-
1Academic Journal
Authors: Aleksey Yu. Ma-Van-de, Elena V. Fefelova, Yuri A. Shirshov, Vasilina D. Ma-Van-de, Artur S. Emelyanov, Алексей Юрьевич Ма-Ван-дэ, Елена Викторовна Фефелова, Юрий Александрович Ширшов, Василина Денисовна Ма-Ван-дэ, Артур Сергоевич Емельянов
Contributors: Работа выполнена при финансовой поддержке ФГБОУ ВО «Читинская государственная медицинская академия» Минздрава РФ в рамках утвержденного плана НИР.
Source: Complex Issues of Cardiovascular Diseases; Том 14, № 4 (2025); 161-175 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 14, № 4 (2025); 161-175 ; 2587-9537 ; 2306-1278
Subject Terms: Нейросеть, Ischemic stroke, Neuroinflammation, Microglia, Neural network, Ишемический инсульт, Нейровоспаление, Микроглия
File Description: application/pdf
Relation: https://www.nii-kpssz.com/jour/article/view/1705/1072; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1705/2121; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1705/2122; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1705/2123; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1705/2124; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1705/2125; Василевский Д.И., Баландов С.Г., Анисимова К.А., Завгородняя М.В. Патогенез артериальной гипертензии (лекция) // Российские биомедицинские исследования. 2020. №3.; Hengel F.E. Arterielle Hypertonie – Eine Übersicht für den ärztlichen Alltag / F.E. Hengel, C. Sommer, U. Wenzel – DOI 10.1055/a-1577-8663 // Deutsche Medizinische Wochenschrift. – 2022. – Bd. 147, № 7. – S. 414-428.; Личикаки В.А., Мордовин В.Ф., Пекарский С.Е., Зюбанова И.В., Манукян М.А., Солонская Е.И., Вторушина А.А., Хунхинова С.А., Сухарева А.Е., Усов В.Ю., Фальковская А.Ю. Особенности изменений показателей МР-томографии головного мозга под влиянием ренальной денервации у больных с резистентной гипертензией // РКЖ. 2023. №7.; Alves de Lima K. Meningeal Immunity and Its Function in Maintenance of the Central Nervous System in Health and Disease / K. Alves de Lima, J. Rustenhoven, J. Kipnis. – DOI 10.1146/annurev-immunol-102319-103410 // Annual Review of Immunology. – 2020. – Vol. 38. – P. 597-620.; The Neurovascular Unit: Effects of Brain Insults During the Perinatal Period / A.H. Bell, S.L. Miller, M. Castillo-Melendez, A. Malhotra. – DOI 10.3389/fnins.2019.01452 // Frontiers in Neuroscience. – 2020. – Vol. 13. – P. 1452; Prinz M., Masuda T., Wheeler M.A., Quintana F.J. Microglia and Central Nervous System-Associated Macrophages-From Origin to Disease Modulation // Annual Review of Immunology. 2021. Vol. 39. P. 251-277.; Stanley E.R., Biundo F., Gökhan Ş., Chitu V. Differential regulation of microglial states by colony stimulating factors // Frontiers in Cellular Neuroscience. 2023. Vol. 17. P. 1275935.; Xiang C., Li H., Tang W. Targeting CSF-1R represents an effective strategy in modulating inflammatory diseases // Pharmacological Research. 2023. Vol. 187. P. 106566.; Feng X., Feng W., Ji Y., Jin T., Li J. et al. Transforming growth factor-beta1 negatively regulates SOCS7 via EGR1 during wound healing // Cell Communication and Signaling. 2022. Vol. 20.; Ма-Ван-дэ А.Ю. Роль отдельных молекул нейровоспаления в патогенезе ишемического инсульта. Часть I / А.Ю. Ма-Ван-дэ, Е.В. Фефелова, Ю.А. Ширшов. – DOI 10.52485/19986173_2024_1_139 // Забайкальский медицинский вестник. – 2024. – Т. 1. – С. 139-147.; Wang C., Zong S., Cui X., Wang X., Wu S., Wang L., Liu Y., Lu Z. The effects of microglia-associated neuroinflammation on Alzheimer’s disease // Front Immunol. 2023. Vol. 14. P. 1117172. DOI:10.3389/fimmu.2023.1117172; Gibon, J. Neurotrophins and proneurotrophins: focus on synaptic activity and plasticity in the brain / J. Gibon, P. A. Barker // The Neuroscientist. – 2017. – Vol. 23, № 6. – P. 587-604.; Sims, S. K. Brain-Derived Neurotrophic Factor and Nerve Growth Factor Therapeutics for Brain Injury: The Current Translational Challenges in Preclinical and Clinical Research / S. K. Sims, B. Wilken-Resman, C. J. Smith, A. Mitchell, L. McGonegal, C. Sims-Robinson // Neural Plasticity. – 2022. – Art. 3889300.; Cesca, F. The synapsins: key actors of synapse function and plasticity / F. Cesca, P. Baldelli, F. Valtorta, F. Benfenati // Progress in Neurobiology. – 2010. – Vol. 91. – P. 313-348.; Meng, Mao. MicroRNA-195 prevents hippocampal microglial/macrophage polarization towards the M1 phenotype induced by chronic brain hypoperfusion through regulating CX3CL1/CX3CR1 signaling / Mao Meng, Yi Xu, Xin-Yu Zhang, Lin Yang, Xiao-Bin An, Yang Qu, et al. // Journal of Neuroinflammation. – 2020. – Vol. 17, № 1. – Art. 244. – DOI:10.1186/s12974-020-01919-w.; Navabi, S. P. Microglia-induced neuroinflammation in hippocampal neurogenesis following traumatic brain injury / S. P. Navabi, F. Badreh, M. Khombi Shooshtari, S. Hajipour, S. Moradi Vastegani, S. E. Khoshnam // Heliyon. – 2024. – Vol. 10, № 16. – Art. e35869. – DOI:10.1016/j.heliyon.2024.e35869.; Fan, Qingyuan. The intracellular domain of CX3CL1 regulates adult neurogenesis and Alzheimer’s amyloid pathology / Qingyuan Fan, Manoshi Gayen, Neeraj Singh, Fan Gao, Wanxia He, Xiangyou Hu, et al. // Journal of Experimental Medicine. – 2019. – Vol. 216, № 8. – P. 1891-1903. – DOI:10.1084/jem.20182238.; Palsamy K., Chen J.Y., Skaggs K., Qadeer Y., Connors M., Cutler N., Richmond J., Kommidi V., Poles A., Affrunti D., Powell C., Goldman D., Parent J.M. Microglial depletion after brain injury prolongs inflammation and impairs brain repair, adult neurogenesis and pro-regenerative signaling // Glia. 2023. Vol. 71, №11. P. 2642-2663. DOI:10.1002/glia.24444; Li, Y. TREM2: potential therapeutic targeting of microglia for Alzheimer’s disease / Y. Li, H. Xu, H. Wang, K. Yang, J. Luan, S. Wang // Biomed Pharmacother. – 2023. – Vol. 165. – Art. 115218. – DOI:10.1016/j.biopha.2023.115218.; Andreone, B. J. Alzheimer’s-associated PLCγ2 is a signaling node required for both TREM2 function and the inflammatory response in human microglia / B. J. Andreone, L. Przybyla, C. Llapashtica, A. Rana, S. S. Davis, B. van Lengerich, et al. // Nat Neurosci. – 2020. – Vol. 23. – P. 927–938. – DOI:10.1038/s41593-020-0650-6.; Peng, B. Intrahepatic macrophage reprogramming associated with lipid metabolism in hepatitis B virus-related acute-on-chronic liver failure / B. Peng, H. Li, K. Liu, P. Zhang, Q. Zhuang, J. Li, et al. // J Transl Med. – 2023. – Vol. 21. – Art. 419. – DOI:10.1186/s12967-023-04294-1.; Kawabori M., Kacimi R., Kauppinen T., Calosing C., Kim J.Y., Hsieh C.L., Nakamura M.C., Yenari M.A. Triggering receptor expressed on myeloid cells 2 (TREM2) deficiency attenuates phagocytic activities of microglia and exacerbates ischemic damage in experimental stroke // J Neurosci. 2015. Vol. 35, №8. P. 3384-3396. DOI:10.1523/JNEUROSCI.2620-14.2015.; Zhu H., Hu S., Li Y., Sun Y., Xiong X., Hu X., Chen J., Qiu S. Interleukins and Ischemic Stroke // Front Immunol. 2022. Vol. 13. P. 828447. DOI:10.3389/fimmu.2022.828447.; Mauri, D. N. LIGHT, a new member of the TNF superfamily, and lymphotoxin alpha are ligands for herpesvirus entry mediator / D. N. Mauri, R. Ebner, R. I. Montgomery, K. D. Kochel, T. C. Cheung, et al. // Immunity. – 1998. – Vol. 8. – P. 21-30.; Abraira, L. Exploratory study of blood biomarkers in patients with post-stroke epilepsy / L. Abraira, S. López-Maza, M. Quintana, E. Fonseca, M. Toledo, et al. // European Stroke Journal. – 2024. – Vol. 9, № 3. – P. 763-771.; Machine learning approaches for predicting hypertension and its associated factors using population-level data from three south asian countries / S.M.S. Islam, A. Talukder, M.A. Awal, et al. // Front Cardiovasc Med. 2022. Vol. 9. P. 839379. DOI:10.3389/fcvm.2022.839379; Survey and evaluation of hypertension machine learning research / C. du Toit, T.Q.B. Tran, N. Deo, et al. // J Am Heart Assoc. 2023. Vol. 12, №9. P. e027896. DOI:10.1161/JAHA.122.027896.; Артериальная гипертензия у взрослых. Клинические рекомендации 2024 / Ж.Д. Кобалава, А.О. Конради, С.В. Недогода [и др.]. – DOI 10.15829/1560-4071-2024-6117 // Российский кардиологический журнал. – 2024 – Т. 29, № 9. – 6117.; Артериальная гипертензия у взрослых: клинические рекомендации / Министерство здравоохранения Российской Федерации; разработчик: Общероссийская общественная организация «Российское кардиологическое общество». – 2022. – ID КР62_2. – Кодирование по МКБ: I10, I11, I12, I13, I15. – Возрастная категория: взрослые.; Ишемический инсульт и транзиторная ишемическая атака: клинические рекомендации / Министерство здравоохранения Российской Федерации; разработчик: Всероссийское общество неврологов, Национальное общество по изучению инсульта. – 2022. – ID КР92_2. – Кодирование по МКБ: I63, I64, G45. – Возрастная категория: взрослые.; разработчик: Всероссийское общество неврологов, Национальное общество по изучению инсульта. – 2024. – ID КР92_3. – Кодирование по МКБ: I63, I64, G45. – Возрастная категория: взрослые. – URL: https://cr.minzdrav.gov.ru/recomend/274_2 (дата обращения: 07.02.2025).; Survey and evaluation of hypertension machine learning research / C. du Toit, T.Q.B. Tran, N. Deo, et al. // J Am Heart Assoc. 2023. Vol. 12, №9. P. e027896. DOI:10.1161/JAHA.122.027896; Optogenetic assessment of VIP, PV, SOM and NOS inhibitory neuron activity and cerebral blood flow regulation in mouse somato-sensory cortex / M.B. Krawchuk, C.F. Ruff, X.Yang [et al.]. – DOI 10.1177/0271678X19870105 // Journal of Cerebral Blood Flow & Metabolism. – 2020. – Vol. 40, № 7. – P. 1427-1440.; nNOS-expressing interneurons control basal and behaviorally evoked arterial dilation in somatosensory cortex of mice / C.T. Echagarruga, K.W. Gheres, J.N. Norwood, P.J. Drew. – DOI 10.7554/eLife.60533 // eLife. – 2020. – Vol. 9. – P. e60533.; Key Aspects of Neurovascular Control Mediated by Specific Populations of Inhibitory Cortical Interneurons / L. Lee, L. Boorman, E. Glendenning [et al.]. – DOI 10.1093/cercor/bhz251 // Cerebral Cortex. – 2020. – Vol. 30, № 4. – P. 2452-2464.; Organizational hierarchy and structural diversity of microvascular pericytes in adult mouse cortex / R.I. Grant, D.A. Hartmann, R.G. Underly [et al.]. – DOI 10.1177/0271678X17732229 // Journal of Cerebral Blood Flow & Metabolism. – 2019. – Vol. 39, № 3. – P. 411-425.; Triggering receptor expressed on myeloid cells 2 (TREM2) deficiency attenuates phagocytic activities of microglia and exacerbates ischemic damage in experimental stroke / M. Kawabori, R. Kacimi, T. Kauppinen [et al]. – DOI 10.1523/JNEUROSCI.2620-14.2015 // Journal of Neuroscience. – 2015. – Vol. 35, № 8. – P. 3384-3396.
-
2Academic Journal
Authors: D. F. Avgustinovich, I. V. Chadaeva, A. V. Kizimenko, A. V. Kovner, D. V. Bazovkina, D. V. Ponomarev, V. I. Evseenko, V. A. Naprimerov, M. N. Lvova, Д. Ф. Августинович, И. В. Чадаева, А. В. Кизименко, А. В. Ковнер, Д. В. Базовкина, Д. В. Пономарёв, В. И. Евсеенко, В. А. Напримеров, М. Н. Львова
Contributors: The work was supported by the Russian Foundation for Basic Research (grant No. 20-04-00139), by a government-funded project of the ICG SB RAS (grant No. FWNR-2022-0021), and in part by a state assignment for the Institute of Solid State Chemistry and Mechanochemistry SB RAS (project No. 121032500061-7).
