P. Ranjan [et al.] // Science of the Total Environment. – 2023. – Vol. 864. – Art. 161148. https://doi.org/10.1016/j.scitotenv.2022.161148; The transport and fate of microplastic fibers in the Antarctic: The role of multiple global processes / E. M. Cunningham [et al.] // Frontiers in Marine Science. – 2022. – Vol. 9. – Art. 1056081. https://doi.org/10.3389/fmars.2022.1056081; https://doklady.belnauka.by/jour/article/view/1177
-
19Academic Journal
Συγγραφείς: Соловьева, Е.Н., Эпова, Л.А., Десятова, Т.В., Алексеенко, М.Н., Стронская, А.М., Жовтюк, П.И., Артемьева, С.Ю., Подлипский, И.И.
Πηγή: Biosfera; Том 16 № 3 2024; 336-351 ; Биосфера; Том 16 № 3 2024; 336-351 ; 2077-1460 ; 2077-1371
Θεματικοί όροι: municipal solid wastes, littering, microplastic, animals, damage, твердые коммунальные отходы, замусоривание, микропластик, объекты животного мира, ущерб
Περιγραφή αρχείου: application/pdf
Relation: http://21bs.ru/index.php/bio/article/view/946/674; http://21bs.ru/index.php/bio/article/view/946; edn=IONHUD
-
20Academic Journal
Πηγή: Управление техносферой. 6
Θεματικοί όροι: geoecology, геоматериалы, микропластик, natural-technogenic system, геоэкология, охрана среды, 12. Responsible consumption, geomaterials, plastic, 13. Climate action, пластик, life cycle, жизненный цикл, природно-техногенная система, microplastic, environmental protection