-
1Academic Journal
Authors: D. G. Muratov, V. V. Sleptsov, L. V. Kozhitov, I. V. Zaporotskova, A. V. Popkova, A. O. Diteleva, D. Yu. Kukushkin, R. A. Tsyrkov, A. V. Zorin, Д. Г. Муратов, В. В. Слепцов, Л. В. Кожитов, И. В. Запороцкова, А. В. Попкова, А. О. Дителева, Д. Ю. Кукушкин, Р. А. Цырков, А. В. Зорин
Contributors: The work was supported by the Russian Ministry of Science and Higher Education, through state assignment No. FSFF-2023-0008., Работа выполнена в рамках государственного задания Минобрнауки России, номер темы FSFF-2023-0008.
Source: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 27, № 3 (2024); 199-222 ; Известия высших учебных заведений. Материалы электронной техники; Том 27, № 3 (2024); 199-222 ; 2413-6387 ; 1609-3577
Subject Terms: нанотехнологии, ZIF-67, organic linkers, metal ions, electrodes for hybrid supercapacitors, metal-carbon nanocomposites, pyrolysis, electrode material, hybrid capacitor, carbon matrix, thin-film technology, nanotechnology, органические линкеры, ионы металлов, электроды для гибридных суперконденсаторов, металлоуглеродные нанокомпозиты, пиролиз, электродный материал, гибридный конденсатор, углеродная матрица, тонкопленочная технология
File Description: application/pdf
Relation: https://met.misis.ru/jour/article/view/582/468; Козадеров О.А. Современные химические источники тока. СПб.: Лань; 2017. 132 с.; Choi J.U., Voronina N., Sun Y.-K., Myung S.-T. Recent progress and perspective of advanced high-energy co-less Ni-rich cathodes for Li-ion batteries: Yesterday, today, and tomorrow. Advanced Energy Materials. 2020; 10(42): 2002027. https://doi.org/10.1002/aenm.202002027; Кицюк Е.П. Исследование и разработка процессовформирования наноструктурированных электродов электрохимических устройств накопления энергии. Дис. канд. техн. наук. Москва; 2017. 166 с.; Reitz C., Breitung B., Schneider A., Wang D., Von L.M., Leichtwei T., Janek J., Hahn H., Brezesinski T. Hierarchical carbon with high nitrogen doping level: a versatile anode and cathode host material for long-life lithium-ion and lithium-sulfur batteries. ACS Applied Materials & Interfaces. 2016; 8(16): 10274—10282. https://doi.org/10.1021/acsami.5b12361; Zhan F., Wang H., He Q., Xu W., Chen J., Ren X., Wang H., Liu Sh., Han M., Yamauchi Y., Chen L. Metal–organic frameworks and their derivatives for metal-ion (Li, Na, K and Zn) hybrid capacitors. Chemical Science. 2022; 13(41): 11981—12015. https://doi.org/10.1039/D2SC04012C; Itoi H., Matsuura M., Tanabe Y., Kondo Sh., Usami T., Ohzawa Y. High utilization efficiencies of alkylbenzokynones hybridized inside the pores of activated carbon for electrochemical capacitor electrodes. RSC Advances. 2023; 13(4): 2587—2599. https://doi.org/10.1039/D2RA06634C; Wang Sh., Yang C., Li X., Jia H., Jia H., Liu Sh., Liu X., Minari T., Sun Q. Polymer-based dielectrics with high permittivity and low dielectric loss for flexible electronics. Journal of Materials Chemistry C. 2022; 10(16): 6196—6221. https://doi.org/10.1039/D2TC00193D; Ren X., Meng N., Ventura L., Goutianos St., Barbieri E., Zhang H., Yan H., Reece M., Bilotti E. Ultra-high energy density integrated polymer dielectric capacitors. Journal of Materials Chemistry A. 2022; 10(18): 10171—10180. https://doi.org/10.1039/D1TA09045C; Yang K., Hu L., Wang Y., Xia J., Sun M., Zhang Y., Goua Ch., Jia Ch. Redox-active sodium 3,4-dihydroxy anthraquinone-2-sulfonate anchored on reduced graphene oxide for high-performance Zn-ion hybrid capacitors. Journal of Materials Chemistry A. 2022; 10(23): 12532—12543. https://doi.org/10.1039/D2TA02630A; Корнилов Д.Ю. Оксид графена – новый электродный наноматериал для химических источников тока. Дис. д-ра техн. наук. Москва; 2020. 256 с.; Громов Д.Г., Галперин В.А., Лебедев Е.А., Кицюк Е.П. Развитие электрохимических накопителей электрической энергии на основе наноструктур. В кн.: Нанотехнологии в электронике. Под ред. Ю.Ф. Чаплыгина. М : Техносфера; 2015. С. 347—373.; Shao H., Wu Y.-Ch., Lin Z., Taberna P.-L., Simon P. Nanoporous carbon for electrochemical capacitive energy storage. Chemical Society Reviews. 2020; 49(10): 3005—3039. https://doi.org/10.1039/D0CS00059K; Velasco A., Kyoung Ryu Yu., Boscá Mojena A., Ladrón-de-Guevara A., Hunt E., Zuo J., Pedrós J., Calle F., Martinez J. Recent trends in graphene supercapacitors: from large area to microsupercapacitors. Sustainable Energy & Fuels. 2021; 5(4): 1235—1254. https://doi.org/10.1039/D0SE01849J; Elinson V.M., Shchur P. A. Antiadhesion fluorocarbon coatings with induced surface charge for protection against biodegradation. High Temperature Material Processes: An International Quarterly of High-Techno Processes. 2023; 27(4): 33—38. https://doi.org/10.1615/HighTempMatProc.v27.i4.40; Thomas K.M. Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications: comparison with other nanoporous materials. Dalton Transactions. 2009; 9(9): 1487—1505. https://doi.org/10.1039/b815583f; Al-Thabaiti S.A., Mostafa M.M.M., Ahmed A.I., Salama R.S. Synthesis of copper/chromium metal organic frameworks-Derivatives as an advanced electrode material for high-performance supercapacitors. Ceramics International. 2023; 49(3): 5119—5129. https://doi.org/10.1016/j.ceramint.2022.10.029; Ryu U.J., Jee S., Rao P.Ch., Shin J., Ko Ch., Yoon M., Park K.S., Choi K.M. Recent advances in process engineering and upcoming applications of metal-organic frameworks. Coordination Chemistry Reviews. 2021; 426: 213544. https://doi.org/10.1016/j.ccr.2020.213544; Lou W., Wang L., Dong Sh., Zhenzhu cao, Sun J., Zhang Y. A facility synthesis of bismuth-iron bimetal MOF composite silver vanadate applied to visible light photocatalysis. Optical Materials. 2022; 126: 112168. https://doi.org/10.1016/j.optmat.2022.112168; Sundriyal S., Kaur H., Bhardwaj S., Mishra S., Kim K.-H., Deep A. Metal-organic frameworks and their composites as efficient electrodes for supercapacitor applications. Coordination Chemistry Reviews. 2018; 369(2011): 15—38. https://doi.org/10.1016/j.ccr.2018.04.018; Moghadam P.Z., Li A., Liu X.-W., Bueno-Perez R., Wang Sh.-D., Wiggin S., Wood P.A., Fairen-Jimenez D. Targeted classification of metal-organic frameworks in the Cambridge structural database (CSD). Chemical Science. 2020; 11(19): 8373—8387. https://doi.org/10.1039/D0SC01297A; Chhetri K., Adhikari A., Kunwar J., Acharya D., Bhattarai R.M., Mok Y.S., Adhikari A., Yadav A., Kim H.Y. Recent research trends on zeolitic imidazolate framework-8 and zeolitic imidazolate framework-67-based hybrid nanocomposites for supercapacitor application. International Journal of Energy Research. 2023; 2023: 8885207. https://doi.org/10.1155/2023/8885207; Tan Y.X., Wang F., Zhang J. Design and synthesis of multifunctional metal-organic zeolites. Chemical Society Reviews. 2018; 47(6): 2130—2144. https://doi.org/10.1039/C7CS00782E; Ding M., Flaig R.W., Jiang H.-L., Yaghi O.M. Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chemical Society Reviews. 2019; 48(10): 2783—2828. https://doi.org/10.1039/C8CS00829A; Phan A., Doonan Ch.J., Uribe-Romo F., Knobler C.B., O'Keeffe M., Yaghi O.M. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Accounts of Chemical Research. 2009; 43(1): 58—67. https://doi.org/10.1021/ar900116g; Banerjee R., Phan A., Wang B., Knobler C., Furukawa H., O'Keeffe M., Yaghi O.M. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science. 2008; 319(5865): 939—943. https://doi.org/10.1126/science.1152516; Yao Y., Zhao X., Chang G., Yang X., Chen B. Hierarchically porous metal-organic frameworks: synthetic strategies and applications. Small Structures. 2023; 4(1): 2200187. https://doi.org/10.1002/sstr.202200187; Shi L., Wang T., Huabin Zh., Chang K., Ye J. Electrostatic self-assembly of nanosized carbon nitride nanosheet onto a zirconium metal-organic framework for enhanced photocatalytic CO2 reduction. Advanced Functional Materials. 2015; 25(33): 5360—5367. https://doi.org/10.1002/adfm.201502253; Qian J., Sun F., Qin L. Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Materials Letters. 2012; 82: 220—223. https://doi.org/10.1016/j.matlet.2012.05.077; Song G., Shi Y., Jiang Sh., Pang H. Recent progress in MOF-derived porous materials as electrodes for high-performance lithium-ion batteries. Advanced Functional Materials. 2023; 33(42): 2303121. https://doi.org/10.1002/adfm.202303121; Ramachandran R., Zhao Ch., Luo D., Wang K., Wang F. Morphology-dependent electrochemical properties of cobalt-based metal organic frameworks for supercapacitor electrode materials. Electrochimica Acta. 2018; 267: 170—180. https://doi.org/10.1016/j.electacta.2018.02.074; Zhang H., Wang J., Sun Y., Zhang X., Yang H., Lin B. Wire spherical-shaped Co-MOF electrode materials for high-performance all-solid-state flexible asymmetric supercapacitor device. Journal of Alloys and Compounds. 