Source: Vavilov Journal of Genetics and Breeding; Том 29, № 1 (2025); 92-107 ; Вавиловский журнал генетики и селекции; Том 29, № 1 (2025); 92-107 ; 2500-3259 ; 10.18699/vjgb-25-01
Subject Terms: поведение, Opisthorchis felineus infection, chronic ethanol consumption, liver, brain, microglia, proinflammatory cytokine, behavior, инфекция Opisthorchis felineus, хроническое потребление этанола, печень, мозг, микроглия, провоспалительные цитокины
File Description: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/4480/1918; Adeva M.M., Souto G., Donapetry C., Portals M., Rodriguez A., Lamas D. Brain edema in diseases of different etiology. Neurochem Int. 2012;61(2):166-174. doi:10.1016/j.neuint.2012.05.007; Akhmedov V.A., Kritevich M.A. Chronic opisthorchiasis is a multipleorgan pathology. Vestnik NGU. Seriya: Biologiya, Klinicheskaya Meditsina = Vestnik NSU. Series: Biology and Clinical Medicine. 2009;7(1):118-121. [https://nsu.ru/xmlui/bitstream/handle/nsu/4344/21.pdf] (in Russian); Avgustinovich D.F., Marenina M.K., Zhanaeva S.Y., Tenditnik M.V., Katokhin A.V., Pavlov K.S., Sivkov A.Y., Vishnivetskaya G.B., Lvova M.N., Tolstikova T.G., Mordvinov V.A. Combined effects of social stress and liver fluke infection in a mouse model. Brain Behav Immun. 2016;53:262-272. doi:10.1016/j.bbi.2016.01.012; Avgustinovich D., Kovner A., Kashina E., Shatskaya N., Vishnivetskaya G., Bondar N., Lvova M. The pathogenic potential of the combined action of chronic Opisthorchis felineus infection and repeated social defeat stress in C57BL/6 mice. Int J Parasit. 2021;51:353-363. doi:10.1016/j.ijpara.2020.10.003; Avgustinovich D., Kizimenko A., Marenina M., Lvova M., Kovner A., Orlovskaya I., Toporkova L., Goiman E., Tsyganov M., Ponomarev D. Prolonged liver fluke infection combined with alcoholization: an experimental mouse model. Exp Parasitol. 2022a;242: 108399. doi:10.1016/j.exppara.2022.108399; Avgustinovich D.F., Tenditnik M.V., Bondar N.P., Marenina M.K., Zhanaeva S.Y., Lvova M.N., Katokhin A.V., Pavlov K.S., Evseenko V.I., Tolstikova T.G. Behavioral effects and inflammatory markers in the brain and periphery after repeated social defeat stress burdened by Opisthorchis felineus infection in mice. Physiol Behav. 2022b;252:113846. doi:10.1016/j.physbeh.2022.113846; Bajaj J.S. Alcohol, liver disease and the gut microbiota. Nat Rev Gastroenterol Hepatol. 2019;16(4):235-246. doi:10.1038/s41575-018-0099-1; Belzung C. Hippocampal mossy fibres: implication in novelty reactions or in anxiety behaviours? Behav Brain Res. 1992;51(2):149-155. doi:10.1016/s0166-4328(05)80208-6; Bernstein D.E., Dickinson G.M., Kim K.-J., Al Karawi M.A., Barkin J.S. Parasitic causes of pancreatic and biliary tract disease: a growing concern in a highly mobile population. Mil Med. 1994; 159(4):331-338. doi:10.1093/milmed/159.4.331; Bilzer M., Roggel F., Gerbes A.L. Role of Kupffer cells in host defense and liver disease. Liver Int. 2006;26(10):1175-1186. doi:10.1111/j.1478-3231.2006.01342.x; Bishehsari F., Magno E., Swanson G., Desai V., Voigt R.M., Forsyth C.B., Keshavarzian A. Alcohol and gut-derived inflammation. Alcohol Res. 2017;38(2):163-171; Blednov Y.A., Bajo M., Roberts A.J., Da Costa A.J., Black M., Edmunds S., Mayfield J., Roberto M., Homanics G.E., Lasek A.W., Hitzemann R.J., Harris R.A. Scn4b regulates the hypnotic effects of ethanol and other sedative drugs. Genes Brain Behav. 2019;18(6): e12562. doi:10.1111/gbb.12562; Boonpucknavig S., Boonpucknavig V., Tanvanich S., Doungchawee G., Thamavit W. Development of immune-complex glomerulonephritis and amyloidosis in Syrian golden hamsters infected with Opisthorchis viverrini. J Med Assoc Thai. 1992;75(Suppl.1):7-19; Brown R.E., Willner J.A. Establishing an “affective scale” for odor preferences of infant rats. Behav Neural Biol. 1983;38(2):251-260. doi:10.1016/s0163-1047(83)90254-6; Butterworth R.F. Role of circulating neurotoxins in the pathogenesis of hepatic encephalopathy: potential for improvement following their removal by liver assist devices. Liver Int. 2003;23(Suppl.3):5-9. doi:10.1034/j.1478-3231.23.s.3.1.x; Bychkov V.G., Solov’eva O.G., Khadieva E.D., Ivanova L.A., Kulikova S.V., Garchuk I.V., Orlov S.A., Sabirov A.Kh., Shilin K.O., Beliaeva M.I. Morphogenesis of the structural changes of the internal organs in superinvasive opisthorchiasis. Morfologiia = Morphology. 2011;140(5):22-27 (in Russian); Chavarria L., Alonso J., Rovira A., Córdoba J. Neuroimaging in acute liver failure. Neurochem Int. 2011;59(8):1175-1180. doi:10.1016/j.neuint.2011.09.003; Chen W., Chen S., Kang W.Y., Li B., Xu Z.M., Xiao Q., Liu J., Wang Y., Wang G., Chen S.D. Application of odor identification test in Parkinson’s disease in China: a matched case-control study. J Neurol Sci. 2012;316(1-2):47-50. doi:10.1016/j.jns.2012.01.033; Choleris E., Thomas A.W., Kavaliers M., Prato F.S. A detailed ethological analysis of the mouse open field test: effects of diazepam, chlordiazepoxide and an extremely low frequency pulsed magnetic field. Neurosci Biobeh Rev. 2001;25(3):235-260. doi:10.1016/s0149-7634(01)00011-2; Collins M.A., Neafsey E.J. Neuroinflammatory pathways in binge alcohol-induced neuronal degeneration: oxidative stress cascade involving aquaporin, brain edema, and phospholipase A2 activation. Neurotox Res. 2012;21:70-78. doi:10.1007/s12640-011-9276-5; Collins M.A., Zou J.-Y., Neafsey E.J. Brain damage due to episodic alcohol exposure in vivo and in vitro: furosemide neuroprotection implicates edema-based mechanism. FASEB J. 1998;12(2):221-230. doi:10.1096/fasebj.12.2.221; de la Monte S.M., Kril J.J. Human alcohol-related neuropathology. Acta Neuropathol. 2014;127(1):71-90. doi:10.1007/s00401-013-1233-3; D’Mello C., Swain M.G. Liver-brain inflammation axis. Am J Physiol Gastrointest Liver Physiol. 2011;301(5):G749-G761. doi:10.1152/ajpgi.00184.2011; Fernandez-Lizarbe S., Montesinos J., Guerri C. Ethanol induces TLR4/TLR2 association, triggering an inflammatory response in microglial cells. J Neurochem. 2013;126(2):261-273. doi:10.1111/jnc.12276; Fowler A.K., Thompson J., Chen L., Dagda M., Dertien J., Dossou K.S., Moaddel R., Bergeson S.E., Kruman I.I. Differential sensitivity of prefrontal cortex and hippocampus to alcohol-induced toxicity. PLoS One. 2014;9(9):e106945. doi:10.1371/journal.pone.0106945; Friard O., Gamba M. BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol Evol. 2016;7:1325-1330. doi:10.1111/2041-210X.12584; Fu Y., Yang M.-S., Jiang J., Ganesh T., Joe E., Dingledine R. EP2 receptor signaling regulates microglia death. Mol Pharmacol. 2015; 88(1):161-170. doi:10.1124/mol.115.098202; Geil C.R., Hayes D.M., McClain J.A., Liput D.J., Marshall S.A., Chen K.Y., Nixon K. Alcohol and adult hippocampal neurogenesis: promiscuous drug, wanton effects. Prog Neuropsychopharmacol Biol Psychiatry. 2014;54:103-113. doi:10.1016/j.pnpbp.2014.05.003; Gundamaraju R., Vemuri R.C. Opisthorchis viverrini (liver fluke) as the lot of baleful parasite of tropical region - A replete synopsis. Asian Pac J Trop Dis. 2014;4(1):61-66. doi:10.1016/S2222-1808(14)60316-9; Harper C. The neuropathology of alcohol-specific brain damage, or does alcohol damage the brain? J Neuropathol Exp Neurol. 1998; 57(2):101-110. doi:10.1097/00005072-199802000-00001; Harper C. The neuropathology of alcohol-related brain damage. Alcohol Alcohol. 2009;44(2):136-140. doi:10.1093/alcalc/agn102; He J., Crews F.T. Increased MCP-1 and microglia in various regions of the human alcoholic brain. Exp Neurol. 2008;210(2):349-358. doi:10.1016/j.expneurol.2007.11.017; Henderson N.D., Turri M.G., DeFries J.C., Flint J. QTL analysis of multiple behavioral measures of anxiety in mice. Behav Genet. 2004;34(3):267-293. doi:10.1023/B:BEGE.0000017872.25069.44; Henriques J.F., Portugal C.C., Canedo T., Relvas J.B., Summavielle T., Socodato R. Microglia and alcohol meet at the crossroads: microglia as critical modulators of alcohol neurotoxicity. Toxicol Lett. 2018;283:21-31. doi:10.1016/j.toxlet.2017.11.002; Hoogland I.C., Houbolt C., van Westerloo D.J., van Gool W.A., van de Beek D. Systemic inflammation and microglial activation : systematic review of animal experiments. J Neuroinflammation. 2015; 12:114. doi:10.1186/s12974-015-0332-6; Huber V.J., Tsujita M., Yamazaki M., Sakimura K., Nakada T. Identification of arylsulfonamides as Aquaporin 4 inhibitors. Bioorg Med Chem Lett. 2007;17(5):1270-1273. doi:10.1016/j.bmcl.2006.12.010; Jayakumar A.R., Tong X.Y., Ospel J., Norenberg M.D. Role of cerebral endothelial cells in the astrocyte swelling and brain edema associated with acute hepatic encephalopathy. Neuroscience. 2012;218: 305-316. doi:10.1016/j.neuroscience.2012.05.006; Ketpueak T., Thiennimitr P., Apaijai N., Chattipakorn S.C., Chattipakorn N. Association of chronic opisthorchis infestation and microbiota alteration on tumorigenesis in cholangiocarcinoma. Clin Transl Gastroenterol. 2020;12(1):e00292. doi:10.14309/ctg.0000000000000292; Khan M.I., Nikoui V., Naveed A., Mumtaz F., Zaman H., Haider A., Aman W., Wahab A., Khan S.N., Ullah N., Dehpour A.R. Antidepressant-like effect of ethanol in mice forced swimming test is mediated via inhibition of NMDA/nitric oxide/cGMP signaling pathway. Alcohol. 2021;92:53-63. doi:10.1016/j.alcohol.2021.01.005; Kim B.Y., Park J.Y., Kim E.J., Kim B.G., Kim S.W., Kim S.W. The neuroplastic effect of olfactory training to the recovery of olfactory system in mouse model. Int Forum Allergy Rhinol. 2019;9(7):715-723. doi:10.1002/alr.22320; Korbo L. Glial cell loss in the hippocampus of alcoholics. Alcohol Clin Exp Res. 1999;23(1):164-168. doi:10.1111/j.1530-0277.1999.tb04039.x; Lowe P.P., Morel C., Ambade A., Iracheta-Vellve A., Kwiatkowski E., Satishchandran A., Furi I., Cho Y., Gyongyosi B., Catalano D., Lefeb vre E., Fischer L., Seyedkazemi S., Schafer D.P., Szabo G. Chronic alcohol-induced neuroinflammation involves CCR2/5-dependent peripheral macrophage infiltration and microglia alterations. J Neuroinflammation. 2020;17(1):296. doi:10.1186/s12974-020-01972-5; Lucki I. A prescription to resist proscriptions for murine models of depression. Psychopharmacology (Berl). 2001;153(3):395-398. doi:10.1007/s002130000561; Lvova M., Zhukova M., Kiseleva E., Mayboroda O., Hensbergen P., Kizilova E., Ogienko A., Besprozvannykh V., Sripa B., Katokhin A., Mordvinov V. Hemozoin is a product of heme detoxification in the gut of the most medically important species of the family Opisthorchiidae. Int J Parasitol. 2016;46(3):147-156. doi:10.1016/j.ijpara.2015.12.003; Lvova M.N., Shevelev O.B., Serdobintseva V.V., Kalinin D.V., Starostenko D.A., Zavjalov E.L., Krivoshapkin A.L., Logachev P.V., Mordvinov V.A., Avgustinovich D.F. Effect of silicon dioxide nanoparticles on Syrian hamsters infected by Opisthorchis felineus: 1H MRS study of the brain. Dokl Biochem Biophys. 2020;495(1): 319-324. doi:10.1134/S1607672920060095; Lvova M.N., Ponomarev D.V., Tarasenko A.A., Kovner A.V., Minkova G.A., Tsyganov M.A., Li M., Lou Y., Evseenko V.I., Dushkin A.V., Sorokina I.V., Tolstikova T.G., Mordvinov V.A., Avgustinovich D.F. Curcumin and its supramolecular complex with disodium glycyrrhizinate as potential drugs for the liver fluke infection caused by Opisthorchis felineus. Pathogens. 2023;12(6):819. doi:10.3390/pathogens12060819; Miller A.H., Maletic V., Raison C.L. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry. 2009;65(9):732-741. doi:10.1016/j.biopsych.2008.11.029; Mishchenko V.A., Goryukhina O.A., Ilyuk R.D. Changes in the bloodbrain barrier during experimental cirrhosis of the liver. Bull Exp Biol Med. 1993;116:1547-1550. doi:10.1007/BF00785497; Mordvinov V.A., Furman D.P. The digenea parasite Opisthorchis felineus: a target for the discovery and development of novel drugs. Infect Disord Drug Targets. 2010;10(5):385-401. doi:10.2174/187152610793180858; Murano T., Koshimizu H., Hagihara H., Miyakawa T. Transcriptomic immaturity of the hippocampus and prefrontal cortex in patients with alcoholism. Sci Rep. 2017;7:44531. doi:10.1038/srep44531; Norden D.M., Trojanowski P.J., Villanueva E., Navarro E., Godbout J.P. Sequential activation of microglia and astrocyte cytokine expression precedes increased Iba-1 or GFAP immunoreactivity following systemic immune challenge. Glia. 2016;64(2):300-316. doi:10.1002/glia.22930; Nunes P.T., Vedder L.C., Deak T., Savage L.M. A pivotal role for thiamine deficiency in the expression of neuroinflammation markers in models of alcohol-related brain damage. Alcohol Clin Exp Res. 2019;43(3):425-438. doi:10.1111/acer.13946; Pakharukova M.Y., Zaparina O.G., Kovner A.V., Mordvinov V.A. Inhibition of Opisthorchis felineus glutathione-dependent prostaglandin synthase by resveratrol correlates with attenuation of cholangiocyte neoplasia in a hamster model of opisthorchiasis. Int J Parasitol. 2019;49(12):963-973. doi:10.1016/j.ijpara.2019.07.002; Pakharukova M.Y., Lishai E.A., Zaparina O., Baginskaya N.V., Hong S.J., Sripa B., Mordvinov V.A. Opisthorchis viverrini, Clonorchis sinensis and Opisthorchis felineus liver flukes affect mammalian host microbiome in a species-specific manner. Cell Mol Life Sci. 2023;17(2):e0011111. doi:10.1371/journal.pntd.0011111; Paylor R., Crawley J.N. Inbred strain differences in prepulse inhibition of the mouse startle response. Psychopharmacology. 1997;132:169-180. doi:10.1007/s002130050333; Petney T.N., Andrews R.H., Saijuntha W., Wenz-Mücke A., Sithithaworn P. The zoonotic, fish-borne liver flukes Clonorchis sinensis, Opisthorchis felineus and Opisthorchis viverrini. Int J Parasitol. 2013;43(12-13):1031-1046. doi:10.1016/j.ijpara.2013.07.007; Porsolt R.D., Bertin A., Jalfre M. Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther. 1977;229:327-336; Rama Rao K.V., Jayakumar A.R., Norenberg M.D. Brain edema in acute liver failure: mechanisms and concepts. Metab Brain Dis. 2014;29(4):927-936. doi:10.1007/s11011-014-9502-y; Ramos A., Mormède P. Stress and emotionality: a multidimensional and genetic approach. Neurosci Biobeh Rev. 1998;22(1):33-57. doi:10.1016/s0149-7634(97)00001-8; Saijuntha W., Sithithaworn P., Petney T.N., Andrews R.H. Foodborne zoonotic parasites of the family Opisthorchiidae. Res Vet Sci. 2021; 135:404-411. doi:10.1016/j.rvsc.2020.10.024; Saltykova I.V., Petrov V.A., Logacheva M.D., Ivanova P.G., Merzlikin N.V., Sazonov A.E., Ogorodova L.M., Brindley P.J. Biliary microbiota, gallstone disease and infection with Opisthorchis felineus. PLoS Negl Trop Dis. 2016;10(7):e0004809. doi:10.1371/journal.pntd.0004809; Seibenhener M.L., Wooten M.C. Use of the open field maze to measure locomotor and anxiety-like behavior in mice. J Vis Exp. 2015; (96):e52434. doi:10.3791/52434; Seki E., Schwabe R.F. Hepatic inflammation and fibrosis: functional links and key pathways. Hepatology. 2015;61(3):1066-1079. doi:10.1002/hep.27332; Silvin A., Ginhoux F. Microglia heterogeneity along a spatio-temporal axis: more questions than answers. Glia. 2018;66(10):2045-2057. doi:10.1002/glia.23458; Simon E., Obst J., Gomez-Nicola D. The evolving dialogue of microglia and neurons in Alzheimer’s disease: microglia as necessary transducers of pathology. Neuroscience. 2019;405:24-34. doi:10.1016/j.neuroscience.2018.01.059; Sripa B., Thinkhamrop B., Mairiang E., Laha T., Kaewkes S., Sithithaworn P., Periago M.V., Bhudhisawasdi V., Yonglitthipagon P., Mulvenna J., Brindley P.J., Loukas A., Bethony J.M. Elevated plasma IL-6 associates with increased risk of advanced fibrosis and cholangiocarcinoma in individuals infected by Opisthorchis viverrini. PLoS Negl Trop Dis. 2012;6(5):e1654. doi:10.1371/journal.pntd.0001654; Stephens A.S., Stephens S.R., Morrison N.A. Internal control genes for quantitative RT-PCR expression analysis in mouse osteoblasts, osteoclasts and macrophages. BMC Res Notes. 2011;4:410. doi:10.1186/1756-0500-4-410; Stickel F., Datz C., Hampe J., Bataller R. Pathophysiology and management of alcoholic liver disease: update 2016. Gut Liver. 2017;11(2): 173-188. doi:10.5009/gnl16477; Tan Y.L., Yuan Y., Tian L. Microglial regional heterogeneity and its role in the brain. Mol Psychiatry. 2020;25:351-367. doi:10.1038/s41380-019-0609-8; Upadhyay R.K. Stem cell therapeutics of acute liver diseases, transplantation, and regeneration. J Cell Sci Ther. 2017;8(4):1000275. doi:10.4172/2157-7013; Wang T., Chou D.Y., Ding J.Y., Fredrickson V., Peng C., Schafer S., Guthikonda M., Kreipke C., Rafols J.A., Ding Y. Reduction of brain edema and expression of aquaporins with acute ethanol treatment after traumatic brain injury. J Neurosurg. 2013;118(2):390-396. doi:10.3171/2012.8.JNS12736; Yang J.Y., Xue X., Tian H., Wang X.X., Dong Y.X., Wang F., Zhao Y.N., Yao X.C., Cui W., Wu C.F. Role of microglia in ethanol-induced neurodegenerative disease: pathological and behavioral dysfunction at different developmental stages. Pharmacol Ther. 2014;144(3): 321-337. doi:10.1016/j.pharmthera.2014.07.002; Yao H., Zhang D., Yu H., Yuan H., Shen H., Lan X., Liu H., Chen X., Meng F., Wu X., Zhang G., Wang X. Gut microbiota regulates chronic ethanol exposure-induced depressive-like behavior through hippocampal NLRP3-mediated neuroinflammation. Mol Psychiatry. 2023;28(2):919-930. doi:10.1038/s41380-022-01841-y; https://vavilov.elpub.ru/jour/article/view/4480
