Showing 1 - 20 results of 30 for search '"метаповерхность"', query time: 0.68s Refine Results
  1. 1
  2. 2
    Academic Journal

    Source: Interactive science; № 2(78); 73-77 ; Интерактивная наука; № 2(78); 73-77 ; ISSN: 2414-9411 ; 2414-9411 ; ISSN(electronic Version): 2500-2686 ; 2500-2686

    File Description: text/html

    Relation: info:eu-repo/semantics/altIdentifier/pissn/2414-9411; info:eu-repo/semantics/altIdentifier/eissn/2500-2686; Monthly international scientific journal Interactive science Issue 2(78); https://interactive-plus.ru/e-articles/853/Action853-559399.pdf; Jacquelyn W.Z. Targeted treatment of cancer with radiofrequency electromagnetic fields amplitude-modulated at tumor-specific frequencies / W.Z. Jacquelyn, J. Hugo, B. Pasche // Chin J Cancer. ‒ 2013. ‒ №32 (11). ‒ P. 573–581. ‒ DOI 10.5732/cjc.013.10177; Trock D.H. The effect of pulsed electromagnetic fields in the treatment of osteoarthritis of the knee and cervical spine. Report of randomized, double blind, placebo controlled trials / D.H. Trock, A.J. Bollet, R. Markoll // J Rheumatol. ‒ 1994. ‒ №21. ‒ P. 1903–1911.; Aaron R.K. Treatment of nonunions with electric and electromagnetic fields / R.K. Aaron, D.M. Ciombor, B.J. Simon // Clin Orthop Relat Res. ‒ 2004. ‒ №419. ‒ P. 21–29.; Hronik-Tupaj M. Osteoblastic differentiation and stress response of human mesenchymal stem cells exposed to alternating current electric fields / M. Hronik-Tupaj, W.L. Rice, M. Cronin-Golomb [et al.] // Biomed Eng Online. ‒ 2011. ‒ №10. ‒ P. 9.; Mirza A.N. Radiofrequency ablation of solid tumors / A.N. Mirza, B.D. Fornage, N. Sneige [et al.] // Cancer J. ‒ 2001. ‒ №7. ‒ P. 95.; Ripley R.T. Sequential radiofrequency ablation and surgical debulking for unresectable colorectal carcinoma: thermo-surgical ablation / R.T. Ripley, C. Gajdos, A.E. Reppert [et al.] // J Surg Oncol. ‒ 2013. ‒ №107. ‒ P. 144–147.; Stupp R. Novottf-100a versus physician's choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality / R. Stupp, E.T. Wong, A.A. [et al.] // Kanner Eur J Cancer. ‒ 2012. ‒ №48. ‒ P. 2192–2202.; Barbault A. Amplitude-modulated electromagnetic fields for the treatment of cancer: discovery of tumor-specific frequencies and assessment of a novel therapeutic approach / A. Barbault, F.P. Costa, B. Bottger [et al.] // J Exp Clin Cancer Res. ‒ 2009. ‒ 28.; Watson J.M. Selective potentiation of gynecologic cancer cell growth in vitro by electromagnetic fields / J.M. Watson, E.A. Parrish, C.A. Rinehart // Gynecol Oncol. ‒ 1998. ‒ №71. ‒ P. 64–71.; Barbault F.P. Amplitude-modulated electromagnetic fields for the treatment of cancer: discovery of tumor-specific frequencies and assessment of a novel therapeutic approach / F.P. Barbault, B. Bottger Costa // J. Exp. Clin. Cancer Res. ‒ 2009. ‒ №28. ‒ P. 51; Vedruccio C. Non invasive radiofrequency diagnostics of cancer. The bioscanner-trimprob technology and clinical applications / C. Vedruccio, C.R. Vedruccio // J. Phys. Conf. Ser. ‒ 2011.; Tan C. Cancer Diagnosis Using Terahertz GrapheneMetasurface-Based Biosensor with Dual-Resonance Response / C. Tan, S. Wang, S. Li [et al.].; Zhu W. Black phosphorus terahertz sensing based on photonic spin Hall effect / W. Zhu, H. Xu, J. Pan [et al.] // Opt. Express. ‒ 2020. ‒ №28. ‒ P. 25869–25878.; Reina A. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition / A. Reina, X. Jia, J. Ho [et al.] // Nano Lett. ‒ 2009. ‒ №9. ‒ P. 30–35.; Wang Z. Fast-printed, large-area and low-cost terahertz metasurface using laser-induced graphene / Z. Wang, G. Wang, B. Hu [et al.] // Carbon. ‒ 2022. ‒ №187. ‒ P. 256–265.; Shahil K.M. Graphene-multilayer graphene nanocomposites as highly efficient6 thermal interface materials / K.M. Shahil, A.A. Balandin // Nano Lett. ‒ 2012. №12. ‒ P. 861–867 [CrossRef].; Mou N. Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces. / N. Mou, S. Sun, H. Dong [et al.] // Opt. Express. ‒ 2018. ‒ №26. ‒ P. 11728–11736 [CrossRef].; Chen C.F. Controlling inelastic light scattering quantum pathways in graphene / C.F. Chen, C.H. Park, B.W. Boudouris [et al.] // Nature. ‒ 2011. ‒ №471. ‒ P. 617–620 [CrossRef].; Garcia de Abajo F.J. Graphene plasmonics: Challenges and opportunities / F.J. Garcia de Abajo // ACS Photonics. ‒ 2014. ‒ №1. ‒ P. 135–152.; Jafari M. Cell-specific frequency as a new hallmark to early detection of cancer and efficient therapy: Recording of cancer voice as a new horizon / M. Jafari, M. Hasanzadeh // Journal of Biomedicine and Pharmocotherapy. ‒ 2020. ‒ Vol. 122.; Jornet J.M. Graphene-based nano-antennas for electromagnetic nanocommunications in the terahertz band Proceedings of the Fourth European Conference on Antennas and Propagation / J.M. Jornet, I.F. Akyildiz // IEEE. ‒ 2010. ‒ P. 1–5.; Ziegler K.J. Developing implantable optical biosensors / K.J. Ziegler // Trends Biotechnol. ‒ 2005. ‒ №23 (9). ‒ P. 440–444.; Abel P.U. Biosensors for in vivo glucose measurement: can we cross the experimental stage / P.U. Abel, T. von Woedtke // Biosens. Bioelectron. ‒ 2002. ‒ №17 (11–12). ‒ P. 1059–1070.

