Εμφανίζονται 1 - 20 Αποτελέσματα από 94 για την αναζήτηση '"микробная обсемененность"', χρόνος αναζήτησης: 0,62δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: VII Пущинская конференция «Биохимия, физиология и биосферная роль микроорганизмов», шко- ла-конференция для молодых ученых, аспирантов и студентов «Генетические технологии в микробио- логии и микробное разнообразие».

  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
    Academic Journal

    Πηγή: Medicine in Kuzbass; Том 23, № 1 (2024): март; 58-64 ; Медицина в Кузбассе; Том 23, № 1 (2024): март; 58-64 ; 2588-0411 ; 1819-0901

    Περιγραφή αρχείου: application/pdf; text/html

  7. 7
  8. 8
  9. 9
    Academic Journal
  10. 10
  11. 11
  12. 12
  13. 13
    Academic Journal

    Συνεισφορές: This article has been translated from Russian into English by S. Durakov and edited for English language and spelling by Enago, an editing brand of Crimson Interactive Inc.

    Πηγή: Fine Chemical Technologies; Vol 15, No 6 (2020); 34-43 ; Тонкие химические технологии; Vol 15, No 6 (2020); 34-43 ; 2686-7575 ; 2410-6593

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.finechem-mirea.ru/jour/article/view/1666/1715; https://www.finechem-mirea.ru/jour/article/view/1666/1723; https://www.finechem-mirea.ru/jour/article/downloadSuppFile/1666/275; https://www.finechem-mirea.ru/jour/article/downloadSuppFile/1666/284; Sutherland J., Miles M., Hedderley D., Li J., Devoy S., Sutton K., Lauren D. In vitro effects of food extracts on selected probiotic and pathogenic bacteria. Int. J. Food Sci. Nutr. 2009;60(8):717-727. https://doi.org/10.3109/09637480802165650; Das S., Anjeza C., Mandal S. Synergistic or additive antimicrobial activities of Indian spice and herbal extracts against pathogenic, probiotic and food–spoiler microorganisms. Int. Food Res. J. 2012;19(3):1185-1191.; Al-Zubairi A., Al-Mamary M. A., Al-Ghasani E. The antibacterial, antifungal and antioxidant activities of essential oil from different aromatic plants. Glo. Adv. Res. J. Med. Med. Sci. 2017;6(9):224-233. http://garj.org/garjmms; Rodino S., Butu M. Herbal Extracts—New Trends in Functional and Medicinal Beverages. In: Grumezescu A.M., Holban A.M. (Eds.). Functional and Medicinal Beverages. Volume 11: The Science of Beverages. Academic Press; 2019. P. 73-108. https://doi.org/10.1016/B978-0-12-816397-9.00003-0; Burt S. Essential oils: their antibacterial properties and potential applications in foods – a review. Int. J. Food Microbiol. 2004;94(3):223-253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022; Bakkali F., Averbeck S., Averbeck D., Idaomar M. Biological effects of essential oils – A review. Food Chem. Toxicol. 2008;46(2):446-475. https://doi.org/10.1016/j.fct.2007.09.106; Tripathi A.K., Bhoyar P.K., Baheti J.R., Biyani D.M., Khalique M., Kothmire M.S., Bhanarkar A.B. Herbal antidiabetics: a review. International Journal of Research in Pharmaceutical Sciences (IJRPS). 2011;2(1):30-37.; Fatima A., Alok S., Agarwal P., Singh P.P., Verma A. Benefits of herbal extracts in cosmetics: a review. International Journal of Pharmaceutical Sciences and Research (IJPSR). 2013;4(10):3746-3760. https://doi.org/10.13040/ijpsr.0975-8232.4(10).3746-60; Alok S., Jain S.K., Verma A., Kumar M., Mahor A., Sabharwal M. Herbal antioxidant in clinical practice: a review. Asian Pac. J. Trop. Biomed. 