-
1Academic Journal
Authors: M. Sh. Khubutiya, A. S. Tokarev, N. V. Rubtsov, M. V. Israpiev, L. G. Khutsishvili, M. A. Sagirov, I. A. Argir, М. Ш. Хубутия, А. С. Токарев, Н. В. Рубцов, М. В. Исрапиев, Л. Г. Хуцишвили, М. А. Сагиров, И. А. Аргир
Source: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 14, № 3 (2025); 586-600 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 14, № 3 (2025); 586-600 ; 2541-8017 ; 2223-9022
Subject Terms: ЭКМО, assisted circulation, artificial circulation, mechanical circulatory support, artificial ventricles of the heart, left ventricular bypass, ECMO, вспомогательное кровообращение, искусственное кровообращение, механическая поддержка кровообращения, искусственные желудочки сердца, левожелудочковый обход
File Description: application/pdf
Relation: https://www.jnmp.ru/jour/article/view/2215/1648; Хроническая сердечная недостаточность. Клинические рекомендации 2020. Российский кардиологический журнал. 2020;25(11):4083. https://doi.org/10.15829/1560-4071-2020-4083; Gao K, Zhao H, Gao J, Wen B, Jia C, Wang Z, et al. Mechanism of Chinese Medicine Herbs Effects on Chronic Heart Failure Based on Metabolic Profiling. Front Pharmacol. 2017;8:864. PMID: 29213243 https://doi.org/10.3389/fphar.2017.00864; Yang B, Wang F, Cao H, Liu G, Zhang Y, Yan P, et al. Caffeoylxanthiazonoside exerts cardioprotective effects during chronic heart failure via inhibition of inflammatory responses in cardiac cells. Exp Ther Med. 2017;14(5):4224–4230. PMID: 29104638 https://doi.org/10.3892/etm.2017.5080.; Терещенко С.Н., Жиров И.В. Хроническая сердечная недостаточность: новые вызовы и новые перспективы. Терапевтический архив. 2017;89(9):4–9. https://doi.org/10.17116/terarkh20178994-9; Liguori I, Russo G, Curcio F, Sasso G, Della-Morte D, Gargiulo G, et al. Depression and chronic heart failure in the elderly: an intriguing relationship. J Geriatr Cardiol. 2018;15(6):451–459. PMID: 30108618. https://doi.org/10.11909/j.issn.1671-5411.2018.06.014.; Wang Y, Ma X. Relationship between changes of electrocardiogram indexes in chronic heart failure with arrhythmia and serum PIIINP and BNP. Exp Ther Med. 2020;19(1):591–596. PMID: 31897101 https://doi.org/10.3892/etm.2019.8269.; Halade GV, Kain V, Ingle KA. Heart functional and structural compendium of cardiosplenic and cardiorenal networks in acute and chronic heart failure pathology. Am J Physiol Heart Circ Physiol. 2018;314(2):H255– H267. PMID: 29101178. https://doi.org/10.1152/ajpheart.00528.2017; Groenewegen A, Rutten FH, Mosterd A, Hoes AW. Epidemiology of heart failure. Eur J Heart Fail. 2020;22(8):1342–1356. PMID: 32483830 https://doi.org/10.1002/ejhf.1858; van Riet EE, Hoes AW, Wagenaar KP, Limburg A, Landman MA, Rutten FH. Epidemiology of heart failure: the prevalence of heart failure and ventricular dysfunction in older adults over time. A systematic review. Eur J Heart Fail. 2016;18(3):242–252. PMID: 26727047 https://doi.org/10.1002/ejhf.483.; Sredniawa B, Cebula S, Kowalczyk J, Batchvarov VN, Musialik-Lydka A, Sliwinska A, et al. Heart rate turbulence for prediction of heart transplantation and mortality in chronic heart failure. Ann Noninvasive Electrocardiol. 2010;15(3):230–7. PMID: 20645965 https://doi.org/10.1111/j.1542-474X.2010.00369.x; Gioli-Pereira L, Marcondes-Braga FG, Bernardez-Pereira S, Bacal F, Fernandes F, Mansur AJ, et al. Predictors of one-year outcomes in chronic heart failure: the portrait of a middle income country. BMC Cardiovasc Disord. 2019;19(1):251. PMID: 31706288 https://doi.org/10.1186/s12872-019-1226-9; Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37(27):2129–2200. PMID: 27206819 https://doi.org/10.1093/eurheartj/ehw128; Хубутия М.Ш., Соколов В.В., Редкобородый А.В., Козлов И.А., Тимербаев В.Х., Хуцишвили Л.Г. и др. Опыт 70 трансплантаций сердца в многопрофильном медицинском учреждении. Трансплантология. 2018;10(3):197–206. https://doi.org/10.23873/2074-0506-2018- 10-3-197-206.; Barazzoni R, Gortan Cappellari G, Palus S, Vinci P, Ruozi G, Zanetti M, et al. Acylated ghrelin treatment normalizes skeletal muscle mitochondrial oxidative capacity and AKT phosphorylation in rat chronic heart failure. J Cachexia Sarcopenia Muscle. 2017;8(6):991–998. PMID: 29098797 https://doi.org/10.1002/jcsm.12254; Hua CY, Huang Y, Su YH, Bu JY, Tao HM. Collaborative care model improves self-care ability, quality of life and cardiac function of patients with chronic heart failure. Braz J Med Biol Res. 2017;50(11): e6355. PMID: 28953989 https://doi.org/10.1590/1414-431X20176355.; Shah KS, Xu H, Matsouaka RA, Bhatt DL, Heidenreich PA, Hernandez AF, et al. Heart Failure With Preserved, Borderline, and Reduced Ejection Fraction: 5-Year Outcomes. J Am Coll Cardiol. 2017;70(20):2476–2486. PMID: 29141781 https://doi.org/10.1016/j.jacc.2017.08.074; Alla F, Zannad F, Filippatos G. Epidemiology of acute heart failure syndromes. Heart Fail Rev. 2007;12(2):91–95. PMID: 17450426 https://doi.org/10.1007/s10741-007-9009-2; Kontogiannis CD, Malliaras K, Kapelios CJ, Mason JW, Nanas JN. Continuous internal counterpulsation as a bridge to recovery in acute and chronic heart failure. World J Transplant. 2016;6(1):115–124. PMID: 27011909 https://doi.org/10.5500/wjt.v6.i1.115; Braunwald E. The war against heart failure: the Lancet lecture. Lancet. 2015;385(9970):812–824. PMID: 25467564 https://doi.org/10.1016/S0140-6736(14)61889-4; Borisenko O, Müller-Ehmsen J, Lindenfeld J, Rafflenbeul E, Hamm C. An early analysis of cost-utility of baroreflex activation therapy in advanced chronic heart failure in Germany. BMC Cardiovasc Disord. 2018;18(1):163. PMID: 30092774 https://doi.org/10.1186/s12872-018-0898-x; Jones NR, Roalfe AK, Adoki I, Hobbs FDR, Taylor CJ. Survival of patients with chronic heart failure in the community: a systematic review and meta-analysis. Eur J Heart Fail. 2019;21(11):1306–1325. PMID: 31523902 https://doi.org/10.1002/ejhf.1594; Berthelot E, Bauer F, Eicher JC, Flécher E, Gellen B, Guihaire J, et al. Pulmonary hypertension in chronic heart failure: definitions, advances, and unanswered issues. ESC Heart Fail. 2018;5(5):755–763. PMID: 30030912; https://doi.org/10.1002/ehf2.12316; Guo L, Yuan H, Zhang D, Zhang J, Hua Q, Ma X, et al. A multicenter, randomized, double-blind, placebo-parallel controlled trial for the efficacy and safety of shenfuqiangxin pills in the treatment of chronic heart failure (Heart-Kidney yang deficiency syndrome). Medicine (Baltimore). 2020;99(21):e20271. PMID: 32481305 https://doi.org/10.1097/MD.0000000000020271; Hu CS, Wu QH, Hu DY, Tkebuchava T. Treatment of chronic heart failure in the 21st century: A new era of biomedical engineering has come. Chronic Dis Transl Med. 2018;5(2):75–88. PMID: 31367696 https://doi.org/10.1016/j.cdtm.2018.08.005; Jaramillo N, Segovia J, Gómez-Bueno M, García-Cosío D, Castedo E, Serrano S, et al. Characteristics of patients with survival longer than 20 years following heart transplantation. Rev Esp Cardiol (Engl Ed). 2013;66(10):797–802. PMID: 24773860 https://doi.org/10.1016/j.rec.2013.05.016; Шиндриков Р.Ю., Щелкова О.Ю., Демченко Е.А., Ситникова М.Ю. Психосоциальный статус пациентов с хронической сердечной недостаточностью, ожидающих трансплантацию сердца. Вестник РУДН. Серия: Психология и педагогика. 2019;16(2):163–180. https://doi.org/10.22363/2313-1683-2019-16-2-163-180; Fernandes LCBC, de Oliveira IM, Fernandes PFCBC, de Souza Neto JD, Farias MDSQ, de Freitas NA, et al. Impact of Heart Transplantation on the Recovery of Peripheral and Respiratory Muscle Mass and Strength in Patients With Chronic Heart Failure. Transplant Direct. 2018;4(11):e395. PMID: 30534588 https://doi.org/10.1097/TXD.0000000000000837; Fried JA, Nair A, Takeda K, Clerkin K, Topkara VK, Masoumi A, et al. Clinical and hemodynamic effects of intra-aortic balloon pump therapy in chronic heart failure patients with cardiogenic shock. J Heart Lung Transplant. 2018;37(11):1313–1321. PMID: 29678608 https://doi.org/10.1016/j.healun.2018.03.011; Everly MJ. Cardiac transplantation in the United States: an analysis of the UNOS registry. Clin Transpl. 2008:35–43. PMID: 19708444.; Fukuhara S, Takeda K, Kurlansky PA, Naka Y, Takayama H. Extracorporeal membrane oxygenation as a direct bridge to heart transplantation in adults. J Thorac Cardiovasc Surg. 2018;155(4):1607–1618.e6. PMID: 29361299 https://doi.org/10.1016/j.jtcvs.2017.10.152; Todurov BM, Kovtun HI, Shpachuk AO, Kuzmich IN, Druzhina AN, Sudakevich SN, et al. LVAD Use in the Treatment of End-Stage Heart Failure. Ukrainian Journal of Cardiovascular Surgery. 2020;2(39):43–47. https://doi.org/10.30702/ujcvs/20.3905/031043-047; Догонашева А.А. Трансплантация сердца пациентам с предтрансплантационной вено-артериальной экстракорпоральной мембранной оксигенацией: автореферат дис. . канд. мед. наук. Москва, 2020.; Исмагилов Ф.Р., Вавилов В.Е., Нургалиева Р.А. Перспективы развития аппаратов вспомогательного кровообращения (обзор). Научное приборостроение. 2019;29(4):19–27. https://doi.org/10.18358/np-29-4-i1927; Ухренков С.Г. Периферическая вено-артериальная экстракорпоральная мембранная оксигенация как метод механической поддержки у потенциальных реципиентов сердца: автореферат дис. . канд. мед. наук. Москва, 2017.; Pons S, Sonneville R, Bouadma L, Styfalova L, Ruckly S, Neuville M, et al. Infectious complications following heart transplantation in the era of high-priority allocation and extracorporeal membrane oxygenation. Ann Intensive Care. 2019;9(1):17. PMID: 30684052 https://doi.org/10.1186/s13613-019-0490-2; Czapran A, Steel M, Barrett NA. Extra-corporeal membrane oxygenation for severe respiratory failure in the UK. J Intensive Care Soc. 2020;21(3):247–255. PMID: 32782465 https://doi.org/10.1177/175 1143719870082; Hadaya J, Benharash P. Extracorporeal Membrane Oxygenation. JAMA. 2020;323(24):2536. PMID: 32463441 https://doi.org/10.1001/jama.2020.9148.; Шелухин Д.А., Павлов А.И., Ершов А.Л. Экстракорпоральная мембранная оксигенация у пациентов с тяжелой дыхательной недостаточностью и первый опыт ее применения во время авиационной медицинской эвакуации в России. Медико-биологические и социально-психологические проблемы безопасности в чрезвычайных ситуациях. 2015;(3):24–34. https://doi.org/10.25016/2541-7487-2015-0-3-24-34; Quintel M, Bartlett RH, Grocott MPW, Combes A, Ranieri MV, Baiocchi M, et al. Extracorporeal Membrane Oxygenation for Respiratory Failure. Anesthesiology. 2020;132(5):1257–1276. PMID: 32149776. https://doi.org/10.1097/ALN.0000000000003221; Евсеев А.К., Журавель С.В., Алентьев А.Ю., Горончаровская И.В., Петриков С.С. Мембраны в технологии экстракорпоральной оксигенации крови. Мембраны и мембранные технологии. 2019;9(4):235– 246. https://doi.org/10.1134/S2218117219040023; OPTN. Organ Procurement and Transplantation Network. Policies. 2020. Available at: https://www.lungbioengineering.com/wp-content/uploads/sites/3/2020/06/optn_policies.pdf [Accessed Aug 25, 2025]; Корнелюк Р.А., Верещагин И.Е., Шукевич Д.Л., Ганюков В.И. Механическая поддержка кровообращения при чрескожном коронарном вмешательстве высокого риска. Комплексные проблемы сердечно-сосудистых заболеваний. 2018;7(4S):54–65. https://doi.org/10.17802/2306-1278-2018-7-4S-54-65; Su Y, Liu K, Zheng JL, Li X, Zhu DM, Zhang Y, et al. Hemodynamic monitoring in patients with venoarterial extracorporeal membrane oxygenation. Ann Transl Med. 2020;8(12):792. PMID: 32647717 https://doi.org/10.21037/atm.2020.03.186; Rao P, Khalpey Z, Smith R, Burkhoff D, Kociol RD. Venoarterial Extracorporeal Membrane Oxygenation for Cardiogenic Shock and Cardiac Arrest. Circ Heart Fail. 2018;11(9):e004905. PMID: 30354364. https://doi.org/10.1161/CIRCHEARTFAILURE.118.004905; Периферическая вено-артериальная экстракорпоральная мембранная оксигенация перед трансплантацией сердца. Национальные клинические рекомендации. Москва, 2015. URL: https://transpl.ru/files/rto/perefer-abo-pered-transpl.pdf [Дата обращения 25 августа 2025 г.]; Parhar KK, Fedak PWM. Bridging to heart transplant with extracorporeal membrane oxygenation: Good or VAD? J Thorac Cardiovasc Surg. 2018;155(4):1619–1620. PMID: 29310932 https://doi.org/10.1016/j.jtcvs.2017.12.001; Rupprecht L, Lunz D, Philipp A, Lubnow M, Schmid C. Pitfalls in percutaneous ECMO cannulation. Heart Lung Vessel. 2015;7(4):320– 326. PMID: 26811838; Hong KN, Iribarne A, Worku B, Takayama H, Gelijns AC, Naka Y, et al. Who is the high-risk recipient? Predicting mortality after heart transplant using pretransplant donor and recipient risk factors. Ann Thorac Surg. 2011;92(2):520–527; discussion 527. PMID: 21683337 https://doi.org/10.1016/j.athoracsur.2011.02.086; Worku B, Pak SW, van Patten D, Housman B, Uriel N, Colombo P, et al. The CentriMag ventricular assist device in acute heart failure refractory to medical management. J Heart Lung Transplant. 2012;31(6):611–617. PMID: 22608770. https://doi.org/10.1016/j.healun.2011.12.016; Russo CF, Cannata A, Lanfranconi M, Bruschi G, Milazzo F, Paino R, et al. Veno-arterial extracorporeal membrane oxygenation using Levitronix centrifugal pump as bridge to decision for refractory cardiogenic shock. J Thorac Cardiovasc Surg. 2010;140(6):1416–1421. PMID: 20933244 https://doi.org/10.1016/j.jtcvs.2010.07.083; Спирина Е.А., Саитгареев Р.Ш., Шумаков Д.В., Захаревич В.М., Слободянник В.В., Минина М.Г. и др. Периферическая вено-артериальная мембранная оксигенация как метод механической поддержки кровообращения перед трансплантацией сердца. Вестник трансплантологии и искусственных органов. 2013;15(2):23–35. https://doi.org/10.15825/1995-1191-2013-2-23-35; Barth E, Durand M, Heylbroeck C, Rossi-Blancher M, Boignard A, Vanzetto G, et al. Extracorporeal life support as a bridge to highurgency heart transplantation. Clin Transplant. 2012;26(3):484–488. PMID: 21919969 https://doi.org/10.1111/j.1399-0012.2011.01525.x; Попцов В.Н., Саитгареев Р.Ш., Шумаков Д.В., Захаревич В.М., Акопов Г.А., Шевченко А.О. и др. Ортотопическая трансплантация сердца у реципиентов 60 лет и старше. Вестник трансплантологии и искусственных органов. 2016;18(S):28.; Balasubramanya S, Arabia F, Moriguchi J, Kobashigawa J, Esmailian F. Extracorporeal Membrane Oxygenation as a Bridge to Recovery, Bridge to Ventricular Assist Device and Bridge to Heart Transplantation: A Retrospective Review of Data From a Single Tertiary Care Institution. The Journal of Heart and Lung Transplantation. 2014; 33(4):S78. https://doi.org/10.1016/j.healun.2014.01.244; Barge-Caballero G, Castel-Lavilla MA, Almenar-Bonet L, Garrido-Bravo IP, Delgado JF, Rangel-Sousa D, et al. Venoarterial extracorporeal membrane oxygenation with or without simultaneous intra-aortic balloon pump support as a direct bridge to heart transplantation: results from a nationwide Spanish registry. Interact Cardiovasc Thorac Surg. 2019;29(5):670–677. PMID: 31257414 https://doi.org/10.1093/icvts/ivz155; Karamlou T, Gelow J, Diggs BS, Tibayan FA, Mudd JM, Guyton SW, et al. Mechanical circulatory support pathways that maximize post-heart transplant survival. Ann Thorac Surg. 2013;95(2):480–485; discussion 485. PMID: 22921240 https://doi.org/10.1016/j.athoracsur.2012.05.108; Lund LH, Edwards LB, Kucheryavaya AY, Dipchand AI, Benden C, Christie JD, et al. The Registry of the International Society for Heart and Lung Transplantation: Thirtieth Official Adult Heart Transplant Report– 2013; focus theme: age. J Heart Lung Transplant. 2013;32(10):951–964. PMID: 24054804 https://doi.org/10.1016/j.healun.2013.08.006; Cho YH, Yang JH, Sung K, Jeong DS, Park PW, Kim WS, et al. Extracorporeal life support as a bridge to heart transplantation: importance of organ failure in recipient selection. ASAIO J. 2015;61(2):139–143. PMID: 25396273 https://doi.org/10.1097/MAT.0000000000000171; Burrell AJC, Bennett V, Serra AL, Pellegrino VA, Romero L, Fan E, et al. Venoarterial extracorporeal membrane oxygenation: A systematic review of selection criteria, outcome measures and definitions of complications. J Crit Care. 2019;53:32–37. PMID: 31181462 https://doi.org/10.1016/j.jcrc.2019.05.011; Jasseron C, Lebreton G, Cantrelle C, Legeai C, Leprince P, Flecher E, et al. Impact of Heart Transplantation on Survival in Patients on Venoarterial Extracorporeal Membrane Oxygenation at Listing in France. Transplantation. 2016;100(9):1979–1987. PMID: 27306536 https://doi.org/10.1097/TP.0000000000001265; Combes A. Mechanical circulatory support for end-stage heart failure. Metabolism. 2017;69S:S30–S35. PMID: 28153356 https://doi. org/10.1016/j.metabol.2017.01.009; Sy E, Sklar MC, Lequier L, Fan E, Kanji HD. Anticoagulation practices and the prevalence of major bleeding, thromboembolic events, and mortality in venoarterial extracorporeal membrane oxygenation: A systematic review and meta-analysis. J Crit Care. 2017;39:87–96. PMID: 28237895 https://doi.org/10.1016/j.jcrc.2017.02.014; Le Guennec L, Cholet C, Huang F, Schmidt M, Bréchot N, Hékimian G, et al. Ischemic and hemorrhagic brain injury during venoarterialextracorporeal membrane oxygenation. Ann Intensive Care. 2018;8(1):129. PMID: 30570687. https://doi.org/10.1186/s13613-018-0475-6; Sutter R, Tisljar K, Marsch S. Acute Neurologic Complications During Extracorporeal Membrane Oxygenation: A Systematic Review. Crit Care Med. 2018;46(9):1506–1513. PMID: 29782356 https://doi.org/10.1097/CCM.0000000000003223; Hess NR, Hickey GW, Sultan I, Kilic A. Extracorporeal membrane oxygenation bridge to heart transplant: Trends following the allocation change. J Card Surg. 2020. PMID: 330905852020 https://doi.org/10.1111/ jocs.15118; Xie A, Lo P, Yan TD, Forrest P. Neurologic Complications of Extracorporeal Membrane Oxygenation: A Review. J Cardiothorac Vasc Anesth. 