Εμφανίζονται 1 - 20 Αποτελέσματα από 109 για την αναζήτηση '"миелодиспластический синдром"', χρόνος αναζήτησης: 0,77δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
    Academic Journal

    Πηγή: Medical Herald of the South of Russia; Том 14, № 4 (2023); 35-43 ; Медицинский вестник Юга России; Том 14, № 4 (2023); 35-43 ; 2618-7876 ; 2219-8075 ; 10.21886/2219-8075-2023-14-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medicalherald.ru/jour/article/view/1803/990; https://www.medicalherald.ru/jour/article/downloadSuppFile/1803/757; https://www.medicalherald.ru/jour/article/downloadSuppFile/1803/758; https://www.medicalherald.ru/jour/article/downloadSuppFile/1803/759; https://www.medicalherald.ru/jour/article/downloadSuppFile/1803/760; https://www.medicalherald.ru/jour/article/downloadSuppFile/1803/761; https://www.medicalherald.ru/jour/article/downloadSuppFile/1803/762; https://www.medicalherald.ru/jour/article/downloadSuppFile/1803/763; Bousfiha A, Moundir A, Tangye SG, Picard C, Jeddane L, et al. The 2022 Update of IUIS Phenotypical Classification for Human Inborn Errors of Immunity. J Clin Immunol. 2022;42(7):1508-1520. https://doi.org/10.1007/s10875-022-01352-z; Сизякина Л.П., Андреева И.И. Справочник по клинической иммунологии. Ростов-на-Дону: Феникс; 2005.; Кондратенко И.В., Бологов А.А. Первичные иммунодефициты: учебное пособие. Москва: ИндексМед Медиа; 2020.; Vinh DC, Patel SY, Uzel G, Anderson VL, Freeman AF, et al. Autosomal dominant and sporadic monocytopenia with susceptibility to mycobacteria, fungi, papillomaviruses, and myelodysplasia. Blood. 2010;115(8):1519-29. https://doi.org/10.1182/blood-2009-03-208629; Bigley V, Haniffa M, Doulatov S, Wang XN, Dickinson R, et al. The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency. J Exp Med. 2011;208(2):227-34. https://doi.org/10.1084/jem.20101459; Mansour S, Connell F, Steward C, Ostergaard P, Brice G, et al. Emberger syndrome-primary lymphedema with myelodysplasia: report of seven new cases. Am J Med Genet A. 2010;152A(9):2287-96. https://doi.org/10.1002/ajmg.a.33445; Hahn CN, Chong CE, Carmichael CL, Wilkins EJ, Brautigan PJ, et al. Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. Nat Genet. 2011;43(10):1012-7. https://doi.org/10.1038/ng.913; Hsu AP, Sampaio EP, Khan J, Calvo KR, Lemieux JE, et al. Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. Blood. 2011;118(10):2653-5. https://doi.org/10.1182/blood-2011-05-356352; Rodrigues NP, Tipping AJ, Wang Z, Enver T. GATA-2 mediated regulation of normal hematopoietic stem/progenitor cell function, myelodysplasia and myeloid leukemia. Int J Biochem Cell Biol. 2012;44(3):457-60. https://doi.org/10.1016/j.biocel.2011.12.004; Li Y, Qi X, Liu B, Huang H. The STAT5-GATA2 pathway is critical in basophil and mast cell differentiation and maintenance. J Immunol. 2015;194(9):4328-38. https://doi.org/10.4049/jimmunol.1500018; Homan CC, Venugopal P, Arts P, Shahrin NH, Feurstein S, et al. GATA2 deficiency syndrome: A decade of discovery. Hum Mutat. 2021;42(11):1399-1421. https://doi.org/10.1002/humu.24271; Kozyra EJ, Pastor VB, Lefkopoulos S, Sahoo SS, Busch H, et al. Synonymous GATA2 mutations result in selective loss of mutated RNA and are common in patients with GATA2 deficiency. Leukemia. 2020;34(10):2673-2687. https://doi.org/10.1038/s41375-020-0899-5; Oleaga-Quintas C, de Oliveira-Júnior EB, Rosain J, Rapaport F, Deswarte C, et al. Inherited GATA2 Deficiency Is Dominant by Haploinsufficiency and Displays Incomplete Clinical Penetrance. J Clin Immunol. 2021;41(3):639-657. https://doi.org/10.1007/s10875-020-00930-3; Spinner MA, Sanchez LA, Hsu AP, Shaw PA, Zerbe CS, et al. GATA2 deficiency: a protean disorder of hematopoiesis, lymphatics, and immunity. Blood. 2014;123(6):809-21. https://doi.org/10.1182/blood-2013-07-515528; Donadieu J, Lamant M, Fieschi C, de Fontbrune FS, Caye A, et al. Natural history of GATA2 deficiency in a survey of 79 French and Belgian patients. Haematologica. 2018;103(8):1278-1287. https://doi.org/10.3324/haematol.2017.181909; Mardahl M, Jørgensen SE, Schneider A, Raaschou-Jensen K, Holm M, et al. Impaired immune responses to herpesviruses and microbial ligands in patients with MonoMAC. Br J Haematol. 2019;186(3):471-476. https://doi.org/10.1111/bjh.15947; Haugas M, Lilleväli K, Hakanen J, Salminen M. Gata2 is required for the development of inner ear semicircular ducts and the surrounding perilymphatic space. Dev Dyn. 2010;239(9):2452-69. https://doi.org/10.1002/dvdy.22373; Parta M, Shah NN, Baird K, Rafei H, Calvo KR, et al. Allogeneic Hematopoietic Stem Cell Transplantation for GATA2 Deficiency Using a Busulfan-Based Regimen. Biol Blood Marrow Transplant. 2018;24(6):1250-1259. https://doi.org/10.1016/j.bbmt.2018.01.030; Grossman J, Cuellar-Rodriguez J, Gea-Banacloche J, Zerbe C, Calvo K, et al. Nonmyeloablative allogeneic hematopoietic stem cell transplantation for GATA2 deficiency. Biol Blood Marrow Transplant. 2014;20(12):1940-8. https://doi.org/10.1016/j.bbmt.2014.08.004; Marciano BE, Olivier KN, Folio LR, Zerbe CS, Hsu AP, et al. Pulmonary Manifestations of GATA2 Deficiency. Chest. 2021;160(4):1350-1359. https://doi.org/10.1016/j.chest.2021.05.046; W est ES, Kingsbery MY, Mintz EM, Hsu AP, Holland SM, et al. Generalized verrucosis in a patient with GATA2 deficiency. Br J Dermatol. 2014;170(5):1182-6. https://doi.org/10.1111/bjd.12794; Rivera A, Tyring SK. Therapy of cutaneous human Papillomavirus infections. Dermatol Ther. 2004;17(6):441-8. https://doi.org/10.1111/j.1396-0296.2004.04047.x; Bogaert DJ, Laureys G, Naesens L, Mazure D, De Bruyne M, et al. GATA2 deficiency and haematopoietic stem cell transplantation: challenges for the clinical practitioner. Br J Haematol. 2020;188(5):768-773. https://doi.org/10.1111/bjh.16247; https://www.medicalherald.ru/jour/article/view/1803

  9. 9
    Academic Journal

    Πηγή: Modern Rheumatology Journal; Том 17, № 6 (2023); 92-101 ; Современная ревматология; Том 17, № 6 (2023); 92-101 ; 2310-158X ; 1996-7012