-
3Academic Journal
Authors: A. Yu. Ma-Van-de, E. V. Fefelova, Yu. A. Shirshov, V. D. Ma-Van-de, А. Ю. Ма-Ван-дэ, Е. В. Фефелова, Ю. А. Ширшов, В. Д. Ма-Ван-дэ
Source: Acta Biomedica Scientifica; Том 10, № 1 (2025); 136-143 ; 2587-9596 ; 2541-9420
Subject Terms: хемокины, ischemic stroke, hypertension, microglia, neuroinflammation, fractalkine, chemokines, ишемический инсульт, гипертоническая болезнь, микроглия, нейровоспаление, фракталкин
File Description: application/pdf
Relation: https://www.actabiomedica.ru/jour/article/view/5223/2969; Гусев Е.И., Коновалов А.Н., Скворцова В.И. Неврология. Национальное руководство. М.: ГЭОТАР-Медиа; 2019; (1).; Fugate JE, Rabinstein AA. Absolute and relative contraindications to IV rt-PA for acute ischemic stroke. Neurohospitalist. 2015; 5(3): 110-121. doi:10.1177/1941874415578532; Endres M, Moro MA, Nolte CH, Dames C, Buckwalter MS, Meisel A. Immune pathways in etiology, acute phase, and chronic sequelae of ischemic stroke. Circ Res. 2022; 130(8): 1167-1186. doi:10.1161/CIRCRESAHA.121.319994; Liu RR, Song PP, Gu XH, Liang WD, Sun W, Hua Q, et al. Comprehensive landscape of immune infiltration and aberrant pathway activation in ischemic stroke. Front Immunol. 2022; 12: 766724. doi:10.3389/fimmu.2021.766724; Ghelani DP, Kim HA, Zhang SR, Drummond GR, Sobey CG, De Silva TM. Ischemic stroke and infection: A brief update on mechanisms and potential therapies. Biochem Pharmacol. 2021; 193: 114768. doi:10.1016/j.bcp.2021.114768; Ма-Ван-дэ А.Ю., Фефелова Е.В., Ширшов Ю.А. Роль отдельных молекул нейровоспаления в патогенезе ишемического инсульта. Часть I. Забайкальский медицинский вестник. 2024; (1): 139-147. doi:10.52485/19986173_2024_1_139; Mao M, Xu Y, Zhang XY, Yang L, An XB, Qu Y, et al. MicroRNA-195 prevents hippocampal microglial/macrophage polarization towards the M1 phenotype induced by chronic brain hypoperfusion through regulating CX3CL1/CX3CR1 signaling J Neuroinflammation. 2020; 17(1): 244. doi:10.1186/s12974-020-01919-w; Navabi SP, Badreh F, Khombi Shooshtari M, Hajipour S, Moradi Vastegani S, Khoshnam SE. Microglia-induced neuroinflammation in hippocampal neurogenesis following traumatic brain injury. Heliyon. 2024; 10(16): e35869. doi:10.1016/j.heliyon.2024.e35869; Fan QYu, Gayen M, Singh N, Gao F, He WX, Hu XY, et al. The intracellular domain of CX3CL1 regulates adult neurogenesis and Alzheimer’s amyloid pathology. J Experim Med. 2019; 216(8): 1891-1903. doi:10.1084/jem.20182238; Clark AK, Malcangio M. Fractalkine/CX3CR1 signaling during neuropathic pain. Front Cell Neurosci. 2014; (8): 121. doi:10.3389/fncel.2014.00121; Всероссийское общество неврологов. Ишемический инсульт и транзиторная ишемическая атака: клинические рекомендации. М.;2024.; Российское кардиологическое общество. Артериальная гипертензия у взрослых: клинические рекомендации. М.; 2024.; Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al. 2018 Guidelines for the early management of patients with acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2018; 49(3): e46-e99. doi:10.1161/STR.0000000000000158; Шмонин А.А., Мальцева М.Н., Мельникова Е.В., Иванова Г.Е. Модифицированная шкала Рэнкина (mRS) – универсальный инструмент оценки независимости и инвалидизации пациентов в медицинской реабилитации. Consilium Medicum. 2017; 19(2.1): 8-13.; Pezeshkian F, Shahriarirad R, Mahram H. An overview of the role of chemokine CX3CL1 (Fractalkine) and CX3C chemokine receptor 1 in systemic sclerosis. Immun Inflamm Dis. 2024; 12(10): e70034. doi:10.1002/iid3.70034; Finneran D, Li Q, Subbarayan MS, Joly-Amado A, Kamath S, Dengler DG, et al. Concentration and proteolysis of CX3CL1 may regulate the microglial response to CX3CL1. Glia. 2023; 71(2): 245- 258. doi:10.1002/glia.24269; Palsamy K, Chen JY, Skaggs K, Qadeer Y, Connors M, Cutler N, et al. Microglial depletion after brain injury prolongs inflammation and impairs brain repair, adult neurogenesis and proregenerative signaling. Glia. 2023; 71(11): 2642-2663. doi:10.1002/glia.24444; Microglia regulate motor neuron plasticity via reciprocal fractalkine/adenosine signaling. bioRxiv. 2024; 2024.05.07.592939. doi:10.1101/2024.05.07.592939; Zhan L, Qiu M, Zheng J, Lai M, Lin K, Dai J, et al. Fractalkine/ CX3CR1 axis is critical for neuroprotection induced by hypoxic postconditioning against cerebral ischemic injury. Cell Commun Signal. 2024; 22(1): 457. doi:10.1186/s12964-024-01830-4; Boehme SA, Lio FM, Maciejewski-Lenoir D, Bacon KB, Conlon PJ. The chemokine fractalkine inhibits Fas-mediated cell death of brain microglia. J Immunol. 2000; 165(1): 397-403. doi:10.4049/jimmunol.165.1.397; Мордовин В.Ф., Зюбанова И.В., Манукян М.А., Доржиева И.К., Вторушина А.А., Хунхинова С.А., и др. Роль иммуно-воспалительных механизмов в патогенезе артериальной гипертонии. Сибирский журнал клинической и экспериментальной медицины. 2023; 38(1): 21-27. doi:10.29001/2073-8552-2023-38-1-21-27; Ho CY, Lin YT, Chen HH, Ho WY, Sun GC, Hsiao M, et al. CX3CR1-microglia mediates neuroinflammation and blood pressure regulation in the nucleus tractus solitarii of fructoseinduced hypertensive rats. J Neuroinflammation. 2020; 17(1): 185. doi:10.1186/s12974-020-01857-7; https://www.actabiomedica.ru/jour/article/view/5223
-
4Academic Journal
Source: Российские биомедицинские исследования, Vol 8, Iss 4 (2024)
Subject Terms: астроглия, повреждение, Medicine (General), R5-920, черепно-мозговая травма, биомаркеры, микроглия
-
5Academic Journal
Authors: E. K. Fetisova, N. V. Vorobjeva, M. S. Muntyan, Е. К. Фетисова, Н. В. Воробьева, М. С. Мунтян
Contributors: This research was performed under the state assignment of Moscow State University, project number АААА-А19-119031390114-5.
Source: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 79, № 2 (2024); 87-101 ; Вестник Московского университета. Серия 16. Биология; Том 79, № 2 (2024); 87-101 ; 0137-0952
Subject Terms: старение, oxidative stress, reactive oxygen species, mitochondria-targeted antioxidants, demyelination, oligodendrocytes, microglia, aging, окислительный стресс, активные формы кислорода, митохондриально-направленные антиоксиданты, демиелинизация, олигодендроциты, микроглия
File Description: application/pdf
Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/1367/668; Walton C., King R., Rechtman L., Kaye W., Leray E., Marrie R. A., Robertson N, La Rocca N., Uitdehaag B., van der Mei I., Wallin M., Helme A., Angood Napier C., Rijke N., Baneke P. Rising prevalence of multiple sclerosis worldwide: insights from the atlas of MS. Mult. Scler. J. 2020;26(14):1816–1821.; Dobson R., Giovannoni G. Multiple sclerosis – a review. Eur. J. Neurol. 2019;26(1):27–40.; Axthelm M.K., Bourdette D.N., Marracci G.H., Su W., Mullaney E.T., Manoharan M., Kohama S.G., Pollaro J., Witkowski E., Wang P., Rooney W.D., Sherman L.S., Wong S.W. Japanese macaque encephalomyelitis: a spontaneous multiple sclerosis-like disease in a nonhuman primate. Ann. Neurol. 2011;70(3):362–373.; Hedström A.K., Hössjer O., Katsoulis M., Kockum I., Olsson T., Alfredsson L. Organic solvents and MS susceptibility. Interaction with MS risk HLA genes. Neurology. 2018;91(5):e455–e462.; Баринский И.Ф., Гребенникова Т.В., Альховский С.В., Кочергин-Никитский К.С., Сергеев О.В., Грибенча С.В., Раев С.А. Молекулярно-генетическая характеристика вируса, выделенного от больных острым энцефаломиелитом человека и множественным склерозом. Вопросы вирусологии. 2015;60(4):14–18.; Buljevac D., Flach H.Z., Hop W.C., Hijdra D., Laman J.D., Savelkoul H.F., van Der Meche F.G., van Doorn P.A., Hintzen R.Q. Prospective study on the relationship between infections and multiple sclerosis exacerbations. Brain. 2002;125(Pt. 5):952–960.; Kriesel J.D., White A., Hayden F.G., Spruance S.L., Petajan J. Multiple sclerosis attacks are associated with picornavirus infections. Mult. Scler. 2004;10(2):145–148.; Cossu D., Yokoyama K., Hattori N. Bacteria-host interactions in multiple sclerosis. Front. Microbiol. 2018;9:2966.; Bjornevik K., Cortese M., Healy, B.C., Kuhle J., Mina M.J., Leng Y., Elledge S.J., Niebuhr D.W., Scher A.I., Munger K.L., Ascherio A. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science. 2022;375(6578):296–301.; Handel A.E., Handunnetthi L., Ebers G.C. Ramagopalan S.V. Type 1 diabetes mellitus and multiple sclerosis: common etiological features. Nat. Rev. Endocrinol. 2009;5(12):655–664.; Nielsen N.M., Westergaard T., Frisch M., Rostgaard K., Wohlfahrt J., Koch-Henriksen N., Melbye M., Hjalgrim H. Type 1 diabetes and multiple sclerosis: A Danish population-based cohort study. Arch. Neurol. 2006;63(7):1001–1004.; Bechtold S., Blaschek A., Raile K., Dost A., Freiberg C., Askenas M., Fröhlich-Reiterer E., Molz E., Holl R.W. Higher relative risk for multiple sclerosis in a pediatric and adolescent diabetic population: analysis from DPV database. Diabetes Care. 2014;37(1):96–101.; Magyari M., Sorensen P.S. Comorbidity in multiple sclerosis. Front. Neurol. 2020;11:851.; Лапштаева А.В., Абросимова Ю.Г., Еремкина Т.Я., Костина Ю.A. Микробные агенты как триггеры развития рассеянного склероза. Инфекция и иммунитет. 2021;11(6):1050–1056.; Conway S.E., Healy B.C., Zurawski J., Severson C., Kaplan T., Stazzone L., Galetta K., Chitnis T., Houtchens M.K. COVID-19 severity is associated with worsened neurological outcomes in multiple sclerosis and related disorders. Mult. Scler. Relat. Dis. 2022;63:103946.; Najjar S., Najjar A., Chong D.J., Pramanik B.K., Kirsch C., Kuzniecky R.I., Pacia S.V., Azhar S. Central nervous system complications associated with SARS-CoV-2 infection: integrative concepts of pathophysiology and case reports. J. Neuroinflamm. 2020;17(1):231.; Sormani M.P., Schiavetti I., Carmisciano L. et al. COVID-19 severity in multiple sclerosis: putting data into context. Neurol. Neuroimmunol. Neuroinflamm. 2021;9(1):e1105.; Michelena G., Casas M., Eizaguirre M.B., Pita M.C., Cohen L., Alonso R., Garcea O., Silva B.A. ¿ Can COVID-19 exacerbate multiple sclerosis symptoms? A case series analysis. Mult. Scler. Relat. Dis. 2022;57:103368.; Lima M., Aloizou A.M., Siokas V., Bakirtzis C., Liampas I., Tsouris Z., Bogdanos D.P., Baloyannis S.J. Dardiotis E. Coronaviruses and their relationship with multiple sclerosis: is the prevalence of multiple sclerosis going to increase after the Covid-19 pandemia? Rev. Neurosci. 2022;33(7):703–720.; Ximeno-Rodríguez I., Blanco-delRío I., Astigarraga E., Barreda-Gómez G. Acquired immune deficiency syndrome correlation with SARS-CoV-2 N genotypes. Biomed. J. 2023;100650. https://doi.org/10.1016/j.bj.2023.100650.; Bauer L., Laksono B.M., de Vrij F.M.S., Kushner S.A., Harschnitz O., van Riel D. The neuroinvasiveness, neurotropism, and neurovirulence of SARS-CoV-2. Trends Neurosci. 2022;45(5):358–368.; Stoiloudis P., Kesidou E., Bakirtzis C., Sintila S-A., Konstantinidou N., Boziki M., Grigoriadis N. The role of diet and interventions on multiple sclerosis: a review. Nutrients. 2022; 14(6):1150.; Tarlinton R.E., Khaibullin T., Granatov E., Martynova E., Rizvanov A., Khaiboullina S. The interaction between viral and environmental risk factors in the pathogenesis of multiple sclerosis. Int. J. Mol. Sci. 2019;20(2):303.; Fazia T., Baldrighi G.N., Nova A., Bernardinelli L. A systematic review of Mendelian randomization studies on multiple sclerosis. Eur. J. Neurosci., 2023;58(4):3172–3194.; Dhaiban S., Al-Ani M., Elemam N.M., AlAawad M.H., Al-Rawi Z., Maghazachi A.A. Role of peripheral immune cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Science. 2021;3(1):12.; Theodosis-Nobelos P., Rekka E.A. Efforts towards repurposing of antioxidant drugs and active compounds for multiple sclerosis control. Neurochem. Res. 2023;48(3):725–744.; Nozari E., Ghavamzadeh S., Razazian N. The effect of vitamin B12 and folic acid supplementation on serum homocysteine, anemia status and quality of life of patients with multiple sclerosis. Clin. Nutr. Res. 2019;8(1):36–45.; Magyari M., Koch-Henriksen N. Quantitative effect of sex on disease activity and disability accumulation in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry. 2022;93(7):716–722.; Salpietro V., Polizzi A., Recca G., Ruggieri M. The role of puberty and adolescence in the pathobiology of pediatric multiple sclerosis. Mult. Scler. Demyelinating Disord. 2018;3:2.; Ostolaza A., Corroza J., Ayuso T. Multiple sclerosis and aging): comorbidity and treatment challenges. Mult. Scler. Relat. Disord. 2021;50:102815.; Zhang Y., Atkinson J., Burd C.E., Graves J., Segal B.M. Biological aging in multiple sclerosis. Mult. Scler. 2023;29(14):1701–1708.; Lotti C.B.D.C., Oliveira A.S.B., Bichuetti D.B., Castro I.D., Oliveira E.M.L. Late onset multiple sclerosis: concerns in aging patients. Arq. Neuropsiquiatr. 2017;75(7):451–456.; Noseworthy J., Paty D., Wonnacott T., Feasby T., Ebers G. Multiple sclerosis after age 50. Neurology. 1983;33(12):1537–1537.; Zeydan B., Kantarci O.H. Impact of age on multiple sclerosis disease activity and progression. Curr. Neurol. Neurosci. Rep. 2020;20(7):24.; Marrie R.A., Cohen J., Stuve O., Trojano M., Sørensen P.S., Reingold S., Cutter G., Reider N. A systematic review of the incidence and prevalence of comorbidity in multiple sclerosis: overview. Mult. Scler. 2015;21(3):263–281.; Branco M., Ruano L., Portaccio E., Goretti B., Niccolai C., Patti F., Chisari C., Gallo P., Grossi P., Ghezzi A., Roscio M., Mattioli F., Bellomi F., Simone M., Gemma R., Amato M.P. Aging with multiple sclerosis: prevalence and profile of cognitive impairment. Neurol. Sci. 2019;40(8):1651–1657.; Jakimovski D., Weinstock-Guttman B., Roy S., Jaworski III M., Hancock L., Nizinski A., Srinivasan P., Fuchs T.A., Szigeti K., Zivadinov R., Benedict R.H. Cognitive profiles of aging in multiple sclerosis. Front. Aging Neurosci. 