2021; 879: 160423. https://doi.org/10.1016/j.jallcom.2021.160423; Wang C., Li X., Yang W., Xu Y., Pang H. Solvent regulation strategy of Co-MOF-74 microflower for supercapacitors. Chinese Chemical Letters. 2021; 32(9): 2909—2913. https://doi.org/10.1016/j.cclet.2021.04.017; Jiao Y., Pei J., Yan Ch., Chen D., Hu Y., Chen G. Layered nickel metal-organic framework for high performance alkaline battery-supercapacitor hybrid devices. Journal of Materials Chemistry A. 2016; 4(34): 13344—13351. https://doi.org/10.1039/C6TA05384J; Yan Y., Gu P., Zheng Sh., Zheng M., Pang H., Xue H. Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors. Journal of Materials Chemistry A. 2016; 4(48): 19078—19085. https://doi.org/10.1039/C6TA08331E; Du P., Dong Y., Liu Ch., Wei W., Liu D., Liu P. Fabrication of hierarchical porous nickel based metal-organic framework (Ni-MOF) constructed with nanosheets as novel pseudo-capacitive material for asymmetric supercapacitor. Journal of Colloid and Interface Science. 2018; 518: 57—68. https://doi.org/10.1016/j.jcis.2018.02.010; Shen W., Guo X., Pang H. Effect of solvothermal temperature on morphology and supercapacitor performance of Ni-MOF. Molecules. 2022; 27(23): 8226. https://doi.org/10.3390/molecules27238226; Xu X., Yang J., Hong Y., Wang J. Nitrate precursor driven high performance Ni/Co-MOF nanosheets for supercapacitors. ACS Applied Nano Materials. 2022; 5(6): 8382—8392. https://doi.org/10.1021/acsanm.2c01488; Lu X.F., Xia B.Y., Zang Sh.-Q., Lou X.W. Metal-organic frameworks based electrocatalysts for the oxygen reduction reaction. Angewandte Chemie International Edition. 2020; 59(12): 4634—4650. https://doi.org/10.1002/anie.201910309; Yang B., Li B., Xiang Z. Advanced MOF-based electrode materials for supercapacitors and electrocatalytic oxygen reduction. Nano Research. 2023; 16(1): 1338—1361. https://doi.org/10.1007/s12274-022-4682-y; Hosseinian A., Amjad A.H., Hosseinzadeh-Khanmiri R., Ghorbani-Kalhor E., Babazadeh M., Vessally E. Nanocomposite of ZIF-67 metal-organic framework with reduced graphene oxide nanosheets for high-performance supercapacitor applications. Journal of Materials Science: Materials in Electronics. 2017; 28: 18040—18048. https://doi.org/10.1007/s10854-017-7747-z; Ramachandran R., Xuan W.L., Zhao C.H., Leng X.H., Sun D.Z., Luo D., Wang F. Enhanced electrochemical properties of cerium metal-organic framework based composite electrodes for high-performance supercapacitor application. RSC Advances. 2018; 8(7): 3462—3469. https://doi.org/10.1039/C7RA12789H; Ibrahim I., Zheng Sh., Foo Ch.Y., Ming H.N., Lim H. Hierarchical nickel-based metal-organic framework/graphene oxide incorporated graphene nanoplatelet electrode with exceptional cycling stability for coin cell and pouch cell supercapacitors. Journal of Energy Storage. 2021; 43: 103304. https://doi.org/10.1016/j.est.2021.103304; Chen T., Shen T., Wang Y., Yu Z., Zhang W., Zhang Y., Ouyang Z., Cai Q., Yaxiong J., Wang Sh. In situ synthesis of Ni-BTC metal-organic framework@ graphene oxide composites for high-performance supercapacitor electrodes. ACS Omega. 2023; 8(12): 10888—10898. https://doi.org/10.1021/acsomega.2c07187; Shao L., Wang , Ma Zh., Ji Zh., Wang X., Song D., Liu Y., Wang N. A high-capacitance flexible solid-state supercapacitor based on polyaniline and metal-organic framework (UiO-66) composites. Journal of Power Sources. 2018; 379: 350—361. https://doi.org/10.1016/j.jpowsour.2018.01.028; Ramandi S., Entezari M.H. Design of new, efficient, and suitable electrode material through interconnection of ZIF-67 by polyaniline nanotube on graphene flakes for supercapacitors. Journal of Power Sources. 2022; 538: 231588. https://doi.org/10.1016/j.jpowsour.2022.231588; Hussain I., Iqbal S., Hussain T., Cheung W.L., Khan Sh.Ah., Zhou J., Ahmad M., Khan Sh.A., Lamiel Ch., Imran M., Alfantazi A., Zhang K. Zn–Co-MOF on solution-free CuO nanowires for flexible hybrid energy storage devices. Materials Today Physics. 2022; 23(2): 100655. https://doi.org/10.1016/j.mtphys.2022.100655; Wang L., Jia D., Yue L., Zheng K., Zhang A., Jia Q., Liu J. In situ fabrication of a uniform Co-MOF shell coordinated with CoNiO2 to enhance the energy storage capability of NiCo-LDH via vapor-phase growth. ACS Applied Materials & Interfaces. 2020; 12(42): 47526—47538. https://doi.org/10.1021/acsami.0c12759; Shi X., Deng T., Zhu G. Vertically oriented Ni-MOF@ Co (OH)2 flakes towards enhanced hybrid supercapacitior performance. Journal of Colloid and Interface Science. 2021; 593: 214—221. https://doi.org/10.1016/j.jcis.2021.02.096; Lu J., Duan H., Zhang Yi., Zhang G., Chen Z., Song Y., Zhu R., Pang H. Directional growth of conductive metal-organic framework nanoarrays along [001] on metal hydroxides for aqueous asymmetric supercapacitors. ACS Applied Materials & Interfaces. 2022; 14(22): 25878—25885. https://doi.org/10.1021/acsami.2c02268; Tang X., Li N., Pang H. Metal-organic frameworks-derived metal phosphides for electrochemistry application. Green Energy & Environment. 2022; 7(4): 636—661. https://doi.org/10.1016/j.gee.2021.08.003; Zhao J., Liu N., Sun Y., Xu Q., Pan J. Nitrogen-modified spherical porous carbon derived from aluminum-based metal-organic frameworks as activation-free materials for supercapacitors. Journal of Energy Storage. 2023; 73: 109070. https://doi.org/10.1016/j.est.2023.109070; Dai Y.Y., Liu C.L., Bai Y., Kong Q.Q., Pang H. Framework materials for supercapacitors. Nanotechnology Reviews. 2022; 11(1): 1005—1046. https://doi.org/10.1515/ntrev-2022-0042; Xu S.J., Dong A.R., Hu Y., Yang Z., Huang S.M., Qian J.J. Multidimensional MOF-derived carbon nanomaterials for multifunctional applications. Journal of Materials Chemistry A. 2023; 11: 9721—9747. https://doi.org/10.1039/D3TA00239J; Cao Z., Momen R., Tao Sh., Xiong D., Song Z., Xiao X., Deng W., Hou H., Yaşar S., Altin S., Bulut F., Zou G., Ji X. Metal-organic framework materials for electrochemical supercapacitors. Nano-Micro Letters. 2022; 14(1): 181. https://doi.org/10.1007/s40820-022-00910-9; Kim M., Xin R., Earnshaw J., Tang J., Hill J.P., Ashok A., Nanjundan A.K., Kim J., Young Ch., Sugahara Y., Na J., Yamauchi Y. MOF-derived nanoporous carbons with diverse tunable nanoarchitectures. Nature Protocols. 2022; 17(12): 2990—3027. https://doi.org/10.1038/s41596-022-00718-2; Zhang L.Y., Wang R., Chai W.C., Ma M.Y., Li L.K. Controllable preparation of a N-doped hierarchical porous carbon framework derived from ZIF-8 for highly efficient capacitive deionization. ACS Applied Materials & Interfaces. 2023; 15(41): 48800—48809. https://doi.org/10.1021/acsami.3c10043; Marpaung F., Kim M., Khan J.H., Yamauchi Y., Hossain Sh. Metal-organic framework (MOF)-derived nanoporous carbon materials. Chemistry-An Asian Journal. 2019; 14(9): 1331—1343.; Salunkhe R.R., Kaneti Y.V., Kim J., Kim J.H., Yamauchi Y. Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications. Accounts of Chemical Research. 2016; 49(12): 2796—2806. https://doi.org/10.1021/acs.accounts.6b00460; Rajak R., Kumar R., Naz Sh., Saraf M., Shaikh M.M. Recent highlights and future prospects on mixed-metal MOFs as emerging supercapacitor candidates. Dalton Transactions. 2020; 49(34): 11792—11818. https://doi.org/10.1039/D0DT01676D; Kumar N., Wani T.A., Pathak P.K., Bera A., Salunkhe R.R. Multifunctional nanoarchitectured porous carbon for solar steam generation and supercapacitor applications. Sustainable Energy & Fuels. 2022; 6(7): 1762—1769. https://doi.org/10.1039/D2SE00092J; Li Q., Dai Zh., Wu J., Liu W., Di T., Jiang R., Zheng X., Wang W., Ji X., Li P., Xu Zh., Qu X., Xu Zh., Zhou J. Fabrication of ordered macro-microporous single-crystalline MOF and its derivative carbon material for supercapacitor. Advanced Energy Materials. 2020; 10(33): 1903750. https://doi.org/10.1002/aenm.201903750; Huang J., Hao F., Xiaohua Zh., Chen J. N-doped porous carbon sheets derived from ZIF-8: preparation and their electrochemical capacitive properties. Journal of Electroanalytical Chemistry. 2018; 810: 86—94. https://doi.org/10.1016/j.jelechem.2017.12.078; Gu Y., Miao L., Yin Y., Liu M., Gan L., Li L. Highly N/O co-doped ultramicroporous carbons derived from nonporous metal-organic framework for high performance supercapacitors. Chinese Chemical Letters. 2021; 32(4): 1491—1496. https://doi.org/10.1016/j.cclet.2020.09.029; Li H., Xu X., Liu Y., Hao Y., Xu Zh. Fluorophore molecule loaded in Tb-MOF for dual-channel fluorescence chemosensor for consecutive visual detection of bacterial spores and dichromate anion. Journal of Alloys and Compounds. 