2017;31(5):1836–1846. PMID: 28625752 https://doi.org/10.1053/j.jvca.2017.03.001; Тарадин Г.Г., Ватутин Н.Т., Сидоренко И.А., Попелнухина Л.Г., Гриценко Ю.П. Лечение критических состояний при перипартальной кардиомиопатии (часть II). Университетская клиника. 2017;13(2):205–212.; Hassett CE, Cho SM, Hasan S, Rice CJ, Migdady I, Starling RC, et al. Ischemic Stroke and Intracranial Hemorrhages During Impella Cardiac Support. ASAIO J. 2020;66(8):e105–e109. PMID: 32740362. https://doi.org/10.1097/MAT.0000000000001132; Norkiene I, Ringaitiene D, Rucinskas K, Samalavicius R, Baublys A, Miniauskas S, et al. Intra-aortic balloon counterpulsation in decompensated cardiomyopathy patients: bridge to transplantation or assist device. Interact Cardiovasc Thorac Surg. 2007;6(1):66–70. PMID: 17669772 https://doi.org/10.1510/icvts.2006.140160; Gjesdal O, Gude E, Arora S, Leivestad T, Andreassen AK, Gullestad L, et al. Intra-aortic balloon counterpulsation as a bridge to heart transplantation does not impair long-term survival. Eur J Heart Fail. 2009;11(7):709–714. PMID: 19515719 https://doi.org/10.1093/eurjhf/ hfp078; Nwaejike N, Son AY, Milano CA, Daneshmand MA. Is there a role for upper-extremity intra-aortic balloon counterpulsation as a bridge-torecovery or a bridge-to-transplant in the treatment of end-stage heart failure? Interact Cardiovasc Thorac Surg. 2017;25(4):654–658. PMID: 28962495 https://doi.org/10.1093/icvts/ivx165; Huckaby LV, Seese LM, Mathier MA, Hickey GW, Kilic A. Intra-Aortic Balloon Pump Bridging to Heart Transplantation: Impact of the 2018 Allocation Change. Circ Heart Fail. 2020;13(8):e006971. PMID: 32757643. https://doi.org/10.1161/CIRCHEARTFAILURE.120.006971; Cheng R, Tank R, Ramzy D, Azarbal B, Chung J, Esmailian F, et al. Clinical Outcomes of Impella Microaxial Devices Used to Salvage Cardiogenic Shock as a Bridge to Durable Circulatory Support or Cardiac Transplantation. ASAIO J. 2019;65(7):642–648. PMID: 30281541 https://doi.org/10.1161/10.1097/MAT.0000000000000877; Monteagudo Vela M, Simon A, Riesgo Gil F, Rosenberg A, Dalby M, Kabir T, et al. Clinical Indications of IMPELLA Short-Term Mechanical Circulatory Support in a Tertiary Centre. Cardiovasc Revasc Med. 2020;21(5):629–637. PMID: 31859100 https://doi.org/10.1016/j.carrev.2019.12.010; Gregoric I.D. Triage VADs: TandemHeart, Impella, and CentriMag. In: Morgan JA, Naka Y (eds.). Surgical Treatment for Advanced Heart Failure. New York: Springer, 2013:93–107.; Monteagudo-Vela M, Panoulas V, García-Saez D, de Robertis F, Stock U, Simon AR. Outcomes of heart transplantation in patients bridged with Impella 5.0: Comparison with native chest transplanted patients without preoperative mechanical circulatory support. Artif Organs. 2021;45(3):254–262. PMID: 32936936 https://doi.org/10.1111/aor.13816; Tschöpe C, Van Linthout S, Klein O, Mairinger T, Krackhardt F, Potapov EV, et al. Mechanical Unloading by Fulminant Myocarditis: LV-IMPELLA, ECMELLA, BI-PELLA, and PROPELLA Concepts. J Cardiovasc Transl Res. 2019;12(2):116–123. PMID: 30084076 https://doi.org/10.1007/s12265-018-9820-2; Amin AP, Spertus JA, Curtis JP, Desai N, Masoudi FA, Bach RG, et al. The Evolving Landscape of Impella Use in the United States Among Patients Undergoing Percutaneous Coronary Intervention With Mechanical Circulatory Support. Circulation. 2020;141(4):273–284. PMID: 31735078 https://doi.org/10.1161/CIRCULATIONAHA.119.044007; Chera HH, Nagar M, Chang NL, Morales-Mangual C, Dous G, Marmur JD, et al. Overview of Impella and mechanical devices in cardiogenic shock. Expert Rev Med Devices. 2018;15(4):293–299. PMID: 29600725. https://doi.org/10.1080/17434440.2018.1456334; Lima B, Kale P, Gonzalez-Stawinski GV, Kuiper JJ, Carey S, Hall SA. Effectiveness and Safety of the Impella 5.0 as a Bridge to Cardiac Transplantation or Durable Left Ventricular Assist Device. Am J Cardiol. 2016;117(10):1622–1628. PMID: 27061705 https://doi.org/10.1016/j.amjcard.2016.02.038; Bansal A, Bhama JK, Patel R, Desai S, Mandras SA, Patel H, et al. Using the Minimally Invasive Impella 5.0 via the Right Subclavian Artery Cutdown for Acute on Chronic Decompensated Heart Failure as a Bridge to Decision. Ochsner J. 2016;16(3):210–216. PMID: 27660567.; Cheng R, Tank R, Ramzy D, Azarbal B, Chung J, Esmailian F, et al. Clinical Outcomes of Impella Microaxial Devices Used to Salvage Cardiogenic Shock as a Bridge to Durable Circulatory Support or Cardiac Transplantation. ASAIO J. 2019;65(7):642–648. PMID: 30281541 https://doi.org/10.1097/MAT.0000000000000877; Monteagudo-Vela M, Panoulas V, García-Saez D, de Robertis F, Stock U, Simon AR. Outcomes of heart transplantation in patients bridged with Impella 5.0: Comparison with native chest transplanted patients without preoperative mechanical circulatory support. Artif Organs. 2021;45(3):254–262. PMID: 32936936. https://doi.org/10.1111/aor.13816; Maini B, Naidu SS, Mulukutla S, Kleiman N, Schreiber T, Wohns D, et al. Real-world use of the Impella 2.5 circulatory support system in complex high-risk percutaneous coronary intervention: the USpella Registry. Catheter Cardiovasc Interv. 2012;80(5):717–725. PMID: 22105829 https://doi.org/10.1002/ccd.23403; Chung JS, Emerson D, Ramzy D, Akhmerov A, Megna D, Esmailian F, et al. A New Paradigm in Mechanical Circulatory Support: 100-Patient Experience. Ann Thorac Surg. 2020;109(5):1370–1377. PMID: 31563492 https://doi.org/10.1016/j.athoracsur.2019.08.041; Seese L, Hickey G, Keebler ME, Mathier MA, Sultan I, Gleason TG, et al. Direct bridging to cardiac transplantation with the surgically implanted Impella 5.0 device. Clin Transplant. 2020;34(3):e13818. PMID: 32031274 https://doi.org/10.1111/ctr.13818; Chieffo A, Ancona MB, Burzotta F, Pazzanese V, Briguori C, Trani C, et al. Observational multicentre registry of patients treated with IMPella mechanical circulatory support device in ITaly: the IMP-IT registry. EuroIntervention. 2020;15(15):e1343–e1350. PMID: 31422925 https://doi.org/10.4244/EIJ-D-19-00428; Batsides G, Massaro J, Cheung A, Soltesz E, Ramzy D, Anderson MB. Outcomes of Impella 5.0 in Cardiogenic Shock: A Systematic Review and Meta-analysis. Innovations (Phila). 2018;13(4):254–260. PMID: 30142110 https://doi.org/10.1097/IMI.0000000000000535; Patel SM, Lipinski J, Al-Kindi SG, Patel T, Saric P, Li J, et al. Simultaneous Venoarterial Extracorporeal Membrane Oxygenation and Percutaneous Left Ventricular Decompression Therapy with Impella Is Associated with Improved Outcomes in Refractory Cardiogenic Shock. ASAIO J. 2019;65(1):21–28. PMID: 29489461 https://doi.org/10.1097/MAT.0000000000000767; Vallabhajosyula S, O’Horo JC, Antharam P, Ananthaneni S, Vallabhajosyula S, Stulak JM, et al. Venoarterial Extracorporeal Membrane Oxygenation With Concomitant Impella Versus Venoarterial Extracorporeal Membrane Oxygenation for Cardiogenic Shock. ASAIO J. 2020;66(5):497–503. PMID: 31335363 https://doi.org/10.1097/MAT.0000000000001039; https://www.jnmp.ru/jour/article/view/2215
-
2Academic Journal
Source: Bulletin of Medical Science; Vol. 33 No. 1 (2024): Bulletin of Medical Science; 89-98 ; Бюллетень медицинской науки; Том 33 № 1 (2024): Бюллетень медицинской науки; 89-98 ; 2541-8475
Subject Terms: ОКСпST, ЧКВ высокого риска, многососудистое поражение, механическая поддержка кровообращения, ЭКМО, клинический случай, STEMI, PCI-high risk, multivessel lesion, mechanical circulatory support, ECMO, a clinical case
File Description: application/pdf
Relation: https://newbmn.asmu.ru/bmn/article/view/668/553; https://newbmn.asmu.ru/bmn/article/view/668
-
3Academic Journal
Authors: Mazurenko, O.P.
Source: EMERGENCY MEDICINE; № 6.101 (2019); 111-115
МЕДИЦИНА НЕОТЛОЖНЫХ СОСТОЯНИЙ; № 6.101 (2019); 111-115
МЕДИЦИНА НЕВІДКЛАДНИХ СТАНІВ; № 6.101 (2019); 111-115Subject Terms: 03 medical and health sciences, 0302 clinical medicine, механическая поддержка кровообращения, устройство механической поддержки левого желудочка с непрерывным потоком, застойная сердечная недостаточность у детей, механічна підтримка кровообігу, пристрій механічної підтримки лівого шлуночка з безперервним потоком, застійна серцева недостатність у дітей, mechanical circulatory support, continuous-flow left ventricular assist device, congestive heart failure in children, 3. Good health
File Description: application/pdf
-
4Academic Journal
Authors: N. N. Koloskova, T. A. Khalilulin, D. V. Ryabtsev, V. N. Poptsov, Н. Н. Колоскова, Т. А. Халилулин, Д. В. Рябцев, В. Н. Попцов
Source: Russian Journal of Transplantology and Artificial Organs; Том 25, № 1 (2023); 90-98 ; Вестник трансплантологии и искусственных органов; Том 25, № 1 (2023); 90-98 ; 1995-1191
Subject Terms: антиагрегантная терапия, long-term mechanical circulatory support, anticoagulant therapy, antiplatelet therapy, длительная механическая поддержка кровообращения, антикоагулянтная терапия
File Description: application/pdf
Relation: https://journal.transpl.ru/vtio/article/view/1569/1445; https://journal.transpl.ru/vtio/article/view/1569/1462; Masarone D, Valente F, Rubino M, Vastarella R, Gra-vino R, Rea A et al. Pediatric Heart Failure: A Practical Guide to Diagnosis and Management. Pediatr Neonatol. 2017; 58 (2): 303-312.; Rossano JW, Shaddy RE. Heart failure in children: etiology and treatment. JPediatr. 2014; 165 (2): 228-233.; Kreuziger LB, Massicotte MP. Adult and pediatric mechanical circulation: a guide for the hematologist. Hema-tol Am Soc Hematol Educ Program. 2018; 30: 507-515.; Owens WR, Bryant R 3rd, Dreyer WJ, Price JF, Morales DL. Initial Clinical Experience With the HeartMate II Ventricular Assist System in a Pediatric Institution. Artif Organs. 2010; 34: 600-603.; D’Alessandro D, Forest SJ, Lamour J, Hsu D, Weinstein S, Goldstein D. First reported use of the Heartware HVAD in the US as bridge to transplant in an adolescent. Pediatr Transplantation. 2012; 16: 356-359.; Morales DLS, Adachi I, Peng DM, Sinha P, Lorts A, Fields K et al. Fourth Annual Pediatric Interagency Registry for Mechanical Circulatory Support (Pedimacs) Report. Ann Thorac Surg. 2020; 110 (6): 1819-1831.; Ekdahl KN, Teramura Y, Hamad OA, Asif S, Duehr-kop C, Fromell K et al. Dangerous liaisons: complement, coagulation, and kallikrein/kinin cross-talk act as a linchpin in the events leading to thromboinflammation. Immunol Rev. 2016; 274 (1): 245-269.; Himmelreich G, Ullmann H, Riess H, Rosch R, LoebeM, Schiessler A, Hetzer R. Pathophysiologic role of contact activation in bleeding followed by thromboembolic complications after implantation of a ventricular assist device. ASAIO J. 1995; 41 (3): M790-M794.; Jaffer IH, Fredenburgh JC, Hirsh J, Weitz JI. Medical device-induced thrombosis: what causes it and how can we prevent it? J Thromb Haemost. 2015; 13 (suppl 1): S72-S81.; Monagle P, Barnes C, Ignjatovic V, Furmedge J, Ne-wall F, Chan A et al. Developmental haemostasis. Impact for clinical haemostasis laboratories. Thromb Haemost. 2006; 95: 362-372.; Andrew M, Paes B, Milner R, Johnston M, Mitchell L, Tollefsen DM, Powers P Development of the human coagulation system in the full-term infant. Blood. 1987; 70: 165-172.; Andrew M, Paes B, Johnston M. Development of the hemostatic system in the neonate and young infant. Am J Pediatr Hematol Oncol. 1990; 12: 95-104.; Williams GD, Bratton SL, Nielsen NJ, Ramamoorthy C. Fibrinolysis in pediatric patients undergoing cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 1998; 12: 633-638.; Kreuziger LB, Massicotte MP. Adult and pediatric mechanical circulation: a guide for the hematologist. Hematol Am Soc Hematol Educ Program. 2018; 30: 507-515.; Edmunds EL. The blood-surface interface. Gravlee GP, editor. Cardiopulmonary Bypass: Principles and Practice 3 ed. Philadelphia, PA: Lippincott Williams & Wilkins (2008).; Kreuziger LB, Massicotte MP. Mechanical circulatory support: balancing bleeding and clotting in high-risk patients. Hematol Am Soc Hematol Educ Program. 2015: 61-68.; Rosenthal DN, Almond CS, Jaquiss RD, Peyton CE, Auerbach SR, Morales DR et al. Adverse events in children implanted with ventricular assist devices in the United States: data from the pediatric interagency registry for mechanical circulatory support (PediMACS). J Heart Lung Transplant. 2016; 35: 569-577.; Sutor AH, Massicotte P, Leaker M, Andrew M. Heparin therapy in pediatric patients. Semin Thromb Hemost. 1997; 23: 303-319.; Severin T, Sutor AH. Heparin-induced thrombocytopenia in pediatrics. Semin Thromb Hemost. 2001; 27: 293-299.; Vakil NH, Kanaan AO, Donovan JL. Heparin-Induced Thrombocytopenia in the Pediatric Population: A Review of Current Literature. J Pediatr Pharmacol Ther. 2012; 17 (1): 12-30.; Avila L, Amiri N, Yenson P, Khan S, Zavareh ZT, Chan AKC et al. Heparin-Induced Thrombocytopenia in a Pediatric Population: Implications for Clinical Probability Scores and Testing. J Pediatr. 2020; 226: 167-172.; Kishimoto TK, Viswanathan K, Ganguly T, Elankuma-ran S, Smith S, Pelzer K et al. Contaminated heparin associated with adverse clinical events and activation of the contact system. N Engl J Med. 2008; 358: 24572467.; Bhandari M, Hirsh J, Weitz JI, Young E, Venner TJ, Shaughnessy SG. The effects of standard and low molecular weight heparin on bone nodule formation in vitro. Thromb Haemost. 1998; 80: 413-417.; Jones AJ, O’Mara KL, Kelly BJ, Samraj RS. The impact of antithrombin III use in achieving anticoagulant goals in pediatric patients. J Pediatr Pharmacol Ther. 2017; 22: 320-325.; Buck ML. Bivalirudin as an alternative to heparin for anticoagulation in infants and children. J Pediatr Pharmacol Ther. 2015; 20: 408-417.; Campbell CT, Diaz L, Kelly B. Description of Bivaliru-din Use for Anticoagulation in Pediatric Patients on Mechanical Circulatory Support. Ann Pharmacother. 2021; 55 (1): 59-64.; Ghbeis MB, Vander Pluym CJ, Thiagarajan RR. Hemostatic challenges in pediatric critical care medicine - hemostatic balance in VAD. FrontPediatr. 2021; 26: 625632.; Steiner ME, Bomgaars LR, Massicotte MP. Berlin heart EXCOR pediatric VAD IDE study investigators antithrombotic therapy in a prospective trial of a pediatric ventricular assist device. ASAIO J. 2016; 62: 719-727.; Sylvia LM, Ordway L, Pham DT, DeNofrio D, Kier-nan M. Bivalirudin for treatment of LVAD thrombosis: a case series. ASAIO J. 2014; 60: 744-747.; VanderPluym CJ, Cantor RS, Machado D, Boyle G, May L, Griffiths E et al. Utilization and outcomes of children treated with direct thrombin inhibitors on pa-racorporeal ventricular assist device support. ASAIO J. 2020; 66: 939-945.; Miera O, Schmitt KL, Akintuerk H, Boet A, Cesnjevar R, Chila T et al. Antithrombotic therapy in pediatric ventricular assist devices: Multicenter survey of the European EXCOR Pediatric Investigator Group. Int JArtif Organs. 2018 Jul; 41 (7): 385-392.; Steiner ME, Bomgaars LR, Massicotte MP. Antithrombotic therapy in a prospective trial of a pediatric ventricular assist device. ASAIO J. 2016; 62: 719-27.; Peng E, KirkR, Wrightson N, Duong P, Ferguson L, Gri-selli M et al. An extended role of continuous flow device in pediatric mechanical circulatory support. Ann Thorac Surg. 2016; 102: 620-627.; Rosenthal DN, Lancaster CA, McElhinney DB, Chen S, Stein M, Lin A et al. Impact of a modified antithrombotic guideline on stroke in children supported with a pediatric ventricular assist device. J Heart Lung Transplant. 2017; 36: 1250-1257.; O’Connor MJ, Lorts A, Davies RR, Fynn-Thompson F, Joong A, Maeda K et al. Early experience with the Heart-Mate 3 continuousflow ventricular assist device in pediatric patients and patients with congenital heart disease: A multicenter registry analysis. J Heart Lung Transplant. 2020 Jun; 39 (6): 573-579.; Andreas M, Moayedifar R, Wieselthaler G, Wolzt M, Riebandt J, Haberl T et al. Increased thromboembolic events with dabigatran compared with Vitamin K antagonism in left ventricular assist device patients. Circ Heart Fail. 2017; 10 (5): 1-6.; Parikh V, Parikh U, Ramirez AM, Lamba H, George J, Fedson S et al. Novel oral anticoagulants in patients with continuous flow left ventricular assist devices. J Heart Lung Transplant. 2019; 38: S425.; Schulte-Eistrup S, Mayer-Wingert N, Reiss N, Sinder-mann J, Warnecke H. Apixaban in HVAD patients noncompliant to standard vitamin-k-antagonism. J Heart Lung Transplant. 2019; 38: S68.; Li S, Mahr C. Anticoagulation in the HeartMate 3 Left Ventricular Assist Device: Are We Finally Moving the Needle? ASAIO J. 2022; 68 (3): 323-324.; Ghbeis MB, Vander Pluym CJ, Thiagarajan RR. Hemostatic Challenges in Pediatric Critical Care Medicine -Hemostatic Balance in VAD. Front Pediatr. 2021; 9: 1-11.; https://journal.transpl.ru/vtio/article/view/1569
-
5Academic Journal
Authors: V. N. Poptsov, V. V. Slobodyanik, E. A. Spirina, N. V. Petukhov, A. K. Solodovnikova, V. Yu. Voronkov, A. A. Dogonasheva, A. A. Skokova, В. Н. Попцов, В. В. Слободяник, Е. А. Спирина, Н. В. Петухов, А. К. Солодовникова, В. Ю. Воронков, А. А. Догонашева, А. А. Скокова
Source: Russian Journal of Transplantology and Artificial Organs; Том 25, № 2 (2023); 38-48 ; Вестник трансплантологии и искусственных органов; Том 25, № 2 (2023); 38-48 ; 1995-1191
Subject Terms: легочная гипертензия, mechanical circulatory support, pulmonary hypertension, механическая поддержка кровообращения
File Description: application/pdf