2019;11:105.; Boyko A., Melnikov M. Prevalence and incidence of multiple sclerosis in Russian Federation: 30 years of studies. Brain Sci. 2020;10(5):305.; Fetisova E., Chernyak B., Korshunova G., Muntyan M., Skulachev V. Mitochondria-targeted antioxidants as a prospective therapeutic strategy for multiple sclerosis. Curr. Med. Chem. 2017;24(19):2086–2114.; Морозов С.П., Владзимирский А.В., Черняева Г.Н., Бажин А.В., Пимкин А.А., Беляев М.Г., Кляшторный В.Г., Горшкова Т.Н., Курочкина Н.С., Якушева С.Ф. Валидация диагностической точности алгоритма «искусственного интеллекта» для выявления рассеянного склероза в условиях городской поликлиники. Лучевая диагностика и терапия. 2020;11(2):58–65.; Kiselev I., Bashinskaya V., Baulina N., Kozin M., Popova E., Boyko A., Favorova O., Kulakova O. Genetic differences between primary progressive and relapsingremitting multiple sclerosis: the impact of immune-related genes variability. Mult. Scler. Relat. Dis. 2019;29:130–136.; Kiselev I.S., Kulakova O.G., Baulina N.M., Bashinskaya V.V., Popova E.V., Boyko A.N., Favorova O.O. Variability of the MIR196A2 gene as a risk factor in primary-progressive multiple sclerosis development. Mol. Biol. 2019;53(2):249–255.; International Multiple Sclerosis Genetics Consortium. A systems biology approach uncovers cell-specific gene regulatory effects of genetic associations in multiple sclerosis. Nat. Commun. 2019;10:2236.; Patsopoulos N.A. Genetics of multiple sclerosis: an overview and new directions. Cold Spring Harb. Perspect. Med. 2018;8(7):a028951.; Ransohoff R.M., Hafler D.A., Lucchinetti C.F. Multiple sclerosis – a quiet revolution. Nat. Rev. Neurol. 2015;11(3):134–142.; Pytel V., Matías-Guiu J.A., Torre-Fuentes L., Montero P., Gómez-Graña Á., García-Ramos R., Moreno-Ramos T., Oreja-Guevara C., Fernández-Arquero M., Gómez-Pinedo U., Matías-Guiu J. Familial multiple sclerosis and association with other autoimmune diseases. Brain Behav. 2017;8(1):e00899.; Lublin F.D., Reingold S.C., Cohen J.A., Cutter G.R., Sørensen P.S., Thompson A.J., Wolinsky J.S., Balcer L.J., Banwell B., Barkhof F., Bebo B. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014;83(3):278–286.; Govindhan E., Pavithra J., Yuvaraj K., Muralidharan P. A comprehensive review on multiple sclerosis: it’s etiology, symptoms, epidemiology and current therapeutic approaches. Int. J. Sci. Res. Arch. 2023;8(2):462–474.; Hendriks J.J., Teunissen C.E., de Vries H.E., Dijkstra C.D. Macrophages and neurodegeneration. Brain Res. Rev. 2005;48(2):185–195.; Zheng C., Chen J., Chu F., Zhu J., Jin T. Inflammatory role of TLR-MyD88 signaling in multiple sclerosis. Front. Mol. Neurosci. 2020;12:314.; Van Horssen J., Witte M.E., Schreibelt G., de Vries H.E. Radical changes in multiple sclerosis pathogenesis. BBA-Mol. Basis Dis. 2011;1812(2):141–150.; Friese M.A., Schattling B., Fugger L. Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat. Rev. Neurol. 2014;10(4):225–238.; Scalfari A., Neuhaus A., Daumer M., Muraro P.A., Ebers G.C. Onset of secondary progressive phase and longterm evolution of multiple sclerosis. J. Neurol. Neurosurg. Psychiatry. 2014;85(1):67–75.; Goodin D.S. The epidemiology of multiple sclerosis: insights to a causal cascade. Handbook of clinical neurology. Eds. M.J. Aminoff, F. Boller, and D.F. Swaab. Elsevier; 2016;138:173–206.; Dong Y., Yong V.W. When encephalitogenic T cells collaborate with microglia in multiple sclerosis. Nat. Rev. Neurol. 2019;15(12):704–717.; Guerrero B.L., Sicotte N.L. Microglia in multiple sclerosis: friend or foe? Front. Immunol. 2020;11:374.; Inoue M., Shinohara M.L. NLRP3 Inflammasome and MS/EAE. Autoimmune Dis. 2013;2013:859145.; Shao S., Chen C., Shi G., Zhou Y., Wei Y., Fan N., Yang Y., Wu L., Zhang T. Therapeutic potential of the target on NLRP3 inflammasome in multiple sclerosis. Pharmacol. Therapeut. 2021;227:107880.; Bulua A.C., Simon A., Maddipati R., Pelletier M., Park H., Kim K.Y., Sack M.N., Kastner D.L., Siegel R.M. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1- associated periodic syndrome (TRAPS). J. Exp. Med. 2011;208(3):519–533.; Gris D., Ye Z., Iocca H.A., Wen H., Craven R.R., Gris P., Huang M., Schneider M., Miller S.D., Ting J.P. NLRP3 plays a critical role in the development of experimental autoimmune encephalomyelitis by mediating Th1 and Th17 responses. J. Immunol. 2010;185(2):974–981.; Abais J.M., Xia M., Zhang Y., Boini K.M., Li P.L. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid. Redox Sign. 2015;22(13):1111–1129.; Chen Y., Ye X., Escames G., Lei W., Zhang X., Li M., Jing T., Yao Y., Qiu Z., Wang Z., Acuña-Castroviejo D., Yang Y. The NLRP3 inflammasome: contributions to inflammation-related diseases. Cell Mol. Biol. Lett. 2023;28(1):51.; Wolburg H., Neuhaus J., Kniesel U., Krauß B., Schmid E.M., Ocalan M., Farrell C., Risau W. Modulation of tight junction structure in blood-brain barrier endothelial cells. Effects of tissue culture, second messengers and cocultured astrocytes. J. Cell Sci. 1994;107(5):1347–1357.; Owens T., Bechmann I., Engelhardt B. Perivascular spaces and the two steps to neuroinflammation. J. Neuropath. Exp. Neur. 2008;67(12):1113–1121.; Ortiz G.G., Pacheco-Moisés F.P., Macías-Islas M.Á., Flores-Alvarado L.J., Mireles-Ramírez M.A., González-Renovato E.D., Hernández-Navarro V.E., Sánchez-López A.L., Alatorre-Jiménez M.A. Role of the blood-brain barrier in multiple sclerosis. Arch. Med. Res. 2014;45(8):687–697.; Zinovkin R.A., Romaschenko V.P., Galkin I.I., Zakharova V.V., Pletjushkina O.Y., Chernyak B.V., Popova E.N. Role of mitochondrial reactive oxygen species in age-related inflammatory activation of endothelium. Aging (Albany N.Y.). 2014;6(8):661.; Zakharova V.V., Pletjushkina O.Y., Galkin I.I., Zinovkin R.A., Chernyak B.V., Krysko D.V., Skulachev V.P., Popova E.N. Low concentration of uncouplers of oxidative phosphorylation decreases the TNF-induced endothelial permeability and lethality in mice. BBA-Mol. Basis Dis. 2017;1863(4):968–977.; Sanabria-Castro A., Alape-Girón A., FloresDíaz M., Echeverri-McCandless A., Parajeles-Vindas A. Oxidative stress involvement in the molecular pathogenesis and progression of multiple sclerosis: a literature review. Rev. Neurosci. 2024;35(3):355–371.; Calkins M.J., Johnson D.A., Townsend J.A., Vargas M.R., Dowell J.A., Williamson T.P., Kraft A.D., Lee J.M., Li J., Johnson J.A. The Nrf2/ARE pathway as a potential therapeutic target in neurodegenerative disease. Antioxid. Redox Sign. 2009;11(3):497–508.; Kharel P., McDonough J., Basu S. Evidence of extensive RNA oxidation in normal appearing cortex of multiple sclerosis brain. Neurochem. Int. 2016;92:43–48.; Tully M., Shi R. New insights in the pathogenesis of multiple sclerosis – role of acrolein in neuronal and myelin damage. Int. J. Mol. Sci. 2013;14(10):20037–20047.; Zhang J., Sturla S., Lacroix C., Schwab C. Gut microbial glycerol metabolism as an endogenous acrolein source. mBio. 2018;9(1):e01947-17.; Nonneman A., Robberecht W., Van Den Bosch L.V. The role of oligodendroglial dysfunction in amyotrophic lateral sclerosis. Neurodegen. Dis. Manag. 2014;4(3):223–239.; van Horssen J., Schreibelt G., Drexhage J., Hazes T., Dijkstra C.D., van der Valk P., de Vries H.E. Severe oxidative damage in multiple sclerosis lesions coincides with enhanced antioxidant enzyme expression. Free Radical. Biol. Med. 2008;45(12):1729–1737.; Spaas J., van Veggel L., Schepers M., Tiane A., van Horssen J., Wilson D.M. 3rd, Moya P.R., Piccart E., Hellings N., Eijnde B.O., Derave W., Schreiber R., Vanmierlo T. Oxidative stress and impaired oligodendrocyte precursor cell differentiation in neurological disorders. Cell Mol. Life Sci. 2021;78(10):4615–4637.; Witte M.E., Geurts J.J., de Vries H.E., van der Valk P., van Horssen J. Mitochondrial dysfunction: a potential link between neuroinflammation and neurodegeneration? Mitochondrion. 2010;10(5):411–418.; Padureanu R., Albu C.V., Mititelu R.R., Bacanoiu M.V., Docea A.O., Calina D., Padureanu V., Olaru G., Sandu R.E., Malin R.D., Buga A.M. Oxidative stress and inflammation interdependence in multiple sclerosis. J. Clin. Med. 2019;8(11):1815.; Michaličková D., Šíma M., Slanař O. New insights in the mechanisms of impaired redox signaling and its interplay with inflammation and immunity in multiple sclerosis. Physiol. Res. 2020;69(1):1–19.; Ragupathy H., Vukku M., Barodia S.K. Cell-typespecific mitochondrial quality control in the brain: a plausible mechanism of neurodegeneration. Int. J. Mol. Sci. 2023;24(19):14421.; Petersen R.C., Thomas R.G., Grundman M., Bennett D., Doody R., Ferris S., Galasko D., Jin S., Kaye J., Levey A., Pfeiffer E., Sano M., van Dyck C.H., Thal L.J., Alzheimer’s Disease Cooperative Study Group. Vitamin E and donepezil for the treatment of mild cognitive impairment. N. Engl. J. Med. 2005;352(23):2379–2388.; Kamat C.D., Gadal S., Mhatre M., Williamson K.S., Pye Q.N., Hensley K. Antioxidants in central nervous system diseases: preclinical promise and translational challenges. J. Alzheimers Dis. 2008;15(3):473–493.; Bjelakovic G., Nikolova D., Gluud L.L., Simonetti R.G., Gluud C. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst. Rev. 2012;2012(3):CD007176.; Antonenko Y.N., Avetisyan A.V., Bakeeva L.E., et al. Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: synthesis and in vitro studies. Biochemistry (Mosc.). 2008;73(12):1273–1287.; Fetisova E.K., Muntyan M.S., Lyamzaev K.G., Chernyak B.V. Therapeutic effect of the mitochondriatargeted antioxidant SkQ1 on the culture model of multiple sclerosis. Oxid. Med. Cell. Longev. 2019;2019:2082561.; Fock E.M., Parnova R.G. Protective effect of mitochondria-targeted antioxidants against inflammatory response to lipopolysaccharide challenge: a review. Pharmaceutics. 2021;13(2):144.; Vorobjeva N.V., Chernyak B.V. NETosis: molecular mechanisms, role in physiology and pathology. Biochemistry (Mosc.). 2020;85(10):1178–1190.
-
6Academic Journal
Subject Terms: биология, генетика животных, гены, микроглия, РНК, направленная поляризация, боковой амиотрофический склероз, биомедицина, мыши
Availability: http://dspace.bsu.edu.ru/handle/123456789/64244
-
7Academic Journal
Authors: Lisianyi, Mykola I., Belska, Lyudmyla M.
Source: Ukrainian Neurosurgical Journal, Vol 26, Iss 4, Pp 20-25 (2020)
Ukrainian Neurosurgical Journal; Том 26, № 4 (2020); 20-25Subject Terms: Orthopedic surgery, 0301 basic medicine, 2. Zero hunger, 0303 health sciences, 03 medical and health sciences, черепно-мозговая травма, микроглия, макрофаги мозга, фагоцитоз, экспериментальные исследования, brain injury, microglia, brain macrophages, phagocytosis, experimental studies, черепно-мозкова травма, мікроглія, макрофаги мозку, експериментальні дослідження, Neurology. Diseases of the nervous system, RC346-429, RD701-811, 3. Good health
File Description: application/pdf
-
8Academic Journal
Authors: A. V. Sentyabreva, E. A. Melnikova, E. A. Miroshnichenko, I. S. Tsvetkov, A. M. Kosyreva, А. В. Сентябрева, Е. А. Мельникова, Е. А. Мирошниченко, И. С. Цветков, А. М. Косырева
Contributors: Number of state registration of research, development, and technological work for civil purposes—122030200530-6., Номер государственного задания - 122030200530-6.
Source: Medical Immunology (Russia); Том 25, № 3 (2023); 527-532 ; Медицинская иммунология; Том 25, № 3 (2023); 527-532 ; 2313-741X ; 1563-0625
Subject Terms: иммуносенесценция, aging, microglia, inflammaging, inflammation, immunosenescence, старение, микроглия, инфламэйджинг, воспаление
File Description: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/2757/1675; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2757/11424; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2757/11426; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2757/11427; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2757/11428; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2757/11429; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2757/11430; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2757/11431; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2757/11432; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2757/11433; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2757/11736; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2757/12076; Breijyeh Z., Karaman Z. Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules, 2020, Vol. 25, no. 24, 5789. doi:10.3390/molecules25245789.; Dowery R., Benhamou D., Benchetrit E., Harel O., Nevelsky A., Zisman-Rozen S., Braun-Moscovici Y., Balbir-Gurman A., Avivi I., Shechter A., Berdnik D., Wyss-Coray T., Melamed D. Peripheral B cells repress B-cell regeneration in aging through a TNF-α/IGFBP-1/IGF-1 immune-endocrine axis. Blood, 2021, Vol. 138, no. 19, pp. 1817-1829.; Franceschi C., Campisi J. Chronic inflammation (inflammaging) and its potential contribution to ageassociated diseases. J. Gerontol. A Biol. Sci. Med., Sci., 2014, Vol. 69, no. 1, pp. S4-S9.; Guo S., Wang H., Yin Y. Microglia polarization from M1 to M2 in neurodegenerative diseases. Front. Aging Neurosci., 2022, Vol. 14, 815347. doi:10.3389/fnagi.2022.815347.; Kosyreva A.M., Sentyabreva A.V., Tsvetkov I.S., Makarova O.V. Alzheimer’s disease and inflammaging. Brain Sci., 2022, Vol. 12, no. 9, 1237. doi:10.3390/brainsci12091237.; Shahidehpour R.K., Higdon R.E., Crawfor N.G., Neltner J.H., Ighodaro E.T., Patel E., Price D., Nelson P.T., Bachstetter A.D. Dystrophic microglia are associated with neurodegenerative disease and not healthy aging in the human brain. Neurobiol Aging., 2021, Vol. 99, pp. 19-27.; Snodgrass R.G., Jiang X., Stephensen C.B. Monocyte subsets display age-dependent alterations at fasting and undergo non-age-dependent changes following consumption of a meal. Immun. Ageing, 2022, Vol. 19, no. 1, 41. doi:10.1186/s12979-022-00297-6.; Streit W.J., Braak H., Tredici K.D., Leyh J., Lier J., Khoshbouei H., Eisenlöffel C., Müller W., Bechmann I. Microglial activation occurs late during preclinical Alzheimer’s disease. Glia, 2021, Vol. 66, no. 12, pp. 2550-2562.; Streit W.J., Khoshbouei H., Bechmann I. The role of microglia in sporadic Alzheimer’s disease. J. Alzheimers Dis., 2021, Vol. 79, no. 3, pp. 961-968.; World Health Organizations (WHO). Dementia (2021). Available at: https://www.who.int/publications/i/item/9789241550543.; Yiannopoulou K.G., Papageorgiou S.G., Current and future treatments in alzheimer disease: An update. J. Cent. Nerv. Syst. Dis., 2020, Vol. 12, pp. 1-12.; https://www.mimmun.ru/mimmun/article/view/2757
-
9Academic Journal
Authors: R. F. Enikeeva, A. V. Kazantseva, Yu. D. Davydova, R. N. Mustafin, Z. R. Takhirova, S. B. Malykh, Y. V. Kovas, E. K. Khusnutdinova, Р. Ф. Еникеева, А. В. Казанцева, Ю. Д. Давыдова, Р. Н. Мустафин, З. Р. Тахирова, С. Б. Малых, Ю. В. Ковас, Э. К. Хуснутдинова
Contributors: The study was partially supported by the Russian Science Foundation (project No.17-78-30028) in the part of psychological assessment and collection of biological materials, by the Ministry of Science and Higher Education of Russian Federation (project No. 075-15-2021-595) in the part of statistical and bioinformatics analysis and by the mega-grant of the Ministry of Science and Higher Education of the Republic of Bashkortostan in the part of genetic analysis.
