Εμφανίζονται 1 - 20 Αποτελέσματα από 148 για την αναζήτηση '"микропластик"', χρόνος αναζήτησης: 0,77δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
    Academic Journal

    Πηγή: Эффективный ответ на современные вызовы с учетом взаимодействия человека и природы, человека и технологий

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: https://elar.usfeu.ru/handle/123456789/13630

  4. 4
  5. 5
  6. 6
  7. 7
    Academic Journal
  8. 8
    Academic Journal

    Πηγή: Эффективный ответ на современные вызовы с учетом взаимодействия человека и природы, человека и технологий

    Περιγραφή αρχείου: application/pdf

    Relation: Эффективный ответ на современные вызовы с учетом взаимодействия человека и природы, человека и технологий : материалы XVI Международной научно-технической конференции; https://elar.usfeu.ru/handle/123456789/13630

    Διαθεσιμότητα: https://elar.usfeu.ru/handle/123456789/13630

  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
    Academic Journal

    Συγγραφείς: D. M. Myalenko, Д. М. Мяленко

    Συνεισφορές: The article was prepared as part of research on the state task of Research and Development No. FNSS‑2022–0005 “Development of scientific principles of deep processing and long-term storage of dairy raw materials and products using low-waste resource-saving technologies” of the All-Russian Dairy Research Institute, Статья подготовлена в рамках выполнения НИР по государственному заданию (шифр № FNSS‑2022–0005) «Развитие научных принципов глубокой переработки и обеспечения длительного хранения молочного сырья и продукции с применением малоотходных ресурсосберегающих технологий» Всероссийского научно-исследовательского института молочной промышленности.

    Πηγή: Food systems; Vol 7, No 3 (2024); 394-402 ; Пищевые системы; Vol 7, No 3 (2024); 394-402 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2024-7-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.fsjour.com/jour/article/view/567/336; Strategy, P. (2018). A European strategy for plastics in a circular economy. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Brussels 12. Retrieved from http://gretere.miigaik.ru/sites/default/files/materials/2_00_A%20European%20Strategy%20for%20Plastics%20in%20a%20Circular%20Economy%20(Brussels,%2016.1.2018).pdf Accessed February 25, 2024; Henderson, L., Green, C. (2020). Making sense of microplastics? Public understandings of plastic pollution. Marine Pollution Bulletin, 152, Article 110908. https://doi.org/10.1016/j.marpolbul.2020.110908; Hartley, B. L., Pahl, S., Veiga, J., Vlachogianni, T., Vasconcelos, L., Maes, T. et al. (2018). Exploring public views on marine litter in Europe: Perceived causes, consequences and pathways to change. Marine Pollution Bulletin, 133, 945–955. https://doi.org/10.1016/j.marpolbul.2018.05.061; Fraunhofer-Gesellschaft (2018). Impact through research: Applied research for Europe’s future. Retrieved from https://www.fraunhofer.de/en/press/research-news/2018/november/the-rto-summit.html Accessed May 11, 2023.; European Bioplastics EV (2018). European bioplastic. The Plastics Strategy — the contribution of bioplastics to a sustainable plastics circular economy. Berlin, Germany. Retrieved from https://www.european-bioplastics.org/plastics-strategy-contribution-of-bioplastics-to-a-sustainable-circular-plastics-economy/ Accessed February 25, 2024; Steensgaard, I. M., Syberg, K., Rist, S., Hartmann, N. B., Boldrin, A., Hansen, S. F. (2017). From macro-to microplastics-Analysis of EU regulation along the life cycle of plastic bags. Environmental Pollution, 224, 289–299. https://doi.org/10.1016/j.envpol.2017.02.007; European Commission (2019). Press Report. Plastic Waste: A European Strategy to Protect the Planet, Defend Our Citizensand Empower Our Industries: Strasbourgh. Retrieved from https://plasticseurope.org/wp-content/uploads/2021/10/2019-Plastics-the-facts.pdf Accessed February 25, 2024; Correia, M., Loeschner, K. (2018). Detection of nanoplastics in food by asymmetric flow field-flow fractionation coupled to multi-angle light scattering: Possibilities, challenges and analytical limitations. Analytical and Bioanalytical Chemistry, 410(22), 5603–5615. https://doi.org/10.1007/s00216-018-0919-8; Vighi, M., Bayo, J., Fernández-Piñas, F., Gago, J., Gómez, M., Hernández-Borges, J. et