Relation: https://journal.transpl.ru/vtio/article/view/1590/1469; https://journal.transpl.ru/vtio/article/view/1590/1488; Brown LJ, Estep JD. Temporary percutaneous mechanical circulatory support in advanced heart failure. Heart Failure Clin. 2016; 12: 385–398.; Reich H, Ramzy D, Moriguchi J et al. Acceptable postheart transplant outcomes support temporary MCS prioritization in the New OPTN/UNOS heart allocation policy. Transplant Proc. 2021; 53: 353–357.; Gonzales MH, Acharya D, Lee S et al. Improved survival after heart transplantation in patients bridged with extracorporeal membrane oxygenation in new allocation system. J Heart Lung Transplant. 2021; 40: 149–157.; Xie A, Forrest P, Loforte A. Left ventricular decompression in veno-arterial extracorporeal membrane oxygenation. Ann Cardiothorac Surg. 2019; 8: 9–18.; Smith L, Peters A, Mazimba S et al. Outcomes of patients with cardiogenic shock treated with TandemHeart percutaneous ventricular assist device: importance of support indication and definitive therapies as determinants of prognosis. Catheter Cardiovasc Interv. 2018; 92: 1173– 1181.; Kar B, Adkins LE, Civitello AB et al. Clinical experience with the TandemHeart percutaneous ventricular assist device. Tex Haert Inst J. 2006; 33 (2): 111–115.; Bruckner BA, Jacob LP, Gregoric ID et al. Clinical experience with the TandemHeart percutaneous ventricular assist device as bridge to cardiac transplantation. Tex Heart Inst J. 2008; 35: 447–450.; Gregoric ID, Jacob LP, La Francesca S et al. The TandemHeart as a bridge to a long-term axial-flow left ventricular assist device. Tex Heart Inst J. 2008; 35: 125– 129.; Попцов ВН, Спирина ЕА, Слободянник ВВ. Способ гемодинамической разгрузки левого желудочка при проведении периферической вено-артериальной экстракорпоральной мембранной оксигенации (Патент на изобретение № 2526880, зарегистрировано 03.07.2014 г.).; Попцов ВН, Спирина ЕА, Слободянник ВВ, Захаревич ВМ, Еремеева ОА, Масютин СА. Чрескожное трансфеморальное дренирование левого предсердия как метод объемной разгрузки левого желудочка при проведении периферической вено-артериальной мембранной оксигенации у потенциальных реципиентов сердца. Вестник трансплантологии и искусственных органов. 2013; 15 (4): 70–83.; Viera JL, Ventura HO, Mehra MR. Mechanical circulatory support in advanced heart failure: 2022 and beyond. Progress in Cardiovasc Dis. 2020; 63: 630–639.; Hebert M, Noly PE, Lamarche Y et al. Early and longterm outcomes after direct bridge-to-transplantation with extracorporeal membrane oxygenation. Heart Surg Forum. 2021; 24: E1033–E1042.; Hess NR, Hickey GW, Sultan I, Kilic A. Extracorporeal membrane oxygenation bridge to heart transplantation: trends following the allocation change. J Card Surg. 2020 Oct 14. doi:10.1111/jocs.15118.; Guglin M, Zucker MJ, Neumann FJ. Venoarterial ECMO for adults: JACC scientific expert panel. J Am Coll Cardiol. 2019; 73: 698–716.; Tepper S, Masood MF, Baltazar Garsia M et al. Left ventricular unloading by Impella device versus surgical vent during extracorporeal life support. Ann Thorac Surg. 2017; 104: 861–867.; Ando M, Garan AR, Takayama H et al. A continuousflow external ventricular assist device for cardiogenic shock: evolution over 10 years. J Thorac Cardiovasc Surg. 2018; 156: 157–165.; Thiele H, Sick P, Boudriot T, Diederich KW et al. Randomized comparison of intra-aortic balloon support with a percutaneous left ventricular assist device in patients with revascularized acute myocardial infarction complicated by cardiogenic shock. Eur Heart J. 2005; 26: 1276–1283.; Rajdev S, Krishnan P, Irani A et al. Clinical application of prophylactic percutaneous left ventricular assist device (TandemHeart) in high-risk percutaneous coronary intervention using an arterial preclosure technique: single-center experience. J Invasive Cardiol. 2008; 20: 67–72.; Sharma AB, Kovacic JC, Kini AS. Percutaneous left ventricular assist device devices. Intervent Cardiol Clin. 2012; 1: 509–622.; Alli OO, Singh IM, Holmes DR et al. Percutaneous left ventricular assist device with TandemHeart for high-risk percutaneous coronary intervention: the Mayo clinic experience. Catheterization Cardiovasc Interv. 2012; 80: 726–734.; Khalife W, Kar B. The TandemHeart pLVAD in the treatment of acute fulminant myocarditis. Tex Heart Inst J. 2007; 34: 209–213.; Gregoric ID, Bruckner BF, Jacob L et al. Techniques and complication of TandemHeart ventricular assist device insertion during cardiac procedure. ASAIO J. 2009; 55: 251–254.; Kreidieh B, Gray WA. The road to support is paved with good interventions: vascular complications of percutaneous LVAD use. Catheter Cardiovasc Interv. 2020; 95: 317–318.; Patel N, Sharma A, Dalia T et al. Vascular complications associated with percutaneous left ventricular assist device placement: a 10-year US perspective. Catheter Cardiovasc Interv. 2020; 95: 309–316.; Kurihara C, Kawabori M, Suguira T et al. Bridging to a long-term ventricular assist device with short-term mechanical circulatory support. Artificial Organs J. 2018; 42: 589–596.; https://journal.transpl.ru/vtio/article/view/1590
-
6Academic Journal
Authors: D. I. Sadykova, O. S. Groznova, G. V. Pirogova, E. S. Slastnikova, L. F. Galimova, N. N. Firsova, A. A. Kucheriavaia, Ch. D. Khaliullina, Д. И. Садыкова, О. С. Грознова, Г. В. Пирогова, Е. С. Сластникова, Л. Ф. Галимова, Н. Н. Фирсова, А. А. Кучерявая, Ч. Д. Халиуллина
Contributors: The study was supported by a grant from the International scientific council for young scientists of the Kazan State Medical University 2023., Исследование поддержано грантом Международного научного совета для молодых ученых Казанского государственного медицинского университета 2023 года.
Source: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 68, № 5 (2023); 95-101 ; Российский вестник перинатологии и педиатрии; Том 68, № 5 (2023); 95-101 ; 2500-2228 ; 1027-4065
Subject Terms: механическая поддержка кровообращения, dilated cardiomyopathy, familial hypercholesterolemia, genome sequencing, mechanical circulatory support, дилатационная кардиомиопатия, cемейная гиперхолестеринемия, секвенирование генома
File Description: application/pdf
Relation: https://www.ped-perinatology.ru/jour/article/view/1882/1421; Jefferies J.L., Towbin J.A. Dilated cardiomyopathy. Lancet 2010; 375: 752–762. DOI:10.1016/S0140–6736(09)62023–7; Rossano J.W., Dipchand A.I., Edwards L.B., Goldfarb S., Kucheryavaya A.Y., Levvey B.J. et al. The registry of the International Society for Heart and Lung Transplantation: nineteenth pediatric heart transplantation report-2016; focus theme: primary diagnostic indications for transplant. J Heart Lung Transplant 2016; 35: 1185–1195. DOI:10.1016/j.healun.2016.08.018; Halliday B.P., Cleland J.G.F., Goldberger J.J., Prasad S.K. Personalizing risk stratification for sudden death in dilated cardiomyopathy: the past, present, and future. Circulation 2017; 136: 215–231. DOI:10.1161/CIRCULATIONAHA.116.027134; Singh R.K., Canter C.E., Shi L., Colan S.D., Dodd D.A., Everitt M.D. et al. Survival without cardiac transplantation among children with dilated cardiomyopathy. J Am Coll Cardiol 2017; 70: 2663–2673. DOI:10.1016/j.jacc.2017.09.1089; McNally E.M., Mestroni L. Dilated cardiomyopathy: genetic determinants and mechanisms. Circ Res 2017; 121: 731–748. DOI:10.1161/CIRCRESAHA.116.309396; Rusconi P., Wilkinson J.D., Sleeper L.A., Lu M., Cox G.F., Towbin J.A. et al. Differences in presentation and outcomes between children with familial dilated cardiomyopathy and children with idiopathic dilated cardiomyopathy. Circ: Heart Fail 2017e002637. DOI:10.1161/CIRCHEARTFAILURE.115.002637; Dellefave L., McNally E.M. The genetics of dilated cardiomyopathy. Curr Opin Cardiol. 2010; 25: 198–204. DOI:10.1097/HCO.0b013e328337ba52; García-Hernandez S., Iglesias L.M. Genetic Testing as a Guide for Treatment in Dilated Cardiomyopathies. Curr Cardiol Rep 2022; 24: 1537–1546. DOI:10.1007/s11886–022–01772–8; Balder J.W., Lansberg P.J., Hof M.H., Wiegman A., Hutten B.A., Kuivenhoven J.A. Pediatric lipid reference values in the general population: The Dutch lifelines cohort study. J Clin Lipidol 2018; 12(5): 1208–1216. DOI:10.1016/j.jacl.2018.05.011; GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392(10159): 1736–1788. DOI:10.1016/S0140–6736(18)32203–7; Harakalova M., Kummeling G., Sammani A., Linschoten M., Baas A.F., van der Smagt J. et al. A systematic analysis of genetic dilated cardiomyopathy reveals numerous ubiquitously expressed and muscle-specific genes. Eur J Heart Fail 2015; 17(5): 484–493. DOI:10.1002/ejhf.255; Hershberger R.E., Givertz M.M., Ho C.Y., Judge D.P., Kantor P.F., McBride K.L. et al. Genetic evaluation of cardiomyopathy: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2018; 20: 899–909. DOI:10.1038/s41436–018–0039-z; Bilinska Z.T., Michalak E., Piatosa B., Grzybowski J., Skwarek M., Deptuch T.W. et al. Familial dilated cardiomyopathy: evidence for clinical and immunogenetic heterogeneity. Med Sci Monit 2003; 9(5): CR167–74; Ежов М.В., Бажан С.С., Ершова А.И., Мешков А.Н., Соколов А.А., Кухарчук В.В. и др. Клинические рекомендации по семейной гиперхолестеринемии. Атеросклероз 2019; 15(1): 58–98.; Berberich A.J., Hegele R.A. A Modern Approach to Dyslipidemia. Endocr Rev 2022; 43(4): 611–653. DOI:10.1210/endrev/bnab037; Садыкова Д.И., Лутфуллин И.Я. Первичная артериальная гипертензия и гипертрофия миокарда в детском и подростковом возрасте. Педиатрия им. Г.Н. Сперанского 2009; 88 (5): 16–21.; Di Salvo G., D’Aiello A.F., Castaldi B., Fadel B., Limongelli G., D’Andrea A. et al. Early left ventricular abnormalities in children with heterozygous familial hypercholesterolemia. J Am Soc Echocardiogr 2012; 25(10): 1075–1082. DOI:10.1016/j.echo.2012.07.002
-
7Academic Journal
Authors: O. O. Panteleev, V. V. Ryabov, О. О. Пантелеев, В. В. Рябов
Source: Siberian Journal of Clinical and Experimental Medicine; Том 36, № 4 (2021); 45-51 ; Сибирский журнал клинической и экспериментальной медицины; Том 36, № 4 (2021); 45-51 ; 2713-265X ; 2713-2927
Subject Terms: летальность, mechanical circulatory support, lethality, механическая поддержка кровообращения
File Description: application/pdf
Relation: https://www.sibjcem.ru/jour/article/view/1282/662; Global, regional, and national age-sex specifi c all-cause and cause-specifi c mortality for 240 causes of death, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;385(9963):117–171. DOI:10.1016/S0140-6736(14)61682-2.; Pole D.J., Thompson P.L., Woodings T.L., McCall M.G., Reader R. Acute myocardial infarction: Оne year follow-up of 1138 cases from the Perth Community Coronary Register. Aust. N. Z. J. Med. 1976;6(5):437–440. DOI:10.1111/j.1445-5994.1976.tb03031.x.; Johansson S., Rosengren A., Young K., Jennings E. Mortality and morbidity trends after the fi rst year in survivors of acute myocardial infarction: A systematic review. BMC Cardiovasc. Disord. 2017;17(1):53. DOI:10.1186/s12872-017-0482-9.; Григорьев Е.В., Баутин А.Е., Киров М.Ю., Шукевич Д.Л., Корнелюк Р.А. Кардиогенный шок при остром коронарном синдроме: современное состояние проблемы диагностики и интенсивной терапии. Вестник интенсивной терапии им. А.И. Салтанова. 2020;2:73–85. DOI:10.21320/1818-474X-2020-2-73-85.; Holmes D.R. Jr., Bates E.R., Kleiman N.S., Sadowski Z., Horgan J.H., Morris D.C. et al. Contemporary reperfusion therapy for cardiogenic shock: The GUSTO-I trial experience. J. Am. Coll. Cardiol. 1995;26(3):668–674. DOI:10.1016/0735-1097(95)00215-p.; Karnash S.L., Granger C.B., White H.D., Woodlief L.H., Topol E.J., Califf R.M. Treating menstruating women with thrombolytic therapy: Insights from the global utilization of streptokinase and tissue plasminogen activator for occluded coronary arteries (GUSTO-I) trial. J. Am. Coll. Cardiol. 1995;26(7):1651–1656. DOI:10.1016/0735-1097(95)00386-x.; Hochman J.S., Sleeper L.A., Webb J.G., Sanborn T.A., White H.D., Talley J.D. et al. Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK Investigators. Should we emergently revascularize occluded coronaries for cardiogenic shock. N. Engl. J. Med. 1999;341(9):625–634. DOI:10.1056/NEJM199908263410901.; Vetrovec G.W., Anderson M., Schreiber T., Popma J., Lombardi W., Maini B. et al. The cVAD registry for percutaneous temporary hemodynamic support: A prospective registry of Impella mechanical circulatory support use in high-risk PCI, cardiogenic shock, and decompensated heart failure. Am. Heart J. 2018;199:115–121. DOI:10.1016/j.ahj.2017.09.007.; Shah A.H., Puri R., Kalra A. Management of cardiogenic shock complicating acute myocardial infarction: A review. Clin. Cardiol. 2019;42(4):484–493. DOI:10.1002/clc.23168.; Menon V., Fincke R. Cardiogenic shock: A summary of the randomized SHOCK trial. Congest. Heart Fail. 2003;9(1):35–39. DOI:10.1111/j.1751-7133.2003.tb00020.x.; Oeing C.U., Tschöpe C., Pieske B. [The new ESC Guidelines for acute and chronic heart failure 2016]. Herz. 2016;41(8):655–663 (In Germ.). DOI:10.1007/s00059-016-4496-3.; Ibanez B., James S., Agewall S., Antunes M.J., Bucciarelli-Ducci C., Bueno H. et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2018;39(2):119–177. DOI:10.1093/eurheartj/ehx393.; Collet J.P., Thiele H., Barbato E., Barthélémy O., Bauersachs J., Bhatt D.L. et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2021;42(14):1289–1367. DOI:10.1093/eurheartj/ehaa575.; Baran D.A., Grines C.L., Bailey S., Burkhoff D., Hall S.A., Henry T.D. et al. SCAI clinical expert consensus statement on the classification of cardiogenic shock: This document was endorsed by the American College of Cardiology (ACC), the American Heart Association (AHA), the Society of Critical Care Medicine (SCCM), and the Society of Thoracic Surgeons (STS) in April 2019. Catheter Cardiovasc. Interv. 2019;94(1):29–37. DOI:10.1002/ccd.28329.; Jentzer J.C., van Diepen S., Barsness G.W., Henry T.D., Menon V., Rihal C.S. et al. Cardiogenic shock classification to predict mortality in the cardiac intensive care unit. J. Am. Coll. Cardiol. 2019;74(17):2117–2128. DOI:10.1016/j.jacc.2019.07.077.; Fincke R., Hochman J.S., Lowe A.M., Menon V., Slater J.N., Webb J.G. et al. Cardiac power is the strongest hemodynamic correlate of mortality in cardiogenic shock: A report from the SHOCK trial registry. J. Am. Coll. Cardiol. 2004;44(2):340–8. DOI:10.1016/j.jacc.2004.03.060.; Parissis H., Graham V., Lampridis S., Lau M., Hooks G., Mhandu P.C. IABP: History-evolution-pathophysiology-indications: What we need to know. J. Cardiothorac. Surg. 2016;11(1):122. DOI:10.1186/s13019-016-0513-0.; Wong A.S.K., Sin S.W.C. Short-term mechanical circulatory support (intra-aortic balloon pump, Impella, extracorporeal membrane oxygenation, TandemHeart): a review. Ann. Transl. Med. 2020 Jul;8(13):829. DOI:10.21037/atm-20-2171.; Den Uil C.A., Daemen J., Lenzen M.J., Maugenest A.M., Joziasse L., van Geuns R.J. et al. Pulsatile iVAC 2L circulatory support in high-risk percutaneous coronary intervention. EuroIntervention. 2017;12(14):1689–1696. DOI:10.4244/EIJ-D-16-00371.; Napp L.C., Kühn C., Bauersachs J. ECMO in cardiac arrest and cardiogenic shock. Herz. 2017;42(1):27–44. DOI:10.1007/s00059-016-4523-4.; Timóteo A.T., Nogueira M.A., Rosa S.A., Belo A., Ferreira R.C.; ProACS Investigators. Role of intra-aortic balloon pump counterpulsation in the treatment of acute myocardial infarction complicated by cardiogenic shock: Evidence from the Portuguese nationwide registry. Eur. Heart J. Acute Cardiovasc. Care. 2016;5(7):23–31. DOI:10.1177/2048872615606600.; Ouweneel D.M., Eriksen E., Sjauw K.D., van Dongen I.M., Hirsch A., Packer E.J. et al. Percutaneous mechanical circulatory support versus intra-aortic balloon pump in cardiogenic shock after acute myocardial infarction. J. Am. Coll. Cardiol. 2017;69(3):278–287. DOI:10.1016/j.jacc.2016.10.022.; Basir M.B., Schreiber T.L., Grines C.L., Dixon S.R., Moses J.W., Maini B.S. et al. Effect of early initiation of mechanical circulatory support on survival in cardiogenic shock. Am. J. Cardiol. 2017;119(6):845–851. DOI:10.1016/j.amjcard.2016.11.037.; Stretch R., Sauer C.M., Yuh D.D., Bonde P. National trends in the utilization of short-term mechanical circulatory support: incidence, outcomes, and cost analysis. J. Am. Coll. Cardiol. 2014;64(14):1407–1415. DOI:10.1016/j.jacc.2014.07.958.; https://www.sibjcem.ru/jour/article/view/1282
-
8Academic Journal
Authors: Vitalie, MOSCALU, Valentin, RACILA, Mihail, RIZOV, Inesa, GUȚAN
Source: Bulletin of the Academy of Sciences of Moldova. Medical Sciences; Vol. 72 No. 1 (2022): Medical Sciences; 82-90 ; Buletinul Academiei de Științe a Moldovei. Științe medicale; Vol. 72 Nr. 1 (2022): Ştiinţe medicale; 82-90 ; Вестник Академии Наук Молдовы. Медицина; Том 72 № 1 (2022): Медицина; 82-90 ; 1857-0011 ; 10.52692/1857-0011.2022.1-72
Subject Terms: сердечная недостаточность, имплантируемый дефибриллятор сердца, сердечная ресинхронизирующая терапия, электрическая кардиоверсия, абляция, реваскуляризация миокарда, механическая поддержка кровообращения, трансплантация сердца, insuficiență cardiacă, defibrilator cardiac implantabil, terapie de resincronizare cardiacă, cardioversie electrică, ablație, revascularizarea miocardului, suport circulator mecanic, transplant cardiac, heart failure, implantable heart defibrillator, cardiac resynchronization therapy, electrical cardioversion, ablation, myocardial revascularization, mechanical circulatory support, heart transplant
File Description: application/pdf
Relation: https://bulmed.md/bulmed/article/view/3407/3411; https://bulmed.md/bulmed/article/view/3407
-
9Academic Journal
Authors: Moscalu, V.D., Răcilă, V.Ş., Rizov, M., Guțan, I., Vataman, E.B.