Source: Vavilov Journal of Genetics and Breeding; Том 26, № 2 (2022); 179-187 ; Вавиловский журнал генетики и селекции; Том 26, № 2 (2022); 179-187 ; 2500-3259 ; 10.18699/VJGB-22-14
Subject Terms: воспалительный ответ, cognitive functions, single nucleotide polymorphism (SNP), association analysis, microglia, inf lammatory response, когнитивные функции, однонуклеотидный полиморфный локус, анализ ассоциаций, микроглия
File Description: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/3294/1602; Alekseeva O.S., Kirik O.V., Gilerovich E.G., Korzhevskii D.E. Microglia of the brain: origin, structure and functions. Zhurnal Evolutsionnoy Biokhimii i Phiziologii = Journal of Evolutionary Biochemistry and Physiology. 2019;55(4):231-241. DOI 10.1134/S0044452919040028. (in Russian); Blake J. Family Size and Achievement. Berkeley: University of California Press, 2020. DOI 10.1525/9780520330597.; Dawson M. Verbal intelligence. In: Volkmar F.R. (Ed.). Encyclopedia of Autism Spectrum Disorders. New York: Springer, 2013;3243-3250. DOI 10.1007/978-1-4419-1698-3_375.; Dominici R., Cattaneo M., Malferrari G., Archi D., Mariani C., Grimaldi L.M., Biunno I. Cloning and functional analysis of the allelic polymorphism in the transcription regulatory region of interleukin-1 alpha. Immunogenetics. 2002;54(2):82-86. DOI 10.1007/s00251-002-0445-9.; Emrani S., Arain H.A., DeMarshall C., Nuriel T. APOE4 is associated with cognitive and pathological heterogeneity in patients with Alzheimer’s disease: a systematic review. Alz. Res. Therapy. 2020;12(1):141. DOI 10.1186/s13195-020-00712-4.; Erdman V.V., Nasibullin T.R., Tuktarova I.A., Somova R.S., Mustafina O.E. Analysis of FOXO1A and FOXO3A gene allele association with human longevity. Russ. J. Genet. 2016;52(4):416-422. DOI 10.1134/S1022795416020034.; Fard M.T., Stough C. A review and hypothesized model of the mechanisms that underpin the relationship between inflammation and cognition in the elderly. Front. Aging Neurosci. 2019;11:56. DOI 10.3389/fnagi.2019.00056.; Feklicheva I., Zakharov I., Chipeeva N., Maslennikova E., Korobova S., Adamovich T., Ismatullina V., Malykh S. Assessing the relationship between verbal and nonverbal cognitive abilities using resting-state EEG functional connectivity. Brain Sci. 2021;11(1): 94. DOI 10.3390/brainsci11010094.; Ferro A., Auguste Y.S.S., Cheadle L. Microglia, cytokines, and neural activity: unexpected interactions in brain development and function. Front. Immunol. 2021;12:703527. DOI 10.3389/fimmu.2021.703527.; Filiano A.J., Gadani S.P., Kipnis J. Interactions of innate and adaptive immunity in brain development and function. Brain Res. 2015;1617:18-27. DOI 10.1016/j.brainres.2014.07.050.; Fitz N.F., Nam K.N., Wolfe C.M., Letronne F., Playso B.E., Iordanova B.E., Kozai T.D.Y., Biedrzycki R.J., Kagan V.E., Tyurina Y.Y., Han X., Lefterov I., Koldamova R. Phospholipids of APOE lipoproteins activate microglia in an isoform-specific manner in preclinical models of Alzheimer’s disease. Nat. Commun. 2021; 12(1):3416. DOI 10.1038/s41467-021-23762-0.; Franić S., Dolan C.V., van Beijsterveldt C.E., Pol H.H.E., Bartels M., Boomsma D.I. Genetic and environmental stability of intelligence in childhood and adolescence. Twin Res. Hum. Genet. 2014;17(3): 151-163. DOI 10.1017/thg.2014.26.; Franke H., Schepper C., Illes P., Krügel U. Involvement of P2X and P2Y receptors in microglial activation in vivo. Purinergic Signal. 2007;3(4):435-445. DOI 10.1007/s11302-007-9082-y.; Ginhoux F., Greter M., Leboeuf M., Nandi S., See P., Gokhan S., Mehler M.F., Conway S.J., Ng L.G., Stanley E.R., Samokhvalov I.M., Merad M. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010; 330(6005):841-845. DOI 10.1126/science.1194637.; Hameed I., Masoodi S.R., Malik P.A., Mir S.A., Ghazanfar K., Ganai B.A. Genetic variations in key inflammatory cytokines exacerbates the risk of diabetic nephropathy by influencing the gene expression. Gene. 2018;661:51-59. DOI 10.1016/j.gene.2018.03.095.; Haruwaka K., Ikegami A., Tachibana Y., Ohno N., Konishi H., Hashimoto A., Matsumoto M., Kato D., Ono R., Kiyama H., Moorhouse A.J., Nabekura J., Wake H. Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nat. Commun. 2019;10(1):5816. DOI 10.1038/s41467-019-13812-z.; Kanazawa S. Intelligence, birth order, and family size. Pers. Soc. Psychol. Bull. 2012;38(9):1157-1164. DOI 10.1177/0146167212445911.; Kazantseva A.V., Enikeeva R.F., Davydova Yu.D., Mustafin R.N., Takhirova Z.R., Malykh S.B., Lobaskova M.M., Tikhomirova T.N., Khusnutdinova E.K. The role of the KIBRA and APOE genes in developing spatial abilities in humans. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2021;25(8):839-846. DOI 10.18699/VJ21.097. (in Russian); Kazantseva A.V., Enikeeva R.F., Romanova A.R., Bashkatov S.A., Galyautdinova S.I., Tikhomirova T.N., Malykh S.B., Khusnutdinova E.K. Neurexin family genes (CNTNAP2 and NRXN1): their involvement in mathematics anxiety. Meditsinskaya Genetika = Medical Genetics. 2016;15(11):17-23. (in Russian); Kazantseva A.V., Enikeeva R.F., Romanova A.R., Galyautdinova S.I., Malykh S.B., Khusnutdinova E.K. Stress-associated cognitive functioning is controlled by variations in synaptic plasticity genes. Russ. J. Genet. 2020;56(1):88-95. DOI 10.1134/S1022795420010068.; Kierdorf K., Prinz M. Microglia in steady state. J. Clin. Invest. 2017; 127(9):3201-3209. DOI 10.1172/JCI90602.; Kuschner E.S. Nonverbal intelligence. In: Volkmar F.R. (Eds.). Encyclopedia of Autism Spectrum Disorders. New York: Springer, 2013;82-139. DOI 10.1007/978-1-4419-1698-3_354.; Lanfranco M.F., Sepulveda J., Kopetsky G., Rebeck G.W. Expression and secretion of apoE isoforms in astrocytes and microglia during inflammation. Glia. 2021;69(6):1478-1493. DOI 10.1002/glia.23974.; Laskowitz D.T., Goel S., Bennett E.R., Matthew W.D. Apolipoprotein E suppresses glial cell secretion of TNFα. J. Neuroimmunol. 1997;76(1-2):70-74. DOI 10.1016/s0165-5728(97)00021-0.; Li Q., Barres B.A. Microglia and macrophages in brain homeostasis and disease. Nat. Rev. Immunol. 2018;18(4):225-242. DOI 10.1038/nri.2017.125.; Li Y., Liu Y., Li J., Qin W., Li K., Yu C., Jiang T. Brain anatomical network and intelligence. PLoS Comput. Biol. 2009;5(5):e1000395. DOI 10.1371/journal.pcbi.1000395.; Lister M.F., Sharkey J., Sawatzky D.A., Hodgkiss J.P., Davidson D.J., Rossi A.G., Finlayson K. The role of the purinergic P2X7 receptor in inflammation. J. Inf lamm. (Lond.). 2007;4:5. DOI 10.1186/1476-9255-4-5.; Makhatadze N.J. Tumor necrosis factor locus: genetic organisation and biological implications. Hum. Immunol. 1998;59(9):571-579. DOI 10.1016/s0198-8859(98)00056-1.; Morand D.A. Family size and intelligence revisited: the role of emotional intelligence. Psychol. Rep. 1999;84(2):643-649. DOI 10.2466/pr0.1999.84.2.643.; Morimoto K., Nakajima K. Role of the immune system in the development of the central nervous system. Front. Neurosci. 2019;13: 916. DOI 10.3389/fnins.2019.00916.; Mustafin R.N., Kazantseva A.V., Khusnutdinova E.K., Malykh S.B. Genetic mechanisms of cognitive development. Russ. J. Genet. 2020;56(8):891-902. DOI 10.1134/S102279542007011X.; Naitza S., Porcu E., Steri M., Taub D.D., Mulas A., Xiao X., Strait J., Dei M., Lai S., Busonero F., Maschio A., Usala G., Zoledziewska M., Sidore C., Zara I., Pitzalis M., Loi A., Virdis F., Piras R., Deidda F., Whalen M.B., Crisponi L., Concas A., Podda C., Uzzau S., Scheet P., Longo D.L., Lakatta E., Abecasis G.R., Cao A., Schlessinger D., Uda M., Sanna S., Cucca F. A genomewide association scan on the levels of markers of inflammation in Sardinians reveals associations that underpin its complex regulation. PLoS Genet. 2012;8(1):e1002480. DOI 10.1371/journal.pgen.1002480.; Parkhurst C.N., Yang G., Ninan I., Savas J.N., Yates J.R. 3rd, Lafaille J.J., Hempstead B.L., Littman D.R., Gan W.B. Microglia promote learning-dependent synapse formation through brainderived neurotrophic factor. Cell. 2013;155(7):1596-1609. DOI 10.1016/j.cell.2013.11.030.; Raffaele S., Lombardi M., Verderio C., Fumagalli M. TNF production and release from microglia via extracellular vesicles: impact on brain functions. Cells. 2020;9(10):2145. DOI 10.3390/cells9102145.; Raven J. The Raven’s progressive matrices: change and stability over culture and time. Cogn. Psychol. 2000;41(1):1-48. DOI 10.1006/cogp.1999.0735.; Sartori A.C., Vance D.E., Slater L.Z., Crowe M. The impact of inflammation on cognitive function in older adults. J. Neurosci. Nurs. 2012;44(4):206-217. DOI 10.1097/JNN.0b013e3182527690.; Shevela E.Y., Markova E.V., Knyazheva M.A., Proskurina A.S., Efremov Y.R., Molodtsov V.V., Seledtsov I.A., Ostanin A.A., Bogachev S.S., Kolchanov N.A., Chernykh E.R. Changes in the hippocampal genes transcriptome in depression model mice upon intranasal exposure to M2 macrophage secretome factors. Matematicheskaya Biologiya i Bioinformatika = Mathematical Biology and Bioinformatics. 2020;15(2):357-393. DOI 10.17537/2020.15.357. (in Russian); Tayel S.I., Fouda E.A.M., Elshayeb E.I., Eldakamawy A.R.A., El-Kousy S.M. Biochemical and molecular study on interleukin-1β gene expression and relation of single nucleotide polymorphism in promoter region with Type 2 diabetes mellitus. J. Cell Biochem. 2018;119(7):5343-5349. DOI 10.1002/jcb.26667.; Vermeulen J.M., Schirmbeck F., Blankers M., van Tricht M., Bruggeman R., van den Brink W., de Haan L. Genetic Risk and Outcome of Psychosis (GROUP) investigators. Association between smoking behavior and cognitive functioning in patients with psychosis, siblings, and healthy control subjects: results from a prospective 6-year follow-up study. Am. J. Psychiatry. 2018;175(11):1121-1128. DOI 10.1176/appi.ajp.2018.18010069.; Vitek M.P., Brown C.M., Colton C.A. APOE genotype-specific differences in the innate immune response. Neurobiol. Aging. 2009;30(9):1350-1360. DOI 10.1016/j.neurobiolaging.2007.11.014.; Vyshedskiy A., Dunn R., Piryatinsky I. Neurobiological mechanisms for nonverbal IQ tests: implications for instruction of nonverbal children with autism. Res. Ideas Outcomes. 2017;3:e13239. DOI 10.3897/RIO.3.E13239.; Wake H., Moorhouse A.J., Nabekura J. Functions of microglia in the central nervous system – beyond the immune response. Neuron Glia Biol. 2011;7(1):47-53. DOI 10.1017/S1740925X12000063.; Wang Y., Du Y., Li J., Qiu C. Lifespan intellectual factors, genetic susceptibility, and cognitive phenotypes in aging: implications for interventions. Front. Aging Neurosci. 2019;11:129. DOI 10.3389/fnagi.2019.00129.; Winham S.J., Bobo W.V., Liu J., Coombes B., Backlund L., Frye M.A., Biernacka J.M., Schalling M., Lavebratt C. Sex-specific effects of gain-of-function P2RX7 variation on bipolar disorder. J. Affect. Disord. 2019;245:597-601. DOI 10.1016/j.jad.2018.11.007.; Xu C., Sun J., Duan H., Ji F., Tian X., Zhai Y., Wang S., Pang Z., Zhang D., Zhao Z., Li S., Gue M.M., Hjelmborg J.V., Christensen K., Tan Q. Gene, environment and cognitive function: a Chinese twin ageing study. Age Ageing. 2015;44(3):452-457. DOI 10.1093/ageing/afv015.; Zeineh N., Nagler R., Gabay M., Weizman A., Gavish M. Effects of cigarette smoke on TSPO-related mitochondrial processes. Cells. 2019;8(7):694. DOI 10.3390/cells8070694.; https://vavilov.elpub.ru/jour/article/view/3294
-
10Academic Journal
Authors: S. N. Yanishevskiy, L. S. Onishchenko, E. N. Gnevyshev, O. N. Gaikova, E. V. Yakovlev, A. A. Smirnov, С. Н. Янишевский, Л. С. Онищенко, Е. Н. Гневышев, О. Н. Гайкова, Е. В. Яковлев, А. А. Смирнов
Source: Meditsinskiy sovet = Medical Council; № 2 (2022); 8-14 ; Медицинский Совет; № 2 (2022); 8-14 ; 2658-5790 ; 2079-701X
Subject Terms: резидентные макрофаги, stroke, type 2 diabetes mellitus, blood-brain barrier, microglia, monocytic macrophages, resident macrophages, инсульт, сахарный диабет 2-го типа, гематоэнцефалический барьер, микроглия, моноцитарные макрофаги
File Description: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/6722/6066; Lichanska A.M., Hume D.A. Origins and functions of phagocytes in the embryo. Exp Hematol. 2000;28(6):601–611. https://doi.org/10.1016/s0301-472x(00)00157-0.; Sieweke M.H., Allen J.E. Beyond stem cells: self-renewal of differentiated macrophages. Science. 2013;342(6161):1242974. https://doi.org/10.1126/science.1242974.; Ginhoux F., Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol. 2014;14(6):392–404. https://doi.org/10.1038/nri3671.; Ginhoux F., Guilliams M. Tissue-Resident Macrophage Ontogeny and Homeostasis. Immunity. 2016;44(3):439–449. https://doi.org/10.1016/j.immuni.2016.02.024.; Ajami B., Bennett J.L., Krieger C., McNagny K.M., Rossi F.M. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci. 2011;14(9):1142–1149. https://doi.org/10.1038/nn.2887.; Lawson L.J, Perry V.H., Gordon S. Turnover of resident microglia in the normal adult mouse brain. Neuroscience. 1992;48(2):405–415. https://doi.org/10.1016/0306-4522(92)90500-2.; Askew K., Li K., Olmos-Alonso A., Garcia-Moreno F., Liang Y., Richardson P. et al. Coupled Proliferation and Apoptosis Maintain the Rapid Turnover of Microglia in the Adult Brain. Cell Rep. 2017;18(2):391–405. https://doi.org/10.1016/j.celrep.2016.12.041.; Tay T.L., Mai D., Dautzenberg J., Fernández-Klett F., Lin G., Sagar et al. A new fate mapping system reveals context-dependent random or clonal expansion of microglia. Nat Neurosci. 2017;20(6):793–803. https://doi.org/10.1038/nn.4547.; Guilliams M., Scott C.L. Does niche competition determine the origin of tissue-resident macrophages?. Nat Rev Immunol. 2017;17(7):451–460. https://doi.org/10.1038/nri.2017.42.; Böttcher C., Schlickeiser S., Sneeboer M.A.M., Kunkel D., Knop A., Paza E. et al. Human microglia regional heterogeneity and phenotypes determined by multiplexed single-cell mass cytometry. Nat Neurosci. 2019;22(1):78–90. https://doi.org/10.1038/s41593-018-0290-2.; Prinz M., Erny D., Hagemeyer N. Ontogeny and homeostasis of CNS myeloid cells. Nat Immunol. 2017;18(4):385–392. https://doi.org/10.1038/ni.3703.; Mrdjen D., Pavlovic A., Hartmann F.J., Schreiner B., Utz S.G., Leung B.P. et al. High-Dimensional Single-Cell Mapping of Central Nervous System Immune Cells Reveals Distinct Myeloid Subsets in Health, Aging, and Disease. Immunity. 2018;48(2):380–395.e6. https://doi.org/10.1016/j.immuni.2018.01.011.; Van Hove H., Martens L., Scheyltjens I., De Vlaminck K., Pombo Antunes A.R., De Prijck S. et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat Neurosci. 2019;22(6):1021–1035. https://doi.org/10.1038/s41593-019-0393-4.; Ajami B., Samusik N., Wieghofer P., Ho P.P., Crotti A., Bjornson Z. et al. Single-cell mass cytometry reveals distinct populations of brain myeloid cells in mouse neuroinflammation and neurodegeneration models. Nat Neurosci. 2018;21(4):541–551. https://doi.org/10.1038/s41593-018-0100-x.; Locatelli G., Theodorou D., Kendirli A., Jordão M.J.C., Staszewski O., Phulphagar K. et al. Mononuclear phagocytes locally specify and adapt their phenotype in a multiple sclerosis model. Nat Neurosci. 2018;21(9):1196–1208. https://doi.org/10.1038/s41593-018-0212-3.; Yamasaki R., Lu H., Butovsky O., Ohno N., Rietsch A.M., Cialic R. et al. Differential roles of microglia and monocytes in the inflamed central nervous system. J Exp Med. 2014;211(8):1533-–549. https://doi.org/10.1084/jem.20132477.; Меркулов Г.А. Курс патологогистологической техники. 5-е изд., испр. и доп. Л.: Медицина. Ленингр. отд-ние; 1969. 423 с.; Клочков Н.Д., Онищенко Л.С., Гайкова О.Н. Возможности использования электронной микроскопии для исследования ткани нервной системы на секционном материале. Труды Санкт-Петербургской ассоциации патологоанатомов. 2003;(36/44):36–37.; Бисага Г.Н., Гайкова О.Н., Онищенко Л.С., Чикуров А.А., Поздняков А.В. Рассеянный склероз: от морфологии к патогенезу. СПб.; 2015. 104 с.; Stonesifer C., Corey S., Ghanekar S., Diamandis Z., Acosta S.A., Borlongan C.V. Stem cell therapy for abrogating stroke-induced neuroinflammation and relevant secondary cell death mechanisms. Prog Neurobiol. 2017;158:94–131. https://doi:10.1016/j.pneurobio.2017.07.004.; Schwartz G.G., Steg P.G., Szarek M., Bhatt D.L., Bittner V.A., Diaz R. et al. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N Engl J Med. 2018;379(22):2097–2107. https://doi.org/10.1056/NEJMoa1801174.; Jukema J.W., Zijlstra L.E., Bhatt D.L., Bittner V.A., Diaz R., Drexel H. et al. Effect of Alirocumab on Stroke in ODYSSEY OUTCOMES. Circulation. 2019;140(25): 2054–2062. https://doi.org/10.1161/CIRCULATIONAHA.119.043826.; Giugliano R.P., Pedersen T.R., Saver J.L., Sever P.S., Keech A.C., Bohula E.A. et al. Stroke Prevention With the PCSK9 (Proprotein Convertase SubtilisinKexin Type 9) Inhibitor Evolocumab Added to Statin in High-Risk Patients With Stable Atherosclerosis. Stroke. 2020;51(5):1546–1554. https://doi.org/10.1161/STROKEAHA.119.027759.