    Περιγραφή αρχείου: application/pdf

    Relation: https://mrj.ima-press.net/mrj/article/view/1509/1425; https://mrj.ima-press.net/mrj/article/view/1509/1431; Beck DB, Ferrada MA, Sikora KA, et al. Somatic Mutations in UBA1 and Severe Adult-Onset Autoinflammatory Disease. N Engl J Med. 2020 Dec 31;383(27):2628- 2638. doi:10.1056/NEJMoa2026834. Epub 2020 Oct 27.; Poulter JA, Savic S. Genetics of somatic auto-inflammatory disorders. Semin Hematol. 2021 Oct;58(4):212-217. doi:10.1053/j.seminhematol.2021.10.001. Epub 2021 Oct 9.; Georgin-Lavialle S, Terrier B, Guedon AF, et al. Further characterization of clinical and laboratory features in VEXAS syndrome: large-scale analysis of a multicentre case series of 116 French patients. Br J Dermatol. 2022 Mar; 186(3):564-574. doi:10.1111/bjd.20805. Epub 2021 Nov 28.; Barba T, Jamilloux Y, Durel CA, et al. VEXAS syndrome in a woman. Rheumatology (Oxford). 2021 Nov 3;60(11):e402-e403. doi:10.1093/rheumatology/keab392.; Stubbins RJ, McGinnis E, Johal B, et al. VEXAS syndrome in a female patient with constitutional 45,X (Turner syndrome). Haematologica. 2022 Apr 1;107(4):1011-1013. doi:10.3324/haematol.2021.280238.; Beck DB, Bodian DL, Shah V, et al. Estimated prevalence and clinical manifestations of UBA1 variants associated with VEXAS syndrome in a clinical population. JAMA. 2023 Jan 24;329(4):318-324. doi:10.1001/jama.2022.24836.; Bruno A, Gurnari C, Alexander T, et al; Autoimmune Diseases Working Party of the European Society for Blood and Marrow Transplantation. Autoimmune manifestations in VEXAS: Opportunities for integration and pitfalls to interpretation. J Allergy Clin Immunol. 2023 May;151(5):1204-1214. doi:10.1016/j.jaci.2023.02.017. Epub 2023 Mar 21.; Ferrada MA, Savic S, Cardona DO, et al. Translation of cytoplasmic UBA1 contributes to VEXAS syndrome pathogenesis. Blood. 2022 Sep 29;140(13):1496-1506. doi:10.1182/blood.2022016985.; Poulter JA, Collins JC, Cargo C, et al. Novel somatic mutations in UBA1 as a cause of VEXAS syndrome. Blood. 2021 Jul 1;137(26):3676-3681. doi:10.1182/blood.2020010286.; Sterling D, Duncan ME, Philippidou M, et al. VEXAS syndrome (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) for the dermatologist. J Am Acad Dermatol. 2023 Dec;89(6):1209-1214. doi:10.1016/j.jaad.2022.01.042. Epub 2022 Feb 2.; Lacombe V, Beucher A, Urbanski G, et al. Distinction between clonal and paraclonal cutaneous involvements in VEXAS syndrome. Exp Hematol Oncol. 2022 Feb 16;11(1):6. doi:10.1186/s40164-022-00262-5.; Zakine E, Schell B, Battistella M, et al. UBA1 Variations in Neutrophilic Dermatosis Skin Lesions of Patients With VEXAS Syndrome. JAMA Dermatol. 2021 Nov 1;157(11): 1349-1354. doi:10.1001/jamadermatol.2021.3344.; Gurnari C, Mannion P, Pandit I, et al. UBA1 Screening in Sweet Syndrome With Hematological Neoplasms Reveals a Novel Association Between VEXAS and Chronic Myelomonocytic Leukemia. Hemasphere. 2022 Sep 27;6(10):e775. doi:10.1097/HS9. 0000000000000775. eCollection 2022 Oct.; Borie R, Debray MP, Guedon AF, et al. Pleuropulmonary Manifestations of Vacuoles, E1 Enzyme, X-Linked, Autoinflammatory, Somatic (VEXAS) Syndrome. Chest. 2023 Mar;163(3):575-585. doi:10.1016/j.chest.2022.10.011. Epub 2022 Oct 20.; Watanabe R, Kiji M, Hashimoto M. Vasculitis associated with VEXAS syndrome: A literature review. Front Med (Lausanne). 2022 Aug 15:9:983939. doi:10.3389/fmed.2022.983939. eCollection 2022.; Kouranloo K, Ashley A, Zhao SS, Dey M. Pulmonary manifestations in VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome: a systematic review. Rheumatol Int. 2023 Jun;43(6):1023-1032. doi:10.1007/s00296-022-05266-2. Epub 2023 Jan 8.; Lacombe V, Kosmider O, Prevost M, et al. Severe Joint Involvement in VEXAS Syndrome: A Case Report. Ann Intern Med. 2021 Jul;174(7):1025-1027. doi:10.7326/L21-0023. Epub 2021 Mar 30.; Magnol M, Couvaras L, Degboe Y, et al. VEXAS syndrome in a patient with previous spondyloarthritis with a favourable response to intravenous immunoglobulin and anti-IL17 therapy. Rheumatology (Oxford). 2021 Sep 1; 60(9):e314-e315. doi:10.1093/rheumatology/keab211.; Bourbon E, Heiblig M, Gerfaud Valentin M, et al. Therapeutic options in VEXAS syndrome: insights from a retrospective series. Blood. 2021 Jul 1;137(26):3682-3684. doi:10.1182/blood.2020010177.; van der Made CI, Potjewijd J, Hoogstins A, et al. Adult-onset autoinflammation caused by somatic mutations in UBA1: A Dutch case series of patients with VEXAS. J Allergy Clin Immunol. 2022 Jan;149(1): 432-439.e4. doi:10.1016/j.jaci.2021.05.014. Epub 2021 May 25.; Kucharz EJ. VEXAS syndrome: a newly discovered systemic rheumatic disorder. Reumatologia. 2023;61(2):123-129. doi:10.5114/reum/163090. Epub 2023 May 10.; Itagane M, Teruya H, Kato T, et al. Clinical images: VEXAS syndrome presenting as treatment-refractory polyarteritis nodosa. Arthritis Rheumatol. 2022 Nov;74(11): 1863-1864. doi:10.1002/art.42257. Epub 2022 Sep 29.; Muratore F, Marvisi C, Castrignanт P, et al. VEXAS Syndrome: A Case Series From a Single-Center Cohort of Italian Patients With Vasculitis. Arthritis Rheumatol. 2022 Apr;74(4):665-670. doi:10.1002/art.41992. Epub 2022 Mar 3.; Meyts I, Aksentijevich I. Deficiency of Adenosine Deaminase 2 (DADA2): Updates on the Phenotype, Genetics, Pathogenesis, and Treatment. J Clin Immunol. 2018 Jul; 38(5):569-578. doi:10.1007/s10875-018- 0525-8. Epub 2018 Jun 27; Wang Y, Wang F, Zhang X. STING-associated vasculopathy with onset in infancy: a familial case series report and literature review. Ann Transl Med. 2021 Jan;9(2):176. doi:10.21037/atm-20-6198.; Ferrada MA, Sikora KA, Luo Y, et al. Somatic Mutations in UBA1 Define a Distinct Subset of Relapsing Polychondritis Patients With VEXAS. Arthritis Rheumatol. 2021 Oct;73(10):1886-1895. doi:10.1002/art. 41743. Epub 2021 Aug 31.; Khitri MY, Guedon AF, Georgin-Lavialle S, et al. Comparison between idiopathic and VEXAS-relapsing polychondritis: analysis of a French case series of 95 patients. RMD Open. 2022 Jul;8(2):e002255. doi:10.1136/rmdopen-2022-002255.; Vitale A, Caggiano V, Bimonte A, et al. VEXAS syndrome: a new paradigm for adult onset monogenic autoinflammatory diseases. Intern Emerg Med. 2023 Apr;18(3): 711-722. doi:10.1007/s11739-023-03193-z. Epub 2023 Jan 20.; Lucchino B, Finucci A, Ghellere F, et al. Influence of HLA polymorphisms on clinical features of VEXAS syndrome: a potential epistatic mechanism. Rheumatology (Oxford). 2022 Dec 23;62(1):e7-e8. doi:10.1093/rheumatology/keac371.; Al-Hakim A, Savic S. An update on VEXAS syndrome. Expert Rev Clin Immunol. 2023 Feb;19(2):203-215. doi:10.1080/1744666X.2023.2157262. Epub 2022 Dec 26.; Bert-Marcaz C, Briantais A, Faucher B, et al. Expanding the spectrum of VEXAS syndrome: association with acute-onset CIDP. J Neurol Neurosurg Psychiatry. 2022 Jul;93(7): 797-798. doi:10.1136/jnnp-2021-327949. Epub 2021 Dec 6.; Oo TM, Koay JTJ, Lee SF, et al. Thrombosis in VEXAS syndrome. J Thromb Thrombolysis. 2022 May;53(4):965-970. doi:10.1007/s11239-021-02608-y. Epub 2021 Nov 24.; Groarke EM, Dulau-Florea AE, Kanthi Y. Thrombotic manifestations of VEXAS syndrome. Semin Hematol. 2021 Oct;58(4):230-238. doi:10.1053/j.seminhematol.2021.10.006. Epub 2021 Oct 25.; Koster MJ, Kourelis T, Reichard KK, et al. Clinical Heterogeneity of the VEXAS Syndrome: A Case Series. Mayo Clin Proc. 2021 Oct;96(10):2653-2659. doi:10.1016/j.mayocp.2021.06.006. Epub 2021 Sep 3.; Patel BA, Ferrada MA, Grayson PC, Beck DB. VEXAS syndrome: An inflammatory and hematologic disease. Semin Hematol. 2021 Oct;58(4):201-203. doi:10.1053/j.seminhematol.2021.10.005. Epub 2021 Oct 14.; Obiorah IE, Patel BA, Groarke EM, et al. Benign and malignant hematologic manifestations in patients with VEXAS syndrome due to somatic mutations in UBA1. Blood Adv. 2021 Aug 24;5(16):3203-3215. doi:10.1182/bloodadvances.2021004976.; Temple M, Kosmider O. VEXAS syndrome: a novelty in MDS landscape. Diagnostics (Basel). 2022 Jun 29;12(7):1590. doi:10.3390/diagnostics12071590.; Obiorah IE, Beck DB, Wang W, et al. Myelodysplasia and bone marrow manifestations of somatic UBA1 mutated autoinflammatory disease. Blood. 2020;136(S1):20-21.; Tsuchida N, Kunishita Y, Uchiyama Y, et al. Pathogenic UBA1 variants associated with VEXAS syndrome in Japanese patients with relapsing polychondritis. Ann Rheum Dis. 2021 Aug;80(8):1057-1061. doi:10.1136/annrheumdis-2021-220089. Epub 2021 Mar 31.; Lötscher F, Seitz L, Simeunovic H, et al. Case Report: Genetic Double Strike: VEXAS and TET2-Positive Myelodysplastic Syndrome in a Patient With Long-Standing Refractory Autoinflammatory Disease. Front Immunol. 2022 Jan 20:12:800149. doi:10.3389/fimmu.2021.800149. eCollection 2021.; Kusne Y, Fernandez J, Patnaik MM. Clonal hematopoiesis and VEXAS syndrome: survival of the fittest clones? Semin Hematol. 2021 Oct;58(4):226-229. doi:10.1053/j.seminhematol.2021.10.004. Epub 2021 Oct 9.; Gutierrez-Rodrigues F, Kusne Y, Fernandez J, et al. Spectrum of clonal hematopoiesis in VEXAS syndrome. Blood. 2023 Jul 20; 142(3):244-259. doi:10.1182/blood. 2022018774.; Diarra A, Duployez N, Fournier E, et al. Successful allogeneic hematopoietic stem cell transplantation in patients with VEXAS syndrome: a 2-center experience. Blood Adv. 2022 Feb 8;6(3):998-1003. doi:10.1182/bloodadvances.2021004749.; Kao RL, Jacobsen AA, Billington CJ Jr, et al. A case of VEXAS syndrome associated with EBV-associated hemophagocytic lymphohistiocytosis. Blood Cells Mol Dis. 2022 Mar:93:102636. doi:10.1016/j.bcmd.2021.102636. Epub 2021 Nov 30.; Lee SMS, Fan BE, Lim JH, Goh LL, Lee JSS, Koh LW. A case of VEXAS syndrome manifesting as Kikuchi-Fujimoto disease, relapsing polychondritis, venous thromboembolism and macrocytic anaemia. Rheumatology (Oxford). 2021 Sep 1;60(9):e304-e306. doi:10.1093/rheumatology/keab200.; Gurnari C, Pagliuca S, Durkin L, et al. Vacuolization of hematopoietic precursors: an enigma with multiple etiologies. Blood. 2021 Jul 1;137(26):3685-3689. doi:10.1182/blood.2021010811.; Patel N, Dulau-Florea A, Calvo KR. Characteristic bone marrow findings in patients with UBA1 somatic mutations and VEXAS syndrome. Semin Hematol. 2021 Oct;58(4):204-211. doi:10.1053/j.seminhematol.2021.10.007. Epub 2021 Oct 22.; Temple M, Duroyon E, Croizier C, et al. Atypical splice-site mutations causing VEXAS syndrome. Rheumatology (Oxford). 2021 Dec 1; 60(12):e435-e437. doi:10.1093/rheumatology/keab524.; Hines AS, Koster MJ, Rock AR, et al. Targeted testing of bone marrow specimens with cytoplasmic vacuolization to identify previously undiagnosed cases of VEXAS syndrome. Rheumatology (Oxford). 2023 May 25:kead245. doi:10.1093/rheumatology/kead245. Online ahead of print.; Gurnari C, Rogers HJ. Copper Deficiency. N Engl J Med. 2021 Aug 12;385(7): 640. doi:10.1056/NEJMicm2103532. Epub 2021 Aug 7.; Lacombe V, Prevost M, Bouvier A, et al. Vacuoles in neutrophil precursors in VEXAS syndrome: diagnostic performances and threshold. Br J Haematol. 2021 Oct;195(2): 286-289. doi:10.1111/bjh.17679. Epub 2021 Aug 2.; Gurnari C, McLornan DP. Update on VEXAS and role of allogeneic bone marrow transplant: Considerations on behalf of the Chronic Malignancies Working Party of the EBMT. Bone Marrow Transplant. 2022 Nov; 57(11):1642-1648. doi:10.1038/s41409-022-01774-8. Epub 2022 Aug 8.; Loschi M, Roux C, Sudaka I, et al. Allogeneic stem cell transplantation as a curative therapeutic approach for VEXAS syndrome: a case report. Bone Marrow Transplant. 2022 Feb;57(2):315-318. doi:10.1038/s41409-021-01544-y. Epub 2022 Jan 9.; Mangaonkar AA, Langer KJ, Lasho TL, et al. Reduced intensity conditioning allogeneic hematopoietic stem cell transplantation in VEXAS syndrome: Data from a prospective series of patients. Am J Hematol. 2023 Feb; 98(2):E28-E31. doi:10.1002/ajh.26786. Epub 2022 Dec 1.; van Leeuwen-Kerkhoff N, de Witte MA, Heijstek MW, Leavis HL. Case report: Up-front allogeneic stem cell transplantation in a patient with the VEXAS syndrome. Br J Haematol. 2022 Nov;199(3):e12-e15. doi:10.1111/bjh.18424. Epub 2022 Aug 29.; Al-Hakim A, Poulter JA, Mahmoud D, et al. Allogeneic haematopoietic stem cell transplantation for VEXAS syndrome: UK experience. Br J Haematol. 2022 Dec;199(5): 777-781. doi:10.1111/bjh.18488. Epub 2022 Oct 2.; Comont T, Heiblig M, Riviere E, et al. Azacitidine for patients with Vacuoles, E1 Enzyme, X-linked, Autoinflammatory, Somatic syndrome (VEXAS) and myelodysplastic syndrome: data from the French VEXAS registry. Br J Haematol. 2022 Feb;196(4): 969-974. doi:10.1111/bjh.17893. Epub 2021 Oct 14.; Raaijmakers MHGP, Hermans M, Aalbers A, et al. Azacytidine Treatment for VEXAS Syndrome. Hemasphere. 2021 Nov 17; 5(12):e661. doi:10.1097/HS9.0000000000000661. eCollection 2021 Dec.; Mekinian A, Zhao LP, Chevret S, et al. A Phase II prospective trial of azacitidine in steroid-dependent or refractory systemic autoimmune/inflammatory disorders and VEXAS syndrome associated with MDS and CMML. Leukemia. 2022 Nov;36(11):2739- 2742. doi:10.1038/s41375-022-01698-8. Epub 2022 Sep 14.; Heiblig M, Patel BA, Groarke EM, et al. Toward a pathophysiology inspired treatment of VEXAS syndrome. Semin Hematol. 2021 Oct;58(4):239-246. doi:10.1053/j.seminhematol.2021.09.001. Epub 2021 Oct 5.; Staels F, Betrains A, Woei-A-Jin FJSH, et al. Case Report: VEXAS Syndrome: From Mild Symptoms to Life-Threatening Macrophage Activation Syndrome. Front Immunol. 2021 Apr 23:12:678927. doi:10.3389/fimmu.2021.678927. eCollection 2021.; Kirino Y, Takase-Minegishi K, Tsuchida N, et al. Tocilizumab in VEXAS relapsing polychondritis: a single-center pilot study in Japan. Ann Rheum Dis. 2021 Nov;80(11):1501-1502. doi:10.1136/annrheumdis-2021-220876. Epub 2021 Jun 21.; Goyal A, Narayanan D, Wong W, et al. Tocilizumab for treatment of cutaneous and systemic manifestations of vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic (VEXAS) syndrome without myelodysplastic syndrome. JAAD Case Rep. 2022 Mar 2:23: 15-19. doi:10.1016/j.jdcr.2022.02.022. eCollection 2022 May.; Heiblig M, Ferrada MA, Koster MJ, et al. Ruxolitinib is more effective than other JAK inhibitors to treat VEXAS syndrome: a retrospective multicenter study. Blood. 2022 Aug 25;140(8):927-931. doi:10.1182/blood.2022016642