2023; 944(19): 169138. https://doi.org/10.1016/j.jallcom.2023.169138; Liu J., Chen L., Cui H., Zhang J., Zhang L., Su Ch.-Y. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chemical Society Reviews. 2014; 43(16): 6011—6061. https://doi.org/10.1039/C4CS00094C; Hu C., Xu J., Lu Zh.-f., Cao Ch., Wang Y. Core-shell structured ZIF-7@ ZIF-67 with high electrochemical performance for all-solid-state asymmetric supercapacitor. International Journal of Hydrogen Energy. 2021; 46(63): 32149—32160. https://doi.org/10.1016/j.ijhydene.2021.06.225; Ma J., Li J., Guo R., Xu H., Shi F., Dang L., Liu Z., Sun J., Lei Zh. Direct growth of flake-like metal-organic framework on textile carbon cloth as high-performance supercapacitor electrode. Journal of Power Sources. 2019; 428: 124—130. https://doi.org/10.1016/j.jpowsour.2019.04.101; Guan C., Zhao W., Hu Y., Lai Zh., Li X., Sun Sh., Zhang H., Cheetham T., Wang J. Cobalt oxide and N-doped carbon nanosheets derived from a single two-dimensional metal–organic framework precursor and their application in flexible asymmetric supercapacitors. Nanoscale Horizons. 2017; 2(2): 99—105. https://doi.org/10.1039/C6NH00224B; Kozhitov L.V. Kostiaeva A.V., Kozlov V., Bulatov M.F. Formation of FeNi3/C nanocomposite from Fe and Ni salts and polyacrylonitrile under IR-heating. Journal of Nanoelectronics and Optoelectronics. 2012; 7(4): 419—422. https://doi.org/10.1166/jno.2012.1322; Zaporotskova I., Muratov D., Kozhitov L., Popkova A., Boroznina N., Boroznin S., Vasilev A., Tarala V., Korovin E. Nanocomposites based on pyrolyzed polyacrylonitrile doped with FeCoCr/C transition metal alloy nanoparticles: synthesis, structure, and electromagnetic properties. Polymers. 2023; 15(17): 3596. https://doi.org/10.3390/polym15173596; Lee H.C., Kim Y.A., Kim B.-H. Electrochemical activity of triple-layered boron-containing carbon nanofibers with hollow channels in supercapacitors. Carbon. 2022; 196: 78—84. https://doi.org/10.1016/j.carbon.2022.04.061; Muratov D.G., Kozhitov L.V., Yakushko E.V., Vasilev A., Popkova A.V., Tarala V., Korovin E. Synthesis, structure and electromagnetic properties of FeCoAl/C nanocomposites. Modern Electronic Materials. 2021; 7(3): 99—108. https://doi.org/10.3897/j.moem.7.3.77105; Muratov D.G., Kozhitov L.V., Korovushkin V.V., Korovin E., Popkova A.V., Novotortsev V. Synthesis, structure and electromagnetic properties of nanocomposites with three-component FeCoNi nanoparticles. Russian Physics Journal. 2019; 61(1): 1788—1797. https://doi.org/10.1007/s11182-019-01602-5; Chang C., Li M., Wang H., Wang Sh., Liu X., Liu H.-K., Li L. A novel fabrication strategy for doped hierarchical porous biomass-derived carbon with high microporosity for ultrahigh-capacitance supercapacitors. Journal of Materials Chemistry A. 2019; 7(34): 19939—19949. https://doi.org/10.1039/C9TA06210F; Yue Z., Dunya H., Ashuri M., Kucuk K., Aryal Sh., Antonov St., Alabbad B., Segre C.U., Mandal B. Synthesis of a very high specific surface area active carbon and its electrical double-layer capacitor properties in organic electrolytes. ChemEngineering. 2020; 4(3): 43. https://doi.org/10.3390/chemengineering4030043; Muratov D.G., Kozhitov L.V., Zaporotskova I.V., Popkova A.V., Tarala V.A., Korovin E.Yu., Zorin A.V. Synthesis, structure and electromagnetic properties of FeCoCu/C nanocomposites. Modern Electronic Materials. 2023; 9(1): 15—24. https://doi.org/10.3897/j.moem.9.1.104721; Das S.K., Bhunia K., Mallick A., Pradhan A., Pradhan D., Bhaumik A. A new electrochemically responsive 2D π-conjugated covalent organic framework as a high performance supercapacitor. Microporous and Mesoporous Materials. 2018; 266: 109—116. https://doi.org/10.1016/j.micromeso.2018.02.026; Roy A., Mondal S., Halder A., Banerjee A., Ghoshal D., Paul A., Malik S. Benzimidazole linked arylimide based covalent organic framework as gas adsorbing and electrode materials for supercapacitor application. European Polymer Journal. 2017; 93: 448—457. https://doi.org/10.1016/j.eurpolymj.2017.06.028; Das S.K., Pradhan L., Jena B.K., Basu S. Polymer derived honeycomb-like carbon nanostructures for high capacitive supercapacitor application. Carbon. 2023; 201: 49—59. https://doi.org/10.1016/j.carbon.2022.09.004; Khan I.A., Badshah A., Khan S.I., Zhao D., Nadeem M. Soft-template carbonization approach of MOF-5 to mesoporous carbon nanospheres as excellent electrode materials for supercapacitor. Microporous and Mesoporous Materials. 2017; 253: 169—176. https://doi.org/10.1016/j.micromeso.2017.06.049; Zhao Y., Zhao Zh., Wei M., Jiang X., Li H., Gao J., Linxi H. Preparation of Si-doped and cross linked carbon nanofibers via electrospinning and their supercapacitive properties. Progress in Natural Science: Materials International. 2018; 28(3): 337—344. https://doi.org/10.1016/j.pnsc.2018.04.013; Bhosale R., Bhosale Sn., Kumbhar Pr.D., Narale D.K., Ghaware R., Jambhale Ch.L., Kolekar S. Design and development of a porous nanorod-based nickel-metal-organic framework (Ni-MOF) for high-performance supercapacitor application. New Journal of Chemistry. 2023; 47(14): 6749—6758. https://doi.org/10.1039/D3NJ00456B; Xue B., Li K., Guo Y., Lu J., Gu Sh., Zhang L. Construction of zeolitic imidazolate frameworks-derived NixCo3-xO4/reduced graphene oxides/Ni foam for enhanced energy storage performance. Journal of Colloid and Interface Science. 2019; 557(6): 112—123. https://doi.org/10.1016/j.jcis.2019.09.005; Iqbal R., Sultan M.Q., Hussain S., Hamza M., Tariq A., Akbar M.B., Ma Y., Zhi L. The different roles of cobalt and manganese in metal-organic frameworks for supercapacitors. Advanced Materials Technologies. 2021; 6(3): 2000941. https://doi.org/10.1002/admt.202000941; Uke S.J., Akhare V.P., Bambole D.R., Bodade A.B., Chaudhari G.N. Recent advancements in the cobalt oxides, manganese oxides, and their composite as an electrode material for supercapacitor: a review. Frontiers in Materials. 2017; 4: 21. https://doi.org/10.3389/fmats.2017.00021; Слепцов В.В., Гоффман В.Г., Дителева А.О., Ревенок Т.В., Дителева Е.О. Физическая модель электродного материала для гибридных конденсаторов. Физикохимия поверхности и защита материалов. 2023; 59(2): 149—154. https://doi.org/10.31857/S0044185623700171; Гоффман В.Г., Слепцов В.В., Гороховский А.В., Горшков Н.В., Ковынева Н.Н., Севрюгин А.В., Викулова М.А., Байняшев А.М., Макарова А.Д., Зо Лвин Ч. Накопители энергии с бусофитовыми электродами, модифицированными титаном. Электрохимическая энергетика. 2020; 20(1): 20—32. https://doi.org/10.18500/1608-4039-2020-20-1-20-32; Sleptsov V.V., Diteleva A.O., Kukushkin D.Yu., Tsyrkov R.A., Diteleva E.O. Vacuum as a continuum medium forming energy inhomogeneities with a high energy density in the liquid phase. Modern Electronic Materials. 2022; 8(2): 73—78. https://doi.org/10.3897/j.moem.8.2.97508; Пат. (РФ) № 2756189 C1. Дителева А.О., Кукушкин Д.Ю., Савкин А.В., Слепцов В.В. Установка для электроимпульсного управляемого получения наночастиц токопроводящих материалов. Заявл.: 19.12.2019; опубл.: 28.09.2021.; Diteleva A., Sleptsov V., Savilkin S., Matsykin S., Granko A. Hybrid capacitor based on carbon matrix for intelligent electric energy storage and transportation system. Journal of Physics Conference Series. 2021; 1925(1): 012083. https://doi.org/10.1088/1742-6596/1925/1/012083; Слепцов В.В., Кукушкин Д.Ю., Куликов С.Н., Дителева А.О., Цырков Р.А. Тонкопленочные технологии в создании электродных материалов для перспективных источников тока. Вестник машиностроения. 2021; (9): 63—66. https://doi.org/10.36652/0042-4633-2021-9-63-66; Пат. (РФ) № 191063 U1. Слепцов В.В., Кукушкин Д.Ю., Дителева А.О., Щур П.А. Химический источник тока с тонкопленочным токосборником. Заявл.: 06.03.2019; опубл. 23.07.2019.; Пат. (РФ) № 2696479 C1. Слепцов В.В., Кукушкин Д.Ю., Дителева А.О., Щур П.А. Способ изготовления электродов химического источника тока. Заявл.: 08.10.2018; опубл.: 02.08.2019.; Пат. (РФ) № 209747 U1. Кукушкин Д.Ю., Цырков Р.А., Слепцов В.В., Дителева А.О., Осипов В.В., Савилкин С.Б. Устройство для модификации поверхности материалов наночастицами металлов. Заявл.: 15.12.2021; опубл.: 22.03.2022.; https://met.misis.ru/jour/article/view/582
-
2Academic Journal
Authors: D. G. Muratov, L. V. Kozhitov, I. V. Zaporotskova, A. V. Popkova, V. V. Sleptsov, A. V. Zorin, Д. Г. Муратов, Л. В. Кожитов, И. В. Запороцкова, А. В. Попкова, В. В. Слепцов, А. В. Зорин
Contributors: The work was carried out within State Assignment of the Ministry of Science and Higher Education of the Russian Federation (Grant No. FZUU-2023-0001)., Работа выполнена в рамках государственного задания Министерства науки и высшего образования РФ (тема «FZUU-2023-0001»).