-
11Academic Journal
Authors: Шулятнікова, Т. В.
Source: Pathologia; Vol. 18 No. 1 (2021): Pathologia; 33-38 ; Патология; Том 18 № 1 (2021): Патология; 33-38 ; Патологія; Том 18 № 1 (2021): Патологія; 33-38 ; 2310-1237 ; 2306-8027
Subject Terms: acute hepatic encephalopathy, microglial, phagocytosis, CD68, острая печёночная энцефалопатия, микроглия, фагоцитоз, гостра печінкова енцефалопатія, мікроглія
File Description: application/pdf
Relation: http://pat.zsmu.edu.ua/article/view/227642/230666; http://pat.zsmu.edu.ua/article/view/227642
Availability: http://pat.zsmu.edu.ua/article/view/227642
-
12Academic Journal
Authors: Шулятнікова, Т. В., Шаврін, В. О.
Source: Zaporozhye мedical journal; Vol. 23 No. 1 (2021); 111-119 ; Запорожский медицинский журнал; Том 23 № 1 (2021); 111-119 ; Запорізький медичний журнал; Том 23 № 1 (2021); 111-119 ; 2310-1210 ; 2306-4145
Subject Terms: sepsis-associated encephalopathy, phagocytosis, microglia, CD68, transmission microscopy election, сепсис-ассоциированная энцефалопатия, фагоцитоз, микроглия, просвечивающая электронная микроскопия, сепсис-асоційована енцефалопатія, мікроглія, просвічуюча електронна мікроскопія
File Description: application/pdf
Relation: http://zmj.zsmu.edu.ua/article/view/224921/225179; http://zmj.zsmu.edu.ua/article/view/224921
Availability: http://zmj.zsmu.edu.ua/article/view/224921
-
13Academic Journal
Authors: E. A. Korneva, E. V. Dmitrienko, S. Miyamura, M. Noda, N. Akimoto, Е. А. Корнева, Е. В. Дмитриенко, С. Миямура, Н. Акимото, М. Нода
Source: Medical Immunology (Russia); Том 23, № 6 (2021); 1367-1382 ; Медицинская иммунология; Том 23, № 6 (2021); 1367-1382 ; 2313-741X ; 1563-0625
File Description: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/2392/1490; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2392/8765; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2392/8766; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2392/8767; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2392/8768; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2392/8769; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2392/8856; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2392/8857; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2392/8858; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2392/8859; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2392/8860; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2392/8861; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2392/8862; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2392/8863; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2392/8864; Aisiku I.P., Yamal J.M., Doshi P., Benoit J.S., Gopinath S., Goodman J.C., Robertson C.S. Plasma cytokines IL-6, IL-8, and IL-10 are associated with the development of acute respiratory distress syndrome in patients with severe traumatic brain injury. Crit. Care., 2016, Vol. 20, 288. doi:10.1186/s13054-016-1470-7.; Armstead W.M., Bohman L.E., Riley J., Yarovoi S., Higazi A.A., Cines D.B. tPA-S(481)A prevents impairment of cerebrovascular autoregulation by endogenous tPA after traumatic brain injury by upregulating p38 MAPK and inhibiting ET-1. J. Neurotrauma, 2013, Vol. 30, no. 22, pp. 1898-1907.; Armstead W.M., Kiessling J.W., Riley J., Cines D.B., Higazi A.A. tPA contributes to impaired NMDA cerebrovasodilation after traumatic brain injury through activation of JNK MAPK. Neurol. Res., 2011, Vol. 33, no. 7, pp. 726-733.; Armstead W.M., Riley J., Yarovoi S., Cines D.B., Smith D.H., Higazi A.A. tPA-S481A prevents neurotoxicity of endogenous tPA in traumatic brain injury. J. Neurotrauma, 2012, Vol. 29, no. 9, 1794-1802.; Başkaya M.K., Doğan A., Temiz C., Dempsey R.J. Application of 2,3,5-triphenyltetrazolium chloride staining to evaluate injury volume after controlled cortical impact brain injury: role of brain edema in evolution of injury volume. J. Neurotrauma, 2000, Vol. 17, no. 1, pp. 93-99.; Benedek A., Móricz K., Jurányi Z., Gigler G., Lévay G., Hársing L.G. Jr., Mátyus P., Szénási G., Albert M. Use of TTC staining for the evaluation of tissue injury in the early phases of reperfusion after focal cerebral ischemia in rats. Brain Res., 2006, Vol. 1116, no. 1, pp. 159-165.; Beppu K., Kosai Y., Kido M.A., Akimoto N., Mori Y., Kojima Y., Fujita K., Okuno Y., Yamakawa Y., Ifuku M., Shinagawa R., Nabekura J., Sprengel R., Noda M. Expression, subunit composition, and function of AMPA-type glutamate receptors are changed in activated microglia; possible contribution of GluA2 (GluR-B)-deficiency under pathological conditions. Glia, 2013, Vol. 61, no. 6, pp. 881-891.; Blennow K., Brody D.L., Kochanek P.M., Levin H., McKee A., Ribbers G.M., Yaffe K., Zetterberg H. Traumatic brain injuries. Nat. Rev. Dis. Primers, 2016, Vol. 2, 16084. doi:10.1038/nrdp.2016.84.; Cantu D., Walker K., Andresen L., Taylor-Weiner A., Hampton D., Tesco G., Dulla C.G. Traumatic brain injury increases cortical glutamate network activity by compromising GABAergic control. Cereb. Cortex, 2015, Vol. 25, no. 8, pp. 2306-2320.; Chen X., Chen C., Fan S., Wu S., Yang F., Fang Z., Fu H., Li Y. Omega-3 polyunsaturated fatty acid attenuates the inflammatory response by modulating microglia polarization through SIRT1-mediated deacetylation of the HMGB1/NF-κB pathway following experimental traumatic brain injury. J. Neuroinflammation, 2018, Vol. 15, no. 1, 116. doi:10.1186/s12974-018-1151-3.; Cheong C.U., Chang C.P., Chao C.M., Cheng B.C., Yang C.Z., Chio C.C. Etanercept attenuates traumatic brain injury in rats by reducing brain TNF-α contents and by stimulating newly formed neurogenesis. Mediators Inflamm., 2013, Vol. 2013, 620837. doi:10.1155/2013/620837.; Chio C.C., Lin M.T., Chang C.P. Microglial activation as a compelling target for treating acute traumatic brain injury. Curr. Med. Chem., 2015, Vol. 22, no. 6, pp. 759-770.; Chiu C.C., Liao Y.E., Yang L.Y., Wang J.Y., Tweedie D., Karnati H.K., Greig N.H., Wang J.Y. Neuroinflammation in animal models of traumatic brain injury. J. Neurosci. Methods, 2016, Vol. 272, pp. 38-49.; Clark D.P.Q., Perreau V.M., Shultz S.R., Brady R.D., Lei E., Dixit S., Taylor J.M., Beart P.M., Boon W.C. Inflammation in Traumatic Brain Injury: Roles for toxic A1 astrocytes and microglial-astrocytic crosstalk. Neurochem. Res., 2019, Vol. 44, no. 6, pp. 1410-1424.; Corrigan F., Mander K.A., Leonard A.V., Vink R. Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation. J. Neuroinflammation, 2016, Vol. 13, no. 1, 264. doi:10.1186/s12974-016-0738-9.; Cotrina M.L., Chen M., Han X., Iliff J., Ren Z., Sun W., Hagemann T., Goldman J., Messing A., Nedergaard M. Effects of traumatic brain injury on reactive astrogliosis and seizures in mouse models of Alexander disease. Brain Res., 2014, Vol. 1582, pp. 211-219.; Dalla Libera A.L., Regner A., de Paoli J., Centenaro L., Martins T.T., Simon D. IL-6 polymorphism associated with fatal outcome in patients with severe traumatic brain injury. Brain Inj., 2011, Vol. 25, no. 4, pp. 365-936.; Daoud H., Alharfi I., Alhelali I., Charyk Stewart T., Qasem H., Fraser D.D. Brain injury biomarkers as outcome predictors in pediatric severe traumatic brain injury. Neurocrit. Care, 2014, Vol. 20, no. 3, pp. 427-435.; Davalos D., Grutzendler J., Yang G., Kim J.V., Zuo Y., Jung S., Littman D.R., Dustin M.L., Gan W.B. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci., 2005, Vol. 8, no. 6, pp. 752-758.; Dmitrienko E.V., Filatenkova T.A., Rybakina E.G., Korneva E.A. Behavioral reactions of animals after experimental traumatic brain injury: Effects of the nucleotide drug nature. Bulletin of St. Petersburg University, 2014, Vol. 11, no. 3, pp. 180-191.; Du G., Zhao Z., Chen Y., Li Z., Tian Y., Liu Z., Liu B., Song J. Quercetin protects rat cortical neurons against traumatic brain injury. Mol. Med. Rep., 2018, Vol. 17, no. 6, pp. 7859-7865.; Finan J.D. Biomechanical simulation of traumatic brain injury in the rat. Clin. Biomech., 2019, Vol. 64, pp. 114-121.; Fomicheva E.E., Filatenkova T.A., Shanin S.N., Rybakina E.G. Stress-induced changes in the functional activity of the neuroendocrine system: the modulatory activity of derinat. Neurosci. Behav. Physiol., 2010, Vol. 40, no. 4, pp. 397-401.; Fujita K., Seike T., Yutsudo N., Ohno M., Yamada H., Yamaguchi H., Sakumi K., Yamakawa Y., Kido M.A., Takaki A., Katafuchi T., Tanaka Y., Nakabeppu Y., Noda M. Hydrogen in drinking water reduces dopaminergic neuronal loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. PLoS One, 2009, Vol. 4, no. 9, e7247. doi:10.1371/journal.pone.0007247.; Gatson J.W., Liu M.M., Abdelfattah K., Wigginton J.G., Smith S., Wolf S., Minei J.P. Resveratrol decreases inflammation in the brain of mice with mild traumatic brain injury. J. Trauma Acute Care Surg., 2013, Vol. 74, no. 2, pp. 470-475.; Ghajar J. Traumatic brain injury. Lancet, 2000, Vol. 356, no. 9233, pp. 923-929.; Grummisch J.A., Jadavji N.M., Smith P.D. tPA promotes cortical neuron survival via mTOR-dependent mechanisms. Mol. Cell. Neurosci., 2016, Vol. 74, pp. 25-33.; Hagino Y., Kariura Y., Manago Y., Amano T., Wang B., Sekiguchi M., Nishikawa K., Aoki S., Wada K., Noda M. Heterogeneity and potentiation of AMPA type of glutamate receptors in rat cultured microglia. Glia, 2004, Vol. 47, no. 1, pp. 68-77.; Hanlon L.A., Raghupathi R., Huh J.W. Depletion of microglia immediately following traumatic brain injury in the pediatric rat: Implications for cellular and behavioral pathology. Exp. Neurol., 2019, Vol. 316, pp. 39-51.; Harvey L.D., Yin Y., Attarwala I.Y., Begum G., Deng J., Yan H.Q., Dixon C.E., Sun D. Administration of DHA reduces endoplasmic reticulum stress-associated inflammation and alters microglial or macrophage activation in traumatic brain injury. ASN Neuro, 2015, Vol. 7, no. 6, 1759091415618969. doi:10.1177/1759091415618969.; Henry R.J., Ritzel R.M., Barrett J.P., Doran S.J., Jiao Y., Leach J.B., Szeto G.L., Wu J., Stoica B.A., Faden A.I., Loane D.J. Microglial depletion with CSF1R inhibitor during chronic phase of experimental traumatic brain injury reduces neurodegeneration and neurological deficits. J. Neurosci., 2020, Vol. 40, no. 14, pp. 2960-2974.; Hide I., Tanaka M., Inoue A., Nakajima K., Kohsaka S., Inoue K., Nakata Y. Extracellular ATP triggers tumor necrosis factor-alpha release from rat microglia. J. Neurochem., 2000, Vol. 75, no. 3, pp. 965-972.; Hijazi N., Abu Fanne R., Abramovitch R., Yarovoi S., Higazi M., Abdeen S., Basheer M., Maraga E., Cines D.B., Higazi A.A. Endogenous plasminogen activators mediate progressive intracerebral hemorrhage after traumatic brain injury in mice. Blood, 2015, Vol. 125, no. 16, pp. 2558-2567.; Hsu W.L., Lu J.H., Noda M., Wu C.Y., Liu J.D., Sakakibara M., Tsai M.H., Yu H.S., Lin M.W., Huang Y.B., Yan S.J., Yoshioka T. Derinat protects skin against utraviolet-B (UVB)-induced cellular damage. Molecules, 2015, Vol. 20, no. 11, pp. 20297-20311.; Hu B.Y., Liu X.J., Qiang R., Jiang Z.L., Xu L.H., Wang G.H., Li X., Peng B. Treatment with ginseng total saponins improves the neurorestoration of rat after traumatic brain injury. J. Ethnopharmacol., 2014, Vol. 155, no. 2, pp. 1243-1255.; Imai Y., Ibata I., Ito D., Ohsawa K., Kohsaka S. A novel gene iba1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage. Biochem. Biophys. Res. Commun., 1996, Vol. 224, no. 3, pp. 855-862.; Jassam Y.N., Izzy S., Whalen M., McGavern D.B., El Khoury J. Neuroimmunology of traumatic brain injury: time for a paradigm shift. Neuron, 2017, Vol. 95, no. 6, pp. 1246-1265.; Jayakumar A.R., Tong X.Y., Ruiz-Cordero R., Bregy A., Bethea J.R., Bramlett H.M., Norenberg M.D. Activation of NF-κB mediates astrocyte swelling and brain edema in traumatic brain injury. J. Neurotrauma, 2014, Vol. 31, no. 14, pp. 1249-1257.; Joy M.T., Ben Assayag E., Shabashov-Stone D., Liraz-Zaltsman S., Mazzitelli J., Arenas M., Abduljawad N., Kliper E., Korczyn A.D., Thareja N.S., Kesner E.L., Zhou M., Huang S., Silva T.K., Katz N., Bornstein N.M., Silva A.J., Shohami E., Carmichael S.T. CCR5 Is a therapeutic target for recovery after stroke and traumatic brain injury. Cell, 2019, Vol. 176, no. 5, pp. 1143-1157.e13.; Karve I.P., Taylor J.M., Crack P.J. The contribution of astrocytes and microglia to traumatic brain injury. Br. J. Pharmacol., 2016, Vol. 173, no. 4, pp. 692-702.; Kettenmann H., Hanisch U.K., Noda M., Verkhratsky A. Physiology of microglia. Physiol. Rev., 2011, Vol. 91, no. 2, pp. 461-553.; Kim E.J., Kim S.Y., Lee J.H., Kim J.M., Kim J.S., Byun J.I., Koo B.N. Effect of isoflurane post-treatment on tPA-exaggerated brain injury in a rat ischemic stroke model. Korean J. Anesthesiol., 2015, Vol. 68, no. 3, pp. 281-286.; Krukowski K., Chou A., Feng X., Tiret B., Paladini M.S., Riparip L.K., Chaumeil M.M., Lemere C., Rosi S. Traumatic brain