  10. 10
    Academic Journal

    Πηγή: Medical Herald of the South of Russia; Том 13, № 2 (2022); 179-190 ; Медицинский вестник Юга России; Том 13, № 2 (2022); 179-190 ; 2618-7876 ; 2219-8075 ; 10.21886/2219-8075-2022-13-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medicalherald.ru/jour/article/view/1499/900; Sweeney MR, Applebaum KM, Arem H, Braffett BH, Poynter jN, Robien K. Medical Conditions and Modifiable Risk Factors for Myelodysplastic Syndrome: A Systematic Review. Cancer Epidemiol Biomarkers Prev. 2019;28(9):1502- 1517. DOI:10.1158/1055-9965.EPI-19-0106.; Rydén j, Edgren G, Karimi M, walldin G, Tobiasson M, et al. Male sex and the pattern of recurrent myeloid mutations are strong independent predictors of blood transfusion intensity in patients with myelodysplastic syndromes. Leukemia. 2019;33(2):522-527. DOI:10.1038/s41375-018-0256-0.; van Spronsen MF,westers TM, Lissenberg-witte BI,wondergem M, Ossenkoppele Gj, van de Loosdrecht AA. The non-erythroid myeloblast count rule in myelodysplastic syndromes: fruitful or futile? Haematologica. 2019;104(12):e547-e550. DOI:10.3324/haematol.2018.212563.; Ma x. Epidemiology of myelodysplastic syndromes. Am J Med. 2012;125(7 Suppl):S2-5. DOI:10.1016/j.amjmed.2012.04.014.; Ma x, Does M, Raza A, Mayne ST. Myelodysplastic syndromes: incidence and survival in the United States. Cancer. 2007;109(8):1536-42. DOI:10.1002/cncr.22570.; Aul C, Giagounidis A, Germing U. Epidemiological features of myelodysplastic syndromes: results from regional cancer surveys and hospital-based statistics. Int J Hematol. 2001;73(4):405-410. DOI:10.1007/BF02994001.; Swerdlow S.H., Campo E., Harris N.L. WHO Classification of tumours of haematopoietic and lymphoid tissues. IARC Press, Lyon. 2008; Germing U, Strupp C, Kündgen A, Bowen D, Aul C, Haas R, Gattermann N. No increase in age-specific incidence of myelodysplastic syndromes. Haematologica. 2004;89(8):905- 10. PMID: 15339672.; Strom SS, Vélez-Bravo V, Estey EH. Epidemiology of myelodysplastic syndromes. Semin Hematol. 2008;45(1):8- 13. DOI:10.1053/j.seminhematol.2007.10.003.; Bejar R, Steensma DP. Recent developments in myelodysplastic syndromes. Blood. 2014;124(18):2793-803. DOI:10.1182/blood-2014-04-522136.; Rollison DE, Howlader N, Smith MT, Strom SS, Merritt wD, et al. Epidemiology of myelodysplastic syndromes and chronic myeloproliferative disorders in the United States, 2001-2004, using data from the NAACCR and SEER programs. Blood. 2008;112(1):45-52. DOI:10.1182/blood-2008-01-134858.; Finazzi G, Caruso V, Marchioli R, Capnist G, Chisesi T, et al. Acute leukemia in polycythemia vera: an analysis of 1638 patients enrolled in a prospective observational study. Blood. 2005;105(7):2664-70. DOI:10.1182/blood-2004-09-3426.; Hayes RB, Yin SN, Dosemeci M, Li GL, wacholder S, et al. Mortality among benzene-exposed workers in China. Environ Health Perspect. 1996;104 Suppl 6(Suppl 6):1349-52. DOI:10.1289/ehp.961041349.; Nisse C, Lorthois C, Dorp V, Eloy E, Haguenoer jM, Fenaux P. Exposure to occupational and environmental factors in myelodysplastic syndromes. Preliminary results of a case-control study. Leukemia. 1995;9(4):693-9. PMID: 7723405.; Strom SS, Gu Y, Gruschkus SK, Pierce SA, Estey EH. Risk factors of myelodysplastic syndromes: a case-control study. Leukemia. 2005;19(11):1912-8. DOI:10.1038/sj.leu.2403945.; Goldberg H, Lusk E, Moore j, Nowell PC, Besa EC. Survey of exposure to genotoxic agents in primary myelodysplastic syndrome: correlation with chromosome patterns and data on patients without hematological disease. Cancer Res. 1990;50(21):6876-81. PMID: 2208156.; Brownson RC, Novotny TE, Perry MC. Cigarette smoking and adult leukemia. A meta-analysis. Arch Intern Med. 1993;153(4):469-75. PMID: 8435026.; Björk j, Albin M, Mauritzson N, Strömberg U, johansson B, Hagmar L. Smoking and myelodysplastic syndromes. Epidemiology. 2000;11(3):285-91. DOI:10.1097/00001648-200005000-00010.; Nisse C, Haguenoer jM, Grandbastien B, Preudhomme C, Fontaine B, et al. Occupational and environmental risk factors of the myelodysplastic syndromes in the North of France. Br J Haematol. 2001;112(4):927-35. DOI:10.1046/j.1365-2141.2001.02645.x.; Du Y, Fryzek j, Sekeres MA, Taioli E. Smoking and alcohol intake as risk factors for myelodysplastic syndromes (MDS). Leuk Res. 2010;34(1):1-5. DOI:10.1016/j.leukres.2009.08.006.; Gao Q, Horwitz M, Roulston D, Hagos F, Zhao N, et al. Susceptibility gene for familial acute myeloid leukemia associated with loss of 5q and/or 7q is not localized on the commonly deleted portion of 5q. Genes Chromosomes Cancer. 2000;28(2):164-72. PMID: 10825001.; Buijs A, Poddighe P, van wijk R, van Solinge w, Borst E, et al. A novel CBFA2 single-nucleotide mutation in familial platelet disorder with propensity to develop myeloid malignancies. Blood. 2001;98(9):2856-8. DOI:10.1182/blood.v98.9.2856.; Lv L, Lin G, Gao x, wu C, Dai j, et al. Case-control study of risk factors of myelodysplastic syndromes according to world Health Organization classification in a Chinese population. Am J Hematol. 2011;86(2):163-9. DOI:10.1002/ajh.21941.; Kumar B, Chandran B. KSHV Entry and Trafficking in Target Cells-Hijacking of Cell Signal Pathways, Actin and Membrane Dynamics. Viruses. 2016;8(11):305. DOI:10.3390/v8110305.; Copley GB, Schnatter AR, Armstrong Tw, Irons RD, Chen M, et al. Hospital-Based Case-Control Study of MDS Subtypes and Benzene Exposure in Shanghai. J Occup Environ Med. 2017;59(4):349-355. DOI:10.1097/jOM.0000000000000952.; Qu S, xu Z, Zhang Y, Qin T, Zhang T, et al. Impacts of cytogenetic categories in the Revised International Prognostic Scoring System on the prognosis of primary myelodysplastic syndromes: results of a single-center study. Leuk Lymphoma. 2012;53(5):940-6. DOI:10.3109/10428194.2011.634049.; Matsuda A, Germing U, jinnai I, Misumi M, Kuendgen A, et al. Difference in clinical features between japanese and German patients with refractory anemia in myelodysplastic syndromes. Blood. 2005;106(8):2633-40. DOI:10.1182/blood-2005-01-0040.; Patnaik MM, Hanson CA, Sulai NH, Hodnefield jM, Knudson RA, et al. Prognostic irrelevance of ring sideroblast percentage in world Health Organizationdefined myelodysplastic syndromes without excess blasts. Blood. 2012;119(24):5674-7. DOI:10.1182/blood-2012-03-415356.; Greenberg PL, Tuechler H, Schanz j, Sanz G, Garcia-Manero G, et al. Cytopenia levels for aiding establishment of the diagnosis of myelodysplastic syndromes. Blood. 2016;128(16):2096-2097. DOI:10.1182/blood-2016-07-728766.; Valent P, Horny HP. Minimal diagnostic criteria for myelodysplastic syndromes and separation from ICUS and IDUS: update and open questions. Eur J Clin Invest. 2009;39(7):548-53. DOI:10.1111/j.1365-2362.2009.02151.x.; Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89(6):2079-88. Erratum in: Blood 1998;91(3):1100. PMID: 9058730.; Greenberg PL, Tuechler H, Schanz j, Sanz G, Garcia-Manero G, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120(12):2454-65. DOI:10.1182/blood-2012-03-420489.; Breems DA, Van Putten wL, De Greef GE, Van ZelderenBhola SL, Gerssen-Schoorl KB, et al. Monosomal karyotype in acute myeloid leukemia: a better indicator of poor prognosis than a complex karyotype. J Clin Oncol. 2008;26(29):4791-7. DOI:10.1200/jCO.2008.16.0259.; Schanz j, Tüchler H, Solé F, Mallo M, Luño E, et al. Monosomal karyotype in MDS: explaining the poor prognosis? Leukemia. 2013;27(10):1988-95. DOI:10.1038/leu.2013.187.; Deeg Hj, Scott BL, Fang M, Shulman HM, Gyurkocza B, et al. Five-group cytogenetic risk classification, monosomal karyotype, and outcome after hematopoietic cell transplantation for MDS or acute leukemia evolving from MDS. Blood. 2012;120(7):1398-408. DOI:10.1182/blood-2012-04-423046.; de witte T, Bowen D, Robin M, Malcovati L, Niederwieser D, et al. Allogeneic hematopoietic stem cell transplantation for MDS and CMML: recommendations from an international expert panel. Blood. 2017;129(13):1753-1762. DOI:10.1182/blood-2016-06-724500.; Lamarque M, Raynaud S, Itzykson R, Thepot S, Quesnel B, et al. The revised IPSS is a powerful tool to evaluate the outcome of MDS patients treated with azacitidine: the GFM experience. Blood. 2012;120(25):5084-5. DOI:10.1182/blood-2012-09-453555. Erratum in: Blood. 2014;123(26):4152. PMID: 23243156.; Gangat N, Patnaik MM, Tefferi A. Myelodysplastic syndromes: Contemporary review and how we treat. Am J Hematol. 2016;91(1):76-89. DOI:10.1002/ajh.24253.; Malcovati L, Della Porta MG, Strupp C, Ambaglio I, Kuendgen A, et al. Impact of the degree of anemia on the outcome of patients with myelodysplastic syndrome and its integration into the wHO classification-based Prognostic Scoring System (wPSS). Haematologica. 