Source: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 27, № 1 (2024); 5-34 ; Известия высших учебных заведений. Материалы электронной техники; Том 27, № 1 (2024); 5-34 ; 2413-6387 ; 1609-3577
Subject Terms: пиролиз, ZIF-67, organic ligands, metal ions, hybrid supercapacitor electrodes, metal/carbon nanocomposites, pyrolysis, органические линкеры, ионы металлов, электроды для гибридных суперконденсаторов, металлоуглеродные нанокомпозиты
File Description: application/pdf
Relation: https://met.misis.ru/jour/article/view/557/476; Thomas K.M. Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications: comparison with other nanoporous materials. Dalton Transactions. 2009; 9(9): 1487—1505. https://doi.org/10.1039/b815583f; He T., Kong X.J., Li J.R. Chemically stable metal-organic frameworks: rational construction and application expansion. Accounts of Chemical Research. 2021; 54(15): 3083—3094. https://doi.org/10.1021/acs.accounts.1c00280; He Y. Zhou W., Qian G., Chen B. Methane storage in metal-organic frameworks. Chemical Society Reviews. 2014; 43(16): 5657—5678. https://doi.org/10.1039/c4cs00032c; Jiang Z., Xue W., Huang H., Zhu H., Sun Y., Zhong Ch. Mechanochemistry-assisted linker exchange of metal-organic framework for efficient kinetic separation of propene and propane. Chemical Engineering Journal. 2023; 454(37): 140093. https://doi.org/10.1016/j.cej.2022.140093; Zhao D.L. Feng F., Shen L., Huang Zh., Zhao Q., Lin H., Chung T.-Sh. Engineering metal-organic frameworks (MOFs) based thin-film nanocomposite (TFN) membranes for molecular separation. Chemical Engineering Journal. 2022; 454(6191): 140447. https://doi.org/10.1016/j.cej.2022.140447; Gao Q. F., Jiang T.-L., Li W.-Zh., Tan D.-F., Zhang X.-H., Pang J.-Y., Zhang Sh.-H. Porous and stable Zn-series metal-organic frameworks as efficient catalysts for grafting wood nanofibers with polycaprolactone via a copolymerization approach. Inorganic Chemistry. 2023; 62(8): 3464—3473. https://doi.org/10.1021/acs.inorgchem.2c03721; Mukoyoshi M., Kitagawa H. Nanoparticle/metal-organic framework hybrid catalysts: elucidating the role of the MOF. Chemical Communications. 2022; 58(77): 10757—10767. https://doi.org/10.1039/D2CC03233C; Kreno L.E., Leong K., Farha O.K., Allendorf M., Van Duyne R.P., Hupp J.T. Metal-organic framework materials as chemical sensors. Chemical Reviews. 2012; 112(2): 1105—1125. https://doi.org/10.1021/cr200324t; Xuan X., Wang M., Manickam S., Boczkaj Gr., Yoon J.-Y., Sun X. Metal-organic frameworks-based sensors for the detection of toxins in food: a critical mini-review on the applications and mechanisms. Frontiers in Bioengineering and Biotechnology. 2022; 10: 906374. https://doi.org/10.3389/fbioe.2022.906374; Horcajada P., Chalati T., Serre Ch., Gillet B., Sebrie C., Baati T., Eubank J.F., Heurtaux D., Clayette P., Kreuz Ch., Chang J.-S., Kyu H.Y., Marsaud V., Bories Ph.-Nh., Cynober L., Gil S., Férey G., Couvreur P., Gref R. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature Materials. 2010; 9(2): 172—178. https://doi.org/10.1038/nmat2608; Xu Z., Zhen W., McCleary C., Luo T., Jiang X., Peng Ch., Weichselbaum R.R., Lin W. Nanoscale metal-organic framework with an X-ray triggerable prodrug for synergistic radiotherapy and chemotherapy. Journal of the American Chemical Society. 2023; 145(34): 18698—18704. https://doi.org/10.1021/jacs.3c04602; Mu J., Guo Z., Zhao Y., Che H., Yang H., Zhang Zh., Zhang X., Wang Y., Mu J. ZIF-67/rGO/NiPc composite electrode material for high-performance asymmetric supercapacitors. Journal of Materials Science: Materials in Electronics. 2022; 33(22): 17733—17744. https://doi.org/10.1007/s10854-022-08636-5; Ahmed F.M., Ateia E.E., El-Dek S., Abd El-Kader Sh.M., Samy A. Silver-substituted cobalt zeolite imidazole framework on reduced graphene oxide nanosheets as a novel electrode for supercapacitors. Journal of Energy Storage. 2022; 55(5): 105443. https://doi.org/10.1016/j.est.2022.105443; Ramandi S., Entezari M.H. Design of new, efficient, and suitable electrode material through interconnection of ZIF-67 by polyaniline nanotube on graphene flakes for supercapacitors. Journal of Power Sources. 2022; 538: 231588. https://doi.org/10.1016/j.jpowsour.2022.231588; Ramesh S., Karuppasamy K., Vikraman Dh., Yadav H.M., Kim H.-S., Sivasamy A., Kim H.S. Fabrication of NiCo2S4 accumulated on metal organic framework nanostructured with multiwalled carbon nanotubes composite material for supercapacitor application. Ceramics International. 2022; 48(19): 29102—29110. https://doi.org/10.1016/j.ceramint.2022.05.048; Sharma S., Chand P. Zeolitic imidazolate framework-8 and redox-additive electrolyte based asymmetric supercapacitor: A synergetic combination for ultrahigh energy and power density. Journal of Energy Storage. 2023; 73(Pt B): 108961. https://doi.org/10.1016/j.est.2023.108961; Chettiannan B., Kumar A., Arumugam G., Shajahan Sh., Abu Haija M., Rajendran R. Incorporation of α-MnO2 nanoflowers into zinc-terephthalate metal-organic frameworks for high-performance asymmetric supercapacitors. ACS Omega. 2023; 8(7): 6982—6993. https://doi.org/10.1021/acsomega.2c07808; Gurav S.R., Sawant S.A., Chodankar G.R., Shembade U.V., Moholkar A.V., Sonkawade R.G. Exploration of aqueous electrolyte on the interconnected petal-like structure of Co-MOFs for high-performance paper-soaked supercapacitors. Electrochimica Acta. 2023; 467: 143027. https://doi.org/10.1016/j.electacta.2023.143027; Ensafi A.A., Fazel R., Rezaei B., Hu J.-S. Electrochemical properties of modified poly (4-aminothiophenol)-Zn-Ni MOF-reduced graphene oxide nanocomposite for high-performance supercapacitors. Fuel. 2022; 324(7482): 124724. https://doi.org/10.1016/j.fuel.2022.124724; Zeng Q. Wang L., Li X., You W., Zhang J., Liú X., Wang M., Che R. Double ligand MOF-derived pomegranate-like Ni@ C microspheres as high-performance microwave absorber. Applied Surface Science. 2021; 538(27): 148051. https://doi.org/10.1016/j.apsusc.2020.148051; Li X., Huang Ch., Wang Z., Zhen X., Lu W. Enhanced electromagnetic wave absorption of layered FeCo@ carbon nanocomposites with a low filler loading. Journal of Alloys and Compounds. 2021; 879: 160465. https://doi.org/10.1016/j.jallcom.2021.160465; Huang K., Wang B., Guo S., Li K. Micropatterned ultrathin MOF membranes with enhanced molecular sieving property. Angewandte Chemie International Edition. 2018; 130(42): 13892—13896. https://doi.org/10.1002/ange.201809872; Moghadam P.Z., Li A., Liu X.-W., Bueno-Perez R., Wang Sh.-D., Wiggin S., Wood P.A., Fairen-Jimenez D. Targeted classification of metal-organic frameworks in the Cambridge structural database (CSD). Chemical Science. 2020; 11(32): 8373—8387. https://doi.org/10.1039/D0SC01297A; Tan Y.X., Wang F., Zhang J. Design and synthesis of multifunctional metal-organic zeolites. Chemical Society Reviews. 2018; 47(6): 2130—2144. https://doi.org/10.1039/C7CS00782E; Ding M., Flaig R.W., Jiang H.-L., Yaghi O.M. Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chemical Society Reviews. 2019; 48(10): 2783—2828. https://doi.org/10.1039/C8CS00829A; Phan A., Doonan Ch.J., Uribe-Romo F.J., Knobler C.B., O'Keeffe M., Yaghi O.M. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Accounts of Chemical Research. 2009; 43(1): 58—67. https://doi.org/10.1021/ar900116g; Pan Y., Liu , Zeng G., Zhao L., Lai Zh. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chemical Communications. 2011; 47(7): 2071—2073. https://doi.org/10.1039/c0cc05002d; Mahdavi H., Eden N.T., Doherty C.M., Acharya D., Smith S.J.D., Mulet X., Hill M.R. Underlying polar and nonpolar modification MOF-based factors that influence permanent porosity in porous liquids. ACS Applied Materials & Interfaces. 2022; 14(20): 23392—23399. https://doi.org/10.1021/acsami.2c03082; Li M., Yuan G., Zeng Y., Peng H., Yang Y., Liao J., Yang J., Liu N. Efficient removal of Co (II) from aqueous solution by flexible metal-organic framework membranes. Journal of Molecular Liquids. 2021; 324(2017): 114718. https://doi.org/10.1016/j.molliq.2020.114718; Banerjee R., Phan A., Wang B., Knobler C., Furukawa H., O'Keeffe M., Yagh O.M. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science. 2008; 319(5865): 939—943. https://doi.org/10.1126/science.1152516; Yao Y., Zhao X., Chang G., Yang X., Chen B. Hierarchically porous metal-organic frameworks: synthetic strategies and applications. Small Structures. 2022; 4(1): 2200187. https://doi.org/10.1002/sstr.202200187; Shi L., Wang T., Huabin Zh., Chang K., Ye J. Electrostatic self-assembly of nanosized carbon nitride nanosheet onto a zirconium metal-organic framework for enhanced photocatalytic CO2 reduction. Advanced Functional Materials. 2015; 25(33): 5360—5367. https://doi.org/10.1002/adfm.201502253; Qian J., Sun F., Qin L. Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Materials Letters. 2012; 82: 220—223. https://doi.org/10.1016/j.matlet.2012.05.077; Dang S., Zhu Q.-L., Xu Q. Nanomaterials derived from metal-organic frameworks. Nature Reviews Materials. 2017; 3(1): 17075. https://doi.org/10.1038/natrevmats.2017.75; Cao X., Tan Ch., Sindoro M., Zhang H. Hybrid micro-/nano-structures derived from metal-organic frameworks: preparation and applications in energy storage and conversion. Chemical Society Reviews. 2017; 46(10): 2660—2677. https://doi.org/10.1039/C6CS00426A; Du Y., Xu Y., Zhou W., Yu Y., Ma X., Liu F., Xu J., Zhu Y. MOF-derived zinc manganese oxide nanosheets with valence-controllable composition for high-performance Li storage. Green Energy & Environment. 2021; 6(5): 703—714. https://doi.org/10.1016/j.gee.2020.06.010; Kyeremateng N.A., Brousse T., Pech D. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nature Nanotechnology. 