2014;4(1):78-84. https://doi.org/10.1016/S2221-1691(14)60213-6; Radice M., Manfredini S., Ziosi P., Dissette V., Buso P., Fallacara A., Vertuani S. Herbal extracts, lichens and biomolecules as natural photo-protection alternatives to synthetic UV filters. A systematic review. Fitoterapia. 2016;114:144-162. https://doi.org/10.1016/j.fitote.2016.09.003; Merghni A., Marzouki H., Hentati H., Aouni M., Mastouri M. Antibacterial and antibiofilm activities of Laurus nobilis L. essential oil against Staphylococcus aureus strains associated with oral infections. Curr. Res. Transl. Med. 2016;64(1):29-34. https://doi.org/10.1016/j.patbio.2015.10.003; Fani M., Kohanteb J. In vitro antimicrobial activity of thymus vulgaris essential oil against major oral pathogens. J. Evid. Based Complementary Altern. Med. 2017;22(4):660-666. https://doi.org/10.1177/2156587217700772; Kokina M.S., Frioui M., Shamtsyan M., Sibirtsev V.S., Krasnikova L.V., Konusova V.G., Simbirtsev A.S. Influence of pleurotus ostreatus beta-glucans on the growth and activity of certain lactic acid bacteria. Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind. 2018;19(4):465-471.; Atarés L., Chiralt A. Essential oils as additives in biodegradable films and coatings for active food packaging. Trends Food Sci. Technol. 2016;48:51-62. https://doi.org/10.1016/j.tifs.2015.12.001; Ribeiro-Santos R., Andrade M., Melo N. R., SanchesSilva A. Use of essential oils in active food packaging: Recent advances and future trends. Trends Food Sci. Technol. 2017;61:132-140. https://doi.org/10.1016/j.tifs.2016.11.021; Ju J., Xie Y., Guo Y., Cheng Y., Qian H., Yao W. Application of edible coating with essential oil in food preservation. Crit. Rev. Food Sci. Nutr. 2019;59(15):2467-2480. https://doi.org/10.1080/10408398.2018.1456402; Yuan G., Chen X., Li D. Chitosan films and coatings containing essential oils: The antioxidant and antimicrobial activity, and application in food systems. Food Res. Int. 2016;89(1):117-128. https://doi.org/10.1016/j.foodres.2016.10.004; Donsì F., Ferrari G. Essential oil nanoemulsions as antimicrobial agents in food. J. Biotechnol. 2016;233:106-120. https://doi.org/10.1016/j.jbiotec.2016.07.005; Pavela R., Benelli G. Essential Oils as Ecofriendly Biopesticides? Challenges and Constraints. Trends Plant Sci. 2016;21(12):1000-1007. https://doi.org/10.1016/j.tplants.2016.10.005; Rout P.K., Naik S.N., Rao Y.R. Subcritical CO 2 extraction of floral fragrance from Quisqualis indica. J. Supercrit. Fluids. 2008;45(2):200-205. https://doi.org/10.1016/j.supflu.2008.02.011; Sahena F., Zaidul I.S.M., Jinap S., Karim A.A., Abbas K.A., Norulaini N.A.N., Omar A.K.M. Application of supercritical CO 2 in lipid extraction – A review. J. Food Eng. 2009;95(2):240-253. https://doi.org/10.1016/j.jfoodeng.2009.06.026; Ibadullaeva G.S., Pichkhadze G.M., Ustenova G.O., Dil’barkhanov R., Tikhonova S.A., Grud’ko V.A., Bevz N.Yu., Yudina Yu.V. Chemical composition of the CO 2 -extract of Acorus Calamus obtained under subcritical conditions. Pharmaceut. Chem. J. 2015;49(6):388-392. https://doi.org/10.1007/s11094-015-1290-0; Valle Jr.D.L., Cabrera E.C., Puzon J.J.M., Rivera W.L. Antimicrobial activities of methanol, ethanol and supercritical CO 2 extracts of Philippine Piper betle L. on clinical isolates of Gram positive and Gram negative bacteria with transferable multiple drug