2011;96(10):1433- 40. DOI:10.3324/haematol.2011.044602.; Della Porta MG, Tuechler H, Malcovati L, Schanz j, Sanz G, et al. Validation of wHO classification-based Prognostic Scoring System (wPSS) for myelodysplastic syndromes and comparison with the revised International Prognostic Scoring System (IPSS-R). A study of the International working Group for Prognosis in Myelodysplasia (IwG-PM). Leukemia. 2015;29(7):1502-13. DOI:10.1038/leu.2015.55.; Garcia-Manero G, Shan j, Faderl S, Cortes j, Ravandi F, et al. A prognostic score for patients with lower risk myelodysplastic syndrome. Leukemia. 2008;22(3):538-43. DOI:10.1038/sj.leu.2405070.; Kantarjian H, O'Brien S, Ravandi F, Cortes j, Shan j, et al. Proposal for a new risk model in myelodysplastic syndrome that accounts for events not considered in the original International Prognostic Scoring System. Cancer. 2008;113(6):1351-61. DOI:10.1002/cncr.23697.; Valcárcel D, Ademà V, Solé F, Ortega M, Nomdedeu B, et al. Complex, not monosomal, karyotype is the cytogenetic marker of poorest prognosis in patients with primary myelodysplastic syndrome. J Clin Oncol. 2013;31(7):916-22. DOI:10.1200/jCO.2012.41.6073.; Pfeilstöcker M, Tuechler H, Sanz G, Schanz j, GarciaManero G, et al. Time-dependent changes in mortality and transformation risk in MDS. Blood. 2016;128(7):902-10. DOI:10.1182/blood-2016-02-700054.; Malcovati L, Karimi M, Papaemmanuil E, Ambaglio I, jädersten M, et al. SF3B1 mutation identifies a distinct subset of myelodysplastic syndrome with ring sideroblasts. Blood. 2015;126(2):233-41. DOI:10.1182/blood-2015-03-633537.; Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150(1):12-27. DOI:10.1016/j.cell.2012.06.013.; Тигунцев В.В., Иванова С.А., Серебров В.Ю., Бухарева М.Б. Малые некодирующие РНК как перспективные биомаркеры: биогенез и терапевтические стратегии. Бюллетень сибирской медицины. 2016;15(2):112-126. https://doi.org/10.20538/1682-0363-2016-2-112-126; Савченко В.Г., Паровичникова Е.Н., Кохно А.В., Семочкин С.В., Афанасьев Б.В., и др. Национальные клинические рекомендации по диагностике и лечению миелодиспластических синдромов взрослых (2015 г.). Гематология и трансфузиология. 2016:61(1-S4):1-32. DOI:10.18821/0234-5730-2016-61-1(Пpил.4); Audia jE, Campbell RM. Histone Modifications and Cancer. Cold Spring Harb Perspect Biol. 2016;8(4):a019521. DOI:10.1101/cshperspect.a019521.; Pujadas E, Feinberg AP. Regulated noise in the epigenetic landscape of development and disease. Cell. 2012;148(6):1123-31. DOI:10.1016/j.cell.2012.02.045.; jhanwar SC. Genetic and epigenetic pathways in myelodysplastic syndromes: A brief overview. Adv Biol Regul. 2015;58:28-37. DOI:10.1016/j.jbior.2014.11.002.; Berenstein R, Blau Iw, Kar A, Cay R, Sindram A, et al. Comparative examination of various PCR-based methods for DNMT3A and IDH1/2 mutations identification in acute myeloid leukemia. J Exp Clin Cancer Res. 2014;33(1):44. DOI:10.1186/1756-9966-33-44.; Ewalt M, Galili NG, Mumtaz M, Churchill M, Rivera S, et al. DNMT3a mutations in high-risk myelodysplastic syndrome parallel those found in acute myeloid leukemia. Blood Cancer J. 2011;1(3):e9. DOI:10.1038/bcj.2011.7.; Lin ME, Hou HA, Tsai CH, wu Sj, Kuo YY, et al. Dynamics of DNMT3A mutation and prognostic relevance in patients with primary myelodysplastic syndrome. Clin Epigenetics. 2018;10:42. DOI:10.1186/s13148-018-0476-1.; Liang S, Zhou x, Pan H, Yang Y, Shi L, wang L. Prognostic value of DNMT3A mutations in myelodysplastic syndromes: a meta-analysis. Hematology. 2019;24(1):613-622. DOI:10.1080/16078454.2019.1657613.; Emperle M, Adam S, Kunert S, Dukatz M, Baude A, et al. Mutations of R882 change flanking sequence preferences of the DNA methyltransferase DNMT3A and cellular methylation patterns. Nucleic Acids Res. 2019;47(21):11355- 11367. DOI:10.1093/nar/gkz911.; ward PS, Patel j, wise DR, Abdel-wahab O, Bennett BD, et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell. 2010;17(3):225-34. DOI:10.1016/j.ccr.2010.01.020.; Stein EM, DiNardo CD, Pollyea DA, Fathi AT, Roboz Gj, et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood. 2017;130(6):722-731. DOI:10.1182/blood-2017-04-779405.; Busque L, Patel jP, Figueroa ME, Vasanthakumar A, Provost S, et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat Genet. 2012;44(11):1179-81. DOI:10.1038/ng.2413.; Bejar R, Lord A, Stevenson K, Bar-Natan M, PérezLadaga A, et al. TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients. Blood. 2014;124(17):2705-12. DOI:10.1182/blood-2014-06-582809.; Bejar R, Stevenson KE, Caughey BA, Abdel-wahab O, Steensma DP, et al. Validation of a prognostic model and the impact of mutations in patients with lower-risk myelodysplastic syndromes. J Clin Oncol. 2012;30(27):3376- 82. DOI:10.1200/jCO.2011.40.7379.; Sinclair DA, Milne TA, Hodgson jw, Shellard j, Salinas CA, et al. The Additional sex combs gene of Drosophila encodes a chromatin protein that binds to shared and unique Polycomb group sites on polytene chromosomes. Development. 1998;125(7):1207-16. DOI:10.1242/dev.125.7.1207.; Fisher CL, Randazzo F, Humphries RK, Brock Hw. Characterization of Asxl1, a murine homolog of Additional sex combs, and analysis of the Asx-like gene family. Gene. 2006;369:109-18. DOI:10.1016/j.gene.2005.10.033.; Asada S, Fujino T, Goyama S, Kitamura T. The role of ASxL1 in hematopoiesis and myeloid malignancies. Cell Mol Life Sci. 2019;76(13):2511-2523. DOI:10.1007/s00018-019-03084-7.; Traina F, Visconte V, Elson P, Tabarroki A, jankowska AM, et al. Impact of molecular mutations on treatment response to DNMT inhibitors in myelodysplasia and related neoplasms. Leukemia. 2014;28(1):78-87. DOI:10.1038/leu.2013.269.; Meggendorfer M, Bacher U, Alpermann T, Haferlach C, Kern w, et al. SETBP1 mutations occur in 9% of MDS/MPN and in 4% of MPN cases and are strongly associated with atypical CML, monosomy 7, isochromosome i(17)(q10), ASxL1 and CBL mutations. Leukemia. 2013;27(9):1852-60. DOI:10.1038/leu.2013.133.; Makishima H, Yoshida K, Nguyen N, Przychodzen B, Sanada M, et al. Somatic SETBP1 mutations in myeloid malignancies. Nat Genet. 2013;45(8):942-6. DOI:10.1038/ng.2696.; Lee Ej, Podoltsev N, Gore SD, Zeidan AM. The evolving field of prognostication and risk stratification in MDS: Recent developments and future directions. Blood Rev. 2016;30(1):1- 10. DOI:10.1016/j.blre.2015.06.004.; Gelsi-Boyer V, Brecqueville M, Devillier R, Murati A, Mozziconacci Mj, Birnbaum D. Mutations in ASxL1 are associated with poor prognosis across the spectrum of malignant myeloid diseases. J Hematol Oncol. 2012;5:12. DOI:10.1186/1756-8722-5-12.; Abdel-wahab O, Pardanani A, Patel j, wadleigh M, Lasho T, et al. Concomitant analysis of EZH2 and ASxL1 mutations in myelofibrosis, chronic myelomonocytic leukemia and blast-phase myeloproliferative neoplasms. Leukemia. 2011;25(7):1200-2. DOI:10.1038/leu.2011.58.; Thieme S, Gyárfás T, Richter C, Özhan G, Fu j, et al. The histone demethylase UTx regulates stem cell migration and hematopoiesis. Blood. 2013;121(13):2462-73. DOI:10.1182/blood-2012-08-452003.; Steensma DP, Bejar R, jaiswal S, Lindsley RC, Sekeres MA, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126(1):9-16. DOI:10.1182/blood-2015-03-631747.; jaiswal S, Fontanillas P, Flannick j, Manning A, Grauman PV, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(26):2488-98. DOI:10.1056/NEjMoa1408617.; Yoshizato T, Dumitriu B, Hosokawa K, Makishima H, Yoshida K, et al. Somatic Mutations and Clonal Hematopoiesis in Aplastic Anemia. N Engl J Med. 2015;373(1):35-47. DOI:10.1056/NEjMoa1414799.; Fuster jj, MacLauchlan S, Zuriaga MA, Polackal MN, Ostriker AC, et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science. 2017;355(6327):842-847. DOI:10.1126/science.aag1381.; Carbuccia N, Murati A, Trouplin V, Brecqueville M, Adélaïde j, et al. Mutations of ASxL1 gene in myeloproliferative neoplasms. Leukemia. 2009;23(11):2183-6. DOI:10.1038/leu.2009.141.; Kwok B, Hall jM, witte jS, xu Y, Reddy P, et al. MDSassociated somatic mutations and clonal hematopoiesis are common in idiopathic cytopenias of undetermined significance. Blood. 2015;126(21):2355-61. DOI:10.1182/blood-2015-08-667063.; jankowska AM, Makishima H, Tiu RV, Szpurka H, Huang Y, et al. Mutational spectrum analysis of chronic myelomonocytic leukemia includes genes associated with epigenetic regulation: UTx, EZH2, and DNMT3A. Blood. 2011;118(14):3932-41. DOI:10.1182/blood-2010-10-311019.; https://www.medicalherald.ru/jour/article/view/1499

  11. 11
    Academic Journal
  12. 12
    Academic Journal

    Πηγή: Medical Immunology (Russia); Том 23, № 2 (2021); 223-230 ; Медицинская иммунология; Том 23, № 2 (2021); 223-230 ; 2313-741X ; 1563-0625