2017; 12: 7—15. https://doi.org/10.1038/nnano.2016.196; Gogotsi Y., Simon P. True performance metrics in electrochemical energy storage. Science. 2011; 334(6058): 917—918. https://doi.org/10.1126/science.1213003; Feng D., Lei T., Lukatskaya M.R., Park J., Huang Zh., Lee M., Shaw L., Chen Sh., Yakovenko A.A., Kulkarni A., Xiao J., Fredrickson K., Tok J.B., Zou X., Cui Y., Bao Zh. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance. Nature Energy. 2018; 3(1): 30—36. https://doi.org/10.1038/s41560-017-0044-5; Guo W., Yu Ch., Li Sh., Song X., Huang H., Han X., Wang Zh., Liu Zh., Yu J., Tan X., Qiu J.Sh. A universal converse voltage process for triggering transition metal hybrids in situ phase restruction toward ultrahigh-rate supercapacitors. Advanced Materials. 2019; 31(28): 1901241. https://doi.org/10.1002/adma.201901241; Yaqoob L., Tayyaba N., Iqbal N. An overview of supercapacitors electrode materials based on metal organic frameworks and future perspectives. International Journal of Energy Research. 2022; 46(4): 3939—3982. https://doi.org/10.1002/er.7491; Hosseinian A., Amjad A.H., Hosseinzadeh-Khanmiri R., Ghorbani-Kalhor E., Babazadeh M., Vessally E. Nanocomposite of ZIF-67 metal-organic framework with reduced graphene oxide nanosheets for high-performance supercapacitor applications. Journal of Materials Science: Materials in Electronics. 2017; 28: 18040—18048. https://doi.org/10.1007/s10854-017-7747-z; Li X., Ding S., Xiao X., Shao J., Wei J., Pang H., Yu Y. N, S co-doped 3D mesoporous carbon-Co3Si2O5(OH)4 architectures for high-performance flexible pseudo-solid-state supercapacitors. Journal of Materials Chemistry A. 2017; 5(25): 12774—12781. https://doi.org/10.1039/C7TA03004E; Zhang Y.Z., Wang Y., Xie Y.-L., Cheng T., Lai W., Pang H., Huang W. Porous hollow Co3O4 with rhombic dodecahedral structures for high-performance supercapacitors. Nanoscale. 2014; 6(23): 14354—14359. https://doi.org/10.1039/c4nr04782f; Zhang Sh., Hu R., Dai P., Yu X., Ding Z. Synthesis of rambutan-like MoS2/mesoporous carbon spheres nanocomposites with excellent performance for supercapacitors. Applied Surface Science. 2016; 396: 994—999. https://doi.org/10.1016/j.apsusc.2016.11.074; An C., Zhang Y., Guo H., Wang Y. Metal oxide-based supercapacitors: progress and prospectives. Nanoscale Advances. 2019; 1(12): 4644—4658. https://doi.org/10.1039/C9NA00543A; Chen X., Cheng M., Chen D., Wang R. Shape-controlled synthesis of Co2P nanostructures and their application in supercapacitors. ACS Applied Materials & Interfaces. 2016; 8(6): 3892—3900. https://doi.org/10.1021/acsami.5b10785; Слепцов В.В., Кукушкин Д.Ю., Куликов С.Н., Дителева А.О. Тонкопленочные нанотехнологии для создания источников энергоснабжения. Вестник машиностроения. 2021; (2): 65—67. https://doi.org/10.36652/0042-4633-2021-2-65-67; Zhou L., Zhuang Z., Zhao H., Lin M., Zhao D., Mai L. Intricate hollow structures: controlled synthesis and applications in energy storage and conversion. Advanced Materials. 2017; 29(20): 1602914. https://doi.org/10.1002/adma.201602914; Zhao Y., Liu J., Horn M., Motta N., Hu M., Li Y. Recent advancements in metal organic framework based electrodes for supercapacitors. Science China Materials. 2018; 61(2): 159—184. https://doi.org/10.1007/s40843-017-9153-x; Shi X., Zheng Sh., Wu Zh.-Sh., Bao X. Recent advances of graphene-based materials for high-performance and new-concept supercapacitors. Journal of Energy Chemistry. 2018; 27(1): 25—42. https://doi.org/10.1016/j.jechem.2017.09.034; Sundriyal S., Kaur H., Bhardwaj S., Mishra S., Kim K.-H., Deep A. Metal-organic frameworks and their composites as efficient electrodes for supercapacitor applications. Coordination Chemistry Reviews. 2018; 369(2011): 15—38. https://doi.org/10.1016/j.ccr.2018.04.018; Zhong C., Yida D., Hu W., Qiao J., Zhang L., Zhang J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews. 2015; 44(21): 7484—7539. https://doi.org/10.1039/c5cs00303b; Ghadimi A.M., Ghasemi Sh., Omrani A., Mousavi F. Nickel cobalt LDH/graphene film on nickel-foam-supported ternary transition metal oxides for supercapacitor applications. Energy & Fuels. 2023; 37(4): 3121—3133. https://doi.org/10.1021/acs.energyfuels.2c03040; Akinwolemiwa B., Peng C., Chen G.Z. Redox electrolytes in supercapacitors. Journal of the Electrochemical Society. 2015; 162(5): A5054—А5059. https://doi.org/10.1149/2.0111505JES; Sharma S., Chand P. Zeolitic imidazolate framework-8 and redox-additive electrolyte based asymmetric supercapacitor: A synergetic combination for ultrahigh energy and power density. Journal of Energy Storage. 2023; 73(B): 108961. https://doi.org/10.1016/j.est.2023.108961; Zhang L.L., Zhao X.S. Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews. 2009; 38(9): 2520—2531. https://doi.org/10.1039/b813846j; Tarascon J.M., Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001; 414(6861): 359—367. https://doi.org/10.1038/35104644; Conway B.E. Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer Science & Business Media; 2013. 698 p.; Sundriyal S., Shrivastav V., Kaur H., Mishra S., Deep A. High-performance symmetrical supercapacitor with a combination of a ZIF-67/rGO composite electrode and a redox additive electrolyte. ACS Omega. 2018; 3(12): 17348—17358. https://doi.org/10.1021/acsomega.8b02065; Brousse T., Bélanger D., Long J.W. To be or not to be pseudocapacitive? Journal of the Electrochemical Society. 2015; 162(5): A5185—А5189. https://doi.org/10.1149/2.0201505jes; Liang C., Wang Sh., Sha Sh., Lv S., Wang G., Wang B., Li Q., Yu J., Xu X., Zhang L. Novel semiconductor materials for advanced supercapacitors. Journal of Materials Chemistry C. 2023; 11(13): 4288—4317. https://doi.org/10.1039/D2TC04816G; Isaeva V.I., Tarasov A.L., Tkachenko O.P., Kapustin G.I., Mishin I.V., Solov’eva S.E., Kustov L. 1,3-Cyclohexadiene hydrogenation in the presence of a palladium-containing catalytic system based on an MOF-5/calixarene composite. Kinetics and Catalysis. 2011; 52(1): 94—97. https://doi.org/10.1134/S0023158411010058; Kitagawa S., Kitaura R., Noro S. Functional porous coordination polymers. Angewandte Chemie International Edition. 2004; 43(18): 2334—2375. https://doi.org/10.1002/anie.200300610; Исаева В.И., Тарасов А.Л., Ямпольский Ю.П., Елисеев О.Л., Казанцев Р.В., Кустов Л.М. Синтез в СВЧ-поле нанокристаллов металлорганических каркасов MIL. В: Труды IV Всерос. конф. по органической химии, 22–27 ноября 2015. Тезисы устного доклада. М.: ФГБУ Институт органической химии им. Н.Д. Зелинского РАН; 2015. 309 с.; Monni N., Baldoví J.J., García Lopez V., Oggianu M., Cadoni E., Quochi F., Clemente M., Mercuri M.L., Coronado E. Reversible tuning of luminescence and magnetism in a structurally flexible erbium-anilato MOF. Chemical Science. 2022; 13(25): 7419—7428. https://doi.org/10.1039/D2SC00769J; Papaefstathiou G.S., MacGillivray L.R. Inverted metal-organic frameworks: solid-state hosts with modular functionality. Coordination Chemistry Reviews. 2003; 246(1–2): 169—184. https://doi.org/10.1016/S0010-8545(03)00122-X; Kole G.K., Vittal J.J. Isomerization of cyclobutane ligands in the solid state and solution. Journal of the Indian Chemical Society. 2022; 99(9): 100630. https://doi.org/10.1016/j.jics.2022.100630; Xu Q., Chen J., Wang Y., Wang D., Xu X., Xia J., Zhang K.-L., Zhou X., Fan W., Wang Z., Hou Ch., Sun D. Guest-stimulated nonplanar porphyrins in flexible metal-organic frameworks. Small. 2023; 19(44): е2304771. https://doi.org/10.1002/smll.202304771; Yaghi O.M., O'Keeffe M., Ockwig N.W., Chae H.K., Eddaoudi M., Kim J. Reticular synthesis and the design of new materials. Nature. 2003; 423(6941): 705—714. https://doi.org/10.1038/nature01650; Tranchemontagne D.J., Mendoza-Cortés J.L., O’Keeffe M., Yaghi O.M. Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. Chemical Society Reviews. 2009; 38(5): 1257—1283. https://doi.org/10.1039/b817735j; Hagrman P.J., Hagrman D., Zubieta J. Organic-inorganic hybrid materials: From “simple” coordination polymers to organodiamine-templated molybdenum oxides. Angewandte Chemie International Edition. 1999; 38(18): 2638—2684. https://doi.org/10.1002/(sici)1521-3773(19990917)38:183.0.co;2-4; Lu Y., Zhong H., Jian L., Dominic A.M., Hu Y., Gao Zh., Jiao Y., Wu M., Qi H., Huang Ch., Wayment L.J., Kaiser U., Spiecker E., Weidinger I.M., Zhang W., Feng X., Dong R. sp-carbon incorporated conductive metal-organic framework as photocathode for photoelectrochemical hydrogen generation. Angewandte Chemie International Edition. 2022; 61(39): e202208163. https://doi.org/10.1002/anie.202208163; Liu Q., Wang N., Caro J., Huang A. Bio-inspired polydopamine: a versatile and powerful platform for covalent synthesis of molecular sieve membranes. Journal of the American Chemical Society. 2013; 135(47): 17679–17682. https://doi.org/10.1021/ja4080562; Tong P., Liang J., Jiang X., Li J. Research progress on metal-organic framework composites in chemical sensors. Critical Reviews in Analytical Chemistry. 2020; 50(4): 376—392. https://doi.org/1010.1080/10408347.2019.1642732; Zhang X., Wang N., Li H., Wang Zh., Wang H. IRMOF-3 nanosheet-filled glass fiber membranes for efficient separation of hydrogen and carbon dioxide. Separation and Purification Technology. 2023; 318: 123908. https://doi.org/10.1016/j.seppur.2023.123908; Tong P., Liang J., Jiang X., Li J. Research progress on metal-organic framework composites in chemical sensors. Critical Reviews in Analytical Chemistry. 2020; 50(4): 376–392. https://doi.org/10.1080/10408347.2019.1642732; Mohtasham H., Rostami M., Gholipour B., Sorouri A.M., Ehrlich H., Ganjali M.R., Rostamnia S., Rahimi-Nasrabadi M., Salimi A., Luque R. Nano-architecture of MOF (ZIF-67)-based Co3O4 NPs@ N-doped porous carbon polyhedral nanocomposites for oxidative degradation of antibiotic sulfamethoxazole from wastewater. Chemosphere. 