al. (2021). Micro and nano-plastics in the environment: Research priorities for the near future. Reviews of Environmental Contamination and Toxicology, 257, 163–218. https://doi.org/10.1007/398_2021_69; Anderson, A. G., Grose, J., Pahl, S., Thompson, R. C., Wyles, K. J. (2016). Microplastics in personal care products: Exploring perceptions of environmentalists, beauticians and students. Marine Pollution Bulletin, 113(1–2), 454–460. https://doi.org/10.1016/j.marpolbul.2016.10.048; Proshad, R., Kormoker, T., Islam, S., Haque, M. A., Rahman, M., Mithu, M. R. (2018). Toxic effects of plastic on human health and environment: A consequences of health risk assessment in Bangladesh. International Journal of Health, 6(1), 1–5. https://doi.org/10.14419/ijh.v6i1.8655; Wong, J. K. H., Lee, K. K., Tang, K. H. D., Yap, P. -S. (2020). Microplastics in the freshwater and terrestrial environments: Prevalence, fates, impacts and sustainable solutions. Science of the Total Environment, 719, Article 137512. https://doi.org/10.1016/j.scitotenv.2020.137512; Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A. et al. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223), 768–771. https://doi.org/10.1126/science.1260352; Shen, M., Song, B., Zeng, G., Zhang, Y., Huang, W., Wen, X. et al. (2020). Are biodegradable plastics a promising solution to solve the global plastic pollution? Environmental Pollution, 263, Article 114469. https://doi.org/10.1016/j.envpol.2020.114469; Prata, J. C., da Costa, J. P., Lopes, I., Duarte, A. C., Rocha-Santos, T. (2020). Environmental exposure to microplastics: An overview on possible human health effects. Science of the Total Environment, 702, Article 134455. https://doi.org/10.1016/j.scitotenv.2019.134455; Luo, T., Zhang, Y., Wang, C., Wang, X., Zhou, J., Shen, M. et al. (2019). Maternal exposure to different sizes of polystyrene microplastics during gestation causes metabolic disorders in their offspring. Environmental Pollution, 255, Article 113122. https://doi.org/10.1016/j.envpol.2019.113122; Rani, L., Kaur, G., Sood, P., Kaushal, J., Srivastav, A. L. (2024). Remediation strategies for the removal of microplastics from the water. Chapter in a book: Role of Green Chemistry in Ecosystem Restoration to Achieve Environmental Sustainability. Elsevier, 2024. https://doi.org/10.1016/B978-0-443-15291-7.00004-3; Andrady, A. L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62(8), 1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030; Zarfl, C., Matthies, M. (2010). Are marine plastic particles transport vectors for organic pollutants to the Arctic? Marine Pollution Bulletin, 60(10), 1810–1814. https://doi.org/10.1016/j.marpolbul.2010.05.026; Europe, P. (2016). Plastics–the facts 2016: An analysis of European plastics production, demand and waste data. Association of Plastics Manufacturers. Retrieved from https://pdffox.com/plastics-a-the-facts-2016-plastics-europe-pdffree-647a6db69802e.html Accessed July 25, 2024; Lehner, R., Weder, C., Petri-Fink, A., Rothen-Rutishauser, B. (2019). Emergence of nanoplastic in the environment and possible impact on human health. Environmental Science and Technology, 53(4), 1748–1765. https://doi.org/10.1021/acs.est.8b05512; Picó, Y., Barceló, D. (2019). Analysis and prevention of microplastics pollution in water: Current perspectives and future directions. ACS Omega, 4(4), 6709–6719. https://doi.org/10.1021/acsomega.9b00222; Carpenter, E. J., Smith Jr, K. L. (1972). Plastics on the Sargasso Sea surface. Science, 175(4027), 1240–1241. https://doi.org/10.1126/science.175.4027.1240; Verschoor, A., De Poorter, L., Roex, E., Bellert, B. (2014). Quick scan and prioritization of microplastic sources and emissions. National Institute for Public Health and the Environment (RIVM), Advisory Letter 250012001.; Kole, P. J., Löhr, A. J., Van Belleghem, F. G., Ragas, A. M. (2017). Wear and tear of tyres: A stealthy source of microplastics in the environment. International Journal of Environmental Research and Public Health, 14(10), Article 1265. https://doi.org/10.3390/ijerph14101265; Amato-Lourenço, L. F., dos Santos Galvão, L., de Weger, L. A., Hiemstra, P. S., Vijver, M. G., Mauad, T. (2020). An emerging class of air pollutants: Potential effects