injury in aged mice induces chronic microglia activation, synapse loss, and complement-dependent memory deficits. Int. J. Mol. Sci., 2018, Vol. 19, no. 12, 3753. doi:10.3390/ijms19123753.; Kumar A., Henry R.J., Stoica B.A., Loane D.J., Abulwerdi G., Bhat S.A., Faden A.I. Neutral sphingomyelinase inhibition alleviates lps-induced microglia activation and neuroinflammation after experimental traumatic brain injury. J. Pharmacol. Exp. Ther., 2019, Vol. 368, no. 3, pp. 338-352.; Kumar A., Stoica B.A., Loane D.J., Yang M., Abulwerdi G., Khan N., Kumar A., Thom S.R., Faden A.I. Microglial-derived microparticles mediate neuroinflammation after traumatic brain injury. J. Neuroinflammation, 2017, Vol. 14, 47. doi:10.1186/s12974-017-0819-4.; Kumar R.G., Diamond M.L., Boles J.A., Berger R.P., Tisherman S.A., Kochanek P.M., Wagner A.K. Acute CSF interleukin-6 trajectories after TBI: associations with neuroinflammation, polytrauma, and outcome. Brain Behav. Immun., 2015, Vol. 45, pp. 253-262.; Lee S.H., Ko H.M., Kwon K.J., Lee J., Han S.H., Han D.W., Cheong J.H., Ryu J.H., Shin C.Y. tPA regulates neurite outgrowth by phosphorylation of LRP5/6 in neural progenitor cells. Mol. Neurobiol., 2014, Vol. 49, no. 1, pp. 199-215.; Lewén A., Sugawara T., Gasche Y., Fujimura M., Chan P.H. Oxidative cellular damage and the reduction of APE/Ref-1 expression after experimental traumatic brain injury. Neurobiol. Dis., 2001, Vol. 8, no. 3, pp. 380-390.; Lin B.S., Wang C.C., Chang M.H., Chio C.C. Evaluation of traumatic brain injury by optical technique. BMC Neurol., 2015, Vol. 15, 202. doi:10.1186/s12883-015-0465-3.; Lindh C., Wennersten A., Arnberg F., Holmin S., Mathiesen T. Differences in cell death between high and low energy brain injury in adult rats. Acta Neurochir., 2008, Vol. 150, no. 12, pp. 1269-1275.; Liu J., Rybakina E.G., Korneva E.A., Noda M. Effects of Derinat on ischemia-reperfusion-induced pressure ulcer mouse model. J. Pharmacol. Sci., 2018, Vol. 138, no. 2, pp. 123-130.; Loane D.J., Kumar A. Microglia in the TBI brain: The good, the bad, and the dysregulated. Exp. Neurol., 2016, Vol. 275, no. 3, pp. 316-327.; Long X., Yao X., Jiang Q., Yang Y., He X., Tian W., Zhao K., Zhang H. Astrocyte-derived exosomes enriched with miR-873a-5p inhibit neuroinflammation via microglia phenotype modulation after traumatic brain injury. J. Neuroinflammation, 2020, Vol. 17, no. 1, 89. doi:10.1186/s12974-020-01761-0.; Lorente L., Martín M.M., González-Rivero A.F., Pérez-Cejas A., Abreu-González P., Ramos L., Argueso M., Cáceres J.J., Solé-Violán J., Alvarez-Castillo A., Jiménez A., García-Marín V. Association between DNA and RNA oxidative damage and mortality of patients with traumatic brain injury. Neurocrit. Care, 2020, Vol. 32, no. 3, pp. 790-795.; Lu J., Frerich J.M., Turtzo L.C., Li S., Chiang J., Yang C., Wang X., Zhang C., Wu C., Sun Z., Niu G., Zhuang Z., Brady R.O., Chen X. Histone deacetylase inhibitors are neuroprotective and preserve NGF-mediated cell survival following traumatic brain injury. Proc. Natl. Acad. Sci. USA, 2013, Vol. 110, no. 26, pp. 10747-10752.; Lv Q., Lan W., Sun W., Ye R., Fan X., Ma M., Yin Q., Jiang Y., Xu G., Dai J., Guo R., Liu X. Intranasal nerve growth factor attenuates tau phosphorylation in brain after traumatic brain injury in rats. J. Neurol. Sci., 2014, Vol. 345, no. 1-2, pp. 48-55.; Ma J., Ni H., Rui Q., Liu H., Jiang F., Gao R., Gao Y., Li D., Chen G. Potential roles of NIX/BNIP3L pathway in rat traumatic brain injury. Cell Transplant., 2019, Vol. 28, no. 5, pp. 585-595.; Madathil S.K., Carlson S.W., Brelsfoard J.M., Ye P., D’Ercole A.J., Saatman K.E. Astrocyte-specific overexpression of insulin-like growth factor-1 protects hippocampal neurons and reduces behavioral deficits following traumatic brain injury in mice. PLoS One, 2013, Vol. 8, no. 6, e67204. doi:10.1371/journal.pone.0067204.; Makinde H.M., Just T.B., Gadhvi G.T., Winter D.R., Schwulst S.J. Microglia adopt longitudinal transcriptional changes after traumatic brain injury. J. Surg. Res., 2020, Vol. 246, pp. 113-122.; Markkanen E. Not breathing is not an option: How to deal with oxidative DNA damage. DNA Repair, 2017, Vol. 59, pp. 82-105.; Marklund N. Rodent models of traumatic brain injury: methods and challenges. Methods Mol. Biol., 2016, Vol. 1462, pp. 29-46.; Marmarou C.R., Liang X., Abidi N.H., Parveen S., Taya K., Henderson S.C., Young H.F., Filippidis A.S., Baumgarten C.M. Selective vasopressin-1a receptor antagonist prevents brain edema, reduces astrocytic cell swelling and GFAP, V1aR and AQP4 expression after focal traumatic brain injury. Brain Res., 2014, Vol. 1581, pp. 89-102.; McKee A.C., Robinson M.E. Military-related traumatic brain injury and neurodegeneration. Alzheimers Dementia, 2014, Vol. 10, no. 3, pp. S242-S253.; McMahon P.J., Panczykowski D.M., Yue J.K., Puccio A.M., Inoue T., Sorani M.D., Lingsma H.F., Maas A.I., Valadka A.B., Yuh E.L., Mukherjee P., Manley G.T., Okonkwo D.O. TRACK-TBI Investigators. Measurement of the glial fibrillary acidic protein and its breakdown products GFAP-BDP biomarker for the detection of traumatic brain injury compared to computed tomography and magnetic resonance imaging. J. Neurotrauma, 2015, Vol. 32, no. 8, pp. 527-33.; Medcalf R.L. The traumatic side of fibrinolysis. Blood, 2015, Vol. 125, no. 16, pp. 2457-2458.; Meng Y., Chopp M., Zhang Y., Liu Z., An A., Mahmood A., Xiong Y. Subacute intranasal administration of tissue plasminogen activator promotes neuroplasticity and improves functional recovery following traumatic brain injury in rats. PLoS One, 2014, Vol. 9, no. 9, e106238. doi:10.1371/journal.pone.0106238.; Mori Y., Tomonaga D., Kalashnikova A., Furuya F., Akimoto N., Ifuku M., Okuno Y., Beppu K., Fujita K., Katafuchi T., Shimura H., Churilov L.P., Noda M. Effects of 3,3’,5-triiodothyronine on microglial functions. Glia, 2015, Vol. 63, no. 5, pp. 906-920.; Needham E.J., Helmy A., Zanier E.R., Jones J.L., Coles A.J., Menon D.K. The immunological response to traumatic brain injury. J. Neuroimmunol., 2019, Vol. 332, pp. 112-125.; Nimmerjahn A., Kirchhoff F., Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science, 2005, Vol. 308, no. 5726, pp. 1314-1318.; Ohno M., Oka S., Nakabeppu Y. Quantitative analysis of oxidized guanine, 8-oxoguanine, in mitochondrial DNA by immunofluorescence method. Methods Mol. Biol., 2009, Vol. 554, pp. 199-212.; Ohsawa K., Kohsaka S. Dynamic motility of microglia: purinergic modulation of microglial movement in the normal and pathological brain. Glia, 2011, Vol. 59, no. 12, pp. 1793-1799.; Oka S., Ohno M., Tsuchimoto D., Sakumi K., Furuichi M., Nakabeppu Y. Two distinct pathways of cell death triggered by oxidative damage to nuclear and mitochondrial DNAs. EMBO J., 2008, Vol. 27, no. 2, pp. 421-432.; Papa L., Silvestri S., Brophy G.M., Giordano P., Falk J.L., Braga C.F., Tan C.N., Ameli N.J., Demery J.A., Dixit N.K., Mendes M.E., Hayes R.L., Wang K.K., Robertson C.S. GFAP out-performs S100β in detecting traumatic intracranial lesions on computed tomography in trauma patients with mild traumatic brain injury and those with extracranial lesions. J. Neurotrauma, 2014, Vol. 31, no. 22, pp. 1815-1822.; Perri B.R., Smith D.H., Murai H., Sinson G., Saatman K.E., Raghupathi R., Bartus R.T., McIntosh T.K. Metabolic quantification of lesion volume following experimental traumatic brain injury in the rat. J. Neurotrauma, 1997, Vol. 14, no. 1, pp. 15-22.; Rowe R.K., Striz M., Bachstetter A.D., Van Eldik L.J., Donohue K.D., O’Hara B.F., Lifshitz J. Diffuse brain injury induces acute post-traumatic sleep. PLoS One, 2014, Vol. 9, no. 1, e82507. doi:10.1371/journal.pone.0082507.; Schober M.E., Requena D.F., Rodesch C.K. EPO improved neurologic outcome in rat pups late after traumatic brain injury. Brain Dev., 2018, Vol. 40, no. 5, pp. 367-375.; Scrimgeour A.G., Condlin M.L. Nutritional treatment for traumatic brain injury. J. Neurotrauma, 2014, Vol. 31, no. 11, pp. 989-999.; Shen Q., Yin Y., Xia Q.J., Lin N., Wang Y.C., Liu J., Wang H.P., Lim A., Wang T.H. Bone Marrow Stromal Cells Promote Neuronal Restoration in Rats with Traumatic Brain Injury: Involvement of GDNF Regulating BAD and BAX Signaling. Cell. Physiol. Biochem., 2016, Vol. 38, no. 2, pp. 748-762.; Song S., Kong X., Acosta S., Sava V., Borlongan C., Sanchez-Ramos J. Granulocyte colony-stimulating factor promotes behavioral recovery in a mouse model of traumatic brain injury. J. Neurosci. Res., 2016, Vol. 94, no. 5, pp. 409-423.; Thal S.C., Wyschkon S., Pieter D., Engelhard K., Werner C. Selection of endogenous control genes for normalization of gene expression analysis after experimental brain trauma in mice. J. Neurotrauma, 2008, Vol. 25, no. 7, pp. 785-794.; Timmerman K.L., Amonette W.E., Markofski M.M., Ansinelli H.A., Gleason E.A., Rasmussen B.B., Mossberg K.A. Blunted IL-6 and IL-10 response to maximal aerobic exercise in patients with traumatic brain injury. Eur. J. Appl. Physiol., 2015, Vol. 115, no. 1, pp. 111-118.; Tobinick E., Kim N.M., Reyzin G., Rodriguez-Romanacce H., DePuy V. Selective TNF inhibition for chronic stroke and traumatic brain injury: an observational study involving 629 consecutive patients treated with perispinal etanercept. CNS Drugs, 2012, Vol. 26, no. 12, pp. 1051-1070.; Tuttolomondo A., Pecoraro R., Pinto A. Studies of selective TNF inhibitors in the treatment of brain injury from stroke and trauma: a review of the evidence to date. Drug Des. Devel. Ther., 2014, Vol. 8, pp. 2221-2238.; Wang Y., Chen D., Chen G. Hyperbaric oxygen therapy applied research in traumatic brain injury: from mechanisms to clinical investigation. Med. Gas. Res., 2014, Vol. 4, 18. doi:10.1186/2045-9912-4-18.; Wang Y., Yue X., Kiesewetter D.O., Niu G., Teng G., Chen X. PET imaging of neuroinflammation in a rat traumatic brain injury model with radiolabeled TSPO ligand DPA-714. Eur. J. Nucl. Med. Mol. Imaging, 2014, Vol. 41, no. 7, pp. 1440-1449.; Willis E.F., MacDonald K.P.A., Nguyen Q.H., Garrido A.L., Gillespie E.R., Harley S.B.R., Bartlett P.F., Schroder W.A., Yates A.G., Anthony D.C., Rose-John S., Ruitenberg M.J., Vukovic J. Repopulating microglia promote brain repair in an IL-6-dependent manner. Cell, 2020, Vol.180, no. 5, pp. 833-846.e16.; Witcher K.G., Bray C.E., Dziabis J.E., McKim D.B., Benner B.N., Rowe R.K., Kokiko-Cochran O.N., Popovich P.G., Lifshitz J., Eiferman D.S., Godbout J.P. Traumatic brain injury-induced neuronal damage in the somatosensory cortex causes formation of rod-shaped microglia that promote astrogliosis and persistent neuroinflammation. Glia, 2018, Vol. 66, no. 12, pp. 2719-2736.; Xing P., Ma K., Li L., Wang D., Hu G., Long W. The protection effect and mechanism of hyperbaric oxygen therapy in rat brain with traumatic injury. Acta Cir. Bras., 2018, Vol. 33, no. 4, pp. 341-353.; Xu B., Yu D.M., Liu F.S. Effect of siRNA-induced inhibition of IL-6 expression in rat cerebral gliocytes on cerebral edema following traumatic brain injury. Mol. Med. Rep., 2014, Vol. 10, no. 4, pp. 1863-1868.; Yamaguchi H., Kajitani K., Dan Y., Furuichi M., Ohno M., Sakumi K., Kang D., Nakabeppu Y. MTH1, an oxidized purine nucleoside triphosphatase, protects the dopamine neurons from oxidative damage in nucleic acids caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Cell Death Differ., 2006, Vol. 13, no. 4, pp. 551-563.; Yang Y., Ye Y., Kong C., Su X., Zhang X., Bai W., He X. MiR-124 enriched exosomes promoted the M2 polarization of microglia and enhanced hippocampus neurogenesis after traumatic brain injury by inhibiting TLR4 pathway. Neurochem. Res., 2019, Vol. 44, no. 4, pp. 811-828.; Younger D., Murugan M., Rama Rao K.V., Wu L.J., Chandra N. Microglia receptors in animal models of traumatic brain injury. Mol. Neurobiol., 2019, Vol. 56, no. 7, pp. 5202-5228.; Zhao J., Wang B., Huang T., Guo X., Yang Z., Song J., Zhang M. Glial response in early stages of traumatic brain injury. Neurosci. Lett., 2019, Vol. 708, 134335. doi:10.1016/j.neulet.2019.134335.; Zhuang Y.F., Li J. Serum EGF and NGF levels of patients with brain injury and limb fracture. Asian Pac. J. Trop. Med., 2013, Vol. 6, no. 5, pp. 383-386.; https://www.mimmun.ru/mimmun/article/view/2392
-
14Academic Journal
Authors: D. B. Avdeev, V. A. Akulinin, S. S. Stepanov, A. Yu. Shoronova, L. M. Makarieva, A. V. Gorbunova, M. S. Korzhuk, M. V. Markelov, Д. Б. Авдеев, В. А. Акулинин, С. С. Степанов, А. Ю. Шоронова, Л. М. Макарьева, А. В. Горбунова, М. С. Коржук, М. В. Маркелова
Contributors: This study was supported by the Omsk State Medical University as part of the training and certification program for scientific and teaching staff., Данная работа выполнена при поддержке Омского государственного медицинского университета в рамках подготовки и аттестации научно-педагогических и научных кадров.