2023; 310: 136625. https://doi.org/10.1016/j.chemosphere.2022.136625; Kesanli B., Lin W. Chiral porous coordination networks: rational design and applications in enantioselective processes. Coordination Chemistry Reviews. 2003; 246(1-2): 305—326. https://doi.org/10.1016/j.cct.2003.08.004; Zorainy M.Y., Alalm M.G., Kaliaguine S., Boffito D.C. Revisiting the MIL-101 metal-organic framework: design, synthesis, modifications, advances, and recent applications. Journal of Materials Chemistry A. 2021; 9(39): 22159–22217. https://doi.org/10.1039/D1TA06238G; Behera N., Duan J., Jin W., Kitagawa S. The chemistry and applications of flexible porous coordination polymers. EnergyChem. 2021; 3(6): 100067. https://doi.org/10.1016/j.enchem.2021.100067; Ahmadijokani F., Molavi H., Rezakazemi M., Tajahmadi Sh., Bahi A., Ko F., Aminabhavi T.M., Li J.-R., Arjmand M. UiO-66 metal-organic frameworks in water treatment: A critical review. Progress in Materials Science. 2022; 125(22): 100904. https://doi.org/10.1016/j.pmatsci.2021.100904; Liu J., Li Y., Lou Z. Recent advancements in MOF/biomass and Bio-MOF multifunctional materials: a review. Sustainability. 2022; 14(10): 5768. https://doi.org/10.3390/su14105768; Corma A., Garcia H.I., Llabrés i Xamena F.X. Engineering metal organic frameworks for heterogeneous catalysis. Chemical Reviews. 2010; 110(8): 4606—4655. https://doi.org/10.1021/cr9003924; Wang Z., Cohen S.M. Postsynthetic modification of metal-organic frameworks. Chemical Society Reviews. 2009; 38(5): 1315—1329. https://doi.org/10.1039/b802258p; Li H., Xu X., Liu Y., Hao Y., Xu Zh. Fluorophore molecule loaded in Tb-MOF for dual-channel fluorescence chemosensor for consecutive visual detection of bacterial spores and dichromate anion. Journal of Alloys and Compounds. 2023; 944(19): 169138. https://doi.org/10.1016/j.jallcom.2023.169138; Liu J., Chen L., Cui H., Zhang J., Zhang L., Su Ch.-Y. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chemical Society Reviews. 2014; 43(16): 6011—6061. https://doi.org/10.1039/c4cs00094c; Matsuda R., Kitaura R., Kitagawa S., Kubota Y., Belosludov R.V., Kobayashi T.C., Sakamoto H., Chiba T., Takata M., Kawazoe Y., Mita Y. Highly controlled acetylene accommodation in a metal-organic microporous material. Nature. 2005; 436(7048): 238—241. https://doi.org/10.1038/nature03852; Zhou H.C., Long J.R., Yaghi O.M. Introduction to metal-organic frameworks. Chemical Reviews. 2012; 112(2): 673—674. https://doi.org/10.1021/cr300014x; Sağlam S., Türk F.N., Arslanoğlu H. Use and applications of metal-organic frameworks (MOF) in dye adsorption. Journal of Environmental Chemical Engineering. 2023; 11(5): 110568. https://doi.org/10.1016/j.jece.2023.110568; Berijani K., Morsali A., Garcia H. Synthetic strategies to obtain MOFs and related solids with multimodal pores. Microporous and Mesoporous Materials. 2023; 349: 112410. https://doi.org/10.1016/j.micromeso.2022.112410; Rosen A.S., Fung V., Huck P., O’Donnell C.T., Horton M.K., Truhlar D., Persson K.A., Notestein J.M., Snurr R.Q. High-throughput predictions of metal-organic framework electronic properties: theoretical challenges, graph neural networks, and data exploration. Npj Computational Materials. 2022; 8(1): 112. https://doi.org/10.1038/s41524-022-00796-6; Hermes S., Schröter M.-K., Schmid R., Khodeir L., Muhler M., Tissler A., Fischer R.W., Fischer R.A. Metal@ MOF: loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. Angewandte Chemie International Edition. 2005; 44(38): 6237—6241. https://doi.org/10.1002/anie.200462515; Qin J., Dou Y., Wu F., Yao Y., Andersen H.R., Helix-Nielsen C., Lim S.Y., Zhang W. In-situ formation of Ag2O in metal-organic framework for light-driven upcycling of microplastics coupled with hydrogen production. Applied Catalysis B: Environmental. 2022; 319: 121940. https://doi.org/10.1016/j.apcatb.2022.121940; Juan-Alcañiz J., Gascon J., Kapteijn F. Metal-organic frameworks as scaffolds for the encapsulation of active species: state of the art and future perspectives. Journal of Materials Chemistry. 2012; 22(20): 10102—10118. https://doi.org/10.1039/C2JM15563J; Mohseni M.M., Jouyandeh M., Sajadi S.M., Hejna A., Habibzadeh S., Mohaddespour Ah., Rabiee N., Daneshgar H., Akhavan O., Asadnia M., Rabiee M., Ramakrishna S., Luque R., Paran S.M.R. Metal-organic frameworks (MOF) based heat transfer: A comprehensive review. Chemical Engineering Journal. 2022; 449(6518): 137700. https://doi.org/10.1016/j.cej.2022.137700; Marshall C.R., Staudhammer S.A., Brozek C.K. Size control over metal-organic framework porous nanocrystals. Chemical Science. 2019; 10(41): 9396—9408. https://doi.org/10.1039/C9SC03802G; Fonseca J., Gong T. Fabrication of metal-organic framework architectures with macroscopic size: A review. Coordination Chemistry Reviews. 2022; 462(2013): 214520. https://doi.org/10.1016/j.ccr.2022.214520; Zacher D., Shekhah O., Abdullah K., Wöll Ch., Fischer R.A. Thin films of metal-organic frameworks. Chemical Society Reviews. 2009; 38(5): 1418—1429. https://doi.org/10.1039/b805038b; Sharma U., Pandey R., Basu S., Saravanan P. Facile monomer interlayered MOF based thin film nanocomposite for efficient arsenic separation. Chemosphere. 2022; 309(Pt 1): 136634. https://doi.org/10.1016/j.chemosphere.2022.136634; Stock N., Biswas S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chemical Reviews. 2012; 112(2): 933—969. https://doi.org/10.1021/cr200304e; Liu J., Chen L., Cui H., Zhang J., Zhang L., Su C.-Y. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chemical Society Reviews. 2014; 43(16): 6011—6061. https://doi.org/10.1039/c4cs00094c; Li Z., Chaemchuen S. Recent progress on the synthesis and modified strategies of zeolitic-imidazole Framework-67 towards electrocatalytic oxygen evolution reaction. The Chemical Record. 2023: e202300142. https://doi.org/1010.1002/tcr.202300142; Ethiraj J., Palla S., Reinsch H. Insights into high pressure gas adsorption properties of ZIF-67: Experimental and theoretical studies. Microporous and Mesoporous Materials. 2020; 294(1): 109867. https://doi.org/10.1016/j.micromeso.2020.110439; Qin J., Wang S., Wang X. Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst. Applied Catalysis B: Environmental. 2017; 209: 476—482. https://doi.org/10.1016/j.apcatb.2017.03.018; Wenping Y., Xinyue Sh., Yan L., Pang H. Manganese-doped cobalt zeolitic imidazolate framework with highly enhanced performance for supercapacitor. Journal of Energy Storage. 2019; 26: 101018. https://doi.org/10.1016/j.est.2019.101018; Jian M., Liu B., Liu R., Qu J., Wang H., Zhang X. Water-based synthesis of zeolitic imidazolate framework-8 with high morphology level at room temperature. RSC Advances. 2015; 5(60): 48433—48441. https://doi.org/10.1039/C5RA04033G; Cravillon J., Münzer S., Lohmeier S.-J., Feldhoff A., Huber K., Wiebcke M. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chemistry of Materials. 2009; 21(8): 1410—1412. https://doi.org/10.1021/cm900166h; Park K.S., Ni Zh., Côté A.P., Choi J.Y., Huang R., Uribe-Romo F., Chae H.K., O'Keeffe M., Yaghi O.M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences. 2006; 103(27): 10186—10191. https://doi.org/10.1073/pnas.0602439103; Zhang J., Zhang T., Yu D., Xiao K., Hong Y. Transition from ZIF-L-Co to ZIF-67: a new insight into the structural evolution of zeolitic imidazolate frameworks (ZIFs) in aqueous systems. CrystEngComm. 2015; 17(43): 8212—8215. https://doi.org/10.1039/C5CE01531F; Sundriyal S., Shrivastav V., Mishra S., Deep A. Enhanced electrochemical performance of nickel intercalated ZIF-67/OG composite electrode for solid-state supercapacitors. International Journal of Hydrogen Energy. 2020; 45(55): 30859—30869. https://doi.org/10.1016/j.ijhydene.2020.08.075; Bradshaw D., El-Hankari S., Lupica-Spagnolo L. Supramolecular templating of hierarchically porous metal-organic frameworks. Chemical Society Reviews. 2014; 43(16): 5431—5443. https://doi.org/10.1039/c4cs00127c; Duan C., Zhang Y., Li J., Kang L., Xie Y., Qiao W., Zhu Ch., Luo H. Rapid room-temperature preparation of hierarchically porous metal–organic frameworks for efficient uranium removal from aqueous solutions. Nanomaterials. 2020; 10(8): 1539. https://doi.org/10.3390/nano10081539; Sarawade P., Tan H., Polshettiwar V. Shape- and morphology-controlled sustainable synthesis of Cu, Co, and in metal organic frameworks with high CO2 capture capacity. ACS Sustainable Chemistry & Engineering. 2013; 1(1): 66—74. https://doi.org/10.1021/sc300036p; Hsu S.-H., Li Ch.-T., Chien H.-T., Salunkhe R.R., Suzuki N., Yamauchi Y., Ho K.-Ch., Wu K. C.-W. Platinum-free counter electrode comprised of metal-organic-framework (MOF)-derived cobalt sulfide nanoparticles for efficient dye-sensitized solar cells (DSSCs). Scientific Reports. 2014; 4(1): 6983. https://doi.org/10.1038/srep06983; Li W., Wang K., Yang X., Zhan F., Wang Y., Liu M., Qiu X., Jie L., Zhan J., Li Q., Liu Y. Surfactant-assisted controlled synthesis of a metal-organic framework on Fe2O3 nanorod for boosted photoelectrochemical water oxidation. Chemical Engineering Journal. 2020; 379: 122256. https://doi.org/10.1016/j.cej.2019.122256; Lan T., Wang Q., Lu Ch., Li J., Li J., Chen Y., Li L., Yang J., Li J. Construction of hierarchically porous metal-organic framework particle by a facile MOF-template strategy. Particuology. 2023; 74(49): 9—17. https://doi.org/10.1016/j.partic.2022.05.004; Guillerm V., Kim D., Eubank J.F., Luebke R., Liu X., Adil K., Lah M.S., Eddaoudi M. A supermolecular building approach for the design and construction of metal-organic frameworks. Chemical Society Reviews. 