  3. 3
    Academic Journal

    Contributors: The work was carried out within the framework of the State Research Program “Photonics and Electronics for Innovation”, Subprogram “Opto- and Microwave Electronics”., Работа выполнена в рамках Государственной программы научных исследований «Фотоника и электроника для инноваций», подпрограмма «Опто- и СВЧ-электроника».

    Source: Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series; Том 58, № 1 (2022); 110-119 ; Известия Национальной академии наук Беларуси. Серия физико-математических наук; Том 58, № 1 (2022); 110-119 ; 2524-2415 ; 1561-2430 ; 10.29235/1561-2430-2022-58-1

    File Description: application/pdf

    Relation: https://vestifm.belnauka.by/jour/article/view/634/525; Asadchy, V. Bianisotropic metasurfaces: physics and applications / V. Asadchy, A. Díaz-Rubio, S. Tretyakov // Nanophotonics 2018. – 2018. – Vol. 7, № 6. – P. 1069-1094. https://doi.org/10.1515/nanoph-2017-0132; Planar broadband Huygensꞌ metasurfaces for wave manipulations / F. S. Cuesta [et. al.] // IEEE Transactions on Antennas and Propagation. – 2018. – Vol. 66, № 12. – P. 7117–7127. https://doi.org/https://doi.org/10.1109/TAP.2018.2869256; Niemi, T. Synthesis of Polarization Transformers / T. Niemi, A. O. Karilainen, S. A. Tretyakov // IEEE Transactions on Antennas and Propagation. – 2013. – Vol. 61, № 6. https://doi.org/10.1109/TAP.2013.2252136; Achieving wide-band linear-to-circular polarization conversion using ultra-thin bilayered metasurfaces / Y. Li [et al.] // J. Appl. Phys. – 2015. – Vol. 117, № 4. – P. 04451. https://doi.org/10.1063/1.4906220; Metallic Helix Array as a Broadband Wave Plate / C. Wu [et al.] // Phys. Rev. Lett. – 2011. – Vol. 107, № 17. – P. 177401. https://doi.org/10.1103/PhysRevLett.107.177401; Федоров, Ф. И. Теория гиротропии / Ф. И. Федоров. – Минск: Наука и техника, 1976. − 456 с.; Бокуть, Б. В. К феноменологической теории естественной оптической активности / Б. В. Бокуть, А. Н. Сердюков // Журн. эксперим. и теор. физики. – 1971. – Т. 61, № 5. − С. 1808−1813.; Проектирование метаматериалов на основе планарных спиралей в СВЧ-диапазоне / И. В. Семченко [и др.] // Изв. Гомел. гос. ун-та им. Ф. Скорины. – 2020. – № 3 (120). – С. 154–160.; Determining polarizability tensors for an arbitrary small electromagnetic scatterer / V. S. Asadchy [et. al.] // Photon. Nanostruct. – Fundam. Appl. – 2014. – Vol. 12. – P. 298–304. https://doi.org/10.1016/j.photonics.2014.04.004; Преобразование поляризации прошедшей СВЧ-волны в бианизотропном метаматериале на основе планарных спиралей [Электронный ресурс] / А. Ю. Кравченко [и др.] // Науч. конф., посвящ. 110-летию со дня рождения Ф. И. Федорова (Гомель, 25 июня 2021 г.): сб. материалов. – Гомель: ГГУ им. Ф. Скорины, 2021. – C. 78–83. – Режим доступа: http://elib.gsu.by/jspui/handle/123456789/25087; Electromagnetics of Bianisotropic Materials: Theory and Applications / A. N. Serdyukov [et. al.]. – London: Gordon and Breach Publishing Group [etc.], 2001. – 337 p.; Семченко, И. В. Электромагнитные волны в метаматериалах и спиральных структурах / И. В. Семченко, С. А. Хахомов. – Минск: Беларус. навука, 2019. – 279 с.; Семченко, И. В. Преобразование поляризации электромагнитных волн спиральными излучателями / И. В. Семченко, С. А. Хахомов, А. Л. Самофалов // Радиотехника и электроника. – 2007. – Т. 52, № 8. – C. 917−922.; Семченко, И. В. Оптимальная форма спирали: равенство диэлектрической, магнитной и киральной восприимчивостей / И. В. Семченко, С. А. Хахомов, А. Л. Самофалов // Изв. высш. учеб. заведений. Физика. – 2009. – Т. 52, № 5. – С. 30–36.; Modeling of Spirals with Equal Dielectric, Magnetic, and Chiral Susceptibilities / E. Saenz [et. al.] // Electromagnetics. – 2008. – Vol. 28, № 7. – P. 476–493. https://doi.org/10.1080/02726340802322528; Semchenko, I. V. Optimal Shape of Spiral: Equality of Dielectric, Magnetic and Chiral Properties / I. V. Semchenko, S. A. Khakhomov, A. L. Samofalov // META’08, Metamaterials for Secure Information and Communication Technologies: proceedings, Marrakesh, Morocco, 7−10 May 2008. − Paris, France, 2008. – P. 71–80.; Sihvola, A. H. Bi-isotropic constitutive relations / A. H. Sihvola, I. V. Lindell // Microwave Opt. Technol. Lett. – 1991. – Vol. 4, № 8. – P. 195–297. https://doi.org/10.1002/mop.4650040805; Tretyakov, S. Analytical Modeling in Applied Electromagnetics / S. Tretyakov. – Artech House, 2003. – 284 p.; Lindell, I. V. Electromagnetic Waves in Chiral and Bi-isotropic Media / I. V. Lindell. – Artech House, 1994. – 332 p.; Аззам, Р. Эллипсометрия и поляризованный свет / Р. Аззам, Н. Башара. – М.: Мир, 1981. – 583 с.; https://vestifm.belnauka.by/jour/article/view/634