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/2145/1366; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2145/7107; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2145/7108; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2145/7109; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2145/7110; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2145/7111; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2145/7112; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2145/7113; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2145/7420; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2145/7431; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2145/7432; Almeida A.M., Ramos F. Acute myeloid leukemia in the older adults. Leuk. Res. Rep., 2016, Vol. 6, pp. 1-7.; Carrillo-Bustamante P., Kesmir C., de Boer R.J. The evolution of natural killer cell receptors. Immunogenetics, 2016, Vol. 68, no. 1, pp 3-18.; Chan H.W., Kurago Z.B., Stewart C.A. et al. DNA methylation maintains allele-specific KIR gene expression in human natural killer cells. J. Exp. Med., 2003, Vol. 197, no. 2, pp. 245-255.; Christman J.K. 5-Azacytidine and 5-aza-2’-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene, 2002, Vol. 21, no. 35, pp. 5483-5495.; Cogle C.R. Incidence and burden of the myelodysplastic syndromes. Curr. Hematol. Malig. Rep., 2015, Vol. 10, no. 3, pp. 272-281.; Dan H., Zhang S., Zhou Y., Guan Q. DNA Methyltransferase inhibitors: catalysts for antitumour immune responses. Onco Targets Ther., 2019, Vol. 12, pp. 10903-10916.; Daneshbod Y., Kohan L., Taghadosi V., Weinberg O.K., Arber D.A. Prognostic significance of complex karyotypes in acute myeloid leukemia. Curr. Treat. Options Oncol., 2019, Vol. 20, no. 2, 15. doi:10.1007/s11864-019-0612-y.; Döhner H., Weisdorf D.J., Bloomfield C.D. Acute myeloid leukemia. N. Engl. J. Med., 2015, Vol. 373, no. 12, pp. 1136-1152.; Estey E.H. Acute myeloid leukemia: 2019 update on risk-stratification and management. Am. J. Hematol., 2018, Vol. 93, no. 10, pp. 1267-1291.; Fenaux P., Mufti G.J., Hellström-Lindberg E. Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia. J. Clin. Oncol., 2010, Vol. 28, no. 4, pp. 562-569.; Gang A.O., Frosig T.M., Brimnes M.K. 5-Azacytidine treatment sensitizes tumor cells to T-cell mediated cytotoxicity and modulates NK cells in patients with myeloid malignancies. Blood Cancer J., 2014, Vol. 4, no. 3, e197. doi:10.1038/bcj.2014.14.; Gao X.N., Lin J., Wang L.L., Yu L. Demethylating treatment suppresses natural killer cell cytolytic activity. Mol Immunol., 2009, Vol. 46, no. 10, pp. 2064-2070.; Gardin C., Dombret H. Hypomethylating agents as a therapy for AML. Curr. Hematol. Malig. Rep., 2017, Vol. 12, no. 1, pp. 1-10.; Gardiner C.M. NK cell metabolism. J. Leukoc. Biol., 2019, Vol. 105, no. 6, pp. 1235-1242.; Hoglund P., Brodin P. Current perspectives of natural killer cell education by MHC class I molecules. Nat. Rev. Immunol., 2010, Vol. 10, no. 10, pp. 724-734.; Horowitz A., Strauss-Albee D.M., Leipold M., Kubo J., Nemat-Gorgani N., Dogan O.C., Dekker C.L., Mackey S., Maecker H., Swan G.E., Davis M.M., Norman P.J., Guethlein L.A., Desai M., Parham P., Blish C.A. Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry. Sci. Transl. Med., 2013, Vol. 5, no. 208, 208ra145. doi:10.1126/scitranslmed.3006702.; Hourigan C.S., Karp J.E. Development of therapeutic agents for older patients with acute myelogenous leukemia. Curr. Opin. Investig. Drugs, 2010, Vol. 11, no. 6, pp. 669-677.; Jacobs B., Tognarelli S., Poller K., Bader P., Mackensen A., Ullrich E. NK Cell subgroups, phenotype, and functions after autologous stem cell transplantation. Front. Immunol., 2015, Vol. 6, p. 583. doi:10.3389/fimmu.2015.00583.; Kantarjian H.M., Issa J.P. Decitabine dosing schedules. Semin. Hematol., 2005, Vol. 42, no. 3, Suppl. 2, pp. S17-S22.; Kennedy J.A., Ebert B.L. Clinical implications of genetic mutations in myelodysplastic syndrome. J. Clin. Oncol., 2017, Vol. 35, no. 9, pp. 968-974.; Campbell K.S., Hasegawa J. Natural killer cell biology: an update and future directions. J. Allergy Clin. Immunol., 2013 Vol. 132, Iss. 3, pp. 536-544.; Koeffler H.P., Leong G. Preleukemia: one name, many meanings. Leukemia, 2017, Vol. 31, no. 3, pp. 534-542.; Kopp L.M., Ray A., Denman C.J., Senyukov V.S., Somanchi S.S., Zhu S., Lee D.A. Decitabine has a biphasic effect on natural killer cell viability, phenotype, and function under proliferative conditions. Mol. Immunol., 2013, Vol. 54, no. 3-4, pp. 296-301.; Kuykendall A., Duployez N., Boissel N., Lancet J.E., Welch J.S. Acute myeloid leukemia: the good, the bad, and the ugly. Am. Soc. Clin. Oncol. Educ. Book, 2018, Vol. 38 pp. 555-573.; Lindblad K.E., Goswami M., Hourigan C.S., Oetjen K.A. Immunological effects of hypomethylating agents. Expert Rev. Hematol., 2017, Vol. 10, no. 8, pp. 745-752.; Ma Y.Y., Zhao M., Liu Y. et al. Use of decitabine for patients with refractory or relapsed acute myeloid leukemia: a systematic review and meta-analysis. Hematology, 2019, Vol. 24, no. 1, pp. 507-515.; Montalban-Bravo G., Garcia-Manero G. Myelodysplastic syndromes: 2018 update on diagnosis, riskstratification and management. Am. J. Hematol., 2018,, Vol. 93, no. 1, pp. 129-147.; Muntasell A., Ochoa M.C., Cordeiro L. et al. Targeting NK-cell checkpoints for cancer immunotherapy. Curr. Opin. Immunol., 2017, Vol. 45 pp. 73-81.; Raneros A.B., Minguela A., Rodriguez R.M., Colado E., Bernal T., Anguita E., Mogorron A.V., Gil A.C., Vidal-Castiñeira J.R., Márquez-Kisinousky L., Bulnes P.D., Marin A.M., Garay M.C.G., Suarez-Alvarez B., LopezLarrea C. Increasing TIMP3 expression by hypomethylating agents diminishes soluble MICA, MICB and ULBP2 shedding in acute myeloid leukemia, facilitating NK cell-mediated immune recognition. Oncotarget, 2017, Vol. 8, no. 19, pp. 31959-31976.; Rohner A., Langenkamp U., Siegler U., Kalberer C.P., Wodnar-Filipowicz A. Differentiation-promoting drugs up-regulate NKG2D ligand expression and enhance the susceptibility of acute myeloid leukemia cells to natural killer cell-mediated lysis. Leuk. Res., 2007, Vol. 31, no. 10, pp. 1393-1402.; Sato T., Issa J.J., Kropf P. DNA hypomethylating drugs in cancer therapy. Cold Spring Harb. Perspect. Med., 2017, Vol. 7, no. 5, a026948. doi:10.1101/cshperspect.a026948.; Schmiedel B.J., Arelin V., Gruenebach F., Krusch M., Schmidt S.M., Salih H.R. Azacytidine impairs NK cell reactivity while decitabine augments NK cell responsiveness toward stimulation. Int. J. Cancer, 2011, Vol. 128, no. 12, pp. 2911-2922.; Seelan R.S., Mukhopadhyay P., Pisano M.M., Greene R.M. Effects of 5-Aza-2’-deoxycytidine (decitabine) on gene expression. Drug Metab. Rev., 2018, Vol. 50, no. 2, pp. 193-207.; Sohlberg E., Pfefferle A., Andersson S., Baumann B.C., Hellstrom-Lindberg E., Malmberg K.J. Imprint of 5-azacytidine on the natural killer cell repertoire during systemic treatment for high-risk myelodysplastic syndrome. Oncotarget, 2015, Vol. 6, no. 33, pp. 34178-34190.; Strauss-Albee D.M., Fukuyama J., Liang E.C. et al. Human NK cell repertoire diversity reflects immune experience and correlates with viral susceptibility. Sci. Transl. Med., 2015, Vol. 7, 297, 297ra115. doi:10.1126/scitranslmed.aac5722.; Vasu S., He S., Cheney C. Decitabine enhances anti-CD33 monoclonal antibody BI 836858-mediated natural killer ADCC against AML blasts. Blood, 2016, Vol. 127, no. 23, pp. 2879-2889.; Verheyden S., Bernier M., Demanet C. Identification of natural killer cell receptor phenotypes associated with leukemia. Leukemia, 2004, Vol. 18, no. 12, pp. 2002-2007.; Verheyden S., Demanet C. Susceptibility to myeloid and lymphoid leukemia is mediated by distinct inhibitory KIR-HLA ligand interactions. Leukemia, 2006, Vol. 20, no. 8, pp. 1437-1438.; Wang E.S. Treating acute myeloid leukemia in older adults. Hematology. Am. Soc. Hematol. Educ. Program, 2014, Vol. 2014, no. 1, pp. 14-20.; Wiencke J.K., Butler R., Hsuang G. et al. The DNA methylation profile of activated human natural killer cells. Epigenetics, Vol. 11, no. 5, pp. 363-380.; Yang H., Bueso-Ramos C., DiNardo C., Estecio M.R., Davanlou M., Geng Q.R., Fang Z., Nguyen M., Pierce S., Wei Y., Parmar S., Cortes J., Kantarjian H., Garcia-Manero G. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia, 2014, Vol. 28, no. 6, pp. 1280-1288.; Yu G., Wu Y., Wang W., Xu J., Lv X., Cao X., Wan T. Low-dose decitabine enhances the effect of PD-1 blockade in colorectal cancer with microsatellite stability by re-modulating the tumor microenvironment. Cell. Mol. Immunol., 2019, Vol. 16, no. 4, pp. 401-409.; Zunke F., Rose-John S. The shedding protease ADAM17: physiology and pathophysiology. Biochim. Biophys. Acta Mol. Cell. Res., 2017, Vol. 1864, no. 11, Pt B, pp. 2059-2070.; https://www.mimmun.ru/mimmun/article/view/2145