Source: Buletinul Academiei de Ştiinţe a Moldovei. Ştiinţe Medicale 72 (1) 82-90
Subject Terms: suport circulator mecanic, mechanical circulatory support, terapie de resincronizare cardiacă, defibrilator cardiac implantabil, revascularizarea miocardului, transplant cardiac, heart failure, cardiac resynchronization therapy, механическая поддержка кровообращения, сердечная недостаточность, ablation, сердечная ресинхронизирующая терапия, insuficienţă cardiacă, трансплантация сердца, абляция, myocardial revascularization, ablație, имплантируемый дефибриллятор сердца, cardioversie electrică, implantable heart defibrillator, electrical cardioversion, heart transplant, реваскуляризация миокарда, электрическая кардиоверсия
File Description: application/pdf
Access URL: https://ibn.idsi.md/vizualizare_articol/153777
-
10Academic Journal
Authors: V. V. Kalyuzhin, A. T. Teplyakov, I. D. Bespalova, E. V. Kalyuzhina, N. N. Terentyeva, O. F. Sibireva, E. V. Grakova, V. Yu. Usov, M. A. Osipova
Source: Бюллетень сибирской медицины, Vol 20, Iss 1, Pp 129-146 (2021)
Subject Terms: прогрессирующая сердечная недостаточность, определение, индикаторы, прогностическая стратификация, клинические маркеры, биомаркеры, визуализация, тест с физической нагрузкой, сопутствующие заболевания, стратегии ведения, механическая поддержка кровообращения, трансплантация сердца, Medicine
Relation: https://bulletin.ssmu.ru/jour/article/view/4287; https://doaj.org/toc/1682-0363; https://doaj.org/toc/1819-3684; https://doaj.org/article/f2cdf1eda40a4b599a8431805e5c3637
-
11Academic Journal
Authors: М. Жульков, А. Головин, Е. Головина, А. Гренадеров, А. Фомичев, С. Альсов, А. Чернявский
Source: Патология кровообращения и кардиохирургия, Vol 24, Iss 1 (2020)
Subject Terms: дисковый насос, механическая поддержка кровообращения, насос непульсирующего потока, терминальная сердечная недостаточность, Surgery, RD1-811
File Description: electronic resource
-
12Academic Journal
Authors: A. P. Kuleshov, G. P. Itkin, A. S. Buchnev, A. A. Drobyshev, А. П. Кулешов, Г. П. Иткин, А. С. Бучнев, А. А. Дробышев
Source: Russian Journal of Transplantology and Artificial Organs; Том 22, № 3 (2020); 79-85 ; Вестник трансплантологии и искусственных органов; Том 22, № 3 (2020); 79-85 ; 1995-1191 ; 10.15825/1995-1191-2020-3
Subject Terms: индекс гемолиза, mechanical circulatory support, channel centrifugal blood pump, shear stress, exposure time, hemolysis index, механическая поддержка кровообращения, канальный центробежный насос, касательное напряжение, время экспозиции
File Description: application/pdf
Relation: https://journal.transpl.ru/vtio/article/view/1230/1003; https://journal.transpl.ru/vtio/article/view/1230/1026; Wiegmann L, Thamsen B, de Zélicourt D, Granegger M, Boës S, Schmid Daners M, Kurtcuoglu V. Fluid dynamics in the HeartMate 3: Influence of the artificial pulse feature and residual cardiac pulsation. Artif Organs. 2019 Apr 7; 43 (4): 363–376. Epub 2018 Nov 7. doi:10.1111/aor.13346.; Thamsen B, Gülan U, Wiegmann L, Loosli C, Schmid Daners M, Kurtcuoglu V et al. Assessment of the Flow Field in the HeartMate 3 Using Three-Dimensional Particle Tracking Velocimetry and Comparison to Computational Fluid Dynamics. ASAIO Journal. 2019; 1. doi:10.1097/mat.0000000000000987.; Кулешов АП, Иткин ГП, Байбиков АС. Разработка центробежного насоса канального типа. Вестник трансплантологии и искусственных органов. 2018; 20 (3): 32–39.; Thamsen B, Blümel B, Schaller J, Paschereit CO, Affeld K, Goubergrits L, Kertzscher U. Numerical Analysis of Blood Damage Potential of the HeartMate II and HeartWare HVAD Rotary Blood Pumps. Artificial Organs. 2015; 39 (8): 651–659. doi:10.1111/aor.12542.; Ломакин АА. Центробежные и осевые насосы. 2-е изд., перераб. и доп. М.–Л.: Машиностроение, 1966. 364.; Taskin ME, Fraser KH, Zhang T, Gellman B, Fleischli A, Dasse KA et al. Computational Characterization of Flow and Hemolytic Performance of the UltraMag Blood Pump for Circulatory Support. Artificial Organs. 2010; 34 (12): 1099–1113. doi:10.1111/j.1525-1594.2010.01017.x.; Paul R, Schügner F, Reul H, Ray G. Recent findings on flow induced blood damage: critical shear stresses and exposure times obtained with a high shear stress Couette system. Artif Organs. 1999; 23: 680.; Schima H, Müller MR, Tsangaris S et al. Mechanical blood traumatization by tubing and throttles in vitro pump tests: Experimental results and implications for hemolysis theory. Artif Organs. 1993; 17: 167–170.; De Wachter D, Verdonck P, Verhoeven R, Hombrouckx R. Red cell injury assessed in a numerical model of a peripheral dialysis needle. ASAIO J. 1996; 42: M524–29.; https://journal.transpl.ru/vtio/article/view/1230
-
13Academic Journal
Authors: S. V. Gautier
Source: Патология кровообращения и кардиохирургия, Vol 21, Iss 3S, Pp 61-68 (2017)
Subject Terms: трансплантология, трансплантация сердца в России, донорство органов, механическая поддержка кровообращения, Surgery, RD1-811
File Description: electronic resource
-
14Academic Journal
Authors: G. P. Itkin, A. S. Buchnev, A. P. Kuleshov, A. I. Syrbu, Г. П. Иткин, А. С. Бучнев, А. П. Кулешов, А. И. Сырбу
Source: Russian Journal of Transplantology and Artificial Organs; Том 21, № 1 (2019); 71-76 ; Вестник трансплантологии и искусственных органов; Том 21, № 1 (2019); 71-76 ; 1995-1191 ; 10.15825/1995-1191-2019-1
Subject Terms: контрпульсация, heart work, consume O 2 by myocardium, mechanical support circulation, nonpulsatile pump, diagram pressure–volume, copulsation, counterpulsation, работа сердца, потребление O 2 миокардом, механическая поддержка кровообращения, насосы непульсирующнго потока, внутрижелудочковаядиаграмма давление–объем, сопульсация
File Description: application/pdf
Relation: https://journal.transpl.ru/vtio/article/view/991/779; Uriel N, Sayer G, Annamalai S, Kapur NK, Burkhoff D. Mechanical Unloading in Heart Failure. J Am Coll Cardiol. 2018 Jul; 31 (72): 569–580. doi:10.1016/j.jacc.2018.05.038.; Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson LW, Blume ED et al. Seventh INTERMACS annual report: 15,000 patients and counting. J. Heart Lung Transplant. 2015; 34 (12): 1495–1504. doi:10.1016/j.healun.2015.10.003.; Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009; 361: 2241–2251. doi:10.1056/NEJMoa0909938.; Crow S, John R, Boyle A, Shumway S, Liao K, ColvinAdams M et al. Gastrointestinal bleeding rates in recipients of nonpulsatile and pulsatile left ventricular assist devices. J Thorac Cardiovasc Surg. 2009; 137: 208–215. doi:10.1016/j.jtcvs.2008.07.032.; Zamarripa Garcia MA, Enriquez LA, Dembitsky W, MayNewman K. The Effect of Aortic Valve Incompetence on the Hemodynamics of a Continuous Flow Ventricular Assist Device in a Mock Circulation. ASAIO Journal. 2008; 54: 237–244. doi:10.1097/MAT.0b013e31816a309b.; Soucy KG, Koenig SC, Giridharan GA, Sobieski MA, Slaughter MS. Defining pulsatility during continuous-flow ventricular assist device support. J Heart Lung Transplant. 2013; 32: 581–587. doi:10.1097/MAT.0b013e31816a309b.; Ising MS, Sobieski MA, Slaughter MS, Koenig SC, Giridharan GA. Feasibility of Pump Speed Modulation for Restoring Vascular Pulsatility with Rotary Blood Pumps. ASAIO J. 2015 Sep-Oct; 61 (5): 526–532. doi:10.1097/MAT.0000000000000262.; Pirbodaghi T, Axiak S, Weber A, Gempp T, Vandenberghe S. Pulsatile control of rotary blood pumps: does the modulation waveform matter? J Thorac Cardiovasc Surg. 2012; 144: 970–977. doi:10.1016/j.jtcvs.2012.02.015.; Suga H, Sagawa K, Shoukas AA. Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res. 1973 Mar; 32 (3): 314–322. doi:10.1161/01.res.32.3.314.; Kishimoto S, Date K, Arakawa M, Takewa Y, Nishimura T, Tsukiya T et al. Influence of a novel electrocardiogram-synchronized rotational-speed-change system of an implantable continuous-flow left ventricular assist device (EVAHEART) on hemolytic performance. J Artif Organs. 2014; 17: 373–377. doi:10.1007/s10047-014-0787-8.; Bartoli CR, Sherwood LC, Giridharan GA, Litwak KN, Sobieski M, Prabhu SD et al. Hemodynamic Responses to Continuous versus Pulsatile Mechanical Unloading of the Failing Left Ventricle. ASAIO Journal. 2010; 56: 410–416. doi:10.1097/mat.0b013e3181e7bf3c.; Guan Y, Karkhanis T, Wang S, Rider A, Koenig SC, Slaughter MS et al. Physiologic benefits of pulsatile perfusion during mechanical circulatory support for the treatment of acute and chronic heart failure in adults. Artificial Organs. 2010; 34: 529–536. doi:10.1111/j.1525-1594.2010.00996.x.; Evans CL, Matsuoka Y. Effect of various mechanical conditionsbof gaseous metabolism and efficiency of mammalian heart. J Physiol. 1915; 49: 378–405. doi:10.1113/jphysiol.1915.sp001716.; Monroe RG, French GN. Left ventricular pressurevolume relationship and myocardial oxygen consuvption in isolated heart. Circ Res. 1961; 9: 362–374. doi:10.1161/01.res.9.2.362.; Parissis HL, Graham V, Lampridis S, Lau M, Hooks G. IABP: history-evolution-pathophysiology-indications: what we need to know. J Cardiothorac Surg. 2016; 11: 122–127. doi:10.1186/s13019-016-0513-0.; Lewartowski B, Michałowski J, Sedek G, Kryńska E, Wasilewska-Dziubińska E. Directly measured tensiontime index as a correlate of myocardial oxygen consumption. Eur J Cardiol. 1980; 11: 61–70. PMID: 7363921.; Gordon DG. The physics of left ventricular ejection and its implications for muscle mechanics. Eur J Cardiol. 1976; 4: 87–95. PMID: 1278222.; Kern MJ, Aguirre FV, Caraccido EA et al. Hemodynamic effects of new intra-aortic balloon counterpulsation timing methods in patients: a multicenter evaluation. Am Heart J. 1999; 137: 1129–1136.; https://journal.transpl.ru/vtio/article/view/991
-
15Academic Journal
Authors: Larisa A. Balykova, Elena I. Naumenko, Nataljya V. Ivyanskaya, Yulia A. Petrushkina, Ekaterina A. Vlasova, Nadezhda N. Urzjaeva, Irina V. Leontieva, Anna N. Urzjaeva, Л. А. Балыкова, Е. И. Науменко, Н. В. Ивянская, Ю. А. Петрушкина, Е. А. Власова, Н. Н. Урзяева, И. В. Леонтьева, А. Н. Урзяева
Source: Current Pediatrics; Том 18, № 2 (2019); 125-133 ; Вопросы современной педиатрии; Том 18, № 2 (2019); 125-133 ; 1682-5535 ; 1682-5527
Subject Terms: клиническое наблюдение, myocarditis, dilated cardiomyopathy, heart failure, heart transplantation, diagnostics, treatment, MCS, mechanical circulatory support, complications, cardioverter defibrillator, risk, clinical case, миокардит, дилатационная кардиомиопатия, сердечная недостаточность, трансплантация сердца, диагностика, лечение, механическая поддержка кровообращения, осложнения, кардиовертер-дефибриллятор, риск
File Description: application/pdf
Relation: https://vsp.spr-journal.ru/jour/article/view/2078/861; Клинические рекомендации «Хроническая сердечная недостаточность у детей» (утв. Минздравом России) [интернет]. / Под ред. Баранова А.А., Намазовой-Барановой Л.С., Басаргиной Е.Н., и др. — М.: Союз педиатров России; Ассоциация детских кардиологов России; 2016. — 16 с. Доступно по: http://www.consultant.ru/cons/cgi/online.cgi?req=doc&base=LAW&n=326053&fld=134&dst=100001,0&rnd=0.24511092809802348#03927419651004245. Ссылка активна на 12.01.2019.; Das BB. Current state of pediatric heart failure. Children (Basel). 2018;5(7). pii: E88. doi:10.3390/children5070088.; Heidenreich PA, Albert NM, Allen LA, et al. Forecasting the impact of heart failure in the United Sates. A policy statement from the American Heart Association. Circ Heart Fail. 2013;6(3): 606–619. doi:10.1161/HHF.0b013e318291329a.; Rossano JW, Kim JJ, Decker JA, et al. Prevalence, morbidity, and mortality of heart failure-related hospitalizations in children in the United States: a population-based study. J Card Fail. 2012;18(6):459–470. doi:10.1016/j.cardfail.2012.03.001.; Nandi D, Lin KY, O’Connor MJ, et al. Hospital charges for pediatric heart failure related hospitalizations admissions in the United States from 2000 to 2009. Pediatr Cardiol. 2016;37(3):512–518. doi:10.1007/s00246-015-1308-0.; Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016;18(8):891–975. doi:10.1002/ejhf.592.; Masarone D, Valente F, Rubino M, et al. Pediatric heart failure: a practical guide to diagnosis and management. Pediatr Neonatol. 2017;58(4):303–312. doi:10.1016/j.pedneo.2017.01.001.; Hinton RB, Ware SM. Heart failure in pediatric patients with congenital heart disease. Circ Res. 2017;120(6):978–994. doi:10.1161/CIRCRESAHA.116.308996.; Rhee EK, Canter CE, Basile S, et al. Sudden death prior to pediatric heart transplantation: would implantable defibrillators improve outcome? J Heart Lung Transplant. 2007;26(5):447–452. doi:10.1016/j.healun.2007.02.005.; Schweiger M, Stiasny B, Dave H, et al. Cardiac transplantation in a neonate — first case in Switzerland and European overview. Clin Transplant. 2017;31 Issue 5: e12935. doi:10.1111/ctr.12935.; Goldfarb SB, Levvey BJ, Edwards LB, et al. The registry of the international society for heart and lung transplantation: nineteenth pediatric lung and heart-lung transplantation report-2016; focus theme: primary diagnostic indications for transplant. J Heart Lung Transplant. 2016;35(10):1196–1205. doi:10.1016/j.healun.2016.08.019.; Pfitzer C, Helm PC, Ferentzi H, et al. Changing prevalence of severe congenital heart disease: results from the national register for congenital heart defects in Germany. Congenit Heart Dis. 2017;12(6):787–793. doi:10.1111/chd.12515.; Kirklin JK. Current challenges in pediatric heart transplantation for congenital heart disease. Curr Opin Organ Transplant. 2015; 20(5):577–583. doi:10.1097/MOT.0000000000000238.; Dipchand AI. Current state of pediatric cardiac transplantation. Ann Cardiothorac Surg. 2018;7(1):31–55. doi:10.21037/acs.2018.01.07.; Caviedes Bottner P, Cordova Fernandez T, Larrain Valenzuela M, et al. [Dilated cardiomyopathy and severe heart failure. An update for pediatricians. (In English, Spanish).] Arch Argent Pediatr. 2018;116(3):e421–e428. doi:10.5546/aap.2018.eng.e421.; Caforio AL, Pankuweit S, Arbustini E, et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European society of cardiology working group on myocardial and pericardial diseases. Eur Heart J. 2013;34(33):2636–2648, 2648a–2648d. doi:10.1093/eurheartj/eht210.; Almond CS, Hoen H, Rossano JW, et аl.; Pediatric Heart Transplant Study (PHTS) Group Registry. Development and validation of a major adverse transplant event (MATE) score to predict late graft loss in pediatric heart transplantation. J Heart Lung Transplant. 2018;37(4):441–450. doi:10.1016/j.healun.2017.03.013.; Becker P, Besa S, Riveros S, et al. [Results of a national program of pediatric heart transplantation: strengths and weakness. (In Spanish).] Rev Chil Pediatr. 2017;88(3):367–376. doi:10.4067/S0370-41062017000300009.; Raissadati A, Pihkala J, Jahnukainen T, et al. Late outcome after pediatric heart transplantation in Finland. Interact Cardiovasc Thorac Surg. 2016;23(1):18–25. doi:10.1093/icvts/ivw086.; Dipchand AI, Edwards LB, Kucheryavaya AY, et al. The registry of the International society for heart and lung transplantation: seventeenth official pediatric heart transplantation report-2014; focus theme: retransplantation.J Heart Lung Transplant. 2014; 33(10):985–995. doi:10.1016/j.healun.2014.08.002.; Rostad CA, Wehrheim K, Kirklin JK, et al. Bacterial infections after pediatric heart transplantation: epidemiology, risk factors and outcomes. J Heart Lung Transplant. 2017;36(9):996–1003. doi:10.1016/j.healun.2017.05.009.; Mahle WT, Fourshee MT, Naftel DM, et al. Does cytomegalovirus serology impact outcome after pediatric heart transplantation? J Heart Lung Transplant. 2009;28(12):1299–1305. doi:10.1016/j.healun.2009.07.011.; Трансплантация сердца. Национальные клинические рекомендации (утв. решением Координационного совета общероссийской общественной организации трансплантологов «Российское трансплантологическое общество» 29 ноября 2013 г. [интернет]. / Под ред. Готье С.В., Хомякова С.М., Арзуманова С.В., и др. — Российское трансплантологическое общество; 2013. Доступно по: https://freedocs.xyz/pdf-483241234. Ссылка активна на 12.01.2019.; Zablah JE, Everitt MD, Wilson N. Accelerated cardiac allograft vasculopathy after pediatric heart transplantation. Am J Transplantat. 2017;17:2983–2985. doi:10.1111/ajt.14475.; Miriuka SG, Langman LJ, Evrovski J, et al. Thromboembolism in heart transplantation: role of prothrombin G20210A and factor V Leiden. Transplantation. 2005;80(5):590–594. doi:10.1097/01.tp.0000170545.42790.6f.; Clemmensen TS, Holm NR, Eiskjær H, et al. ST elevation infarction after heart transplantation induced by coronary spasms and mural thrombus detected by optical coherence tomography. Case Rep Transplant. 2016;2016:1863869. doi:10.1155/2016/1863869.; Kobayashi D1, Du W, L’ecuyer TJ. Predictors of cardiac allograft vasculopathy in pediatric heart transplant recipients. Pediatr Transplant. 2013;17(5):436–440. doi:10.1111/petr.12095.; Mahle WT, Vincent RN, Berg AM, Kanter KR. Pravastatin therapy is associated with reduction in coronary allograft vasculopathy in pediatric heart transplantation. J Heart Lung Transplant. 2005; 24(1):63–66. doi:10.1016/j.healun.2003.10.013.; Greenway SC, Butts R, Naftel DC, et al. Statin therapy is not associated with improved outcomes after heart transplantation in children and adolescents. J Heart Lung Transplant. 2016;35(4): 457–465. doi:10.1016/j.healun.2015.10.040.; Fenton M, Mahmood A, Burch M, et al. Comparative study of pediatric coronary allograft vasculopathy between single centers in North America and United Kingdom. Transplant Proc. 2018;50(10): 3705–3709. doi:10.1016/j.transproceed.2018.06.022.; Castleberry C, Pruitt E, Ameduri R, et al. Risk stratification to determine the impact of induction therapy on survival, rejection and adverse events after pediatric heart transplant: A multiinstitutional study. J Heart Lung Transplant. 2018;37(4):458–466. doi:10.1016/j.healun.2017.05.010.; Carlo WF, Bryant R, Zafar F. Comparison of 10-year graft failure rates after induction with basiliximab or anti-thymocyte globulin in pediatric heart transplant recipients — the influence of race. Pediatr Transplant. 2019;8:e13366. doi:10.1111/petr.13366.; Rossano JW, Jefferies JL, Pahl E, et al. Use of sirolimus in pediatric heart transplant patients: A multi-institutional study from the Pediatric Heart Transplant Study Group. J Heart Lung Transplant. 2017;36(4):427–433. doi:10.1016/j.healun.2016.09.009.; Morgan CT, Manlhiot C, McCrindle BW, et al. outcome, incidence and risk factors for stroke after pediatric heart transplantation: an analysis of the international society for heart and lung transplantation registry. J Heart Lung Transplant. 2016;35(5): 597–602. doi:10.1016/j.healun.2016.01.1226.; Vanderlaan RD, Manlhiot C, Edwards LB, et al. Risk factors for specific causes of death following pediatric heart transplant: an analysis of the registry of the International Society of Heart and Lung Transplantation. Pediatr Transplant. 2015 Dec;19(8):896–905. doi:10.1111/petr.12594.; Sehgal S, Shea E, Kelm L, Kamat D. Heart transplant in children: what a primary care provider needs to know. Pediatr Ann. 2018;47(4):e172–e178. doi:10.3928/19382359-20180319-01.