2014; 43(16): 6141—6172. https://doi.org/10.1039/C4CS00135D; Duan C., Huo J., Li F., Yang M., Xi H. Ultrafast room-temperature synthesis of hierarchically porous metal-organic frameworks by a versatile cooperative template strategy. Journal of Materials Science. 2018; 53(24): 16276—16287. https://doi.org/10.1007/s10853-018-2793-3; Duan C., Li F., Yang M., Zhang H., Wu Y., X H. Rapid synthesis of hierarchically structured multifunctional metal-organic zeolites with enhanced volatile organic compounds adsorption capacity. Industrial & Engineering Chemistry Research. 2018; 57(45): 15385—15394. https://doi.org/10.1021/acs.iecr.8b04028; Du W., Bai Y., Yang Zh., Li R., Zhang D., Ma Zh., Yuan A., Xu J. A conductive anionic Co-MOF cage with zeolite framework for supercapacitors. Chinese Chemical Letters. 2020; 31(9): 2309—2313. https://doi.org/10.1016/j.cclet.2020.04.017; Sumida K., Liang K., Reboul J., Ibarra I.A., Furukawa Sh., Falcaro P. Sol-gel processing of metal-organic frameworks. Chemistry of Materials. 2017; 29(7): 2626—2645. https://doi.org/10.1021/acs.chemmater.6b03934; Marquez A.G., Horcajada P., Grosso D., Férey G., Serre Ch., Sanchez C., Boissiere C. Green scalable aerosol synthesis of porous metal-organic frameworks. Chemical Communications. 2013; 49(37): 3848—3850. https://doi.org/10.1039/c3cc39191d; Du X.D., Wang Ch.-Ch., Liu J.-G., Zhao X.-D., Zhong J., Li Y.-X., Li J., Wang P. Extensive and selective adsorption of ZIF-67 towards organic dyes: Performance and mechanism. Journal of Colloid and Interface Science. 2017; 506: 437—441. https://doi.org/10.1016/j.jcis.2017.07.073; Sun W., Zhai X., Zhao L. Synthesis of ZIF-8 and ZIF-67 nanocrystals with well-controllable size distribution through reverse microemulsions. Chemical Engineering Journal. 2016; 289: 59—64. https://doi.org/10.1016/j.cej.2015.12.076; Dhakshinamoorthy A., Alvaro M., Garcia H. Commercial metal–organic frameworks as heterogeneous catalysts. Chemical Communications. 2012; 48(92): 11275—11288. https://doi.org/10.1039/c2cc34329k; Tu N.T.T., Sy Ph.Ch., Tran V.Th., Toan T.Th.T., Phong N.H., Long H.Th., Khieu D.Q. Microwave-assisted synthesis and simultaneous electrochemical determination of dopamine and paracetamol using ZIF-67-modified electrode. Journal of Materials Science. 2019; 54(17): 11654—11670. https://doi.org/10.1007/s10853-019-03709-z; Julien P.A., Mottillo C., Friščić T. Metal-organic frameworks meet scalable and sustainable synthesis. Green Chemistry. 2017; 19(12): 2729—2747. https://doi.org/10.1039/C7GC01078H; Phan P.T., Hong J., Tran N., Le Th.H. The properties of microwave-assisted synthesis of metal-organic frameworks and their applications. Nanomaterials. 2023; 13(2): 352. https://doi.org/10.3390/nano13020352; Mansar A., Serier-Brault H. Microwave-assisted synthesis to prepare metal-organic framework for luminescence thermometry. Journal of Solid State Chemistry. 2022; 312: 123183. https://doi.org/10.1016/j.jssc.2022.123183; Carne A., Carbonell C., Imaz I., Maspoc D. Nanoscale metal-organic materials. Chemical Society Reviews. 2011; 40(1): 291—305. https://doi.org/10.1039/c0cs00042f; Wang M., Feng Y., Zhang Y., Li Sh., Wu M., Xue L., Zhao J., Zhang W., Ge M., Lai Y., Mi J. Ion regulation of hollow nickel cobalt layered double hydroxide nanocages derived from ZIF-67 for high-performance supercapacitors. Applied Surface Science. 2022; 596(19): 153582. https://doi.org/10.1016/j.apsusc.2022.153582; Chalati T., Horcajada P., Gref R., Couvreur P., Serre Ch. Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A. Journal of Materials Chemistry. 2011; 21(7): 2220—2227. https://doi.org/10.1039/C0JM03563G; Abdi J., Sisi A.J., Hadipoor M., Khataee A. State of the art on the ultrasonic-assisted removal of environmental pollutants using metal-organic frameworks. Journal of Hazardous Materials. 2022; 424(Pt C): 127558. https://doi.org/10.1016/j.jhazmat.2021.127558; Fouad O.A., Ali A., Mohamed G.G., Mahmoud N.F. Ultrasonic aided synthesis of a novel mesoporous cobalt-based metal-organic framework and its application in Cr (III) ion determination in centrum multivitamin and real water samples. Microchemical Journal. 2022; 175(1–3): 107228. https://doi.org/10.1016/j.microc.2022.107228; Chu R., Weng L., Guan L., Liu J., Zhang X., Wu Z. Preparation and properties comparison of ZIF-67/PVDF and SiCNWs/PVDF composites for energy storage. Journal of Materials Science: Materials in Electronics. 2023; 34(5): 347. https://doi.org/10.1007/s10854-022-09630-7; Férey G. Hybrid porous solids: past, present, future. Chemical Society Reviews. 2008; 37(1): 191—214. https://doi.org/10.1039/b618320b; Gong H., Bie Sh., Zhang J., Ke X., Wang X., Liang J., Wu N., Zhang Q., Luo Ch., Jia Y. In situ construction of ZIF-67-derived hybrid tricobalt tetraoxide@ carbon for supercapacitor. Nanomaterials. 2022; 12(9): 1571. https://doi.org/10.3390/nano12091571; Lu Y., Zhan W., He Y., Wang Y., Kong X.-J., Kuang Q., Xie Zh., Zheng L.-S. MOF-templated synthesis of porous Co3O4 concave nanocubes with high specific surface area and their gas sensing properties. ACS Applied Materials & Interfaces. 2014; 6(6): 4186—4195. https://doi.org/10.1021/am405858v; Chen T.Y., Lina L.-Y., Gengc D.-Sh., Lee P.-Y. Systematic synthesis of ZIF-67 derived Co3O4 and N-doped carbon composite for supercapacitors via successive oxidation and carbonization. Electrochimica Acta. 2021; 376: 137986. https://doi.org/10.1016/j.electacta.2021.137986; Ma F., Jin Sh., Li Y., Feng Y., Tong Y. Pyrolysis-derived materials of Mn-doped ZIF-67 for the electrochemical detection of o-nitrophenol. Journal of Electroanalytical Chemistry. 2022; 904: 115932. https://doi.org/10.1016/j.jelechem.2021.115932; Torad N.L., Salunkhe R.R., Li Y., Hamoudi H., Imura M., Sakka Y., Hu Ch.-Ch., Yamauchi Y. Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67. Chemistry-A European Journal. 2014; 20(26): 7895—7900. https://doi.org/10.1002/chem.201400089; Wei F., Li X., Yang J., Chen Ch., Sui Y. Embedding cobalt into ZIF-67 to obtain cobalt-nanoporous carbon composites as electrode materials for supercapacitor. Journal of Nanoscience and Nanotechnology. 2017; 17(5): 3504—3508. https://doi.org/10.1166/jnn.2017.13036; Пат. (РФ) № 2593145, МПК B82B3/00, C08F20/44, H01F1/42. Кожитов Л.В., Муратов Д.Г., Костишин В.Г., Якушко Е.В., Савиенко А.Г., Щетинин И.В., Попкова А.В. Способ получения нанокомпозита FeNi3/С в промышленных масштабах. Заявл.: 20.03.2015; опубл.: 27.07.2016. URL: https://www.freepatent.ru/patents/2593145; Пат. (РФ) № 2455225, МПК B82B3/00, C08F20/44, H01F1/42. Кожитов Л.В., Костикова А.В., Козлов В.В. Способ получения нанокомпозита FeNi3/пиролизованный полиакрилонитрил. Заявл.: 14.06.2011; опубл.: 10.07.2012. URL: https://www.freepatent.ru/patents/2455225; Kozhitov L.V., Muratov D.G., Kostishyn V.G., Suslyaev V.I., Korovin E.Yu., Popkova A.V. FeCo/C nanocomposites: Synthesis, magnetic and electromagnetic properties. Russian Journal of Inorganic Chemistry. 2017; 62(11): 1499—1507. https://doi.org/10.1134/S0036023617110110; Muratov D.G., Kozhitov L.V., Kazaryan T.M., Vasil’ev A.A., Popkova A.V., Korovin E.Yu. Synthesis and electromagnetic properties of FeCoNi/C nanocomposites based on polyvinyl alcohol. Russian Microelectronics. 2021; 50(8): 657—664. https://doi.org/10.1134/S1063739721080072; Yakushko E.V., Kozhitov L.V., Muratov D.G., Kostishyn V.G. NiCo/C nanocomposites: Synthesis and magnetic properties. Russian Journal of Inorganic Chemistry. 2016; 61(12): 1591—1595. https://doi.org/10.1134/S0036023616120202; Muratov D.G., Kozhitov L.V., Yakushko E.V., Vasilev A.A., Popkova A.V., Tarala V.A., Korovin Ev.Yu. Synthesis, structure and electromagnetic properties of FeCoAl/C nanocomposites. Modern Electronic Materials. 2021; 7(3): 99—108. https://doi.org/10.3897/j.moem.7.3.77105; Muratov D.G., Kozhitov L.V., Zaporotskova I.V., Popkova A.V., Tarala V.A., Korovin Ev.Yu., Zorin A.V. Synthesis, structure and electromagnetic properties of FeCoCu/C nanocomposites. Modern Electronic Materials. 2023; 9(1): 15—24. https://doi.org/10.3897/j.moem.9.1.104721; Gromov A.A., Yakushko E.V., Muratov D.G., Kozitov L.V., Lomov A.A., Nalivaiko A.Yu., Ozherelkov D., Pelevin I., Marinich S.B. Ni–Co–Cu/carbon nanocomposites: synthesis, characterization and magnetic properties. Nano. 2023; 18(03): 2350015. https://doi.org/10.1142/S1793292023500157; Zaporotskova I., Muratov D., Kozhitov L., Popkova A., Boroznina N., Boroznin S., Vasiliev A., Tarala V., Korovin Ev. Nanocomposites based on pyrolyzed polyacrylonitrile doped with FeCoCr/C transition metal alloy nanoparticles: synthesis, structure, and electromagnetic properties. Polymers. 2023; 15(17): 3596. https://doi.org/10.3390/polym15173596; https://met.misis.ru/jour/article/view/557
-
3Academic Journal
Authors: Litvin, V. А., Shchepak, D. A., Kovalenko, D. O.
Subject Terms: металлоуглеродные нанокомпозиты, наночастицы металлов, фульвокислоты, углеродсодержащие прекурсоры, гуминовые вещества, нанокомпозиты, синтетические гуминовые вещества
File Description: application/pdf
Access URL: https://elib.belstu.by/handle/123456789/44900
-
4Academic Journal
Authors: I. V. Zaporotskova, D. P. Radchenko, L. V. Kozitov, P. A. Zaporotskov, A. V. Popkova, И. В. Запороцкова, Д. П. Радченко, Л. В. Кожитов, П. А. Запороцков, А. В. Попкова
Contributors: The study was carried out with the financial support of the Russian Foundation for Basic Research and the Administration of the Volgograd Region within the framework of scientific project No. 19-43-340005 r_a and the grant of the President of the Russian Federation MK-2483.2019.3., Исследование выполнено при финансовой поддержке РФФИ и Администрации Волгоградской области в рамках научного проекта № 19-43-340005 р_а и гранта Президента РФ МК-2483.2019.3.