of microplastics to respiratory human health? Science of the Total Environment, 749, Article 141676. https://doi.org/10.1016/j.scitotenv.2020.141676; Rillig, M. C., Ingraffia, R., de Souza Machado, A. A. (2017). Microplastic incorporation into soil in agroecosystems. Frontiers in Plant Science, 8, Article 1805. https://doi.org/10.3389/fpls.2017.01805; Cole, M., Lindeque, P., Halsband, C., Galloway, T. S. (2011). Microplastics as contaminants in the marine environment: A review. Marine Pollution Bulletin, 62(12), 2588–2597. https://doi.org/10.1016/j.marpolbul.2011.09.025; Yaroslavov, A. A., Arzhakov, M. S., Khokhlov, A. R. (2022). The life cycle of polymer materials: Problems and prospects. Herald of the Russian Academy of Sciences, 92(1), 18–24. https://doi.org/10.1134/S1019331622010087; GESAMP (2016). Sources, fate and effects of microplastics in the marine environment: Part two of a global assessment (IMO/FAO/UNESCO-IOC/UNIDO/ WMO/IAEA/UN/UNEP/UNDP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection). Rep. Stud. GESAMP, 2016; Lebreton, L. C. M., van der Zwet, J., Damsteeg, J.-W., Slat, B., Andrady, A., Reisser, J. (2017). River plastic emissions to the world’s oceans. Nature Communications, 8(1), Article 15611. https://doi.org/10.1038/ncomms15611; Meijer, L. J. J., van Emmerik, T., van der Ent, R., Schmidt, C., Lebreton, L. (2021). More than 1000 rivers account for 80% of global riverine plastic emissions into the ocean. Science Advances, 7(18), Article eaaz5803. https://doi.org/10.1126/sciadv.aaz5803; Liu, Y., Yang, Z.-H., Song, P.-P., Xu, R., Wang, H. (2018). Facile synthesis of Bi2MoO6/ZnSnO3 heterojunction with enhanced visible light photocatalytic degradation of methylene blue. Applied Surface Science, 430, 561–570. https://doi.org/10.1016/j.apsusc.2017.06.231; Ершова, А. А., Еремина, Т. Р., Дунаев, А. Л., Макеева, И. Н., Татаренко, Ю. А. (2021). Исследование загрязнения микропластиком морей российской Арктики и Дальнего Востока. Арктика: экология и экономика, 11(2), 164–177.; Gall, S. C., Thompson, R. C. (2015). The impact of debris on marine life. Marine Pollution Bulletin, 92(1–2), 170–179. https://doi.org/10.1016/j.marpolbul.2014.12.041; Li, J., Green, C., Reynolds, A., Shi, H., Rotchell, J. M. (2018). Microplastics in mussels sampled from coastal waters and supermarkets in the United Kingdom. Environmental Pollution, 241, 35–44. https://doi.org/10.1016/j.envpol.2018.05.03; Bergmann, M., Gutow, L., Klages, M. (2015). Marine anthropogenic litter Springer International Publishing, 2015. http://doi.org/10.1007/978-3-319-16510-3; Mato, Y., Isobe, T., Takada, H., Kanehiro, H., Ohtake, C., Kaminuma, T. (2001). Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environmental Science and Technology, 35(2), 31–8324. https://doi.org/10.1021/es0010498; Rios, L. M., Moore, C., Jones, P. R. (2007). Persistent organic pollutants carried by synthetic polymers in the ocean environment. Marine Pollution Bulletin, 54(8), 1230–1237. https://doi.org/10.1016/j.marpolbul.2007.03.022; Mato, Y., Isobe, T., Takada, H., Kanehiro, H., Ohtake, C., Kaminuma, T. (2001). Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environmental Science and Technology, 35(2), 318–324. https://doi.org/10.1021/es0010498; Ryan, P. G., Connell, A. D., Gardner, B. D. (1988). Plastic ingestion and PCBs in seabirds: Is there a relationship? Marine Pollution Bulletin, 19(4), 174–176. https://doi.org/10.1016/0025-326X(88)90674-1; WHO Regional Office for Europe, Copenhagen, Denmark, (2000). Chapter 5.10 Polychlorinated biphenyls (PCBs) Air Quality Guidelines — Second Edition. Retrieved from https://pdf4pro.com/view/chapter-5–10-polychlorinated-biphenyls-pcbs-37a6a0.html Accessed July 18, 2024; Thompson, R. C., Moore, C. J., vom Saal, F. S., Swan, S. H. (2009). Plastics, the environment and human health: Current consensus and future trends. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2153–2166. https://doi.org/10.1098/rstb.2009.0053; Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E., Svendsen, C. (2017). Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of the Total Environment, 586, 127–141. https://doi.org/10.1016/j.scitotenv.2017.01.190; Nizzetto, L., Futter, M., Langaas, S. (2016). Are agricultural soils dumps for microplastics of urban origin? Environmental Science and Technology, 50(20), 10777–10779. https://doi.org/10.1021/acs.est.6b04140; Geyer, R., Jambeck, J. R., Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), Article e1700782. https://doi.org/10.1126/sciadv.1700782; de Souza Machado, A. A., Kloas, W., Zarfl, C., Hempel, S., Rillig, M. C. (2018). Microplastics as an emerging threat to terrestrial ecosystems. Global Change Biology, 24(4), 1405–1416. https://doi.org/10.1111/gcb.14020; Sohoni, P., Sumpter, J. P. (1998). Several environmental oestrogens are also antiandrogens. Journal of Endocrinology, 158(3), 327–340. https://doi.org/10.1677/joe.0.1580327; Forte, M., Iachetta, G., Tussellino, M., Carotenuto, R., Prisco, M., De Falco, M. et al. (2016). Polystyrene nanoparticles internalization in human gastric adenocarcinoma cells. Toxicology in Vitro, 31, 126–136. https://doi.org/10.1016/j.tiv.2015.11.006; Hamoir, J., Nemmar, A., Halloy, D., Wirth, D., Vincke, G., Vanderplasschen, A. et al. (2003). Effect of polystyrene particles on lung microvascular permeability in isolated perfused rabbit lungs: Role of size and surface properties. Toxicology and Applied Pharmacology, 190(3), 278–285. https://doi.org/10.1016/S0041-008X(03)00192-3; Jeong, C.-B., Won, E.-J., Kang, H.-M., Lee, M.-C., Hwang, D.-S., Hwang, U.-K. et al. (2016). Microplastic size-dependent toxicity, oxidative stress induction, and pJNK and p-p38 activation in the monogonont rotifer (Brachionus koreanus). Environmental Science and Technology, 50(16), 8849–8857. https://doi.org/10.1021/acs.est.6b01441; Oberdürster, G. (2000). Toxicology of ultrafine particles: In vivo studies. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 358(1775), 2719–2740. https://doi.org/10.1098/rsta.2000.0680; Mattsson, K., Johnson, E. V., Malmendal, A., Linse, S., Hansson, L. A., Cedervall, T. (2017). Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Scientific Reports, 7(1), Article 11452. https://doi.org/10.1038/s41598-017-10813-0; Huerta Lwanga, E., Gertsen, H., Gooren, H., Peters, P., Salánki, T., van der Ploeg, M. et al. (2016). Microplastics in the terrestrial ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environmental Science and Technology, 50(5), 2685–2691. https://doi.org/10.1021/acs.est.5b05478; Schmid, O., Stoeger, T. (2016). Surface area is the biologically most effective dose metric for acute nanoparticle toxicity in the lung. Journal of Aerosol Science, 99, 133–143. https://doi.org/10.1016/j.jaerosci.2015.12.006; Dris, R., Gasperi, J., Saad, M., Mirande, C., Tassin, B. (2016). Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? Marine Pollution Bulletin, 104(1–2), 290–293. https://doi.org/10.1016/j.marpolbul.2016.01.006; Dris, R., Gasperi, J., Rocher, V., Saad, M., Renault, N., Tassin, B. (2015). Microplastic contamination in an urban area: A case study in Greater Paris. Environmental Chemistry, 12(5), 592–599. https://doi.org/10.1071/EN14167; Cai, L., Wang, J., Peng, J., Tan, Z., Zhan, Z., Tan, X. et al. (2017). Characteristic of microplastics in the atmospheric fallout from Dongguan city, China: Preliminary research and first evidence. Environmental Science and Pollution Research, 24(32), 24928–24935. https://doi.org/10.1007/s11356-017-0116-x; Liu, K., Wang, X., Fang, T., Xu, P., Zhu, L., Li, D. (2019). Source and potential risk assessment of suspended atmospheric microplastics in Shanghai. Science of the Total Environment, 675, 462–471. https://doi.org/10.1016/j.scitotenv.2019.04.110; Wright, S. L., Ulke, J., Font, A., Chan, K. L. A., Kelly, F. J. (2020). Atmospheric microplastic deposition in an urban environment and an evaluation of transport. Environment International, 136, Article 105411. https://doi.org/10.1016/j.envint.2019.105411; Abbasi, S., Keshavarzi, B., Moore, F., Turner, A., Kelly, F. J., Dominguez, A. O. et al. (2019). Distribution and potential health impacts of microplastics and microrubbers in air and street dusts from Asaluyeh County, Iran. Environmental Pollution, 244, 153–164. https://doi.org/10.1016/j.envpol.2018.10.039; Dehghani, S., Moore, F., Akhbarizadeh, R. (2017). Microplastic pollution in deposited urban dust, Tehran metropolis, Iran. Environmental Science and Pollution Research, 24(25), 20360–20371. https://doi.org/10.1007/s11356-017-9674-1; Vianello, A., Jensen, R. L., Liu, L., Vollertsen, J. (2019). Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin. Scientific Reports, 9(1), Article 8670. https://doi.org/10.1038/s41598-019-45054-w; Gasperi, J., Dris, R., Mirande-Bret, C., Mandin, C., Langlois, V., Tassin, B. (20– 24 September, 2015). First overview of microplastics in indoor and outdoor air. 15th EuCheMS International Conference on Chemistry and the Environment. Leipzig, Germany, 2015.; Dris, R., Gasperi, J., Mirande, C., Mandin, C., Guerrouache, M., Langlois, V. et al. (2017). A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environmental Pollution, 221, 453–458. https://doi.org/10.1016/j.envpol.2016.12.013; Sridharan, S., Kumar, M., Singh, L., Bolan, N. S., Saha, M. (2021). Microplastics as an emerging source of particulate air pollution: A critical review. Journal of Hazardous Materials, 418, Article 126245. https://doi.org/10.1016/j.jhazmat.2021.126245; Catarino, A. I., Macchia, V., Sanderson, W. G., Thompson, R. C., Henry, T. B. (2018). Low levels of microplastics (MP) in wild mussels indicate that MP ingestion by humans is minimal compared to exposure via household fibres fallout during a meal. Environmental Pollution, 237, 675–684. https://doi.org/10.1016/j.envpol.2018.02.069; Alfaro-Núñez, A., Astorga, D., Cáceres-Farías, L., Bastidas, L., Soto Villegas, C., Macay, K. et al. (2021). Microplastic pollution in seawater and marine organisms across the Tropical Eastern Pacific and Galápagos. Scientific Reports, 11(1), Article 6424. https://doi.org/10.1038/s41598-021-85939-3; Mason, S. A., Welch, V. G., Neratko, J. (2018). Synthetic polymer contamination in bottled water. Frontiers in Chemistry, 6, Article 407. https://doi.org/10.3389/fchem.2018.00407; Mintenig, S. M., Löder, M. G., Primpke, S., Gerdts, G. (2019). Low numbers of microplastics detected in drinking water from ground water sources. Science of the Total Environment, 648, 631–635. https://doi.org/10.1016/j.scitotenv.2018.08.178; World Wide Fund For Nature (2019). No plastic in nature: Assessing plastic ingestion from nature to people. Retrieved from https://wwfint.awsassets.panda.org/downloads/plastic_ingestion_web_spreads.pdf Accessed April 15, 2024.; Lithner, D., Larsson, Å., Dave, G. (2011). Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Science of the Total Environment, 409(18), 3309–3324. https://doi.org/10.1016/j.scitotenv.2011.04.038; Li, J., Yang, D., Li, L., Jabeen, K., Shi, H. (2015). Microplastics in commercial bivalves from China. Environmental Pollution, 207, 190–195. https://doi.org/10.1016/j.envpol.2015.09.018; Devriese, L. I., van der Meulen, M. D., Maes, T., Bekaert, K., Paul-Pont, I., Frère, L. et al. (2015). Microplastic contamination in brown shrimp (Crangon crangon, Linnaeus 1758) from coastal waters of the Southern North Sea and Channel area. Marine Pollution Bulletin, 98(1–2), 179–187. https://doi.org/10.1016/j.marpolbul.2015.06.051; Liebezeit, G., Liebezeit, E. (2014). Synthetic particles as contaminants in German beers. Food Additives and Contaminants: Part A, 31(9), 1574–1578. https://doi.org/10.1080/19440049.2014.945099; Liebezeit, G., Liebezeit, E. (2013). Non-pollen particulates in honey and sugar. Food Additives and Contaminants: Part A, 30(12), 2136–2140. https://doi.org/10.1080/19440049.2013.843025; Yang, D., Shi, H., Li, L., Li, J., Jabeen, K., Kolandhasamy, P. (2015). Microplastic pollution in table salts from China. Environmental Science and Technology, 49(22), 13622–13627. https://doi.org/10.1021/acs.est.5b03163; Schneider, M., Stracke, F., Hansen, S., Schaefer, U. F. (2009). Nanoparticles and their interactions with the dermal barrier. Dermato-Endocrinology, 1(4), 197– 206. https://doi.org/10.4161/derm.1.4.9501; Alvarez-Román, R., Naik, A., Kalia, Y. N., Guy, R. H., Fessi, H. (2004). Skin penetration and distribution of polymeric nanoparticles. Journal of Controlled Release, 99(1), 53–62. https://doi.org/10.1016/j.jconrel.2004.06.015; Campbell, C. S. J., Contreras-Rojas, L. R., Delgado-Charro, M. B., Guy, R. H. (2012). Objective assessment of nanoparticle disposition in mammalian skin after topical exposure. Journal of Controlled Release, 162(1), 201–207. https://doi.org/10.1016/j.jconrel.2012.06.024; Hernandez, L. M., Yousefi, N., Tufenkji, N. (2017). Are