-
16Academic Journal
Authors: D. V. Shumakov, D. I. Zybin, M. A. Popov, Д. В. Шумаков, Д. И. Зыбин, М. А. Попов
Source: Transplantologiya. The Russian Journal of Transplantation; Том 11, № 4 (2019); 311-319 ; Трансплантология; Том 11, № 4 (2019); 311-319 ; 2542-0909 ; 2074-0506 ; 10.23873/2074-0506-2019-11-4
Subject Terms: трансплантация сердца, mechanical circulatory support, myocardial remodeling, reverse myocardial remodeling, heart transplantation, механическая поддержка кровообращения, ремоделирование миокарда, обратное ремоделирование миокарда
File Description: application/pdf
Relation: https://www.jtransplantologiya.ru/jour/article/view/463/532; https://www.jtransplantologiya.ru/jour/article/view/463/543; Farrar DJ, Holman WR, McBride LR, Kormos RL, Icenogle TB, Hendry PJ, et al. Long-term follow-up of Thoratec ventricular assist device bridge-torecovery patients successfully removed from support after recovery of ventricular function. J Heart Lung Transplant. 2002;21(5):516–521. PMID: 11983540 https://doi.org/10.1016/S1053-2498(01)00408-9; Miller LW, Pagani FD, Russell SD, John R, Boyle AJ, Aaronson KD, et al. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med. 2007;357(9):885–896. PMID: 17761592 https://doi.org/10.1056/NEJMoa067758; Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361(23):2241–2251. PMID: 19920051 https://doi.org/10.1056/NEJMoa0909938; Müller J, Wallukat G, Weng Y, Dandel M, Spiegelsberger S, Semrau S, et al. Weaning from mechanical cardiac support in patients with dilated cardiomyopathy. Circulation. 1997;96(2):542–549. PMID: 9244223 https://doi.org/10.1161/01.cir.96.2.542; Hetzer R, Müller J, Weng Y, Wallukat G, Spiegelsberger S, Loebe M. Cardiac recovery in dilated cardiomyopathy by unloading with a left ventricular assist device. Ann Thorac Surg. 1999;68(2):742–749. PMID: 10475481 https://doi.org/10.1016/S0003-4975(99)00542-1; Dandel M, Weng Y, Sinawski H, Potapov E, Lehmkuhl H B, Hetzer R. Longterm results in patients with idiopathic dilated cardiomyopathy after weaning from left ventricular assist devices. Circulation. 2005;112(9Suppl):37–45. PMID: 16159848 https://doi.org/10.1055/s-2005-861953; Frazier OH, Benedect CR, Radovancevic B, Bick RJ, Capek P, Springer WE, et al. Improved left ventricular function after chronic left ventricular unloading. Ann Thorac Surg. 1996;62(3):675–682. PMID:8783992 https://doi.org/10.1016/S0003-4975(96)00437-7; Hall JL, Fermin DR, Birks EJ, Barton PJ, Slaughter M, Eckman P, et al. Clinical, molecular, and genomic changes in response to a left ventricular assist device. J Am Coll Cardiol. 2011;57(6):641–652. PMID: 21292124 https://doi.org/10.1016/j.jacc.2010.11.010; Akhter SA, D'Souza KM, Malhotra R, Staron ML, Valeroso TB, Fedson SE, et al. Reversal of impaired myocardial beta-adrenergic receptor signaling by continuous-flow left ventricular assist device support. J Heart Lung Transplant. 2010;29(6):603–609. PMID: 20202864 https://doi.org/10.1016/j.healun.2010.01.010; Saito S, Matsumiya G, Sakaguchi T, Miyagawa S, Yamauchi T, Kuratani T, et al. Cardiac fibrosis and cellular hypertrophy decrease the degree of reverse remodeling and improvement in cardiac function during left ventricular assist. J Heart Lung Transplant. 2010;29(6):672–679. PMID: 20188595 https://doi.org/10.1016/j.healun.2010.01.007; Ogletree ML, Sweet WE, Talerico C, Klecka ME, Young JB, Smedira NG, et al. Duration of left ventricular assist device support: Effects on abnormal calcium cycling and functional recovery in the failing human heart. J Heart Lung Transplant. 2010;29(5):554–561. PMID: 20044278 https://doi.org/10.1016/j.healun.2009.10.015; Maybaum S, Mancini D, Xydas S, Starling RC, Aaronson K, Pagani FD, et al. Cardiac improvement d uring mechanical circulatory support: a prospective multicenter study of the LVAD Working Group. Circulation. 2007;115(19):2497–2505. PMID: 17485581 https://doi.org/10.1161/CIRCULATIONAHA.106.633180; Ambardekar AV, Walker JS, Walker LA, Cleveland JC Jr, Lowes BD, Buttrick PM. Incomplete recovery of myocyte contractile function despite improvement of myocardial architecture with left ventricular assist device support. Circ Heart Fail. 2011;4:425–432. PMID: 21540356 https://doi.org/10.1161/CIRCHEARTFAILURE.111.961326; Ferrar DJ, Holmann WR, McBride LR, Kormos RL, Icenogle TB, Hendry PJ, et al. Long-term follow up of Thoratec ventricular assist device bridge-to-recovery patients successfully removed from support after recovery of ventricular function. J Heart Lung Transplant. 2002;21(5):516–521. PMID: 11983540 https://doi.org/10.1016/S1053-2498(01)00408-9; Simon MA, Kormos RL, Murali S, Nair P, Heffernan M, Gorcsan J, et al. Myocardial recovery using ventricular assist devices: prevalence, clinical characteristics, and outcomes. Circulation. 2005;112(9Suppl):132–136. PMID: 16159839 https://doi.org/10.1161/CIRCULATIONAHA.104.524124; Birks E J, Tansley P D, Hardy J, George R S, Bowles C T, Burke M, et al. Left ventricular assist device and drug therapy for the reversal of heart failur e. N Engl J Med. 2006;355(18):1873–1884. PMID: 17079761 https://doi.org/10.1056/NEJMoa053063; Dandel M, Weng Y, Siniawski H, Potapov E, Drews T, Lehmkuhl HB, et al. Prediction of cardiac stability after weaning from ventricular assist devices in patients with idiopathic dilated cardiomyopathy. Circulation. 2008;118(14Suppl):S94–105. PMID: 18824777 https://doi.org/10.1161/CIRCULATIONAHA.107.755983; Hetzer R, Dandel M, Knosalla C. Left ventricular assist devices and drug therapy in heart failure. N Engl J Med. 2007;356(8):869–870. PMID: 17314351 https://doi.org/10.1056/NEJMc063394; Dandel M, Weng Y, Siniawski H, Stepanenko A, Krabatsch T, Potapov E, et al. Heart failure reversal by ventricular unloading in patients with chronic cardiomyopathy: criteria for weaning from ventricular assist devices. Eur Heart J. 2011;32(9):1148–1160. PMID: 20929978 https://doi.org/10.1093/eurheartj/ehq353; Dandel M, Weng Y, Siniawski H, Potapov E, Krabatsch T, Lehmkuhl HB, et al. Pre-explant stability of unloading promoted cardiac improvement predicts outcome after weaning from ventricular assist devices. Circulation. 2012;126(11Suppl):S9–19. PMID: 22965998 https://doi.org/10.1161/CIRCULATIONAHA.111.084640; Swynghedauw B. Molecular mechanisms of myocardial remode ling. Physiol Rev. 1999;79(1):215–262. PMID: 9922372 https://doi.org/10.1152/physrev.1999.79.1.215; van Empel V, Bertrand AT, Hofstra L, Crijns HJ, Doevendans PA, De Windt LJ. Myocyte apoptosis in heart failure. Cardiovasc Res. 2005;67(1):21–29. PMID:15896727 https://doi.org/10.1016/j.cardiores.2005.04.012; van Empel V, De Windt LJ. Myocyte hypertrophy and apoptosis: a balan cing act. Cardiovasc Res. 2004;63(3):487–499. PMID: 15276474 https://doi.org/10.1016/j.cardiores.2004.02.013; Mann DL. Mechanisms and models in heart failure: A combinatorial approach. Circulation. 1999;100(9):999–1008. PMID: 10468532 https://doi.org/10.1161/01.cir.100.9.999; Hughes SE. The pathology of hypertrophic cardiomyopathy. Histopathology. 2004;44(5):412–427. PMID: 151399989 https://doi.org/10.1111/j.1365-2559.2004.01835.x; Catena E, Milazzo F. Echocardiography and cardiac assist devices. Minerva Cardioangiol. 2007;55(2):247–265. PMID: 17342042; Scheinin SA, Capek P, Radovancevic B, Duncan JM, McAllister HA Jr, Frazier OH. The effect of prolonged left ventricular support on myocardial histopathology in patients with end-stage cardiomyopathy. ASAIO J. 1992;38(3):M271–M274. PMID: 1457863 https://doi.org/10.1097/00002480-199207000-00035; Levin HR, Oz MC, Chen JM, Packer M, Rose EA, Burkhoff D. Reversal of chronic ventricular dilation in patients with end-stage cardiomyopathy by prolonged mechanical unloading. Circulation. 1995;91(11):2717–2720. PMID: 7758175 https://doi.org/10.1161/01.cir.91.11.2717; Razeghi P, Bruckner BA, Sharma S, Youker KA, Frazier OH, Taegtmeyer H. Mechanical unloading of the failing human heart fails to activate the protein kinase B/Akt/glycogen synthase kinase-3beta survival pathway. Cardiology. 2003;100(1):17–22. PMID: 12975541 https://doi.org/10.1159/000072387; Baba HA, Grabellus F, August C, Plenz G, Takeda A, Tjan TD, et al. Reversal of metallothionein expression is different throughout the human myocardium after prolonged left-ventricular mechanical support. J Heart Lung Transplant. 2000;19(7):668-674. PMID: 10930816 https://doi.org/10.1016/S1053-2498(00)00074-7; Nag AC, Zak R. Dissociation of adult mammalian heart into single cell suspension: an ultrastructural study. J Anat. 1979;129(Pt3):541–559. PMID: 120352; Yacoub MH. A novel strategy to maximize the efficacy of left ventricular assist devices as a bridge to recovery. Eur Heart J. 2001;22(7):534–540. PMID: 11259141 https://doi.org/10.1053/euhj.2001.2613; Zafeiridis A, Jeevanandam V, Houser SR, Margulies KB. Regression of cellular hypertrophy after left ventricular assist device support. Circulation. 1998;98(7):656–662. PMID: 9715858 https://doi.org/10.1161/01.cir.98.7.656; Razeghi P, Taegtmeyer H. Hypertrophy and atrophy of the heart: the other side of remodeling. Ann N Y Acad Sci. 2006;1080:110–119. PMID: 17132779 https://doi.org/10.1196/annals.1380.011; Wohlschlaeger J, Sixt SU, Stoeppler T, Schmitz KJ, Levkau B, Tsagakis K, et al. Ventricular unloading is associated with increased 20s proteasome protein expression in the myocardium. J Heart Lung Transplant. 2010;29(1):125–132 PMID: 19837610 https://doi.org/10.1016/j.healun.2009.07.022; Soppa GK, Barton PJ, Terracciano CM, Yacoub MH. Left ventricular assist device-induced molecular changes in the failing myocardium. Curr Opin Cardiol. 2008;23(3):206–18. PMID: 18382208 https://doi.org/10.1097/HCO.0b013e3282fc7010; Terracciano CM, Hardy J, Birks EJ, Khaghani A, Banner NR, Yacoub MH. Clinical recovery from end-stage heart failure using left-ventricular assist device and pharmacological therapy correlates with increased sarcoplasmic reticulum calcium content but not with regression of cellular hypertrophy. Circulation. 2004;109(19):2263–2265. PMID: 15136495 https://doi.org/10.1161/01. CIR.0000129233.51320.92; Hall JL, Birks EJ, Grindle S, Cullen ME, Barton PJ, Rider JE, et al. Molecular signature of recovery following combination left ventricular assist device (LVAD) support and pharmacologic therapy. Eur Heart J. 2007;28(5):613–627. PMID: 17132651 https://doi.org/10.1093/eurheartj/ehl365; Vatta M, Stetson SJ, Perez-Verdia A, Entman ML, Noon GP, TorreAmione G, et al. Molecular remodelling of dystrophin in patients with endstage cardiomyopathies and reversal in patients on assistance-device therapy. Lancet. 2002;359(9310):936–941. PMID: 11918913 https://doi.org/10.1016/S0140-6736(02)08026-1; Birks EJ, Hall JL, Barton PJ, Grindle S, Latif N, Hardy JP, et al. Gene profiling changes in cytoskeletal proteins during clinical recovery after left ventricular-assist device support. Circulation. 2005;112(9Suppl):I57–I64. PMID: 16159866 https://doi.org/10.1161/CIRCULATIONAHA.104.526137; Latif N, Yacoub MH, George R, Barton PJR, Birks EJ. Changes in sarcomeric and non-sarcomeric cytoskeletal proteins and focal adhesion molecules during clinical myocardial recovery after left ventricular assist device support. J Heart Lung Transplant. 2007;26(3):230–235. PMID: 17346624 https://doi.org/10.1016/j.healun.2006.08.011; de Jonge N, van Wichen DF, Schipper ME, Lahpor JR, Gmelig- Meyling FH, Robles de Medina EO. Left ventricular assist device In end-stage heart failure: persistence of structural myocyte damage after unloa ding: Animmunohistochemical analysis of the contractile myofilaments. J Am Coll Cardiol. 2002;39(6):963–969. PMID: 11897437 https://doi.org/10.1016/S0735-1097(02)01713-8; Ambardekar AV, Walker JS, Walker LA, Cleveland JC Jr, Lowes BD, Buttrick PM. Incomplete recovery of myocyte contractile function despite improvement of myocardial architecture with left ventricular assist device support. Circ Heart Fail. 2011;4(4):425–432. PMID: 21540356 https://doi.org/10.1161/CIRCHEARTFAILURE.111.961326; Lee SH, Doliba N, Osbakken M, Oz M, Mancini D. Improvement of myocardial mitochondrial function after hemodynamic support with left ventricular assist devices in patients with heart failure. J Thorac Cardiovasc Surg. 1998;116(2):344–349. PMID: 9699589 https://doi.org/10.1016/S0022-5223(98)70136-9; Mital S, Loke KE, Addonizio LJ, Oz MC, Hintze TH. Left ventricular assist device implantation augments nitric oxide dependent control of mitochondrial respirationin failing human hearts. J Am Coll Cardiol. 2000;36(6):1897–1902. PMID: 11092662 https://doi.org/10.1016/S0735-1097(00)00948-7; Heerdt PM, Schlame M, Jehle R, Barbone A, Burkhoff D, Blanck TJ. Diseasespecific remodeling of cardiac mitochondria after a left ventricular assist device. Ann Thorac Surg. 2002;73(4):1216–1221. PMID: 11996266 https://doi.org/10.1016/S0003-4975(01)03621-9; Cullen ME, Yuen AH, Felkin LE, Smolenski RT, Hall JL, Grindle S, et al. Myocardial expression of the arginine: glycineamidinotransferase gene is elevated in heart failure and normalized after recovery: potential implications for local creatine synthesis. Circulation. 2006;114(1Suppl):I16–I20. PMID: 16820567 https://doi.org/10.1161/CIRCULATIONAHA.105.000448; Doenst T, Abel ED. Spotlight on metabolic remodelling in heart failure. Cardiovasc Res. 2011;90(2):191–193. PMID: 21429943 https://doi.org/10.1093/cvr/cvr077; Kassiotis C, Ballal K, Wellnitz K, Vela D, Gong M, Salazar R, et al. Markers of autophagy are down regulated in failing human heart after mechanical unloading. Circulation. 2009;120(11Suppl):S191–S197. PMID: 19752367 https://doi.org/10.1161/CIRCULATIONAHA.108.842252; Baba HA, Grabellus F, August C, Plenz G, Takeda A, Tijan TD, et al. Reversal of metallothionein expression is different throughout the human myocardium after prolonged left-ventricular mechanical support. J Heart Lung Transplant. 2000;19(7):668–674. PMID: 10930816 https://doi.org/10.1016/S1053-2498(00)00074-7; Grabellus F, Schmid C, Levkau B, Breukelmann D, Halloran PF, August C, et al. Reduction of hypoxia-inducible heme oxygenase-1 in the myocardium after left ventricular mechanical support. J Pathol. 2002;197(2):230–237. PMID: 12015748 https://doi.org/10.1002/path.1106; Drakos SG, Kfoury AG, Hammond EH, Reid BB, Revelo MP, Rasmusson BY, et al. Impact of mechanical unloading on microvasculature and associated central remodeling features of the failing human heart. J Am Coll Cardiol. 2010;56(5):382–391. PMID: 20650360 https://doi.org/10.1016/j.jacc.2010.04.019; Manginas A, Tsiavou A, Sfyrakis P, Giamouzis G, Tsourelis L, Leontiadis E, et al. Increased number of circulating progenitor cells after implantation of ventricular assist devices. J Heart Lung Transplant. 2009;28(7):710–717. PMID: 19560700 https://doi.org/10.1016/j.healun.2009.04.006; Wohlschlaeger J, Levkau B, Brockoff G, Schmitz K J, von Winterfeld M, Takeda A, et al. Hemodynamic support by left ventricular assist devices reduces cardiomyocyte DNA content in the failing human heart. Circulation. 2010;121(8):989–996. PMID: 20159834 https://doi.org/10.1161/CIRCULATIONAHA.108.808071; Klotz S, Foronjy RF, Dickstein ML, Gu A, Garrelds IM, Danser AH, et al. Mechanical unloading during left ventricular assist device support increases left ventricular collagen cross-linking and myocardial stiffness. Circulation. 2005;112(3):364–374. PMID: 15998679 https://doi.org/10.1161/CIRCULATIONAHA.104.515106; Blaxall BC, Tschannen-Moran BM, Milano CA, Koch WJ. Differential gene expression and genomic patient stratification following left ventricular assist device support. J Am Coll Cardiol. 