Source: General Reanimatology; Том 17, № 2 (2021); 55-71 ; Общая реаниматология; Том 17, № 2 (2021); 55-71 ; 2411-7110 ; 1813-9779
Subject Terms: крысы Wistar, bi-nucleated neurons, astroglia, microglia, immunohistochemistry, morphometry, Wistar rats, неокортекс, двуядерные нейроны, астроглия, микроглия, иммуногистохимия, морфометрия
File Description: application/pdf
Relation: https://www.reanimatology.com/rmt/article/view/2053/1502; https://www.reanimatology.com/rmt/article/view/2053/1503; Аврущенко М.Ш., Острова И.В. Постреанимационные изменения экспрессии мозгового нейротрофического фактора (BDNF): взаимосвязь с процессом гибели нейронов. Общая реаниматология. 2017; 13 (4): 6-21. DOI:10.15360/1813-97792017-4-6-21; Степанов С.С., Акулинин В.А., Авдеев Д.Б., Степанов А.С., Горбунова А.В. Структурно-функциональная реорганизация ядрышкового аппарата нейронов неокортекса, архикортекса и базальных ганглиев головного мозга белых крыс после 20-минутной окклюзии общих сонных артерий. Журнал анатомии и гистопатологии. 2018; 7 (4): 67-74. DOI:10.18499/2225-7357; Степанов А.С., Акулинин В.А., Степанов С.С., Авдеев Д.Б. Клеточные системы восстановления и утилизации поврежденных нейронов головного мозга белых крыс после 20-минутной окклюзии общих сонных артерий. Российский физиологический журнал им. И.М. Сеченова. 2017; 103 (10): 1135-1147.; Степанов А.С., Акулинин В.А., Мыцик А.В., Степанов С.С., Авдеев Д.Б. Нейро-глио-сосудистые комплексы головного мозга после острой ишемии. Общая реаниматология. 2017; 13 (6): 6-17. DOI:10.15360/1813-9779-2017-6-6-17; Oksanen M, Lehtonen, S., Jaronen, M., Goldsteins, G., Hamalainen R.H., Koistinaho J. Astrocyte alterations in neurodegenerative pathologies and their modeling in human induced pluripotent stem cell platforms. Cellular and Molecular Life Sciences. 2019; 76: 2739-2760. DOI:10.1007/s00018-019-03111-7; Сахарнова Т.А., Ведунова М.В., Мухина И.В. Нейротрофический фактор головного мозга (bdnf) и его роль в функционировании центральной нервной системы. Нейрохимия. 2012; 29 (4): 269-277.; Митрошина Е.В., Абогессименгане Б.Ж., Уразов М.Д., Хамрауй И., Мищенко Т.А., Астраханова Т.А., Щелчкова Н.А., Лапшин Р.Д., Шишкина Т.В., Белоусова И.И., Мухина И.В., Ведунова М.В. Адаптационная роль глиального нейротрофического фактора при ишемии головного мозга. Современные технологии в медицине. 2017; 9 (1): 68-77. DOI:10.17691/stm2017.9.1.08; Алексеева О.С., Кирик О.В., Гилерович Е.Г., Коржевский Д.Э. Микроглия головного мозга: происхождение, структура и функции. Эволюционной биохимии и физиологии. 2019; 55 (4): 231-241. DOI:10.1134/S0044452919040028; Калинина Ю.А., Гилерович Е.Г., Коржевский Д.Э. Астроциты и их участие в механизмах терапевтического действия мультипотентных мезенхимальных стромальных клеток при ишемическом повреждении головного мозга. Гены и клетки. 2019; 14 (1): 33-40. DOI:10.23868/201903004; Pekny M., Pekna M. Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol Rev. 2014; 94: 1077-1098. DOI:10.1152/physrev.00041.2013; Cowan M., Petri Jr. W. A. Microglia: Immune regulators of neurodevelopment. Frontiers in immunology. 2018; 9: 2576. DOI:10.3389/fimmu.2018.02576; Chen Z., Zhong, D., Li, G. The role of microglia in viral encephalitis: a review. Journal of Neuroinflammation. 2019; 16: 76. DOI:10.1186/s12974-019-1443-2; Сотников О.С., Фрумкина Л.Е., Лактионова А.А., Парамонова Н.М., Новаковская С.А. Двуядерные нейроны: синцитиальное слияние или амитоз. Успехи физиологических наук. 2011; 42 (4): 76-89. PMID: 22145312; Сотников О.С., Фрумкина Л.Е., Новаковская С.А., Боголепов Н.Н. Слияние нейронов мозга у эмбрионов крыс. Морфология. 2011; 139 (2): 18-21. PMID: 21866800; Kemp K., Wilkins A., Scolding N. Cell fusion in the brain: two cells forward, one cell back. Acta Neuropathol. 2014; 128: 629-638. DOI:10.1007/s00401-0141303-1; Pereira M, Birtele M., Rylander Ottosson D. Direct reprogramming into interneurons: potential for brain repair. Cellular and Molecular Life Sciences. 2019; 76: 3953-3967. DOI:10.1007/s00018-019-03193-3; Свиридкина Н.Б., Шакова Ф.М., Комиссарова С.В., Дубровин И.П., Турыгина С.А., Романова Г.А., Баранова В.М. Морфофункциональное исследование действия антиортостатической гипокинезии при очаговом ишемическом повреждении коры головного мозга. Патологическая физиология и экспериментальная терапия. 2012; 2: 22-26. PMID: 22708403; Криштоп В.В., Никонорова В.Г., Румянцева Т.А. Изменения клеточного состава коры головного мозга у крыс с разным уровнем когнитивных функций при церебральной гипоперфузии. Вестник Российского университета дружбы народов. 2019; 8 (4): 22-29. DOI:10.18499/2225-7357-2019-8-4-22-29; Paltsyn A.A., Manukhina E.B., Goryacheva A.V., Downey H.F., Dubrovin I.P., Komissarova S.V, KubatievA.A. Intermittent hypoxia stimulates formation of binuclear neurons in brain cortex - A role of cell fusion in neuroprotection? Experimental Biology and Medicine. 2014; 239: 595-600. DOI:10.1177/1535370214523898; Пальцын А.А., Свиридкина Н.Б. О регенерации мозга (лекция II). Патогенез. 2018; 16 (1): 83-91. DOI:10.25557/2310-0435.2018.01.83-91; Моргун А.В., Малиновская Н.А., Комлева Ю.К., Лопатина О.Л., Кувачева Н.В., Панина Ю.А., Таранушенко Т.Е., Солончук Р.Ю., Салмина А.Б. Структурная и функциональная гетерогенность астроцитов головного мозга: роль в нейродегенерации и нейровоспалении. Бюллетень сибирской медицины. 2014; 13 (5): 138-148. DOI:10.20538/1682-0363-2014-5-138-148; Sankavaram S.R., Svensson M.A., Olsson T., Brundin L., Johansson C.B. Cell fusion along the anterior-posterior neuroaxis in mice with experimental autoimmune encephalomyelitis. PLoS One. 2015; 10 (7): e0133903. DOI:10.1371/journal.pone.0133903; Giordano-Santini R., Linton C., Hilliard M.A. Cell-cell fusion in the nervous system: Alternative mechanisms of development, injury, and repair. Semin. Cell Dev. Biol. 2016; 60: 146-54. DOI:10.1016/j.sem-cdb.2016.06.019; Kravtsov V., Oren-Suissa M., Podbilewicz B. The fusogen AFF-1 can rejuvenate the regenerative potential of adult dendritic trees by selffusion. Development. 2017; 144 (13): 2364-74. DOI:10.1242/dev.150037; Espejel S., Romero R., Alvarez-Buylla A. Radiation damage increases Purkinje neuron heterokaryons in neonatal cerebellum. Ann. Neurol. 2009; 66: 100-109. DOI:10.1002/ana.21670; Kemp K., Gray E., Wilkins A., Scolding N. Purkinje cell fusion and binucleate heterokaryon formation in multiple sclerosis cerebellum. Brain. 2012; 135: 2962-2972. DOI:10.1002/ana.21670; Юшков Б.Г. Клетки иммунной системы и регуляция регенерации. Бюллетень сибирской медицины. 2017; 16 (4): 94-105. DOI:10.20538/1682-0363-2017-4-94-105; Ackman J.B., Siddiqi F., Walikonis R.S., LoTurco J.J. Fusion of microglia with pyramidal neurons after retroviral infection. J. Neurosci. 2006; 26: 11413-11422. DOI:10.1523/JNEUROSCI.3340-06.2006; Сотников О.С. Ретикулярная теория Камилло Гольджи и перестройка электрических синапсов в синцитиальные перфорации. Известия РАН. Серия биологическая. 2019; 2: 127-143. DOI:10.1134/S0002332919020140; Авдеев Д.Б., Акулинин В.А., Степанов А.С., Горбунова А.В., Степанов С.С. Плейотропные ферменты апоптоза и синаптическая пластичность гиппокампа белых крыс после окклюзии общих сонных артерий. Сибирский медицинский журнал (г. Томск). 2018; 33 (3): 102-110. DOI:10.29001/2073-8552-2018-33-3-102-110; Боровиков В. Statistica. Искусство анализа данных на компьютере. Изд-во Питер; 2003: 2-ое изд.: 688.; Giordano-Santinia R., Kaulicha E., Galbraitha K.M., Ritchiea F.K., Wangb W., Lib Z., Hilliarda M.A. Fusogen-mediated neuron-neuron fusion disrupts neural circuit connectivity and alters animal behavior. PNAS. 2020; 117 (37): 23054-23065. DOI:10.1073/pnas.1919063117; Alvarez-Dolado M., Martinez-Losa M. Cell fusion and tissue regeneration. Adv. Exp. Med. Biol. 2011; 713: 161-175. DOI:10.1007/978-94-007-0763-4_10; Kosi N., Alic I., Kolacevic M., Vrsaljko N., Jovanov Milosevic N., Sobol M, Philimonenko A., Hozak P, Gajovic S., PochetR., Mitrecic D. Nop2 is expressed during proliferation of neural stem cells and in adult mouse and human brain. Brain Res. 2015; 1597: 65-76. DOI:10.1016/j.brainres.2014.11.040; Damisah E.C., Hill R.A., Rai A., Chen F., Ghosh S., Grutzendler J. Astrocytes and microglia play orchestrated roles and respect phagocytic territories during neuronal corpse removal in vivo. Science Advances. 2020; 6 (26): eaba3239. DOI:10.1126/sciadv.aba3239; https://www.reanimatology.com/rmt/article/view/2053
-
15Academic Journal
Source: Pathologia; Vol. 18 No. 1 (2021): Pathologia; 33-38
Патология; Том 18 № 1 (2021): Патология; 33-38
Патологія; Том 18 № 1 (2021): Патологія; 33-38Subject Terms: microglial, мікроглія, phagocytosis, гостра печінкова енцефалопатія, микроглия, CD68, острая печёночная энцефалопатия, acute hepatic encephalopathy, 3. Good health, фагоцитоз
File Description: application/pdf
Access URL: http://pat.zsmu.edu.ua/article/view/227642
-
16Academic Journal
Source: Zaporozhye мedical journal; Vol. 23 No. 1 (2021); 111-119
Запорожский медицинский журнал; Том 23 № 1 (2021); 111-119
Запорізький медичний журнал; Том 23 № 1 (2021); 111-119Subject Terms: sepsis-associated encephalopathy, сепсис-ассоциированная энцефалопатия, просвічуюча електронна мікроскопія, мікроглія, phagocytosis, microglia, сепсис-асоційована енцефалопатія, transmission microscopy election, микроглия, CD68, просвечивающая электронная микроскопия, 3. Good health, фагоцитоз
File Description: application/pdf
Access URL: http://zmj.zsmu.edu.ua/article/view/224921
-
17Academic Journal
Source: Pathologia; Vol. 17 No. 3 (2020): Pathologia ; Патология; Том 17 № 3 (2020): Патологія ; Патологія; Том 17 № 3 (2020): Патологія ; 2310-1237 ; 2306-8027
Subject Terms: Epstein–Barr virus, HHV-4, multiple sclerosis, demyelination, B lymphocytes, microglia, вирус Эпштейна–Барр, рассеянный склероз, демиелинизация, В-лимфоциты, микроглия, вірус Епштейна–Барр, розсіяний склероз, демієлінізація, В-лімфоцити, мікроглія
File Description: application/pdf
Relation: http://pat.zsmu.edu.ua/article/view/221870/223159; http://pat.zsmu.edu.ua/article/view/221870
Availability: http://pat.zsmu.edu.ua/article/view/221870
-
18
-
19Report
Subject Terms: brain edema, эндотелиальные клетки, hepatic encephalopathy, astrocytes, microglia, therapeutic approaches, микроглия, endothelial cells, астроциты, neurobehavioral disorders, отек мозга, inflammation, нейроповеденческие нарушения, терапевтические подходы, воспаление, печеночная энцефалопатия
-
20Academic Journal
Authors: A. M. Maybogin, M. K. Nedzved, А. М. Майбогин, М. К. Недзьведь
Source: HIV Infection and Immunosuppressive Disorders; Том 11, № 3 (2019); 49-56 ; ВИЧ-инфекция и иммуносупрессии; Том 11, № 3 (2019); 49-56 ; 2077-9828 ; 10.22328/2077-9828-2019-11-3
Subject Terms: морфологическое исследование, HCV infection, microglia, white brain matter, morphological study, HCV-инфекция, микроглия, белое вещество
File Description: application/pdf
Relation: https://hiv.bmoc-spb.ru/jour/article/view/462/355; Цинзерлинг В.А., Чухловина М.Л. Инфекционные поражения нервной системы: вопросы этиологии, патогенеза и диагностики: руководство для врачей. СПб.: ЭЛБИ-СПб, 2011. 584 с.; Yarlott L., Heald E., Forton D. Hepatitis C virus infection, and neurological and psychiatric disorders — a review. J. Adv. Res., 2017, Vol. 8, No. 2, pp. 139–148.; Hilsabeck R.C. et al. Cognitive functioning and psychiatric symptomatology in patients with chronic hepatitis C. J. Int. Neuropsychol. Soc., 2003, Vol. 12, No. 2, pp. 847–854.; Kramer L. et al. Subclinical impairment of brain function in chroic hepatitis C infection. J. Hepatol., 2002, Vol. 37, No. 3, pp. 349–354.; Forton D.M. et al. Hepatitis C and cognitive impairment in a cohort of patients with mild liver disease. Hepatology, 2002, Vol. 35, No. 2, pp. 433–439.; Hudhes E. et al. Prevalence of HIV, hepatitis B, and hepatitis C in people with severe mental illness: a systemic review and meta-analysis. Lancet Psychiatry, 2016, Vol. 3, No. 1, pp. 40–48.; Radkowski M. et al. Search for hepatitis C virus PNA sequence and analysis of viral sequence in the central nervous system: evidence of replication. J. Virol., 2002, Vol. 76, No. 2, pp. 600–608.; Forton D.M. et al. Identification of unique hepatitis C virus quasispecies in the central nervous system and comparative analysis of internal translational efficiency of brain, liver, and serum variants. J. Virol., 2004, Vol. 78, No. 10, pp. 5170–5183.; Wilkinson J. et al. Hepatitis C virus neuroinvasion: identification of infected cells. J. Virol., 2009, Vol. 83, No. 3, pp. 1312–1319.; Younis L.K. et al. Immunohistochemical Detection of HCV in Nerves and Muscles of Patients with HCV Associated Peripheral Neuropathy and Myositis. Inter. J. of Health Sci., 2007.— Vol. 1, No. 2, pp. 195–202.; Pawlowski T. et al. Depression and neuroticism in patients with chronic hepatitis C: correlation with peripheral blood mononuclear cells activation. J. Clin. Virol., 2014, Vol. 60, No. 2, pp. 105–111.; Grover V.P. et al. Сerebral immune activation in patients with chronic hepatitis C: in vivo evidence of neuroinflammation. J. Viral. Hepat., 2012, Vol. 19, No. 12, pp. 89–96.; Bokemeyer M. et al. Evidence for neuroinflammation and neuroprotection in HCV infection-associated encephalopathy. Gut., 2011, Vol. 60, No. 3, pp. 370–377.; Forton D.M. et al. Сerebral immune activation in chronic hepatitis C infection: а magnetic resonance spectroscopy study. J. Hepatol., 2008, Vol. 49, No. 3, pp. 316–322.; Weissenborn K. et al. Monoaminergic neurotransmission is altered in hepatitis C virus infected patients with chronic fatigue and cognitive impairment. Gut, 2006, Vol. 55, No. 11, pp. 1624–1630.; Goh J. et al. Fatigue does not correlate with the degree of hepatitis C or the presence of autoimmune disorders in chronic HCV infection. Eur. J. Gastroenterol. Hepatol., 1999, Vol. 11, No. 8, pp. 833–838.; Aronow H.A. et al. Effects of coinfection with HIV and hepatitis C virus on the nervous system. AIDS Read, 2008, Vol. 18, No. 1, pp. 43–48.; Bladowska J. et al. Value of perfusion-weighted MR imaging in the assessment of early cerebral alterations in neurologically asymptomatic HIV-1-positive and HCV-positive patients. PLoS ONE [Electronic resource], San Francisco, 2014. URL:https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0102214 (June 08, 2019).; Майбогин А.М., Недзьведь М.К., Карапетян Г.М. Метод морфологической диагностики микроглиоза в белом веществе головного мозга: инструкция по применению / Утверждена Министерством здравоохранения Республики Беларусь 11.11.2014. Гомель: Гомельский государственный медицинский университет, 2014. 18 с.; Майбогин А.М., Недзьведь М.К. Изменения гиппокампа и стволовых отделов головного мозга при циррозе печени в исходе хронического вирусного гепатитаС // Нейроиммунология. 2013, Т.11, № 1/2. С.93–94.; Fletcher N.F. et al. Hepatitis C virus infects the endothelial cells of the blood-brain barrier. Gastroenterology, 2012, Vol. 142, No. 3, pp. 634–643.