there nanoplastics in your personal care products? Environmental Science and Technology Letters, 4(7), 280– 285. https://doi.org/10.1021/acs.estlett.7b00187; Gehr, P., Bachofen, M., Weibel, E. R. (1978). The normal human lung: Ultrastructure and morphometric estimation of diffusion capacity. Respiration Physiology, 32(2), 121–140. https://doi.org/10.1016/0034-5687(78)90104-4; Rothen-Rutishauser, B., Blank, F., Mühlfeld, C., Gehr, P. (2008). In vitro models of the human epithelial airway barrier to study the toxic potential of particulate matter. Expert Opinion on Drug Metabolism and Toxicology, 4(8), 1075–1089. https://doi.org/10.1517/17425255.4.8.1075; Borm, P. J. A., Kreyling, W. (2004). Toxicological hazards of inhaled nanoparticles — potential implications for drug delivery. Journal of Nanoscience and Nanotechnology, 4(5), 521–531. https://doi.org/10.1166/jnn.2004.081; Huang, D., Tao, J., Cheng, M., Deng, R., Chen, S., Yin, L. et al. (2021). Microplastics and nanoplastics in the environment: Macroscopic transport and effects on creatures. Journal of Hazardous Materials, 407, Article 124399. https://doi.org/10.1016/j.jhazmat.2020.124399; Wang, C., Zhao, J., Xing, B. (2021). Environmental source, fate, and toxicity of microplastics. Journal of Hazardous Materials, 407, Article 124357. https://doi.org/10.1016/j.jhazmat.2020.124357; Yaka, M., Ehirchiou, A., Alkandry, T. T. S., Sair, K. (2015). Huge plastic bezoar: A rare cause of gastrointestinal obstruction. Pan African Medical Journal, 21(1), Article 286. https://doi.org/10.11604/pamj.2015.21.286.7169; Ramasamy, B. S. S., Palanisamy, S. (2021). A review on occurrence, characteristics, toxicology and treatment of nanoplastic waste in the environment. Environmental Science and Pollution Research, 28(32), 43258–43273. https://doi.org/10.1007/s11356-021-14883-6; Adeniran, A. A., Shakantu, W. (2022). The health and environmental impact of plastic waste disposal in South African Townships: A review. International Journal of Environmental Research and Public Health, 19(2), Article 779. https://doi.org/10.3390/ijerph19020779; Valsesia, A., Parot, J., Ponti, J., Mehn, D., Marino, R., Melillo, D. et al. (2021). Detection, counting and characterization of nanoplastics in marine bioindicators: A proof of principle study. Microplastics and Nanoplastics, 1(1), Article 5. https://doi.org/10.1186/s43591-021-00005-z; Mahler, G. J., Esch, M. B., Tako, E., Southard, T. L., Archer, S. D., Glahn, R. P. et al. (2012). Oral exposure to polystyrene nanoparticles affects iron absorption. Nature Nanotechnology, 7(4), 264–271. https://doi.org/10.1038/nnano.2012.3; World Health Organization. (2019). Microplastics in drinking-water. Retrieved from https://www.geatech.eu/wp-content/uploads/2019/08/MICROPLASTICS-IN-DRINKING-WATER.pdf Accessed April 15, 2024; Benford, D., Bolger, P. M., Carthew, P., Coulet, M., DiNovi, M., Leblanc, J.-C. et al. (2010). Application of the Margin of Exposure (MOE) approach to substances in food that are genotoxic and carcinogenic. Food and Chemical Toxicology, 48, S2–S24. https://doi.org/10.1016/j.fct.2009.11.003; Ragusa, A., Svelato, A., Santacroce, C., Catalano, P., Notarstefano, V., Carnevali, O. et al. (2021). Plasticenta: First evidence of microplastics in human placenta. Environment International, 146, Article 106274. https://doi.org/10.1016/j.envint.2020.106274; Pironti, C., Ricciardi, M., Motta, O., Miele, Y., Proto, A., Montano, L. (2021). Microplastics in the environment: Intake through the food web, human exposure and toxicological effects. Toxics, 9(9), Article 224. https://doi.org/10.3390/toxics9090224; Fries, E., Dekiff, J. H., Willmeyer, J., Nuelle, M. T., Ebert, M., Remy, D. (2013). Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environmental Science: Processes and Impacts, 15(10), 1949–1956. https://doi.org/10.1039/c3em00214d; Ricciardi, M., Pironti, C., Motta, O., Miele, Y., Proto, A., Montano, L. (2021). Microplastics in the aquatic environment: Occurrence, persistence, analysis, and human exposure. Water, 13(7), Article 973. https://doi.org/10.3390/w13070973; Srivastava, A., Srivastava, A. (2020). Microplastics: An Emerging Threat to the Aquatic Ecosystem. Chapter in a book: Environmental Biotechnology Vol. 1. Environmental Chemistry for a Sustainable World. Springer, Cham. https://doi.org/10.1007/978-3-030-38192-9_5; Arzhakova, O. G., Arzhakov, M. S., Badamshina, E. R., Bryuzgina, E. B., Bryuzgin, E. V., Bystrova, A. V. E. et al. (2022). Polymers for the future. Russian Chemical Reviews, 91(12), Article RCR5062. https://doi.org/10.57634/RCR5062; Thompson, R. C., Olsen, Y., Mitchell, R. P., Davis, A., Rowland, S. J., John, A. W. G. et al. (2004). Lost at sea: Where is all the plastic? Science, 304(5672), 838–838. https://doi.org/10.1126/science.1094559; Frias, J. P. G. L., Otero, V., Sobral, P. (2014). Evidence of microplastics in samples of zooplankton from Portuguese coastal waters. Marine Environmental Research, 95, 89–95. https://doi.org/10.1016/j.marenvres.2014.01.001; Vianello, A., Boldrin, A., Guerriero, P., Moschino, V., Rella, R., Sturaro, A. et al. (2013). Microplastic particles in sediments of Lagoon of Venice, Italy: First observations on occurrence, spatial patterns and identification. Estuarine, Coastal and Shelf Science, 130, 54–61. https://doi.org/10.1016/j.ecss.2013.03.022; Reddy, M. S., Shaik Basha, Adimurthy, S., Ramachandraiah, G. (2006). Description of the small plastics fragments in marine sediments along the AlangSosiya ship-breaking yard, India. Estuarine, Coastal and Shelf Science, 68(3–4), 656–660. https://doi.org/10.1016/j.ecss.2006.03.018; Ярославов, А. А., Аржаков, М. С., Хохлов, А. Р. (2022). Одноразовая полимерная упаковка: проблема без решения? Вестник Российской Академии Наук, 92(10), 961–970.; Harrison, J. P., Ojeda, J. J., Romero-González, M. E. (2012). The applicability of reflectance micro-Fourier-transform infrared spectroscopy for the detection of synthetic microplastics in marine sediments. Science of the Total Environment, 416, 455–463. https://doi.org/10.1016/j.scitotenv.2011.11.078; Wenning, M., Seiler, H., Scherer, S. (2002). Fourier-transform infrared microspectroscopy, a novel and rapid tool for identification of yeasts. Applied and Environmental Microbiology, 68(10), 4717–4721. https://doi.org/10.1128/AEM.68.10.4717-4721.2002; Ojeda, J. J., Romero-Gonzalez, M. E., Banwart, S. A. (2009). Analysis of bacteria on steel surfaces using reflectance micro-Fourier transform infrared spectroscopy. Analytical Chemistry, 81(15), 6467–6473. https://doi.org/10.1021/ac900841c; Wesch, C., Elert, A. M., Wörner, M., Braun, U., Klein, R., Paulus, M. (2017). Assuring quality in microplastic monitoring: About the value of clean-air devices as essentials for verified data. Scientific Reports, 7(1), Article 5424. https://doi.org/10.1038/s41598-017-05838-4; PhysicsOpenLab (2022). Polymer Analysis using Raman Spectroscopy. Retrieved from https://physicsopenlab.org/2022/05/08/polymer-analysis-usingraman-spectroscopy/ Accessed April 15, 2024; Kwak, J. I., An, Y.-J. (2021). Microplastic digestion generates fragmented nanoplastics in soils and damages earthworm spermatogenesis and coelomocyte viability. Journal of Hazardous Materials, 402, Article 124034. https://doi.org/10.1016/j.jhazmat.2020.124034; Liu, Z., Li, Y., Pérez, E., Jiang, Q., Chen, Q., Jiao, Y. et al. (2021). Polystyrene nanoplastic induces oxidative stress, immune defense, and glycometabolism change in Daphnia pulex: Application of transcriptome profiling in risk assessment of nanoplastics. Journal of Hazardous Materials, 402, Article 123778. https://doi.org/10.1016/j.jhazmat.2020.123778; Hidalgo-Ruz, V., Gutow, L., Thompson, R. C., Thiel, M. (2012). Microplastics in the marine environment: A review of the methods used for identification and quantification. Environmental Science and Technology, 46(6), 3060–3075. https://doi.org/10.1021/es2031505; Horton, A. A., Svendsen, C., Williams, R. J., Spurgeon, D. J., Lahive, E. (2017). Large microplastic particles in sediments of tributaries of the River Thames, UK–Abundance, sources and methods for effective quantification. Marine Pollution Bulletin, 114(1), 218–226. https://doi.org/10.1016/j.marpolbul.2016.09.004; Primpke, S., Lorenz, C., Rascher-Friesenhausen, R., Gerdts, G. (2017). An automated approach for microplastics analysis using focal plane array (FPA) FTIR microscopy and image analysis. Analytical Methods, 9(9), 1499–1511. https://doi.org/10.1039/c6ay02476a; Koelmans, A. A., Besseling, E., Shim, W. J. (2015). Nanoplastics in the aquatic environment. Critical review. Chapter in a book: Marine anthropogenic litter. Springer, Cham, 2015. https://doi.org/10.1007/978-3-319-16510-3_12; https://www.fsjour.com/jour/article/view/567