2003;41(7):1096–1106. PMID: 12679207 https://doi.org/10.1016/S0735-1097(03)00043-3; Margulies KB, Matiwala S, Cornejo C, Olsen H, Craven WA, Bednarik D. Mixed messages: transcription patterns in failin g and recovering human myocardium. Circ Res. 2005;96(5):592–599. PMID: 15718504 https://doi.org/10.1161/01.RES.0000159390.03503.c3; Matkovich SJ, VanBooven DJ, Youker KA, Torre-Amione G, Diwan A, Eschenbacher WH, et al. Reciprocal regu lation of myocardial microRNAs and messenger RNA in human cardiomyopathy and reversal of the microRNA signature by biomechanical support. Circulation. 2009;119(9):1263–1271. PMID:19237659 https://doi.org/10.1161/CIRCULATIONAHA.108.813576; de Weger RA, Schipper ME, Sierade Koning E, van der Weide P, Quadir R, Lahpor JR, et al. Proteomic profiling of the human failing heart after left ventricular assist device support. J Heart Lung Transplant. 2011;30(5):497–506. PMID: 21211997 https://doi.org/10.1016/j.healun.2010.11.011; Ramani R, Vela D, Segura A, McNamara D, Lemster B, Samarendra V, et al. A micro-ribonucleic acid signature associated with recovery from assist device support in 2 groups of patients with severe heart failure. J Am Coll Cardiol. 2011;58(22):2270–2278. PMID: 22093502 https://doi.org/10.1016/j.jacc.2011.08.041; Bruggink AH, de Jonge N, van Oosterhout MF, van Wichen DF, de Ko ning E, Lahpor JR, et al. Brain natriuretic peptide is produced both by cardiomyocytes and cells infiltrating the heart in patients with severe heart failure supported by a left ventricular assist device. J Heart Lung Transplant. 2006;25(2):174–180. PMID: 16446217 https://doi.org/10.1016/j.healun.2005.09.007; Torre-Amione G, Stetson SJ, Youker KA, Durand JB, Radovancevic B, Delgado RM, et al. Decreased expression of tumor necrosis factor-α in failing human myocardium after mechanical circulatory support: a potential mechanism for cardiac recovery. Circulation. 1999;100(11):1189–1193. PMID: 10484539 https://doi.org/10.1161/01.cir.100.11.1189; Hall JL, Grindle S, Han X, Fermin D, Park S, Chen Y, et al. Genomic profiling of the human heart before and after mechanical support with a ventricular assist device reveals alterations in vascular signaling networks. Physiol Genomics. 2004;17(3):283–291. PMID: 14872006 https://doi.org/10.1152/physiolgenomics.00004.2004; James KB, McCarthy PM, Thomas JD, Vargo R, Hobbs RE, Sapp S, et al. Effect of implantable left ventricular assist device on neuroendocrine activation in heart failure. Circulation. 1995;92(9Suppl):II191–II195. PMID: 7586406 https://doi.org/10.1161/01.CIR.92.9.191; Drakos SG, Athanasoulis T, Malliaras KG, Terrovitis JV, Diakos N, Koudoumas D, et al. Myocardial sympathetic innervation and long-term left ventricular mechanical unloading. JACC Cardiovasc Imaging. 2010;3(1):64–70. PMID: 20129533 https://doi.org/10.1016/j.jcmg.2009.10.008; Mann DL, Bristow MR. Mechanisms and models in heart failure: the biomechanical model and beyond. Circulation. 2005;111(21):2837–2849. PMID: 15927992 https://doi.org/10.1161/CIRCULATIONAHA.104.500546; Mann DL, Burkhoff D. Myocardial expression levels of micro-ribonucleic acids in patients with left ventricular assist devices signature of myocardial recovery, signature of reverse remodeling, or signature with no name? J Am Coll Cardiol. 2011;58(22):2279–81. PMID: 22093503 https://doi.org/10.1016/j.jacc.2011.09.007; Koitabashi N, Kass DA. Reverse remodeling in heart failure-mechanisms and therapeutic opportunities. Nat Rev Cardiol. 2011;9(3):147–157. PMID: 22143079 https://doi.org/10.1038/nrcardio.2011.172; Drakos SG, Kfoury AG, Selzman CH, Verma DR, Nanas JN, Li DY, et al. Left ventricular assist device unloading effects on myocardial structure and function: current status of the field and call for action. Curr Opin Cardiol. 2011;26(3):245–255. PMID: 21451407 https://doi.org/10.1097/HCO.0b013e328345af13; https://www.jtransplantologiya.ru/jour/article/view/463
-
17Academic Journal
Authors: R. A. Kornelyuk, I. E. Vereshchagin, D. L. Shukevich, V. I. Ganyukov, Р. А. Корнелюк, И. Е. Верещагин, Д. Л. Шукевич, В. И. Ганюков
Source: Complex Issues of Cardiovascular Diseases; Том 7, № 4S (2018); 54-65 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 7, № 4S (2018); 54-65 ; 2587-9537 ; 2306-1278 ; 10.17802/2306-1278-2018-7-4S
Subject Terms: гемодинамика, mechanical circulatory support, hemodynamics, механическая поддержка кровообращения
File Description: application/pdf
Relation: https://www.nii-kpssz.com/jour/article/view/507/375; Giacoppo D., Colleran R., Cassese S., Frangieh A.H., Wiebe J., Joner M., Schunkert H., Kastrati A., Byrne R.A. Percutaneous Coronary Intervention vs Coronary Artery Bypass Grafting in Patients with Left Main Coronary Artery Stenosis: A Systematic Review and Meta-analysis. JAMA Cardiol. 2017;2(10):1079-1088. doi:10.1001/jamacardio.2017.2895.; Myat A., Patel N., Tehrani S., Banning A.P., Redwood S.R., Bhatt D.L. Percutaneous Circulatory Assist Devices for High-Risk Coronary Intervention. JACC Cardiovasc Interv. 2015;8(2):229-244. doi:10.1016/j.jcin.2014.07.030.; Rihal C.S., Naidu S.S., Givertz M.M., Szeto W.Y., Burke J.A., Kapur N.K., Kern M., Garratt K.N., Goldstein J.A., Dimas V., Tu T.; Society for Cardiovascular Angiography and Interventions (SCAI); Heart Failure Society of America (HFSA); Society of Thoracic Surgeons (STS); American Heart Association (AHA), and American College of Cardiology (ACC). 2015 SCAI/ACC/HFSA/STS Clinical Expert Consensus Statement on the Use of Percutaneous Mechanical Circulatory Support Devices in Cardiovascular Care: Endorsed by the American Heart Assocation, the Cardiological Society of India, and Sociedad Latino Americana de Cardiologia Intervencion; Affirmation of Value by the Canadian Association of Interventional CardiologyAssociation Canadienne de Cardiologie d'intervention. J Am Coll Cardiol. 2015; 65(19):e7-e26. doi:10.1016/j.jacc.2015.03.036.; Тарасов Р.С., Неверова Ю.Н., Ганюков В.И., Иванов С.В., Барбараш О.Л., Барбараш Л.С. Результаты реваскуляризации миокарда у пациентов с острым коронарным синдромом без подъема сегмента ST при многососудистом коронарном атеросклерозе. Комплексные проблемы сердечно-сосудистых заболеваний. 2016; 3: 52-58.; Schreuder J.J., Castiglioni A., Donelli A., Maisano F., Jansen J.R., Hanania R., Hanlon P., Bovelander J., Alfieri O. Automatic intra-aortic balloon pump timing using an intrabeat dicrotic notch prediction algorithm. Ann Thorac Surg. 2005; 79 (3): 1017-1022. DOI:10.1016/j.athoracsur.2004.07.074; Mulholland J., Yarham G., Clements A., Morris C., Loja D. Mechanical left ventricular support using a 50 cc 8 Fr fibre-optic intra-aortic balloon technology: A case report. Perfusion. 2013 28 (2): 109-113. https://doi.org/10.1177/0267659112454912; Papaioannou T.G., Stefanadis C. Basic principles of the intra-aortic balloon pump and mechanisms affecting its performance. ASAIO J. 2005; 51 (3): 296-300. doi:10.1097/01.MAT.0000159381.97773.9B; Rastan A.J., Tillmann E., Subramanian S., Lehmkuhl L., Funkat A.K., Leontyev S., Doenst T., Walther T., Gutberlet M., Mohr F.W. Visceral arterial compromise during intra-aortic balloon counterpulsation therapy. Circulation. 2010; 122 (11 Suppl): S92-S99. doi:10.1161/CIRCULATIONAHA.109.929810; Sjauw K.D., Engstrom A.E., Vis M.M., van der Schaaf R.J., Baan J. Jr., Koch K.T., de Winter R.J., Piek J.J., Tijssen J.G., Henriques J.P. A systematic review and meta-analysis of intra-aortic balloon pump therapy in ST-elevation myocardial infarction: should we change the guidelines? Eur Heart J. 2009; 30(4):459-68.doi:10.1093/eurheartj/ehn602; Mishra S., Chu W.W., Torguson R., Wolfram R, Deible R., Suddath W.O., Pichard A.D., Satler L.F., Kent K.M., Waksman R. Role of Prophylactic Intra-Aortic Balloon Pump in High-Risk Patients Undergoing Percutaneous Coronary Intervention. Am J Cardiol. 2006; 98(5): 608-612. doi:10.1016/j.amjcard.2006.03.036; Briguori C., Sarais C., Pagnotta P., Airoldi F., Liistro F., Sgura F., Spanos V., Carlino M., Montorfano M., Di Mario C., Colombo A. Elective versus provisional intra-aortic balloon pumping in high-risk percutaneous transluminal coronary angioplasty. Am Heart J. 2003 Apr;145(4):700-7. https://doi.org/10.1067/mhj.2003.14; Urban P.M., Freedman R.J., Ohman E., Stone G.W., Christenson J.T., Cohen M. et al. In-hospital mortality associated with the use of intra-aortic balloon counterpulsation. The American Journal of Cardiology. 2014; 94 (2): 81-185. https://doi.org/10.1016/j.amjcard.2004.03.058; Ferguson J.J. 3rd, Cohen M., Freedman R.J., Stone G.W., Miller M.F., Joseph D.L., Ohman E.M. The current practice of intra-aortic balloon counterpulsation: results from the Benchmark Registry. J Am Coll Cardiol. 2001;38(5):145662. https://doi.org/10.1016/S0735-1097(01)01553-4; Stone G.W., Ohman E.M., Miller M.F., Joseph D.L., Christenson J.T., Cohen M. et al. Contemporary utilization and outcomes of intra-aortic balloon counterpulsation in acute myocardial infarction: The benchmark registry. J Am Coll Cardiol. 2003;41(11):1940-5. https://doi.org/10.1016/S07351097(03)00400-5; Zeymer U., Bauer T., Hamm C., Zahn R., Weidinger F., Seabra-Gomes R., Hochadel M., Marco J., Gitt A. Use and impact of intra-aortic balloon pump on mortality in patients with acute myocardial infarction complicated by cardiogenic shock: results of the Euro Heart Survey on PCI. EuroIntervention. 2011;7(4):437-41. doi:10.4244/EIJV7I4A72; Barron H.V., Every N.R., Parsons L.S., Angeja B., Goldberg R.J., Gore J.M., Chou T.M.; Investigators in the National Registry of Myocardial Infarction 2. The use of intraaortic balloon counterpulsation in patients with cardiogenic shock complicating acute myocardial infarction: data from the National Registry of Myocardial Infarction 2. Am Heart J. 2001;141(6):933-9. doi:10.1067/mhj.2001.115295; Perera D., Stables R., Thomas M., Booth J., Pitt M., Blackman D., de Belder A., Redwood S.; BCIS-1 Investigators. Elective intra-aortic balloon counterpulsation during high-risk percutaneous coronary intervention: a randomized controlled trial. JAMA. 2010;304(8):867-74. doi:10.1001/jama.2010.1190.; Patel M.R., Smalling R.W., Thiele H., Barnhart H.X., Zhou Y., Chandra P., Chew D., Cohen M., French J., Perera D., Ohman E.M. Intra-aortic balloon counterpulsation and infarct size in patients with acute anterior myocardial infarction without shock: the CRISP AMI randomized trial. JAMA; 2011; 306(12):1329-37. doi:10.1001/jama.2011.1280.; Thiele H., Zeymer U., Neumann F.-J., Ferenc M., Olbrich H.-G., Hausleiter J. et al. Intraaortic Balloon Support for Myocardial Infarction with Cardiogenic Shock. N Engl J Med. 2012;367(14):1287-96. doi:10.1056/NEJMoa1208410.; Basra S.S., Loyalka P., Kar B. Current status of percutaneous ventricular assist devices for cardiogenic shock. Curr Opin Cardiol. 2011; 26(6):548-54. doi:10.1097/HCO.0b013e32834b803c; Kapur N.K., Paruchuri V., Urbano-Morales J.A., Mackey E.E., Daly G.H., Qiao X., Pandian N., Perides G., Karas R.H. Mechanically unloading the left ventricle before coronary reperfusion reduces left ventricular wall stress and myocardial infarct size. Circulation. 2013;128(4):328-36. doi:10.1161/CIRCULATIONAHA.112.000029.; Thiele H., Lauer B., Hambrecht R., Boudriot E., Cohen H.A., Schuler G. Reversal of cardiogenic shock by percutaneous left atrial-to-femoral arterial bypass assistance. Circulation. 2001;104(24):2917-22.; Burkhoff D., Cohen H., Brunckhorst C., O'Neill W.W.; TandemHeart Investigators Group. A randomized multicenter clinical study to evaluate the safety and efficacy of the TandemHeart percutaneous ventricular assist device versus conventional therapy with intraaortic balloon pumping for treatment of cardiogenic shock. Am Heart J. 2006;152(3):469. e1-8. DOI:10.1016/j.ahj.2006.05.031; Ouweneel D.M., Henriques J.P. Percutaneous cardiac support devices for cardiogenic shock: current indications and recommendations. Heart. 2012;98(16):1246-54. doi:10.1136/heartjnl-2012-301963.; Kar B., Gregoric I.D., Basra S.S., Idelchik G.M., Loyalka P. The percutaneous ventricular assist device in severe refractory cardiogenic shock. J Am Coll Cardiol. 2011;57(6):688-96. doi:10.1016/j.jacc.2010.08.613.; Ostadal P., Mlcek M., Holy F., Horakova S., Kralovec S., Skoda J., Petru J., Kruger A., Hrachovina V., Svoboda T., Kittnar O., Reddy V.Y., Neuzil P. Direct comparison of percutaneous circulatory support systems in specific hemodynamic conditions in a porcine model. Circ Arrhythm Electrophysiol. 2012;5(6):1202-6. doi:10.1161/CIRCEP.112.973123.; Gregoric I.D., Bieniarz M.C., Arora H., Frazier O.H., Kar B., Loyalka P. Percutaneous ventricular assist device support in a patient with a postinfarction ventricular septal defect. Tex Heart Inst J. 2008; 35(1): 46–49.; Pham D.T., Al-Quthami A., Kapur N.K. Percutaneous left ventricular support in cardiogenic shock and severe aortic regurgitation. Catheter Cardiovasc Interv. 2013;81(2):399-401. doi:10.1002/ccd.24501.; Thiele H., Sick P., Boudriot E., Diederich K.W., Hambrecht R., Niebauer J., Schuler G. Randomized comparison of intra-aortic balloon support with a percutaneous left ventricular assist device in patients with revascularized acute myocardial infarction complicated by cardiogenic shock. Eur Heart J. 2005;26(13):1276-83. DOI:10.1093/eurheartj/ehi161; Raess D.H., Weber D.M. Impella 2.5. J Cardiovasc Transl Res. 2009; 2(2): 168-72. doi:10.1007/s12265-009-9099-4.; Remmelink M., Sjauw K.D., Henriques J.P., de Winter R.J., Vis M.M., Koch K.T., Paulus W.J., de Mol B.A., Tijssen J.G., Piek J.J., Baan J. Jr. Effects of mechanical left ventricular unloading by Impella on left ventricular dynamics in high-risk and primary percutaneous coronary intervention patients. Catheter Cardiovasc Interv. 2010;75(2):187-94. doi:10.1002/ccd.22263.; Remmelink M., Sjauw K.D., Henriques J.P., de Winter R.J., Koch K.T., van der Schaaf R.J., Vis M.M., Tijssen J.G., Piek J.J., Baan J. Jr. Effects of left ventricular unloading by Impella recover LP2.5 on coronary hemodynamics. Catheter Cardiovasc Interv. 2007;70(4):532-7.; Martinez C.A., Singh V., Londoño J.C., Cohen M.G., Alfonso C.E., O'Neill W.W., Heldman A.W. Percutaneous retrograde left ventricular assist support for interventions in patients with aortic stenosis and left ventricular dysfunction. Catheter Cardiovasc Interv. 2012;80(7):1201-9. doi:10.1002/ccd.24303.; Lauten A., Engström A.E., Jung C., Empen K., Erne P., Cook S., Windecker S., Bergmann M.W., Klingenberg R., Lüscher T.F., Haude M., Rulands D., Butter C., Ullman B., Hellgren L., Modena M.G., Pedrazzini G., Henriques J.P., Figulla H.R., Ferrari M. Percutaneous left-ventricular support with the Impella-2.5-assist device in acute cardiogenic shock: results of the Impella-EUROSHOCK-registry. Circ Heart Fail. 2013;6(1):2330. doi:10.1161/CIRCHEARTFAILURE.112.967224.; Maini B., Naidu S.S., Mulukutla S., Kleiman N., Schreiber T., Wohns D., Dixon S., Rihal C., Dave R., O'Neill W. Real-world use of the Impella 2.5 circulatory support system in complex high-risk percutaneous coronary intervention: the USpella Registry. Catheter Cardiovasc Interv. 2012;80(5):71725. doi:10.1002/ccd.23403.; O'Neill W.W., Kleiman N.S., Moses J., Henriques J.P., Dixon S., Massaro J., Palacios I., Maini B., Mulukutla S., Dzavík V., Popma J., Douglas P.S., Ohman M. A prospective, randomized clinical trial of hemodynamic support with Impella 2.5 versus intra-aortic balloon pump in patients undergoing high-risk percutaneous coronary intervention: the PROTECT II study. Circulation. 