  4. 4
    Academic Journal

    Contributors: The work was performed at the Сenter for Collective Usage "Applied Electrodynamics and Antenna Measurements" of the Southern Federal University, Russia, and was financially supported by the Russian Science Foundation, Project no. 16-19-10537-P., Работа выполнена в ЦКП "Прикладная электродинамика и антенные измерения" Южного федерального университета по гранту Российского научного фонда. Проект № 16-19-10537-П.

    Source: Journal of the Russian Universities. Radioelectronics; Том 24, № 4 (2021); 57-67 ; Известия высших учебных заведений России. Радиоэлектроника; Том 24, № 4 (2021); 57-67 ; 2658-4794 ; 1993-8985

    File Description: application/pdf

    Relation: https://re.eltech.ru/jour/article/view/542/555; Thin AMC Structure for Radar Cross-Section Reduction / M. Paquay, J.-C. Iriarte, I.Ederra, R. Gonzalo, P. de Maagt // IEEE Trans. on Ant. and Prop. 2007. Vol. 55, iss. 12. P. 3630-3638. doi:10.1109/tap.2007.910306; Chen W., Balanis C. A., Birtcher C. R. Checkerboard EBG Surfaces for Wideband Radar Cross Section Reduction // IEEE Trans. on Ant. and Prop. 2015. Vol. 63, iss. 6. P. 2636–2645. doi:10.1109/tap.2015.2414440; Chen W., Balanis C. A., Birtcher C. R. Dual WideBand Checkerboard Surfaces for Radar Cross Section Reduction // IEEE Trans. on Ant. and Prop. 2016. Vol. 64, iss. 9. P. 4133–4138. doi:10.1109/tap.2016.2583505; Jiang W., Xue Y., Gong S.-X. Polarization Conversion Metasurface for Broadband Radar Cross Section Reduction // Progress In Electromagnetics Research Lett. 2016. Vol. 62. P. 9–15. doi:10.2528/pierl16060504; Broadband Radar Cross-Section Reduction using Polarization Conversion Metasurface / Q. Zheng, C. Guo, H. Li, J. Ding // Intern. J. of Microwave and Wireless Technologies. 2018. Vol. 10, iss. 2. P. 197-206. doi:10.1017/s1759078717001477; Петров Б. М., Семенихин А. И. Управляемые импедансные покрытия и структуры // Зарубежная радиоэлектроника. 1994. № 6. С. 9–16.; Giovampaola C. D., Engheta N. Digital metamaterials // Nature Materials. 2014. Vol. 13, iss. 12. P. 1115–1121. doi:10.1038/nmat4082; Coding metamaterials, digital metamaterials and programmable metamaterials / T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, Q. Cheng // Light: Science & Applications. 2014. Vol. 3, iss. 10. P. e218–e218. doi:10.1038/lsa.2014.99; Broadband Radar Cross-Section Reduction Using AMC Technology / J. C. I. Galarregui, A. T. Pereda, J. L. M. de Falcon, I. Ederra, R. Gonzalo, P. de Maagt // IEEE Trans. on Ant. and Prop. 2013. Vol. 61, iss. 12. P. 6136–6143. doi:10.1109/tap.2013.2282915; Edalati A., Sarabandi K. Wideband, Wide Angle, Polarization Independent RCS Reduction Using Nonabsorptive Miniaturized-Element Frequency Selective Surfaces / IEEE Trans. on Ant. and Prop. 2014. Vol. 62, iss. 2. P. 747–754. doi:10.1109/tap.2013.2291236; A Wideband and Polarization-Independent Metasurface Based on Phase Optimization for Monostatic and Bistatic Radar Cross Section Reduction / J. Su, Y. Lu, Z. Li, R. Zhang, Y. Yang // Intern. J. of Ant. and Prop. 2016. Vol. 2016. Art. ID 7595921. P. 1-9. doi:10.1155/2016/7595921; Zhuang Y.