  13. 13
  14. 14
    Academic Journal

    Πηγή: Russian Journal of Pediatric Hematology and Oncology; Том 7, № 3 (2020); 70-77 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 7, № 3 (2020); 70-77 ; 2413-5496 ; 2311-1267 ; 10.21682/2311-1267-2020-7-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.nodgo.org/jour/article/view/627/573; Slonim A.D., Joseph J., Turenne W., Sharangpani A., Luban N.L.C. Blood transfusions in children: a multi-institutional analysis of practices and complications. Transfusion 2008:48(1):73–80. doi:10.1111/j.1537-2995.2007.01484.; Bercovitz S., Josephson C. Transfusion considerations in pediatric hematology and oncology. Hematol Oncol Clin North America 2019;33(5):903–13. doi:10.1016/j.hoc.2019.05.011.; Gauvin F., Champagne M., Robillard P. Long-term survival rate of pediatric patients after blood transfusions. Transfusion 2008;48(5):801–8. doi:10.1111/j.1537-2995.2007.01614.; Jang J.H., Lee J.-H., Yoon S.-S., Jo D.-Y., Kim H.-J., Chung J., Lee J.W. Korean guidline for iron chelator therapy in transfusion-indused iron overload. J Korean Med Sci 2013;28:1563–72. doi:10.3346/jkms2013.28.11.1563.; Wrighting D., Andrews N. Iron homeostasis and erythropoiesis. Curr Top Dev Biol 2008;82:141–67. doi:10.1016/S0070-2153(07)00006-3.; Brissot E., Bernard D., Loreal O., Brissot P., Troadec M.-B. Too much iron: a mask foe for leukemias. Blood Rev 2020;39:100617. doi:10.1016/j.blre.2019.100617.; Som D., Jodie B.L. Overview of iron metabolism in health and disease. Hemodial Int 2017;21(Suppl 1):6–20. doi:10.1111/hdi.12542.; Савченко В.Г., Абдулкадыров К.М., Масчан А.А., Сметанина Н.С., Голенков А.К., Кохно А.В., Сысоева Е.П., Савинова М.Т., Шелехова Т.В., Финогенова Н.А., Зубаровская Л.С., Капланов К.Д., Кравченко Е.Г., Лопатина Е.Г. Открытое многоцентровое исследование деферазирокса в лечении посттрансфузионной перегрузки железом у больных миелодиспластическими синдромами, талассемией и другими формами анемий. Гематология и трансфузиология 2015;60(4):7–14.; List A.F. Iron overload in myelodysplastic syndromes. Diagnosis and management. Cancer control 2010;17 Suppl:2–8. doi:10.1177/107327481001701s01.; Siddique A., Kowdley K.V. Review article: the iron overload syndromes. Aliment Pharmacol Ther 2012;35(8):876–93. doi:10.1111/j.1365-2036.2012.05051.; Циммерман Я.С. Первичный (наследственный) гемохроматоз. Клиническая медицина 2017;95(6);513–8. doi: 0.18821/0023-21492017-95-6-513-518.; Emy P.Y., Levin T.L., Sheth S.S., Ruzal-Shapiro C., Garvin J., Berdon W.E. Iron overload in reticuloendothelial systems of pediatric oncology patients who have undergone transfusions: MR observations. Am J Roentgenol 1997;168:1011–5. doi:10.2214/ajr.168.4.9124106.; Shan J., Kurtin E.S., Arnold L., Lindroos-Kolqvist P., Tinsley S. Management of transfusion-related iron overload in patients with myelodysplastic syndromes. Clin J Oncol Nursing 2012;16 Suppl:37–46. doi:10.1188/12.CJON.S1.37-46.; Gattermann N. Overview in guidelines on iron chelation therapy in patients with myelodysplastic syndromes and transfusional iron overload. Int J Hematol 2008;88:24–9. doi:10.1007/s12185-008-0118-z.; Kushner J.P., Porter J.P., Olivieri N.F. Secondary iron overload. Hematology Am Soc Hematol Educ Program 2001;47–61. doi:10.1182/asheducation-2001.1.47.; Coates T., Wood J. How we manage iron overload in sickle cell patients. Br J Haematol 2017;177(5):703–16. doi:10.1111/bjh.14575.; Brissot P., Troadec M.-B., Loreal O., Brissot E. Pathophysiology and classification of iron overload diseases. Transfus Clin Biol 2019;26(1):80–8. doi:10.1016/j.tracli.2018.08.006.; Trinder D., Fox C., Vautier G., Olynyk J.K. Molecular pathogenesis of iron overload. GUT 2002;51(2):290–5. doi:10.1136/gut.51.2.290.; Delea E.T., Edelsberg J., Sofrygin O., Thomas S.K., Baladi J.F., Phatak P.D., Coates T.D. Consequences and costs of noncompliance with iron chelation therapy in patients with transfusion-depending thalassemia: a literature review. Transfusion 2007;47(10):1919–29. doi:10.1111/j.1537-2995.2007.01416.x.; Baran E.J. Chelation therapies: a chemical and biochemical perspective. Curr Med Chem 2010;17(31):3658–72. doi:10.2174/092986710793213760.; Goldberg K.E., Neogi S., Lal A., Higa A., Fung E. Nutritional deficiencies are common in patients with transfusion-dependent thalassemia and associated with iron overload. J Food Nutr Research 2018;6(10):674–81. doi:10.12691/jfnr-6-10-9.; Bollig C., Schell L.K., Rucker G., Allert R., Motschall E., Niemeyer C.M., Bassler D., Meerpohl J.J. Deferazirox for managing irin overload in people with thalassemia. Cochrane Database Syst Rev 2017;2017(8):CD007476. doi:10.1002/14651858.CD007476.pub3.; Messa E., Ciloni D., Saglio G. Iron chelation therapy in myelodysplastic syndromes. Adv Hematol 2010;2010:756289. doi:10.1155/2010/756289.; Kontoghiorghe C.N., Kontoghiorghes G.J. Efficacy and safety of ironchelation therapy with deferoxamine, deferiprone, and deferasirox for the treatment of iron-loaded patients with non-transfusion-dependent thalassemia syndromes. Drug Des Devel Therapy 2016;10:465–81. doi:10.2147/DDDT.S79458.; Leitch A.H., Gatterman N. Hematologic improvement with iron chelation therapy in myelodysplastic syndromes: Clinical data, potential mechanisms, and outstanding questions. Crit Rev Oncol Hematol 2019;141:54–72. doi:10.1016/j.critrevonc.2019.06.002.; https://journal.nodgo.org/jour/article/view/627