2012;126(14):1717-27. doi:10.1161/CIRCULATIONAHA.112.098194.; Cohen M.G., Ghatak A., Kleiman N.S., Naidu S.S., Massaro J.M., Kirtane A.J., Moses J., Magnus Ohman E., Džavík V., Palacios I.F., Heldman A.W., Popma J.J., O'Neill W. Optimizing rotational atherectomy in high-risk percutaneous coronary interventions: insights from the PROTECT ΙΙ study. Catheter Cardiovasc Interv. 2014;83(7):1057-64. doi:10.1002/ccd.25277.; Dardas P., Mezilis N., Ninios V., Theofilogiannakos E.K., Tsikaderis D., Tsotsolis N., Kolettas A., Nikoloudakis N., Pitsis A.A. ECMO as a bridge to high-risk rotablation of heavily calcified coronary arteries. Herz. 2012;37(2):225-30. doi:10.1007/s00059-011-3489-5.; Koutouzis M., Kolsrud O., Albertsson P., Matejka G., Grip L., Kjellman U. Percutaneous coronary intervention facilitated by extracorporeal membrane oxygenation support in a patient with cardiogenic shock. Hellenic J Cardiol. 2010;51(3):271-4.; Jones H.A., Kalisetti D.R., Gaba M., McCormick D.J., Goldberg S. Left ventricular assist for high-risk percutaneous coronary intervention. J Invasive Cardiol. 2012;24(10):544-50.; Kawashima D., Gojo S., Nishimura T., Itoda Y., Kitahori K., Motomura N., Morota T., Murakami A., Takamoto S., Kyo S., Ono M. Left ventricular mechanical support with Impella provides more ventricular unloading in heart failure than extracorporeal membrane oxygenation. SAIO J. 2011;57(3):169-76. doi:10.1097/MAT.0b013e31820e121c.; Koeckert M.S., Jorde U.P., Naka Y., Moses J.W., Takayama H. Impella LP 2.5 for left ventricular unloading during venoarterial extracorporeal membrane oxygenation support. J Card Surg. 2011; 26(6):666-8. doi:10.1111/j.1540-8191.2011.01338.x.; Arlt M., Philipp A., Voelkel S., Schopka S., Husser O., Hengstenberg C., Schmid C., Hilke M. Early experiences with miniaturized extracorporeal life-support in the catheterization laboratory. Eur J Cardiothorac Surg. 2012;42(5):858-63. doi:10.1093/ejcts/ezs176; Chen J.S., Ko W.J., Yu H.Y., Lai L.P., Huang S.C., Chi N.H., Tsai C.H., Wang S.S., Lin F.Y., Chen Y.S. Analysis of the outcome for patients experiencing myocardial infarction and cardiopulmonary resuscitation refractory to conventional therapies necessitating extracorporeal life support rescue. Crit Care Med. 2006; 34(4):950-7. doi:10.1097/01.CCM.0000206103.35460.1F; Ricciardi M., Moscucci M., Knight B., Zivin A., Bartlett R., Bates E. Emergency extracorporeal membrane oxygenation (ECMO)-supported percutaneous coronary interventions in the fibrillating heart. Catheter Cardiovasc Interv. 1999;48(4):402-5. https://doi.org/10.1002/(SICI)1522726X(199912)48:43.0.CO;2-3; Shammas N., Roberts S., Early G. Extracorporeal membrane oxygenation for unprotected left main stenting in a patient with totally occluded right coronary artery and severe left ventricular. J Invasive Cardiol. 2002;14(12):756-9.; Fesc G.V., Akret C., Bach V., Barone G., Durand M., Chavanon O., Hacini R., Bouvaist H., Machecourt J., Blin D. Assistance circulatoire extracorporelle percutanée dans les défaillances hémodynamiques aiguës graves: expérience monocentrique chez 100 patients consécutifs [Percutaneous extracorporeal life support in acute severe hemodynamic collapses: single centre experience in 100 consecutive patients]. Can J Cardiol. 2009; 25 (6): e179-e186.; Yamauchi T., Masai T., Takeda K., Kainuma S., Sawa Y. Percutaneous cardiopulmonary support after acute myocardial infarction at the left main trunk. Ann Thorac Cardiovasc Surg. 2009;15(2):93-97.; O'Gara P.T., Kushner F.G., Ascheim D.D., Casey Jr. D.E., Chung M.K., De Lemos J.A., Ettinger S.M., Fang J.C., Fesmire F.M., Franklin B.A., Granger C.B., Krumholz H.M. Linderbaum, J.A. Morrow D.A., Newby L.K., Ornato J.P., Ou N., Radford M.J., Tamis-Holland J.E., Tommaso C.L., Tracy C.M., Woo Y.J., Zhao D.X. 2013 ACCF/AHA guideline for the management of st-elevation myocardial infarction: A report of the American college of cardiology foundation/american heart association task force on practice guidelines. JACC. 2013; 61 (4):e78 –140. doi:. https://doi.org/10.1016/j.jacc.2012.11.019; Steg P.G., James S.K., Atar D., et al. ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J. 2012; 33(20): 2569-619. doi:10.1093/eurheartj/ehs215; S. Nuding, K. Werdan. IABP plus ECMO—Is one and one more than two? J Thorac Dis. 2017r; 9(4): 961–964. doi: [10.21037/jtd.2017.03.73]; Li Y., Yan S., Gao S., Liu M., Lou S., Liu G., Ji B., Gao B. Effect of an intra-aortic balloon pump with venoarterial extracorporeal membrane oxygenation on mortality of patients with cardiogenic shock: a systematic review and meta-analysis. Eur J Cardiothorac Surg. 2018 Sep 24. doi:10.1093/ejcts/ezy304; Cheng A., Swartz M.F., Massey H.T. Impella to unload the left ventricle during peripheral extracorporeal membrane oxygenation. ASAIO J. 2013; 59(5): 533-6. doi:10.1097/MAT.0b013e31829f0e52.; Meani P., Pappalardo F. The step forward for VA ECMO: left ventricular unloading! J Thorac Dis. 2017; 9(11): 4149–4151. doi: [10.21037/jtd.2017.10.14]; Atkinson T.M., Ohman E.M., O’Neill W.W., Rab T., Cigarroa J.E., Interventional Scientific Council of the American College of Cardiology. A Practical Approach to Mechanical Circulatory Support in Patients Undergoing Percutaneous Coronary Intervention: An Interventional Perspective. JACC Cardiovasc Interv. 2016; 9(9): 871-883. https://doi. org/10.1016/j.jcin.2016.02.046; Shlofmitz E., Shlofmitz R. High-Risk Percutaneous Coronary Interventions: First, Do No Harm. JACC Cardiovasc Interv. 2016; 9 (16): 1752-1753. https://doi.org/10.1016/j.jcin.2016.06.014
-
18Academic Journal
Authors: T. A. Khalilulin, V. M. Zacharevich, V. N. Poptsov, G. P. Itkin, A. O. Shevchenko, R. Sh. Saitgareev, A. M. Goltz, A. R. Zakiryanov, N. N. Koloskova, N. N. Abramova, N. Y. Zacharevich, E. A. Nikitina, M. A. Danilina, S. V. Gautier, Т. А. Халилулин, В. М. Захаревич, В. Н. Попцов, Г. П. Иткин, А. О. Шевченко, Р. Ш. Саитгареев, А. М, Гольц, А. Р. Закирьянов, Н. Н. Колоскова, Н. Н. Абрамова, Н. Ю. Захаревич, Е. А. Никитина, М. А. Данилина, С. В. Готье
Source: Russian Journal of Transplantology and Artificial Organs; Том 20, № 1 (2018); 13-22 ; Вестник трансплантологии и искусственных органов; Том 20, № 1 (2018); 13-22 ; 1995-1191 ; 10.15825/1995-1191-2018-1
Subject Terms: механическая поддержка кровообращения, heart transplantation, mechanical circulatory support, трансплантация сердца
File Description: application/pdf; text/html
Relation: https://journal.transpl.ru/vtio/article/view/850/687; https://journal.transpl.ru/vtio/article/view/850/743; Национальные рекомендации ОССН, РКО и РНМОТ по диагностике и лечению ХСН (четвертый пересмотр). Сердечная недостаточность. 2013; 14; 7 (81): 379–472.; Мареев ВЮ, Даниелян МО, Беленков ЮН. От имени рабочей группы исследования ЭПОХА-О-ХСН. Сравнительная характеристика больных с ХСН в зависимости от величины ФВ по результатам Российского много центрового исследования ЭПОХАО-ХСН. Сердечная недостаточность. 2006; 7 (4): 164–171.; Kormos RL, Miller LW et al. Mechanical Circulatory Support – Elsevier. 2012; 367.; Holman WL, Kormos RL, Kirklin JK. Predictors of death and transplant in patients with a mechanical circulatory support device: a multi-institutional study. Heart. Lung. Transplant. 2009; 28: 44–50.; Иткин ГП, Волкова ЕА. Разработка методики экспериментальной и клинической апробации имплантируемых осевых насосов. Трансплантология: итоги и перспективы. Под ред. С.В. Готье. Том V. 2013 год. М.–Тверь: Триада, 2014: 170–179.; Kirklin JK et al. Eighth annual INTERMACS report: Special focus on framing the impact of adverse events. Journal of Heart and Lung Transplantation. 2017; 36: 1080–1086.; Иткин ГП, Конышева ЕГ, Шемакин СЮ, Дозоров КН, Кудинов ВЛ, Быков ИВ, Селищев СВ. Теоретическое и экспериментальное рассмотрение динамических характеристик осевых насосов крови. Вестник трансплантологии и искусственных органов. 2011; 13 (4): 91–96.; Иткин ГП, Шохина ЕГ, Шемакин СЮ, Попцов ВН, Шумаков ДВ, Готье СВ. Особенности длительной механической поддержки кровообращения с помощью насосов непрерывного потока. Вестник трансплантологии и искусственных органов. 2012; 14 (2): 110–115.; Готье СВ, Иткин ГП, Шевченко АО, Халилулин ТА, Козлов ВА. Длительная механическая поддержка кровообращения как альтернатива трансплантации сердца. Вестник трансплантологии и искусственных органов. 2016; 18 (3): 128–136.; Готье СВ, Кулешов АП, Ефимов АЕ, Агапов ИИ, Иткин ГП. Оптимизация имплантируемого осевого насоса для повышения эффективности механической поддержки кровообращения. Вестник трансплантологии и искусственных органов. 2017; 19 (2): 61–68.; https://journal.transpl.ru/vtio/article/view/850
-
19Academic Journal
Authors: V. N. Poptsov, E. A. Spirina, S. G. Ukhrenkov, D. M. Bondarenko, A. A. Dogonasheva, E. Z. Aliev, В. Н. Попцов, Е. А. Спирина, С. Г. Ухренков, Д. М. Бондаренко, А. А. Догонашева, Э. З. Алиев
Source: Russian Journal of Transplantology and Artificial Organs; Том 19, № 4 (2017); 113-123 ; Вестник трансплантологии и искусственных органов; Том 19, № 4 (2017); 113-123 ; 1995-1191 ; 10.15825/1995-1191-2017-4
Subject Terms: временная механическая поддержка кровообращения, implantable left ventricular assist devices, temporary mechanical circulatory support, имплантируемый обход левого желудочка
File Description: application/pdf
Relation: https://journal.transpl.ru/vtio/article/view/835/675; Deschkа H, Holthaus AJ, Sindermann JR et al. Can perioperative right ventricular support prevent postoperative right heart failure in patients with biventricular dysfunction undergoing left ventricular assist device im plantation? J. Cardiothorac. Vasc. Anesth. 2016; 30 (3): 619–626.; John R, Lee S, Eckman P, Liao K. Right ventricular failure – a continuing problem in patients with left ventricular assist device support. J. Cardiovasc. Transl. Res. 2010; 3: 604–611.; Cushing K, Kushnir V. Gastrointestinal Bleeding Following LVAD Placement from Top to Bottom. Dig. Dis. Sci. 2016; 61 (6): 1440–1447.; Robertson J, Long B, Koyfman A. The emergency management of ventricular assist devices. Am. J. Emerg. Med. 2016; 34 (7): 1294–1301.; Castel MA, Cartana R, Cardona D et al. Long-term outcome of high-urgency heart transplant patients with and without temporary ventricular assist device support. Transplant. Procededing. 2012; 44: 2642–2644.; Barth E, Durand M, Heylbroeck C et al. Extracorporeal life support as a bridge to high-urgency heart transplantation. Clin. Transplant. 2012; 26: 484–488.; D’Alessandro C, Coldmar Jl, Lebreton G et al. Highurgency waiting list for cardiac recipients in France: single-center 8-years experience. Eur. J. Cardiothorac. Surg. 2017: 51: 271–278.; Kantrowith A. Experimental augmentation of coronary fl ow by retardation of the arterial pressure pulse. Surgery. 1953; 34 (4): 678–687.; Kapelios CJ, Terrovitis JV, Sisrfs P et al. Counterpulsation: a concept with remarkable past, an established present and challenging future. Int. J. Cardiol. 2014; 172: 318–325.; Moulopoulos SD, Topaz S, Kolff W. Diastolic balloon pumping (with carbon dioxide) in the aorta: a mechanical assistance to the failing circulation. Am. Heart. J. 1962; 63: 669–675.; Kantrowith A, Tjonneland S, Krakauer J et al. Clinical experience with cardiac assistance by means of intra aortic phases shift balloon pump. Trans. Am. Soc. Artif. Intem. Organs. 1968; 63: 669–675.; Bregman D, Nichols AB, Weiss MB et al. Percutaneous intraaortic balloon insertion. Am. J. Cardiol. 1980; 46: 261–264.; Cohen M, Urban P, Christenson JT et al. Intra-aortic balloon pump in US and non-US center: results of Benchmark Registry. Eur. Heart. J. 2012; 33: 1763–1770.; Antman EM, Anbe DT, Armstrong PW et al. ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction – executive summary. Circulation. 2004; 110: 588–636.; Anderson JL, Adams CD, Antman EM et al. ACC/AHA guidelines for the management of patients with unstable angina/non ST-elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2007; 116: e148–e304.; Steg PG, James SK, Atar D et al. ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur. Heart. J. 2012; 33: 2569–2619.; Вицукаев ВВ, Завгородний ВН, Попцов ВН, Шумаков ДВ. Механическая и медикаментозная поддержка кровообращения в хирургическом лечении постинфарктных аневризм левого желудочка. Вестник трансплантологии и искусственных органов. 2010; 4: 44–52. Vicukaev VV, Zavgorodnij VN, Popcov VN, Shumakov DV. Mekhanicheskaya i medikamentozn aya podderzhka krovoobrashcheniya v hirurgicheskom lechenii postinfarktnyh anevrizm levogo zheludochka. Vestnik transplantologii i iskusstvennyh organov. 2010; 4: 44–52.; Шумаков ДВ, Попцов ВН, Саитгареев РШ и др. Гемодинамические и эхокардиографические эффекты превентивной внутриаортальной баллонной контрпульсации при прямой реваскуляризации миокарда у больных со стенозом ствола левой коронарной артерии. Грудная и сердечно-сосудистая хирургия. 2007; 1: 24–28. Shumakov DV, Popcov VN, Saitgareev RSh i dr. Gemodinamicheskie i ehkhokardiografi cheskie ehffekty preventivnoj vnutriaortal’noj ballonnoj kontrpul’sacii pri pryamoj revaskulyarizacii miokarda u bol’nyh so stenozom stvola levoj koronarnoj arterii. Grudnaya i serdechno-sosudistaya hirurgiya. 2007; 1: 24–28.; Dyub AM, Whitlock AP, Abouzahr LL et al. Preoperative intra-aortic balloon pump in patients undergoing coronary bypass surgery; a systemic review and meta-analysis. J. Card. Surg. 2008; 23 (1): 79–86.; Lorusso R, Gelsamino S, Carella R et al. Impact of prophylactic intra-aortic balloon counter-pulsation on postoperative outcomes in high-risk cardiac surgery patients: a multicenter, propensity-score analysis. Eur. J. Cardiothorac. Surg. 2010; 38 (5): 585–591.; Parissis H, Soo A, Al-Alao B. Intra-aortic balloon pump (IABP): from the old trends and studies to the current «extended» indications of its use. J. Cardiothorac. Surg. 2012; Dec 11; 7: 128. doi:10.1186/1749-8090-7-128.; Norkiene I, Ringaitiene D, Rucinskas K et al. Intra-aortic balloon counterpulsation in decompensated cardiomyopathy patients: bridge to transplantation or assist device. Interactive Cardiovascular and Thoracic Surgery. 2007; 6: 66–70.; Gjesdal O, Gude E, Arora E et al. Intra-aortic balloon counterpulsation as a bridge to heart transplantation does not impair long-term survival. Eur. J. Heart. Fail. 2009; 11 (7): 709–714.; Castleberry AW, DeVore AD, Southerland KW et al. Assessing consequences of intraaortic balloon counterpulsation versus left ventricular assist devices at the time of heart transplantation. ASAOI. 2016; 62: 232–239.; Freed PS, Wasfi e T, Zado B, Kantrowitz A. Intraaortic balloon pumping for prolonged circulatory support. Am. J. Cardiol. 1988; 61: 554–557.; Mayer JH. Subclavian artery approach for insertion of intraaortic balloon. J. Thorac. Cardiovasc. Surg. 1978; 76: 61–63.; McBridge LR, Miller LW, Nauheim KS, Pennigton DG. Axillary artery insertion of an intra-aortic balloon pump. Ann. Thorac. Surg. 1989; 48: 874–875.; H’Doubler PB, H’Doubler WZ, Bien RC, Jansen DA. A novel technique for intra-aortic balloon pump placement via the left axillary artery in patients awaiting cardiac transplantation. Cardiovasc. Surg. 2000; 8: 463–465.; Buchanan SA, Langenburg SE, Mauney MC et al. Ambulatory intraaortic balloon counterpulsation. Ann. Thorac. Surg. 1994; 58: 1547–1549.; Cochran RP, Starkey TD, Panos AL et al. Ambulatory intraaortic balloon pump use as bridge to heart transplant. Ann. Thorac. Surg. 2002; 74: 746–752.; Thiele H, Lauer B, Hambrecht R et al. Reversal of cardiogenic shock by percutaneous left atrial-to-femoral arterial bypass assistance. Circulation. 