Showing 1 - 6 results of 6 for search '"метал-каталітичне хімічне травлення"', query time: 0.51s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
    Academic Journal

    Contributors: Національний університет “Львівська політехніка”, Lviv Polytechnic National University

    Subject Geographic: Lviv

    File Description: 47-52; application/pdf; image/png

    Relation: Chemistry, Technology and Application of Substances, 1 (2), 2019; 1. Nichkalo, S., Druzhinin, A., Evtukh, A., & Steblova, O. (2017). Silicon nanostructures produced by modified MacEtch method for antireflective Si surface. Nanoscale research letters, 12(1), 106.; 2. Han, H., Huang, Z., & Lee, W. (2014). Metalassisted chemical etching of silicon and nanotechnology applications. Nanotoday, 9(3), 271–304.; 3. Huang, Z., Geyer, N., Werner, P., De Boor, J., & Gösele, U. (2011). Metal‐Assisted Chemical Etching of Silicon: A Review: In memory of Prof. Ulrich Gösele. Advanced materials, 23(2), 285–308.; 4. Wu, H. L., Chen, C. H., & Huang, M. H. (2008). Seed-mediated synthesis of branched gold nanocrystals derived from the side growth of pentagonal bipyramids and the formation of gold nanostars. Chemistry of Materials, 21(1), 110–114.; 5. Ashrafabadi, S., & Eshghi, H. (2018). Singlecrystalline Si nanowires fabrication by one-step metal assisted chemical etching: The effect of etching time and resistivity of Si wafer. Superlattices and Microstructures, 120, 517–524.; 6. Huang Z., Geyer N., Werner P., de Boor J., and Gösele U. (2011). Metal-assisted chemical etching of silicon: A review. Advanced Materials, 23, 285–308.; 7. Wu, H. L., Chen, C. H., & Huang, M. H. (2008). Seed-mediated synthesis of branched gold nanocrystals derived from the side growth of pentagonal bipyramids and the formation of gold nanostars. Chemistry of Materials, 21(1), 110–114.; 8. Druzhinin, A., Yerokhov, V., Nichkalo, S., & Berezhanskyi, Y. (2016). Micro- and nanotextured silicon for antireflective coatings of solar cells. In Journal of Nano Research, 39, 89–95.; 9. Balderas-Valadez, R. F., Agarwal, V., & Pacholski, C. (2016). Fabrication of porous siliconbased optical sensors using metal-assisted chemical etching. RSC Advances, 6(26), 21430–21434.; 11. Geyer, N., Fuhrmann, B., Huang, Z., de Boor, J., Leipner, H. S., & Werner, P. (2012). Model for the mass transport during metal-assisted chemical etching with contiguous metal films as catalysts. The journal of physical chemistry C, 116(24), 13446–13451.; 12. Chen, J. M., Chen, C. Y., Wong, C. P., & Chen, C. Y. (2017). Inherent formation of porous ptype Si nanowires using palladium-assisted chemical etching. Applied Surface Science, 392, 498–502.; 13. Zhang, C., Lin, K., Huang, Y., & Zhang, J. (2017). Graphene-Ag hybrids on laser-textured Si surface for SERS detection. Sensors, 17(7), 1462.; 14. Huang, Z., Zhang, X., Reiche, M., Liu, L., Lee, W., Shimizu, T., & Gösele, U. (2008). Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching. Nano letters, 8(9), 3046–3051.; 15. Wei, Q., Shi, Y. S., Sun, K. Q., & Xu, B. Q. (2016). Pd-on-Si catalysts prepared via galvanic displacement for the selective hydrogenation of parachloronitrobenzene. Chemical Communications, 52(14), 3026–3029.; 16. Djokić, S. S., & Cadien, K. (2015). Galvanic deposition of silver on silicon surfaces from fluoride free aqueous solutions. ECS Electrochemistry Letters, 4(6), D11–D13.; 17. Fransaer, J., Vereecken, P. M., & Oskam, G. (Eds.). (2015, December). Semiconductors, Metal Oxides, and Composites: Metallization and Electrodeposition of Thin Films and Nanostructures 3. The Electrochemical Society.; 18. Gutes, A., Laboriante, I., Carraro, C., & Maboudian, R. (2010). Palladium nanostructures from galvanic displacement as hydrogen peroxide sensor. Sensors and Actuators B: Chemical, 147(2), 681–686.; 19. Carraro, C., Maboudian, R., & Magagnin, L. (2007). Metallization and nanostructuring of semiconductor surfaces by galvanic displacement processes. Surface Science Reports, 62(12), 499–525.; 20. Gutés, A., Carraro, C., & Maboudian, R. (2011). Ultrasmooth gold thin films by self-limiting galvanic displacement on silicon. ACS applied materials & interfaces, 3(5), 1581–1584.; 21. Sayed, S. Y., Wang, F., Malac, M., Meldrum, A., Egerton, R. F., & Buriak, J. M. (2009). Heteroepitaxial growth of gold nanostructures on silicon by galvanic displacement. ACS nano, 3(9), 2809–2817.; 22. Kuntyi, O., Shepida, M., Sus, L., Zozulya, G., & Korniy, S. (2018). Modification of Silicon Surface with Silver, Gold and Palladium Nanostructures via Galvanic Substitution in DMSO and DMF Solutions. Chemistry & Chemical Technology, 12(3), 305–309.; 23. Itasaka, H., Nishi, M., Shimizu, M., & Hirao, K. (2016). Growth of Nanogold at Interfaces between Locally Induced Naked Silicon Surfaces and Pure HAuCl4 Solutions. Journal of The Electrochemical Society, 163(14), D743–D746.; 24. Dobrovets’ka, O. Y., Kuntyi, O. I., Zozulya, G. I., Saldan, I. V., & Reshetnyak, O. V. (2015). Galvanic deposition of gold and palladium on magnesium by the method of substitution. Materials Science, 51(3), 418–423.; 25. Wang, Y. C., Lin, J. Y., Wang, C. H., Huang, P. L., Lee, S. L., & Chang, J. K. (2014). Formation of metal coatings on magnesium using a galvanic replacement reaction in ionic liquid. RSC Advances, 4(67), 35298–35301.; 26. Simeonova, S., Georgiev, P., Exner, K. S., Mihaylov, L., Nihtianova, D., Koynov, K., & Balashev, K. (2018). Kinetic study of gold nanoparticles synthesized in the presence of chitosan and citric acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 557, 106–115.; Шепіда М. В. Вплив умов гальванічного заміщення у розчинах ДМСО на розміри наночастинок золота, фіксованих на поверхні кремнію / М. В. Шепіда // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2019. — Том 2. — № 1. — С. 47–52.; https://ena.lpnu.ua/handle/ntb/46381; Shepida M. V. Influence of galvanic replacement conditions in DMSO solutions on the sizes of gold nanoparticles fixed on the surface of silicon / M. V. Shepida // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 2. — No 1. — P. 47–52.

  6. 6
    Academic Journal

    Source: Information and telecommunication sciences : international research journal, 2017, Vol. 8, N. 1(14)

    File Description: Pp. 51-56; application/pdf

    Relation: Formation of antireflective silicon surfaces by electrochemical and chemical methods / Stepan I. Nichkalo, Valeriy Y. Yerokhov, Anatoly A. Druzhinin, Olga V. Ierokhova // Information and telecommunication sciences : international research journal. – 2017. – Vol. 8, N. 1(14). – Pp. 51–56. – Bibliogr.: 28 ref.; https://ela.kpi.ua/handle/123456789/37461; https://doi.org/10.20535/2411-2976.12017.51-56