  15. 15
    Academic Journal

    Πηγή: Medical Herald of the South of Russia; Том 11, № 4 (2020); 32-42 ; Медицинский вестник Юга России; Том 11, № 4 (2020); 32-42 ; 2618-7876 ; 2219-8075 ; 10.21886/2219-8075-2020-11-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medicalherald.ru/jour/article/view/1267/784; Rollison D.E., Howlader N., Smith M.T., Strom S.S., Merritt W.D., et al. Epidemiology of myelodysplastic syndromes and chronic myeloproliferative disorders in the United States 2001-2004 using data from the NAACCR and SEER programs. // Blood. – 2008. – V. 112(1). - P. 45-52. DOI:10.1182/blood-2008-01-134858; Cogle C.R. Incidence and Burden of the Myelodysplastic Syndromes. // Curr Hematol Malig Rep. – 2015. – Vol. 10 – №3. – P. 272-81. DOI:10.1007/s11899-015-0269-y; Xie M., Lu C., Wang J., McLellan M.D., Johnson K.J., et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. // Nat Med. – 2014. – Vol. 20. – P. 1472-18. DOI:10.1038/nm.3733; Genovese G., Kahler A.K., Handsaker R.E., Lindberg J., Rose S.A., et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence.// N Engl J Med. – 2014. – Vol. 371(26). – P. 2477-87. DOI:10.1056/NEJMoa1409405; Greenberg P.L., Tuechler H., Schanz J., Sanz G., Garcia-Manero G., et al. Revised international prognostic scoring system for myelodysplastic syndromes. // Blood. – 2012. – Vol. 120. – P. 2454-65. DOI:10.1182/blood-2012-03-420489; Avgerinou C., Giannezi I., Theodoropoulou S., Lazaris V., Kolliopoulou G., et al. Occupational, dietary, and other risk factors for myelodysplastic syndromes in Western Greece. // Hematology. – 2017. – Vol. 22. – №7. – P. 420- 429. DOI:10.1 080/10245332.2016.1277006; Neukirchen J., Schoonen W.M., Strupp C., Gattermann N., Aul C., et al. Incidence and prevalence of myelodysplastic syndromes: data from the Dusseldorf MDS-registry. // Leuk Res – 2011. – Vol. 35. – P. 1591-1596. DOI:10.1016/j.leukres.2011.06.001; Iwanaga M., Hsu W.L., Soda M., Takasaki Y., Tawara M., et al. Risk of myelodysplastic syndromes in people exposed to ionizing radiation: a retrospective cohort study of Nagasaki atomic bomb survivors. // J Clin Oncol. – 2011. – Vol. 29. – P. 428-434. DOI:10.1200/JCO.2010.31.3080; Du Y., Fryzek J., Sekeres M.A., Taioli E. Smoking and alcohol intake as risk factors for myelodysplastic syndromes (MDS) // Leuk Res. – 2009. – Vol. 9. – P. 9. DOI:10.4172/1747-0862.1000217; Schmalzing M., Aringer M., Bornhäuser M., Atta J. Myelodysplastic syndrome, acute leukemia and stem cell transplantation. // Z Rheumatol. – 2017. – Vol. 76. – №2. – P. 26-32. DOI:10.1007/s00393-017-0369-2.; Falantes J.F., Calderón C., Márquez Malaver F.J., Alonso D., Martín Noya A., et al. Clinical prognostic factors for survival and risk of progression to acute myeloid leukemia in patients with myelodysplastic syndromes with less than 10% bone marrow blasts and non unfavorable cytogenetic categories. // Clin Lymphoma Myeloma Leuk. – 2013. – Vol. 13. – P. 144- 152. DOI:10.1016/j.clml.2012.09.013; Falantes J., Garcia-Manero G. Does the concept of lowerrisk myelodysplastic syndrome need to be revisited? // Leuk Res. – 2015. – Vol. 39. – P. 1003-1005. DOI:10.1016/j.leukres.2015.06.010; Bruneau J., Molina T.J. WHO Classification of Tumors of Hematopoietic and Lymphoid Tissues. // In: van Krieken J. (eds) Encyclopedia of Pathology. Encyclopedia of Pathology. Springer, Cham. – 2019. DOI:10.1007/978-3-319-28845-1_3817-1; Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. // Blood. – 1997. – Vol. 89. – P. 2079- 2088. PMID: 9058730.; Malcovati L., Porta M.G., Pascutto C., Invernizzi R., Boni M., et al. Prognostic factors and life expectancy in myelodysplastic syndromes classified according to WHO criteria: A basis for clinical decision making. // J Clin Oncol – 2005. – Vol. 23. – P. 7594-7603. DOI:10.1200/JCO.2005.01.7038; Charlson M.E., Pompei P., Ales K.L., MacKenzie C.R. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. // J Chron Dis – 1987. – Vol. 40. – P. 373-383. DOI:10.1016/0021-9681(87)90171-8; Della Porta M.G., Malcovati L., Strupp C., Ambaglio I., Kuendgen A., et al. Risk stratification based on both disease status and extra-hematologic comorbidities in patients with myelodysplastic syndrome. // Haematologica. – 2011. – Vol. 96. – P. 441-449. DOI:10.3324/haematol.2010.033506; Lieber C.S., Weiss D.G., Groszmann R., Paronetto F., Schenker S.; Veterans Affairs Cooperative Study 391 Group. II. Veterans Affairs Cooperative Study of Polyenylphosphatidylcholine in Alcoholic Liver Disease. // Alcohol Clin Exp Res. – 2003. – Vol. 27. – №11. – P. 1765-1771. DOI:10.1097/01.ALC.0000093743.03049.80; Rambaldi A., Gluud C. S-adenosyl-L-methionine for alcoholic liver diseases. // Cochrane Database of Systematic Reviews. – 2006. – №2. DOI:10.1002/14651858.cd002235.pub2; Ricci S., Celani M.G., Cantisani T.A., Righetti E. Piracetam for acute ischaemic stroke. // Cochrane Database of Systematic Reviews. – 2012. – №9. DOI:10.1002/14651858.cd000419.pub2; Flicker L., Grimley Evans J. Piracetam for dementia or cognitive impairment. // Cochrane Database of Systematic Reviews. – 2004. – №1. DOI:10.1002/14651858.CD001011; Al Hajeri A., Fedorowicz Z., Omran A., Tadmouri G.O. Piracetam for reducing the incidence of painful sickle cell disease crises. // Cochrane Database of Systematic Reviews – 2007. – №2. DOI:10.1002/14651858.CD006111.pub2; Jaiswal S., Fontanillas P., Flannick J., Manning A., Grauman P.V., et al. Age-related clonal hematopoiesis associated with adverse outcomes. // N Engl J Med. – 2014. – Vol. 371. – №26. – P. 2488-2498. DOI:10.1056/NEJMoa1408617; Voso. M.T., Fenu S., Latagliata R., Buccisano F., Piciocchi A., et al. Revised International Prognostic Scoring System (IPSS) Predicts Survival and Leukemic Evolution of Myelodysplastic Syndromes Significantly Better Than IPSS and WHO Prognostic Scoring System: Validation by the Gruppo Romano Mielodisplasie Italian Regional Database. // J Clin Oncol. – 2013. – Vol. 31. – №21. – P. 2671-2677. DOI:10.1200/jco.2012.48.0764; Fuster J.J., MacLauchlan S., Zuriaga M.A., Polackal M.N., Ostriker A.C., et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. // Science. – 2017. – Vol. 355. – №6327. – P. 842-847. DOI:10.1126/science.aag1381; Jaiswal S., Natarajan P., Silver A.J., Gibson C.J., Bick A.G., et al. Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease. // N Engl J Med – 2017. – Vol. 377. – P. 111- 121. DOI:10.1056/NEJMoa1701719; Мусихина Н.А., Гапон Л.И., Петелина Т.И., Махнева Е.А., Еменева И.В. Особенности дисфункции эндотелия и вариабельности ритма сердца при артериальной гипертензии и ишемической болезни сердца. // Артериальная гипертензия. – 2016. – Т. 22. – № 4. – С. 414-424. DOI:10.18705/1607-419X-2016-22-4-414-424; Falantes J.F., Márquez-Malaver F.J., Knight T., Calderón-Cabrera C., Martino M.L., et al. The incorporation of comorbidities in the prognostication of patients with lower-risk myelodysplastic syndrome*. // Leukemia & Lymphoma. – 2016. – Vol. 58. – №8. – P. 1895-1901. DOI:10.1080/10428194.2016.1267350; Dayyani F., Conley A.P., Strom S.S., Stevenson W., Cortes J.E., et al. Cause of death in patients with lower-risk myelodysplastic syndrome. // Cancer. – 2010. – Vol. 116. – P. 2174-2179. DOI:10.1002/cncr.24984; Welch J.S., Petti A.A., Miller C.A., Fronick C.C., O’Laughlin M., et al. TP53 and Decitabine in Acute Myeloid Leukemia and Myelodysplastic Syndromes. // N Engl J Med. – 2016. – Vol. 375. – №21. – P. 2023-2036. DOI:10.1056/NEJMoa1605949.; DiNardo C.D., Pratz K., Pullarkat V., Jonas B.A., Arellano M., et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. // Blood. – 2019. – Vol. 133. – №1. – P. 7-17. DOI:10.1182/blood-2018-08-868752; Rothwell P.M., Cook N.R., Gaziano J.M., Price J.F., Belch J.F., et al. Effects of aspirin on risks of vascular events and cancer according to bodyweight and dose: analysis of individual patient data from randomised trials. // The Lancet. – 2018. – Vol. 392. – №10145. – P. 387-398. DOI:10.1016/s0140-6736(18)31133-4; Лузина Е.В., Ларева Н.В., Жилина А.А., Жигжитова Е.Б., Устинова Е.Е. Эрозивно-язвенные поражения верхних отделов желудочно-кишечного тракта у пациентов с ишемической болезнью сердца. Лечение и профилактика. // Российский медицинский журнал. – 2017. – Vol. 23. – №6. – P. 327-330. DOI:10.18821/0869-2106-2017-23-6-327- 330; Tomaszewski M., White C., Patel P., Masca N, Damani R, et al. High rates of non-adherence to antihypertensive treatment revealed by high-performance liquid chromatographytandem mass spectrometry (HP LC-MS/MS) urine analysis. // Heart. – 2014. – Vol. 100. – P. 855-861. DOI:10.1136/heartjnl-2013-305063; Ector G.I.C.G., Govers T.M., Westerweel P.E., Grutters J.P.C. , Blijlevens N.M.A. The potential health gain and cost savings of improving adherence in chronic myeloid leukemia. // Leukemia & Lymphoma. – 2019. – P. 1-8. DOI:10.1080/10428194.2018.1535113; Hall A.E., Paul C., Bryant J., Lynagh M.C., Rowlings P., et al. To adhere or not to adhere: rates and reasons of medication adherence in hematological cancer patients. // Crit Rev Oncol Hemat. – 2016. – №97. – P. 247-262. DOI:10.1016/j.critrevonc.2015.08.025; Kekäle M., Talvensaari K., Koskenvesa P., Porkka K., Airaksinen M. Chronic myeloid leukemia patients’ adherence to peroral tyrosine kinase inhibitors compared with adherence as estimated by their physicians. // Patient Prefer Adherence. – 2014. – Vol. 8. – P. 1619-1627. DOI:10.2147/PPA.S70712; Yeoh A., Collins A., Fox K., Shields S., Ritchie P., et al. Treatment delay and the risk of relapse in pediatric acute lymphoblastic leukemia. // Pediatric Hematology and Oncology. – 2017. – Vol. 34. – №1. – P. 38-41. DOI:10.1080/08880018.20 16.1276235; Haynes R.B., McKibbon K.A., Kanani R. Systematic review of randomised trials of interventions to assist patients to follow prescriptions for medications. // Lancet. – 1996. – Vol. 348. – №9024. – P. 383-386. DOI:10.1016/s0140-6736(96)01073-2; Krogsbøll L.T., Jørgensen K.J., Gøtzsche P.C. General health checks in adults for reducing morbidity and mortality from disease. // Cochrane Database of Systematic Reviews. – 2019. – №1. Art. No.: CD009009. DOI:10.1002/14651858.CD009009.pub3.; Prasad V., Lenzer J., Newman D.H. Why cancer screening has never been shown to “save lives”—and what we can do about it. // BMJ. – 2016. – Vol. 352. h6080. DOI:10.1136/bmj.h6080; Brawley O.W., Kramer B.S. Cancer screening in theory and in practice. // J Clin Oncol. – 2005. – Vol.23. – P. 293 -300. DOI:10.1038/bjc.2013.427; Zahl P.H., Jørgensen K.J., Gøtzsche P.C. Overestimated lead times in cancer screening has led to substantial underestimation of overdiagnosis. // Br J Cancer. – 2013. – Vol. 109. – P. 2014-2019. DOI:10.1038/bjc.2013.427; Schroder F.H., Hugosson J., Roobol M.J., Tammela T.L.J., Ciatto S., et al. Screening and prostate-cancer mortality in a randomized european study. // The New England Journal of Medicine. – 2009. – Vol. 360. – №13. – P. 1320-1328. DOI:10.1056/NEJMoa0810084; Draisma G., Boer R., Otto S.J., van der Cruijsen I.W., Damhuis R.A.M., et al. Lead times and overdetection due to prostatespecific antigen screening: estimates from the European Randomized Study of Screening for Prostate Cancer. // Journal of the National Cancer Institute. – 2003. – Vol. 95. – №12. – P. 868-878. DOI:10.1093/jnci/95.12.868; Bejar R., Stevenson K.E., Caughey B., Lindsley R.C., Mar B.G., et al. Somatic mutations predict poor outcome in patients with myelodysplastic syndrome after hematopoietic stem-cell transplantation. // J. Clin. Oncol. – 2014. – Vol. 32. – P. 2691- 2698. DOI:10.1200/JCO.2013.52.3381; Gill H., Leung A.Y, Kwong Y.L. Molecular and Cellular Mechanisms of Myelodysplastic Syndrome: Implications on Targeted Therapy. // Int J Mol Sci. – 2016. – Vol. 17. – №4. – P. 444-451. DOI:10.3390/ijms17040440; Kwok B., Hall J.M., Witte J.S., Xu Y., Reddy P., et al. MDS associated somatic mutations and clonal hematopoiesis are common in idiopathic cytopenia of undetermined significance. // Blood. – 2015. – Vol. 126. – P. 2355-2361. DOI:10.1182/blood-2015-08-667063; Савченко В.Г., Паровичникова Е.Н., Кохно А.В., Семочкин С.В., Афанасьев Б.В., и др. Национальные клинические рекомендации по диагностике и лечению миелодиспластических синдромов взрослых. // Гематология и трансфузиология. - 2016. - Т. 61 № 1S (4). - С. 3–5. eLIBRARY ID: 21689282; Fenaux P., Haase D., Sanz G.F., Santini V., Buske C., & ESMO Guidelines Working Group (2014). Myelodysplastic syndromes: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. // Ann Oncol. – 2014. – V.25 Suppl 3:iii57-69. DOI:10.1093/annonc/mdu180; https://www.medicalherald.ru/jour/article/view/1267