  18. 18
    Academic Journal

    Πηγή: Doklady of the National Academy of Sciences of Belarus; Том 68, № 1 (2024); 72-78 ; Доклады Национальной академии наук Беларуси; Том 68, № 1 (2024); 72-78 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2024-68-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/1177/1178; Bonner, W. N. Neck collars on fur seals, Arctocephalus gazella at South Georgia / W. N. Bonner, T. S. McCann // British Antarctic Survey Bulletin. – 1982. – Vol. 57. – P. 73–77.; Croxall, J. Entanglement in man-made debris of Antarctic fur seals at Bird Island, South Georgia / J. Croxall, S. Rodwell, I. Boyd // Marine Mammal Science. – 1990. – Vol. 6, N 3. – P. 221–233. https://doi.org/10.1111/j.1748-7692.1990.tb00246.x; High abundances of microplastic pollution in deep-sea sediments: evidence from Antarctica and the Southern Ocean / E. M. Cunningham [et al.] // Environmental Science Technology. – 2020. – Vol. 54, N 21. – P. 13661–13671. https://doi.org/10.1021/acs.est.0c03441; Zhang, M. Marine plastic pollution in the polar south: Responses from Antarctic Treaty System / M. Zhang, M. Haward, J. McGee // Polar Record. – 2020. – Vol. 56, N 36. – P. 1–9. https://doi.org/10.1017/s0032247420000388; Plastics everywhere: first evidence of polystyrene fragments inside the common Antarctic collembolan Cryptopygus antarcticus / E. Bergami [et al.] // Biology Letters. – 2020. – Vol. 16, N 6. https://doi.org/10.1098/rsbl.2020.0093; Macroand Microplastics in the Antarctic Environment: Ongoing Assessment and Perspectives / E. Rota [et al.] // Environments. – 2022. – Vol. 9, N 7. – Art. 93. https://doi.org/10.3390/environments9070093; Microplastic in the surface waters of the Ross Sea (Antarctica): occurrence, distribution and characterization by FTIR / A. Cincinelli [et al.] // Chemosphere. – 2017. – Vol. 175. – P. 391–400. https://doi.org/10.1016/j.chemosphere.2017.02.024; Microplastics in marine sediments near Rothera Research Station, Antarctica / S. Reed [et al.] // Marine Pollution Bulletin. – 2018. – Vol. 133. – P. 460–463. https://doi.org/10.1016/j.marpolbul.2018.05.068; Plastics in sea surface waters around the Antarctic Peninsula / A. L. d. F. Lacerda [et al.] // Scientific Reports. – 2019. – Vol. 9. – Art. 3977. https://doi.org/10.1038/s41598-019-40311-4; Microplastics in the Weddell Sea (Antarctica): a forensic approach for discrimination between environmental and vessel-induced microplastics / C. Leistenschneider [et al.] // Environmental Science & Technology. – 2021. – Vol. 55, N 23. – P. 15900–15911. https://doi.org/10.1021/acs.est.1c05207; First detection of microplastics in the freshwater of an Antarctic Specially Protected Area / M. González-Pleiter [et al.] // Marine Pollution Bulletin. – 2020. – Vol. 161. – Art. 111811. https://doi.org/10.1016/j.marpolbul.2020.111811; A pilot study about microplastics and mesopelagic in an Antarctic glacier / M. González-Pleiter [et al.] // The Cryosphere. – 2021. – Vol. 15, N 6. – P. 2531–2539. https://doi.org/10.5194/tc-15-2531-2021; First evidence of microplastics in Antarctic snow / A. R. Aves [et al.] // The Cryosphere. – 2022. – Vol. 16, N 6. – P. 2127–2145. https://doi.org/10.5194/tc-16-2127-2022; Major and trace elements content in freshwater lakes of Vecherny Oasis, Enderby Land, East Antarctica / S. Kakareka [et al.] // Environmental Pollution. – 2019. – Vol. 255, N 1. – Art. 113126. https://doi.org/10.1016/j.envpol.2019.113126; Preliminary investigation on effects of size, polymer type, and surface behavior on the vertical mobility of microplastics in a porous media / V. P. Ranjan [et al.] // Science of the Total Environment. – 2023. – Vol. 864. – Art. 161148. https://doi.org/10.1016/j.scitotenv.2022.161148; The transport and fate of microplastic fibers in the Antarctic: The role of multiple global processes / E. M. Cunningham [et al.] // Frontiers in Marine Science. – 2022. – Vol. 9. – Art. 1056081. https://doi.org/10.3389/fmars.2022.1056081; https://doklady.belnauka.by/jour/article/view/1177

  19. 19
  20. 20