resistance. PLoS ONE. 2016;11(1):е0146349. https://doi.org/10.1371/journal.pone.0146349; Lazarotto M., Valério A., Boligon A., Tres M.V., Scapinello J., Dal Magro J., Oliveira J.V. Chemical composition and antibacterial activity of bergamot peel oil from supercritical CO 2 and compressed propane extraction. Open Food Sci. J. 2018;10(1):16-23. https://doi.org/10.2174/1874256401810010016; Vieitez I., Maceiras L., Jachmanián I., Alborés S. Antioxidant and antibacterial activity of different extracts from herbs obtained by maceration or supercritical technology. J. Supercrit. Fluids. 2018;133(1):58-64. https://doi.org/10.1016/j.supflu.2017.09.025; Coelho J., Veiga J., Karmali A., Nicolai M., Pinto Reis C., Nobre B., Palavra A. Supercritical CO 2 extracts and volatile oil of basil (Ocimum basilicum L.) comparison with conventional methods. Separations. 2018;5(2):21-33. https://doi.org/10.3390/separations5020021; Sibirtsev V.S. Study of applicability of the bifunctional system “Ethidium bromide + Hoechst-33258” for DNA analysis. Biochemistry (Moscow). 2005;70(4.):449-457. https://doi.org/10.1007/s10541-005-0136-x; Sibirtsev V.S. Fluorescent DNA probes: study of mechanisms of changes in spectral properties and features of practical application. Biochemistry (Moscow). 2007;72(8):887-900. https://doi.org/10.1134/S0006297907080111; Sibirtsev V.S., Naumov I.A., Kuprina E.E., Olekhnovich R.O. Use of impedance biotesting to assess the actions of pharmaceutical compounds on the growth of microorganisms. Pharmaceut. Chem. J. 2016;50(7):481-485. https://doi.org/10.1007/s11094-016-1473-3; Sibirtsev V.S. Biological test methods based on fluorometric genome analysis. J. Opt. Technol. 2017;84(11):787-791. https://doi.org/10.1364/JOT.84.000787; Sibirtsev V.S., Maslova A.Yu. Complex research of E.coli vital activity dynamics in presence of transition metal ions. Sci. Tech. J. Inf. Technol. Mech. Opt. 2019;19(2):236-241. https://doi.org/10.17586/2226-1494-2019-19-2-236-241; Sibirtsev V.S., Uspenskaya M.V., Garabadgiu A.V., Shvets V.I. An integrated method of instrumental microbiotesting of environmental safety of various products, wastes, and territories. Dokl. Biol. Sci. 2019;485(1):59-61. https://doi.org/10.1134/S001249661902011X; Sibirtsev V.S., Garabadgiu A.V., Shvets V.I. New technique for integrated photofluorescence microbiotesting. Dokl. Biol. Sci. 2019;489(6):196-199. https://doi.org/10.1134/S0012496619060103; Korn G., Korn T. Mathematical Handbook for Scientists and Engineers. Definitions, Theorems and Formulas for Reference and Review. NY: McGraw Hill Book Company; 1968. 1152 p.; Johnson K., Jeffi V. Numerical Methods in Chemistry. Cambridge University Press; 1983. 503 p.; Sibirtsev V. S. Analysis of benzo[a]pyrene deactivation mechanisms in rats. Biochemistry (Moscow). 2006;71(1):90-98. https://doi.org/10.1134/S0006297906010147; Zhuravlev O.E., Voronchikhina L.I. Synthesis and antimicrobial activity of N-decylpyridinium salts with inorganic anions. Pharmaceut. Chem. J. 2018;52(4):312-315. https://doi.org/10.1007/s11094-018-1813-6; Luzhnova S.A., Tyrkov A.G., Gabitova N.M., Yurtaeva E.A. Synthesis and antimicrobial activity of 5-(arylmethylidene)-2,4,6-pyrimidine-2,4,6(1 H ,3 H ,5 H )triones. Pharmaceut. Chem. J. 2018;52(6):506-509. https://doi.org/10.1007/s11094-018-1849-7

  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20