-Q., Wang G.-M., Xu H.-X. Ultra-Wideband RCS Reduction using Novel Configured Chessboard Metasurface // Chinese Physics B. 2017. Vol. 26, iss. 5. Art. ID 054101. 7 p. doi:10.1088/1674-1056/26/5/054101; Libi Mol V. A. H., Aanandan C. K. Wideband Radar Cross Section Reduction using Artificial Magnetic Conductor Checkerboard Surface // Progress In Electromagnetics Research M. 2018. Vol. 69. P. 171–183. doi:10.2528/pierm18030303; Design of a Low Scattering Metasurface for Stealth Applications / T. A. Khan, J. Li, J. Chen, M. U. Raza, A. Zhang // Materials. 2019. Vol. 12, iss. 18. Art. ID 3031. doi:10.3390/ma12183031; Taher Al-Nuaimi M. K., Hong W. Monostatic RCS Reduction at mmWaves // Asia-Pacific Microwave Conf. (APMC), Nanjing, China, 6-9 Dec. 2015. Acc. № 15803186. doi:10.1109/apmc.2015.7413385; Ultrawideband Monostatic and Bistatic RCS Reductions for Both Copolarization and Cross Polarization Based on Polarization Conversion and Destructive Interference / Y. Lu, J. Su, J. Liu, Q. Guo, H. Yin, Z. Li, J. Song // IEEE Trans. on Ant. and Prop. 2019. Vol. 67, iss. 7. P. 4936–4941. doi:10.1109/tap.2019.2911185; Cylindrically Curved Checkerboard Surfaces for Radar Cross-Section Reduction / W. Chen, C. A. Balanis, C. R. Birtcher, A. Y. Modi // IEEE Ant. and Wireless Prop. Lett. 2018. Vol. 17, iss. 2. P. 343–346. doi:10.1109/lawp.2018.2789906; Reduction and Cancellation of the RCS of Cylindrical Surfaces using Conformal Digital 1-bit Meta-covers/ A. I. Semenikhin, D. V. Semenikhina, Yu. V. Yukhanov, P. V. Blagovisnyy // Intern. Symp. ELMAR. Zadar, Croatia, 23-25 Sept. 2019. P. 167-170. doi:10.1109/elmar.2019.8918812; Broadband RCS Reduction using Digital Impedance Metasurfaces with 2-bit Coding of Axes of Anisotropy and Eigen Reactances / A. I. Semenikhin, D. V. Semenikhina, Yu. V. Yukhanov, P. V. Blagovisnyy // Progress in Electromagnetics Research Symp. (PIERS). Toyama, Japan, 1-4 Aug. 2018. doi:10.23919/piers.2018.8597701; Block Principle of Constructing and Estimating of the RCS Reduction of Nonabsorbing Broadband 2 Bit Anisotropic Digital Meta-Coatings / A. I. Semenikhin, D. V. Semenikhina, Yu. V. Yukhanov, P. V. Blagovisnyy // 7th All-Russian Microwave Conf. (RMC), Moscow, 25-27 Nov. 2020. P. 132-134. doi:10.1109/rmc50626.2020.9312245; https://re.eltech.ru/jour/article/view/542

  5. 5
  6. 6
    Academic Journal

    Contributors: Работа выполнена при частичной поддержке гранта министерства образования и науки Украины № 16БФ052-04.

    Source: Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika; Том 62, № 8 (2019); 455-467
    Известия высших учебных заведений. Радиоэлектроника; Том 62, № 8 (2019); 455-467

    File Description: application/pdf

  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20