  16. 16
  17. 17
  18. 18
    Academic Journal

    Πηγή: Russian Journal of Pediatric Hematology and Oncology; Том 5, № 3 (2018); 23-35 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 5, № 3 (2018); 23-35 ; 2413-5496 ; 2311-1267 ; 10.17650/2311-1267-2018-5-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.nodgo.org/jour/article/view/403/396; Fisher W.B., Armentrout S.A., Weisman R. Jr, Graham R.C. Jr. “Preleukemia”. A myelodysplastic syndrome often terminating in acute leukemia. Arch Intern Med 1973;132(2):226–32. PMID: 4515834.; Randall D.L., Reiquam C.W., Githens J.H., Robinson A. Familial myeloproliferative disease. A new syndrome closely simulating myelogenous leukemia in childhood. Am J Dis Child 1965;110(5):479–500. PMID: 5215211.; Bennett J.M., Catovsky D., Daniel M.T. et al. Proposals for the classification of the myelodysplastic syndromes. Br J Haematol 1982;51(2):189–99. PMID: 6952920.; Kleihauer E. The preleukemic syndromes (hematopoietic dysplasia) in childhood. Eur J Pediatr 1980;133(1):5–10. PMID: 6986269.; Тиранова С.А., Алексеев Н.А., Петрова Э.М. и др. К вопросу о существовании гемопоэтических дисплазий (прелейкемий) у детей. Терапевтический архив 1982;8:1–16.; Arber D., Orazi A., Hasserjian R. et al. The 2016 revision to the World Health Organization classification of myelod neoplasms and acute leukemia. Blood 2016;127(20):2391–405. doi:10.1182/blood-2016-03-643544.; Hasle H., Baumann I., Bergstrasser E. et al.; European Working Group on childhood MDS. The International Prognostic Scoring System (IPSS) for childhood myelodysplastic syndrome (MDS) and juvenile myelomonocytic leukemia (JMML). Leukemia 2004;18(12):2008–14. doi:10.1038/sj.leu.2403489.; Hasle H. Myelodysplastic and myeloproliferative disorders of childhood. Hematology Am Soc Hematol Educ Program 2016;2016(1):598–604. doi:10.1182/asheducation-2016.1.598.; West A., Godley L., Churpek J.E. Familial myelodysplastic syndrome/acute leukemia syndromes: a review and utility for translational investigations. Ann N Y Acad Sci 2014;1310:111–8. doi:10.1111/nyas.12346.; Bannon A., DiNardo C. Hereditary predispositopn to myelodysplastic syndrome. Int J Mol Sci 2016;17(6). pii: E838. doi:10.3390/ijms17060838.; Babushok D.V., Bessler M., Olson T.S. Genetic predisposition to myelodysplastic syndrome and acute myeloid leukemia in children and young adults. Leuk Lymphoma 2016;57(3):520–36. doi:10.3109/10428194.2015.1115041.; Swerdlow S.H., Campo E., Harris N.L. et al. WHO classification of tumors of haematopoietic and lymphoid tissues. Lyon, France: IARC Press, 2008.; Babushok D.V., Bessler M. Genetic predisposition syndromes: when should they be considered in the work-up of MDSβ Best Pract Res Clin Haematol 2015;28(1):55–68. doi:10.1016/j.beha.2014.11.004.; Locatelli F., Niemeyer C.M. How I treat juvenile myelomonocytic leukemia. Blood 2015;125(7):1083–90. doi:10.1182/blood-2014-08-550483.; Waespe N., Van Den Akker M., Klaassen R.J. et al. Response to treatment with azacitidine in children with advanced myelodysplastic syndrome prior to hematopoietic stem cell transplantation. Haematologica 2016;101(12):1508–15. doi:10.3324/haematol.2016.145821.; Poetsch A.R., Lipka D.B., Witte T. et al. RASA4 undergoes DNA hypermethylation in resistant juvenile myelomonocytic leukemia. Epigenetics 2014;9(9):1252–60. doi:10.4161/epi.29941.; Malcovati L., Karimi M., Papaemmanuil E. et al. SF3B1 mutation identifies a distinct subset of myelodysplastic syndrome with ring sideroblasts. Blood 2015;126(2):233–41. doi:10.1182/blood-2015-03-633537.; McKerrell Т., Park N., Moreno T. et al. Leukemia-associated somatic mutations drive distinct patterns of age-related clonal hemopoiesis. Cell Rep 2015;10(8);1239-45. doi:10.1016/j.celrep.2015.02.005.; Niemeyer C., Baumann I. Classification of childhood aplastic anemia and myelodysplastic syndrome. Hematology Am Soc Hematol Educ Program 2011;2011:84–9. doi:10.1182/asheducation-2011.1.84.; Kristinsson S.Y., Bjorkholm M., Hultcrantz M. et al. Chronic immune stimulation might act as a trigger for the development of acute myeloid leukemia or myelodysplastic syndromes. J Clin Oncol 2011;29(21):2897–903. doi:10.1200/JCO.2011.34.8540.; Glenthoj A., Orskov A.D., Hansen J.W. et al. Immune mechanisms in myelodysplastic syndrome. Int J Mol Sci. 2016 Jun 15;17(6). pii: E944. doi:10.3390/ijms17060944.; Flores-Figueroa E., Arana-Trejo R.M., Gutierrez-Espindola G. et al. Mesenchymal stem cells in myelodysplastic syndromes: phenotypic and cytogenetic characterization. Leuk Res 2005;29(2):215–24. doi:10.1016/j.leukres.2004.06.011.; Aanei C., Flandrin P., Eloae F.Z. et al. Intrinsic growth deficiencies of mesenchymal stromal cells in myelodysplastic syndromes. Stem Cells Dev 2012;21(10):1604–15. doi:10.1089/scd.2011.0390.; Flores-Figuerova E., Varma S., Montgomery K. et al. Distinctive contact between CD34+ hematopoietic progenitors and CXCL12+ CD271+ mesenchymal stromal cells in benign and myelodysplastic bone marrow. Lab Invest 2012;92(9):1330–41. doi:10.1038/labinvest.2012.93.; Flores-Figuerova E., Montesinos J., Flores-Guzman P. et al. Functional analysis of myelodysplastic syndromes-derived mesenchymal stem cells. Leuk Res 2008;32(9):1407–16. doi:10.1016/j.leukres.2008.02.013.; Soenen-Cornu V., Tourino C., Bonnet M. et al. Mesenchymal cells generated from patients with myelodysplastic syndromes are devoid of chromosomal clonal markers and support short- and long-term hematopoiesis in vitro. Oncogene 2005;24(15):2441–8. doi:10.1038/sj.onc.1208405.; Medyouf H., Mossner M., Jann J. et al. Myelodysplastic cells in patients reprogram mesenchymal stromal cells to establish a transplantable stem cell niche disease unit. Cell Stem Cell 2014;14(6):824–37. doi:10.1016/j.stem.2014.02.014.; Kastrinaki M., Pontikoglou C., Klaus M. et al. Biologic characteristics of bone marrow mesenchymal stem cells in myelodysplastic syndromes. Curr Stem Cell Res Ther 2011;6(2):122–30. PMID: 20528751.; Bulycheva E., Rauner M., Medyouf H. et al. Myelodysplasia is in the niche: novel concepts and emerging therapies. Leukemia 2015;29(2):259–68. doi:10.1038/leu.2014.325.; Abbas S., Kini A., Srivastava V. et al. Coexistence of aberrant hematopoietic and stromal elements in myelodysplastic syndromes. Blood Cells Mol Dis 2017;66:37–46. doi:10.1016/j.bcmd.2017.08.004.; Кулагин А.Д. Клиникогематологические и иммунологические критерии долгосрочного прогноза приобретенной апластической анемии. Автореф. дис. … докт. мед. наук. СПб., 2015. 60 с.; Allegra A., Innao V., Penna G. et al. Telomerase and telomere biology in hematological diseases: A new therapeutic target. Leuk Res 2017;56:60–74. doi:10.1016/j.leukres.2017.02.002.; Wang L., Xiao H., Zhang X. et al. The role of telomeres and telomerase in hematologic malignancies and hematopoietic stem cell transplantation. J Hematol Oncol 2014;7:61. doi:10.1186/s13045-014-0061-9.; Hasle H., Niemeyer C.M., Chessells J.M. et al. A pediatric approach to the WHO classification of myelodysplactic and myeloproliferative diseases. Leukemia 2003;17(2):277–82. doi:10.1038/sj.leu.2402765.; Vardiman J., Thiele J., Arber D. et al. The 2008 revision of the WHO classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 2009;114(5):937–51. doi:10.1182/blood-2009-03-209262.; Hasegawa D. The current perspective of low-grade myelodysplastic syndrome in children. Int J Hematol 2016;103(4):360–4. doi:10.1007/s12185-016-1965-7.; Осипова А.А., Семенова Е.В., Морозова Е.В. и др. Эффективность трансплантации гемопоэтических стволовых клеток с различными по интенсивности режимами кондиционирования у детей и подростков с миелодиспластическим синдромом. Российский журнал детской гематологии и онкологии 2017;4(2):70–7. doi:10.17650/2311-1267-2017-4-2-70-77.; Масчан М.А., Хачатрян Л.А., Скворцова Ю.В. и др. Трансплантация гемопоэтических стволовых клеток при ювенильном миеломоноцитарном лейкозе: анализ опыта одного центра и обзор литературы. Онкогематология 2011;(1):45–55.; Castleberry R., Emanuel P., Zuckerman K. et al. A pilot study of isotretinoin in the treatment of juvenile chronic myelogenous leukemia. N Engl J Med 1994;331(25):1680–4. doi:10.1056/NEJM199412223312503.; Хачатрян Л.А., Масчан М.А., Самочатова Е.В. и др. Дифференцировочная терапия с использованием 13-цис-Ретиноевой кислоты и низких доз цитозин-арабинозида у детей с ювенильным миеломоноцитарным лейкозом. Онкогематология 2008;(1–2):34–8.; Bergstraesser E., Hasle H., Rogge T. et al. Non-hematopoietic stem cell transplantation treatment of juvenile myelomonocytic leukemia: a retrospective analysis and definition of response criteria. Pediatr Blood Cancer 2007;49(5):629–33. doi:10.1002/pbc.21038.; Овечкина В.Н., Бондаренко С.Н., Морозова Е.В. и др. Острый миелобластный лейкоз и миелодиспластический синдром: применение азацитидина с профилактической и превентивной целью после аллогенной трансплантации гемопоэтических стволовых клеток. Клиническая онкогематология 2017;10(1):45–55.; Yang H., Bueso-Ramos C., DiNardo C. et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia 2014;28(6):1280–8. doi:10.1038/leu.2013.355.; Locatelli F., Nollke Р., Zecca M. et al.; European Working Group on Childhood MDS; European Blood and Marrow Transplantation Group. Hematopoietic stem cell transplantation (HSCT) in children with juvenile myelomonocytic leukemia (JMML): results of the EWOG-MDS/EBMT trial. Blood 2005;105(1):410–9. doi:10.1182/blood-2004-05-1944.; Phillips C.L., Davies S.M., McMasters R. et al. Low dose decitabine in very high risk relapsed or refractory acute myeloid leukaemia in children and young adults. Br J Haematol 2013;161(3):406–10. doi:10.1111/bjh.12268.; Cseh A., Niemeyer C.M., Yoshimi A. et al. Bridging to transplant with azacitidine in juvenile myelomonocytic leukemia: a retrospective analysis of the EWOG-MDS study group. Blood 2015;125(14):2311–3. doi:10.1182/blood-2015-01-619734.; https://journal.nodgo.org/jour/article/view/403

  19. 19
    Academic Journal

    Πηγή: Russian Journal of Pediatric Hematology and Oncology; Том 4, № 2 (2017); 70-77 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 4, № 2 (2017); 70-77 ; 2413-5496 ; 2311-1267 ; 10.17650/2311-1267-2017-4-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.nodgo.org/jour/article/view/296/296; Vardiman J., Thiele J., Arber D. et al. The 2008 revision of the WHO classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 2009;114:947–51.; Arber D.A., Orazi A., Hasserjian R. et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016;127(20):2391–405.; Hasle H., Baumann I., Bergstrasser E. et al. International prognostic scoring system (IPSS) for childhood MDS and JMML. Blood 2001;98:624a.; Hasle H. Myelodysplastic and myeloproliferative disorders of childhood. Hematology Am Soc Hematol Educ Program 2016;2016(1):598–604.; Hirabayashi S., Floto C., Mooetter J. et al. European Working Group of MDS in Childhood. Spliceosomal gene aberrations are rare, coexist with oncoggenic mutations, and are unlikely to evert a driver effect in childhood MDS and JMML. Blood 2012;119(11):e96–e99.; Sureda A., Bader P., Cesaro S. et al. Indications for allo- and auto-SCT for hematological diseases, solid tumors and immune disorders: current practice in Europe, 2015. Bone Marrow Transplant 2015;50(8):1037–56.; Strahm B., Nollke P., Zecca M. et al. EWOG-MDS study group. Hematopoietic stem cell transplantation for advanced myelodisplastic syndrome in children: results of the EWOG-MDS 98 study. Lukemia 2011;25(3):455–62.; Locatelli F., Nollke P., Zecca M. et al. Busulfan, cyclophosphamide and melphalan as conditioning regimen for bone marrow transplantation in children with myelodysplastic syndromes. Leukemia 1994;8(5):844–9.; Locatelli F., Nollke P., Zecca M. et al. Hematopoietic stem cell transplantation in children with juvenile myelomonocytic leukemia: results of the EWOG-MDS/EBMT trial. Blood 2005;105(1):410–9.; Strahm B., Locatelli F., Bader P. et al. Reduced intensity conditioning in unrelated donor transplantation for refractory cytopenia in childhood. Bone Marrow Transplant 2007;40(4):329–33.; Woodard P., Carpenter P., Davies S. et al. Unrelated donor bone marrow transplantation for myelodysplastic syndrome in children. Biol Blood Marrow Transplant 2011;17(5):723–8.; Семенова Е.В., Станчева Н.В., Алянский А.Л. и др. Аллогенная трансплантация гемопоэтических стволовых клеток с режимами кондиционирования со сниженной интенсивностью доз у детей и подростков с прогностически неблагоприятными формами острого лимфобластного лейкоза. Онкогематология 2011;6(4):19–26. [Semenova E.V., Stancheva N.V., Alyanskiy A.L. et al. Allogeneic hematopoietic stem cells transplantation with reduced intensity conditioning regimen in children and adolescents with unfavorable forms of acute lymphoblastic leukemia. Onkogematologiya = Oncohematology 2011;6(4):19–26. (In Russ.)].; Hasle H., Niemeyer C.M. Advances in the prognostication and management of advanced MDS in children. Br J Haematol 2011;154(2):185–95.; https://journal.nodgo.org/jour/article/view/296

  20. 20
    Academic Journal

    Περιγραφή αρχείου: text/html