2001; 104: 2917–2922.; Bruckner BA, Jacob LP, Gregoric ID et al. Clinical experience with the Tandem Heart Percutaneous Centricular Assist Device. Tex. Heart. Inst. J. 2008; 35 (4): 447–450.; Indelchik GM, Simpson L, Civitello AB et al. Use of the percutaneous left ventricular assist device in patients with severe refractory cardiogenic shock as a bridge to long-term left ventricular assist device implantation. J. Heart. Lung. Transplant. 2008; 27: 106–111.; Gregoric JD, Jacob LP, La Francesca S et al. The Tandem Heart as a bridge to a long-term axial-fl ow left ventricular assist device (bridge to bridge). Tex. Heart. Inst. J. 2008; 35 (2): 125–129.; La Francesca S, Palanichamy N, Kar B et al. First use of the Tendem Heart percutaneous left ventricular assist device as a short-term bridge to cardiac transplantation. Tex. Heart. Inst. J. 2006; 33 (4): 490–491.; Mandawat A, Rao SV. Percutaneous mechanical circulatory support devices in cardiogenic schock. Circ. Cardiovasc. Interv. 2017; 10: e004337.; Шумаков ВИ, Хубутия МШ, Казаков ЭН. Десятилетний опыт обхода левого желудочка при лечении острой сердечной недостаточности. Трансплантология и искусственные органы. 1997; 1: 20–21. Shumakov VI, Hubutiya MSh, Kazakov EhN. Desyatiletnij opyt obhoda levogo zheludochka pri lechenii ostroj serdechnoj nedostatochnosti. Transplantologiya i iskusstvennye organy. 1997; 1: 20–21.; Шумаков ВИ, Толпекин ВЕ, Шумаков ДВ. Искусственное сердце и вспомогательное кровообращение. М., 2003: 102–176. Shumakov VI, Tolpekin VE, Shumakov DV. Iskusstvennoe serdce i vspomogatel’noe krovoobrashchenie. M., 2003: 102–176.; Adamson RM, Dembitsky WP, Reichman RT et al. Mechanical support: assist or nemesis? J. Thorac. Cardiovasc. Surg. 1989; 98: 915–921.; Curtis JJ, Walls JT, Schmaltz RA et al. Improving clinical outcome with centrifugal mechanical assist for postcardiotomy ventricular failure. J. Artif. Organs. 1995; 19 (7): 761–765.; Nishida H, Koyanagi H. Rotary blood fl ow: paracorporeal, implantable, percutaneous? J. Artif. Organs. J. 1997; 21 (7): 589–591.; Curtis JI. Centrifugal mechanical assist for postcardiotomy ventricular failure. Sem. Thorac. Cardiovasc. Surg. 1994; 6: 140–146.; Pae WE, Miller CA, Mathews Y et al. Ventricular assist devices for postcardiothomy cardiogenic shock. J. Thorac. Cardiovasc. Surg. 1992; 104: 541–553.; Noon GP, Ball JW, Papaconstantinou HT. Clinical experience with BioMedicus centrifugal ventricular support in 172 patients. J. Artif. Organ. 1995; 19: 756–760.; Nose Y, Kawahito K, Nakazava T. Can we develop a nonpulsatile permanent blood pump? J. Artif. Organs. 1996; 20: 467–471.; Nakata K, Yoshikawa M, Takano T et al. Antithrombogenicity evaluation of a centrifugal blood pump. Artif. Organs. 2000: 24 (8): 667–670.; Takano T, Nakata K, Yoshikava M et al. Development of an antithrombogenic and antitraumatic blood pump: the Gyro C1E3. ASAIO. J. 2000; 46: 123–127.; Шумаков ВИ, Толпекин ВЕ., Казаков ЭН и др. Первый клинический опыт двухэтапной трансплантации серд ца через обход левого желудочка. Трансплантология и искусственные органы. 1997; 3: 4–6. Shumakov VI, Tolpekin VE, Kazakov EhN i dr. Pervyj klinicheskij opyt dvuhehtapnoj transplantacii serdca cherez obhod levogo zheludochka. Transplantologiya i iskusstvennye organy. 1997; 3: 4–6.; Шумаков ДВ. Механическая поддержка кровообращения в клинике. Дис. … д. м. н. 2000. Shumakov DV. Mekhanicheskaya podderzhka krovoobrashcheniya v klinike. Dis. … d. m. n. 2000.; Ichikawa S, Nose Y. Centrifugal blood pumps for various clinical needs. J. Artif. Organs. 2002; 26: 916–918.; Kehara H, Takano T, Trasaki T, Okada K. Biventricular support using a centrifugal pump in a 6 years old with fulminant myocarditis. J. Artif. Organs. 2017; 20: 166– 169.; Santise G, Petrou M, Pepper JR et al. Levitronix as a short-term salvage treatment for primary graft failure after heart transplantation. J. Heart. Lung. Transplant. 2006; 25: 495–498.; Hoshi H, Shinshi T, Takanaki S. Third-generation blood pumps with mechanical noncontact magnetic bearing. J. Artif. Organs. 2006; 30: 324–338.; Robertis F, Birks EJ, Rogers P et al. Clinical performance with Centrimag short-term ventricular assist device. J. Heart. Lung. Transplant. 2006; 25: 181–186.; De Robertis F, Rogers P, Amrani M et al. Bridge to decision using the Levitronix CentriMag short-term ventricular assist device. J. Heart. Lung. Transplant. 2008; 27: 474–478.; Asama J, Shinshi T, Hoshi H et al. A compact highly effi cient and low hemolytic centrifugal blood pump with a magnetically levitated impeller. J. Artif. Organs. 2006; 30: 160–167.; Shuhaiber JH, Jenkins D, Berman M et al. The Papworth experience with Levitronics CentriMag ventricular assist device. J. Heart. Lung. Transplant. 2008; 27: 158–164.; Haj-Yahia S, Birks EJ, Amrani M et al. Bridging patients after salvage from bridge to decision directly to transplant by means of prolonged support with the CentriMag short-term centrifugal pump. J. Thorac. Cardiovasc. Surg. 2009; 138: 227–230.; Ratcliffe MB, Bavaria JE, Wenger RK et al. Left ventricular mechanics of ejecting postischemic hearts during left ventricular circulatory assistance. J. Thorac. Cardiovasc. Surg. 1991; 101: 245–255.; McCarthy PM, Savage RM, Fraser CD et al. Hemodynamic and physiological changes during support with an implantable left ventricular assist device. J. Thorac. Cardiovasc. Surg. 1995; 109: 409–417.; Tsai FC, Marelli D, Laks H et al. Short-term bridge to heart transplant using the BVS 5000 external ventricular assist device. Am. J. Transpl. 2002; 2: 646–651.; Sung S-Y, Hsu P-S, Chen J-L et al. Prolonged use of Levitronicx left ventricular assist device as a bridge to heart transplantation. Acta Cardiol. Sin. 2015; 31: 249–252.; Barlett RH, Isherwood J, Moss RA et al. A toroidal fl ow membrane oxygenator: four day partial bypass in dogs. Surg. 1969; 20: 152–153.; Barlett RH, Noyes BSJr., Drinker PA. A simple reliable membrane oxygenator for organ perfusion. J. Appl. Physiol. 1970; 29 (5): 758–759.; Gillle JP, Bagniewski AM. Ten years of use of extracorporeal membrane oxygenation (ECMO) in the treatment of acute respiratory insuffi ciency (ARI). Trans. Am. Soc. Artif. Inern. Organs. 1976; 22: 102–109.; Hill JD, O’Brien TG, Murray JJ et al. Prolonged Extracorporeal oxygenation for acute post-traumatic respiratory failure (shock-lung syndrome): Use of Bramson Membrane Lung. N. Engl. J. Med. 1972; 286: 629–634.; Barlett RH, Burns NE, Fog SW et al. Prolonged partial venoarterial bypass: physiologic, biochemical, and hematologic responses. Surg. Forum. 1972; 23: 178–180.; Barlett RH, Gazzaniga AB, Fong SW et al. Extracorporeal membrane oxygenator support for cardiopulmonary failure. Experience in 28 cases. J. Thorac. Cardiovasc. Surg. 1977; 73 (3): 375–386.; Kittleson MM, Patel JK, Moriguchi JD et al. Heart transplant recipients supported with extracorporeal membrane oxygenation: outcomes from a single-center experience. J. Heart. Lung. Transplant. 2011; 30 (11): 1250–1256.; Yang HY, Lin CY, Tsai YT et al. Experience of heart transplantation from hemodynamically unstable brain-dead donors with extracorporeal support. Clin. Transplant. 2012; 26: 72–76.; Loisance D, Hillion ML, Deleuze P et al. Extracorporeal circulation with membrane oxygenation as a bridge to transplantation in cardiac surgical patients. Transplant. Proc. 1987; 19 (5): 3786–3788.; Fux T, Svenarud P, Grinnemo KH et al. Extracorporeal membrane oxygenation as a rescue of intractable ventricular fi brillation and bridge to heart transplantation. Eur. J. Heart. Fail. 2010;12 (3): 301–304.; Bigdeli AM, Deutsch M-A, Beiras-Fernandez A et al. ECMO after prolonged cardiopulmonary resuscitation as a successful bridge to immediate cardiac retransplant in a 6-year-old girl. Experimental and clinical transplantation. 2012; 10: 186–189.; Stehlik J, Edwards LB, Kucheryavaya AY et al. The Registry of the International Society for Heart and Lung Transplantation: 29th offi cial adult heart transplant report–2012. J. Heart. Lung. Transplant. 2012; 31: 1052– 1064.; D’Alessandro M, Laali E, Barreda JL et al. Evolution of recipient and donor profi les in cardiac transplantation: single-centre ten-year experience. Interactive Cardiovasc. Thorac. Surg. 2012; 15 (suppl. 2): S 92.; Chung JC, Tsai PR, Chou NK et al. Extracorporeal membrane oxygenation bridge to adult heart transplantation. Clin. Transplant. 2010; 24 (3): 375–380.; Wang SS, Ko WJ, Chen YS et al. Mechanical bridge with extracorporeal membrane oxygenation and ventricular assist device to heart transplantation. Artif. Organs. 2001; 25 (8): 599–602.; Di Russo GB, Clark BJ, Bridges ND et al. Prolonged extracorporeal membrane oxygenation as a bridge to cardiac transplantation. Ann. Thorac. Surg. 2000; 69 (3): 925–927.; Gurbanov E, Meng X, Cui Y et al. Evaluation ECMO in adult cardiac transplantation: can outcomes of marginal donor hearts be improved? J. Cardiovasc. Surg. (Torino). 2011; 52 (3): 419–427.; Ganslmeier P, Phillipp A, Rupprecht L et al. Percutaneous cannulation for extracorporeal life support. Thorac. Cardiovasc. Surg. 2011; 59 (2): 103–107.; Fumagalli R, Bombino M, Borelli M et al. Percutaneous bridge to heart transplantation by venoarterial ECMO and transaortic left ventricular venting. Inter. J. Artif. Organs. 2004; 27 (5): 410–413.; Seib PM, Faulkner SC, Erickson CC et al. Blade and balloon atrial septostomy for left heart decompression in patients with severe ventricular dysfunction on extracorporeal membrane oxygenation. Cather. Cardiovasc. Interv. 1999; 46 (2): 179–186.; Hong KN et al. Who is high-risk recipients? Predicting mortality after heart transplant using pretransplant Donor and Recipient risk factors. Ann. Thorac. Surg. 2011; 92: 520–527.; BarZiv SM, McCrindle BW, West LJ et al. Outcomes of pediatric patients bridged to heart transplantation from extracorporeal membrane oxygenation support. ASAIO J. 2007; 53 (1): 97–102.; Chen YS, Ko WJ, Chi NH et al. Risk factor screening scale to optimize treatment for potential heart transplant candidates under extracorporeal membrane oxygenation. Am. J. Transplant. 2004; 4 (11): 1818–1825.; Groemmer M, Aliabadi AZ, Eskandary FA et al. Extracorporeal membrane oxygenation in cardiac transplantation: rescue or jinx? Inter. Cardiovasc. Thorac. Surg. 2012; 15 (suppl. 2): S 122.; https://journal.transpl.ru/vtio/article/view/835
-
20Academic Journal
Authors: A. M. Chernyavskiy, D. V. Doronin, A. V. Fomichev, D. E. Osipov, V. A. Shmyrev, A. M. Karaskov, А. М. Чернявский, Д. В. Доронин, А. В. Фомичев, Д. Е. Осипов, В. А. Шмырев, А. М. Караськов
Source: Russian Journal of Transplantology and Artificial Organs; Том 20, № 1 (2018); 23-31 ; Вестник трансплантологии и искусственных органов; Том 20, № 1 (2018); 23-31 ; 1995-1191 ; 10.15825/1995-1191-2018-1
Subject Terms: иммуносупрессивная терапия, heart failure, mechanical circulatory support, immunosuppressive therapy, сердечная недостаточность, механическая поддержка кровообращения
File Description: application/pdf
Relation: https://journal.transpl.ru/vtio/article/view/851/688; Chernyavskiy AM, Efendiev VU, Sirota DA, Alyapkina YeM, Yefanova OS. Changes in quality of life of patients with severe coronary artery disease of left ventricle after myocardial revascularization. Patologiya krovoobrashcheniya i kardiokhirurgiya = Circulation Pathology and Cardiac Surgery. 2014; 18 (2): 22–26. [In Russ, English abstract] DOI: http://dx.doi.org/10.21688/1681-3472-2014-2-22-26.; Агеев ФТ, Беленков ЮН, Фомин ИВ и др. Распространенность хронической сердечной недостаточности в Европейской части Российской Федерации – данные ЭПОХА–ХСН. Сердечная недостаточность. 2006; 7 (1): 112–115.; Даниелян МО. Прогноз и лечение хронической сердечной недостаточности (данные 20-летнего наблюдения). Автореф. дис. … канд. мед. наук. М., 2001.; Иммуносупрессия при трансплантации солидных органов. Под ред. С.В. Готье. Тверь: Триада, 2011: 472.; The Registry of the International Society for Heart and Lung Transplantation: Thirtieth Offi cial Adult Heart Transplant Report – 2013; Focus Theme: Age. J. Heart Lung Transplant. 2013; 32; 10: 951–964.; Трансплантация сердца: Руководство для врачей. Под ред. В.И. Шумакова. М: Медицинское информационное агентство, 2006: 400.; Готье СВ. Трансплантология XXI века: высокие технологии в медицине и инновации в биомедицинской науке. Вестник трансплантологии и искусственных органов. 2017; XIX (3): 10–32.; Kirklin JK, Me Griffi n JD, Yong JB. Heart transplantation. 2002: 883.; Jeevanandam V, Furukawa S, Prendergast TW, Todd BA, Eisen HJ, McClurken JB. Standard criteria for an acceptable donor heart are restricting heart transplantation. Ann. Thorac. Surg. 1996; 62: 1268–1275.; Etz CD, Welp HA, Tjan TD et al. Medically refractory pulmonary hypertension: treatment with nonpulsatile left ventricular assist devices. Ann. Thorac. Surg. 2007; 83: 1697–1709.; Zimpfer D, Zrunek P, Roethy W et al. Left ventricular assist devices decrease fi xed pulmonary hypertension in cardiac transplant candidates. J. Thorac. Cardiovasc. Surg. 2007; 133: 689–695.; Novitzky D. Donor management: state of the art. Transplant. Proc. 1997; 29: 3773–3775.; Kono T, Nishina T, Morita H, Hirota Y, Kawamura K, Fujiwara A. Usefulness of low-dose dobutamine stress echocardiography for evaluating reversibility of brain death-induced myocardial dysfunction. Am. J. Cardiol. 1999; 84: 578–582.; Young JB, Naftel DC, Bourge RC, Kirklin JK, Clemson BS, Porter CB et al. Matching the heart donor and heart transplant recipient. J. Heart. Lung. Tranplant. 1994; 13: 353–365.; Busson M, N’Doyle P, Benoit G, Hannoun L, Adam R, Pavie A et al. Donor factors infl uencing organ transplant prognosis. Transplant. Proc. 1995; 27: 1662–1664.; Novick RJ, Bennett LE, Meyer DM, Hosenpud JD. Infl uence of graft ischemic time and donor age on survival after lung transplantation. J. Heart. Lung. Transplant. 1999; 18: 425–431.; Bennett LE, Edwards EB, Hosenpud JD. Transplantation with older donor hearts for presumed «stable» recipients. J. Heart. Lung. Transplant. 1998; 17: 901–905.; Del Rizzo DF, Menkis AH, Pfl ugfelder PW, Novick RJ, McKenzie FN, Boyd WD et al. The role of donor age and ischemic time on survival following orthotopic heart transplantation. J. Heart. Lung. Transplant. 1999; 18: 310–319.; Patel JK, Kobashigawa JA. Should we be doing routine biopsy after heart transplantation in o new era of antirejection? Curr. Opin. Cardiol. 2006; 21 (2): 127–131.; Hollenberg SM, Klein LW, Parrillo JE et al. Coronary endothelial dysfunction after heart transplantation predicts allograft vasculopathy and cardiac death. Circulation. 2001; 104: 3091–3096.; The Registry of The International Society for Heart and Lung Transplantation: 29th annual report. J. Heart. Lung. Transplant. 2012; 31 (10): 1045–1095.; Национальные клинические рекомендации. Трансплантация сердца. Общероссийская общественная организация трансплантологов «Российское трансплантологическое общество». М., 2013: 2.; Hetzer R, Delmo Walter EM. Trends and outcomes in heart transplantation: the Berlin experience. HSR Proceeding in Intensive Care Cardiovascular Anesthesia. 2013; 5 (2): 76–80.; https://journal.transpl.ru/vtio/article/view/851