Source: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 23, № 3 (2020); 196-202 ; Известия высших учебных заведений. Материалы электронной техники; Том 23, № 3 (2020); 196-202 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2020-3
Subject Terms: пиролизованныи полиакрилонитрил, переходные металлы, металлоуглеродные нанокомпозиты, DFT
File Description: application/pdf
Relation: https://met.misis.ru/jour/article/view/398/320; Кожитов Л. В., Козлов В. В., Костикова А. В., Попкова А. В. Новые металлоуглеродные нанокомпозиты и углеродный нанокристаллический материал с перспективными свойствами для развития электроники // Известия вузов: Материалы электронной техники. 2012. № 3. С. 59—67. DOI:10.17073/1609-3577-2012-3-59-67; Муратов Д. Г., Якушко Е. В., Кожитов Л. В., Попкова А. В., Пушкарев М. А. Формирование нанокомпозитов Ni/C на основе полиакрилонитрила под действием ИК-излучения // Известия высших учебных заведений. Материалы электронной техники. 2013. № 1. С. 61—65. DOI:10.17073/1609-3577-2013-1-61-65; Запороцкова И. В., Аникеев Н. А., Кожитов Л. В., Попкова А. В. Исследование процесса гидрогенизации однослойного и двухслойного пиролизованного полиакрилонитрила // Известия вузов. Материалы электронной техники. 2013. № 3. С. 34—38. DOI:10.17073/1609-3577-2013-3-34-38; Kozhitov L. V., Kozlov V. V., Kostikova A. V., Popkova A. V. Novel metal carbon nanocomposites and carbon nanocrystalline material with promising properties for the development of electronics // Russian Microelectronics. 2013. V. 42, N 8. P. 498—507. DOI:10.1134/S1063739713080088; Bulatov M. F., Kozitov L. V., Muratov D. G., Karpacheva G. P., Popkova A. V. The magnetic properties of nanocomposites Fe-Co/C based on polyacrylonitrile // J. Nanoelectron. Optoelectron. 2015. V. 9, N 6. P. 828—833. DOI:10.1166/jno.2014.1682; Alonso F., Riente P., Rodríguez-Reinoso F., Ruiz-Martínez J., Sepúlveda-Escribano A., Yus M. A highly reusable carbon-supported platinum catalyst for the hydrogen-transfer reduction of ketones // ChemCatChem. 2009. V. 1, Iss. 1. P. 75—77. DOI:10.1002/cctc.200900045; Ряшенцева М. А. Егорова Е. В., Трусов А. И., Нугманов Е. Р., Антонюк С. Н. Применение металлоуглеродных катализаторов в процессах превращения низших алифатических спиртов // Успехи химии, 2006, Т. 75, № 11. С. 1119—1132.; Ефимов М. Н., Земцов Л. М., Карпачева Г. П., Ермилова М. М., Орехова Н. В., Терещенко Г. Ф., Дзидзигури Э. Л., Сидорова Е. Н. Получение и структура каталитических нанокомпозитных углеродных материалов, содержащих металлы платиновой группы // Вестн. МИТХТ им. М. В. Ломоносова. 2008. Т. 3, № 1. С. 68—71.; Лыньков Л. М., Борботько Т. В., Криштопова Е. А. Радиопоглощающие свойства никельсодержащего порошкообразного шунгита // Письма в ЖТФ. 2009. Т. 35, № 9. С. 44—48. URL: https://journals.ioffe.ru/articles/viewPDF/12219; Zhou Jianhua, He Jianping, Wang Fao, Li Guoxian, Guo lunxm, Zhao Jianging, Ma Yiou. Design of mesostrucred -Fe2O3/carbon nanocomposites for electromagnetic wave absorption applications // J. Alloys and Compounds. 2011. V. 509, Iss. 32. P. 8211—8214. DOI:10.1016/j.jallcom.2011.05.042; Yong Yang, Cailing Xu, Yongxin Xia, Tao Wang, Fashen Li. Synthesis and microwave absorption properties of FeCo nanoplates // J. Alloys and Compounds. 2010. V. 493, Iss. 1–2. P. 549—552. DOI:10.1016/j.jallcom.2009.12.153; Patent WO9610901A1 (US). Metal filaments for electro-magnetic interference shielding / CHUNG, Deborah, Duen, Ling, 1996.; Основы физики магнитных явлений в кристаллах: учебное пособие. Киев: НТУУ «КПИ», 2004. 227 с.; Vázquez E., Prato M. Carbon nanotubes and microwaves: interactions, responses, and applications // Acs Nano. 2009. V. 3, N 12. P. 3819—3824. DOI:10.1021/nn901604j; Moradi A. Microwave response of magnetized hydrogen plasma in carbon nanotubes: multiple reflection effects // Appl. Opt. 2010. V. 49, N 10. P. 1728—1733. DOI:10.1364/AO.49.001728; Kawabata A., Kubo R. Electronic properties of fine metallic particles. II. Plasma resonance absorption // J. Phys. Soc. Jpn. 1966. V. 21, N 9. P. 1765—1772. DOI:10.1143/JPSJ.21.1765; Hong Zhu, Lan Zhang, Lizi Zhang, Yuan Song, Yi Huang, Yongming Zhang. Electromagnetic absorption properties of Sn-filled multi-walled carbon nanotubes synthesized by pyrolyzing // Materials Lett. 2010. V. 64, Iss. 3. P. 227—230. DOI:10.1016/j.matlet.2009.07.023; Ануфриева С. И., Ожигина Е. Г., Рогожин А. А. Минералого-технические особенности шунгитового сырья, определяющие выбор эффективных направлений создания новых материалов // Материалы Всероссийского минералогического семинара с международным участием «Геоматериалы для высоких технологий, алмазы, благородные металлы, самоцветы Тимано-Североуральского региона» Сыктывкар: Геопринт, 2010. C. 31—32.; Buseck P. R. Geological fullerenes: review and analysis // Earth and Planetary Science Letters. 2002. V. 203, N 3–4. P. 781—792. DOI:10.1016/S0012-821X(02)00819-1; Mossman D., Eigendorf G., Tokaryk D., Gauthier-Lafaye F., Guckert K. D., Melezhik V., Farrow C. E. Testing for fullerenes in geologic materials: Oklo carbonaceous substances, Karelian shungites, Sudbury Black Tuff // Geology. 2003. V. 31, N 3. P. 255—258. DOI:10.1130/0091-7613(2003)0312.0.CO;2; Третьяков Ю. Д., Гудилин Е. А. Основные направления фундаментальных и ориентированных исследований в области наноматериалов // Успехи химии. 2009. T. 78, № 9. С. 867—888.; Bahl O. P., Manocha L. M. Characterization of oxidized PAN fibers // Carbon. 1974. V. 12, Iss. 4. P. 417—423. DOI:10.1016/0008-6223(74)90007-4; Zaporotskova I. V., Anikeev N. A., Kojitov L. V., Davletova O. A., Popkova A. V. Theoretical studies of the structure of the metal-carbon composites on the base of acryle-nitrile nanopolimer // J. Nano- Electron. Phys. 2014. V. 6, N 3. P. 03035-1—03035-3. URI http://essuir.sumdu.edu.ua/handle/123456789/36281; Wangxi Z, Jie L, Gang W. Evolution of structure and properties of PAN precursors during their conversion to carbon fibers // Carbon. 2003. V. 41, Iss. 14. P. 2805—2812. DOI:10.1016/S0008-6223(03)00391-9; Sanchez-Soto P. J., Aviles M. A., del Rio J. C., Gines J. M., Pascual J., Perez- Rodriguez J. L. Thermal study of the effect of several solvents on polymerization of acrylonitrile and their subsequent pyrolysis // J. Anal. Appl. Pyrolysis. 2001. V. 58–59. P. 155—172. DOI:10.1016/S0165-2370(00)00203-5; Запороцкова И. В. Пиролизованный полиакрилонитрил и некоторые композиты на его основе: особенности получения, структуры и свойств. Волгоград: Изд-во Волгогр. гос. ун-та, 2016. 220 с.; Муратов Д. Г., Кожитов Л. В., Запороцкова И. В., Сонькин В. С., Борознина Н. П., Подкова А. В., Борознин С. В., Шадринов А. В. Синтез и свойства наночастиц, сплавов и композиционных наноматериалов на основе переходных металлов. Волгоград: Изд-во Волгогр. гос. ун-та, 2017. 650 с.; Запороцкова И. В., Кожитов Л. В., Аникеев Н. А., Давлетова О. А., Муратов Д. Г., Попкова А. В., Якушко Е. В. Металлоуглеродные нанокомпозиты на основе пиролизованного полиакрилонитрила // Известия вузов. Материалы электронной техники. 2014. Т. 17, № 2. С. 134—142. DOI:10.17073/1609-3577-2014-2-134-142; Матренин С. В., Овечкин Б. Б. Наноструктурные материалы в машиностроении: учебное пособие. Томск: Изд-во Томского политех. ун-та, 2009. 186 с.; Basis Sets. URL: http://gaussian.com/basissets/ (дата обращения: 23.09.2020).; Радченко Р. Д., Запороцкова И. В., Кожитов Л. В., Борознина Н. П. Теоретические исследования металлокомпозита на основе монослоя пиролизованного полиакрилнитрила, содержащего парные атомы металлов Cu-Co, Cu-Ni, Ni-Co, Fe-Ni // Сборник трудов по материалам VI Международной конференции и молодежной школы «Информационные технологии и нанотехнологии (ИТНТ-2020)». В 4-х томах / под ред. В. А. Соболева. Самара: Изд-во Самар. ун-та, 2020. Т. 3. C. 559—564.; Ditchfield R., Hehre W. J., Pople J. A. Self-consistent molecular orbital methods. IX. Extended Gaussian-type basis for molecular-orbital studies of organic molecules // J. Chem. Phys. 1971. V. 54, Iss. 2. P. 724. DOI:10.1063/1.1674902; Rassolov V. A., Ratner M. A., Pople J. A., Redfern P. C., Curtiss L. A. 6-31G* basis set for third-row atoms // J. Comp. Chem. 2001. V. 22, Iss. 9. P. 976—984. DOI:10.1002/jcc.1058; Ackerbauer S., Krendelsberger N., Weitzer F., Hiebl K., Schuster J. C. The constitution of the ternary system Fe–Ni–Si // Intermetallics. 2009. V. 17, Iss. 6. P. 414—420. DOI:10.1016/j.intermet.2008.11.016; Cioslowski J. A new population analysis based on atomic polar tensors // J. Am. Chem. Soc. 1989. V. 111, N 22. P. 8333—8336. DOI:10.1021/ja00204a001; https://met.misis.ru/jour/article/view/398
-
5Academic Journal
Authors: D. G. Muratov, L. V. Kozhitov, E. V. Yakushko, A. A. Vasilev, A. V. Popkova, V. A. Tarala, E. Yu. Korovin, Д. Г. Муратов, Л. В. Кожитов, Е. В. Якушко, А. А. Васильев, А. В. Попкова, В. А. Тарала, Е. Ю. Коровин
Source: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 24, № 3 (2021); 176-189 ; Известия высших учебных заведений. Материалы электронной техники; Том 24, № 3 (2021); 176-189 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2021-3
Subject Terms: наночастицы FeCoAl, углеродная матрица, металлоуглеродные нанокомпозиты, ИК-пиролиз, рентгенофазовый анализ, КР-спектроскопия, комплексная диэлектрическая проницаемость, комплексная магнитная проницаемость, потери на отражение, carbon matrix, metal-carbon nanocomposites, IR pyrolysis, X-ray phase analysis, Raman spectroscopy, complex dielectric permeability, complex magnetic permeability, reflection loss
File Description: application/pdf
Relation: https://met.misis.ru/jour/article/view/450/360; Gubin S.P., Spichkin Y.I., Yurkov G.Yu., Tishin A.M. Nanomaterial for high-density magnetic data storage. Russian J. Inorg. Chem. 2002; 47(1): S32—S67. http://www.amtc.ru/publications/articles/5rus.pdf; Lu An-Hui, Salabas E.L., Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 2007; 46(8): 1222—1244. https://doi.org/10.1002/anie.200602866; Xu Y.H., Bai J., Wang J.P. High-magnetic-moment multifunctional nanoparticles for nanomedicine applications. J. Magn. Magn. Mater. 2007; 311(1): 131—134. https://doi.org/10.1016/j.jmmm.2006.11.174; Khadzhiev S.N., Kulikova M.V., Ivantsov M.I., Zemtsov L.M, Karpacheva G.P., Muratov D.G., Bondarenko G.N., Oknina N.V. Fischer–Tropsch synthesis in the presence of nanosized iron-polymer catalysts in a fixed-bed reactor. Pet. Chem. 2016; 56(6): 522—528. https://doi.org/10.1134/S0965544116060049; Xu M.H., Zhong W., Qi X.S., Au C.T., Deng Y., Du Y.W. Highly stable Fe–Ni alloy nanoparticles encapsulated in carbon nanotubes: Synthesis, structure and magnetic properties. J. Alloys Compd. 2010; 495(1): 200—204. https://doi.org/10.1016/j.jallcom.2010.01.121; Bahgat M., Paek M.-K., Pak J.-J. Comparative synthesize of nanocrystalline Fe-Ni and Fe-Ni-Co alloys during hydrogen reduction of NixCO1-xFe2O4. J. Alloys Compd. 2008; 466(1-2): 59—66. https://doi.org/10.1016/j.jallcom.2008.01.147; Azizi A., Yoozbashizadeh Н., Sadmezhaad S.K. Effect of hydrogen reduction on microstructure and magnetic properties of mechanochemically synthesized Fe–16.5Ni–16.5Co nano-powder. J. Magn. Magn. Mater. 2009; 321(18): 2729—2732. https://doi.org/10.1016/j.jmmm.2009.03.085; Li X., Takahashi S. Synthesis and magnetic properties of Fe-Co-Ni nanoparticles by hydrogen plasma-metal reaction. J. Magn. Magn. Mater. 2000; 214(3): 195—203. https://doi.org/10.1016/S0304-8853(00)00081-0; Dalavi S.B., Theerthagiri J., Raja M.M., Panda R.N. Synthesis, characterization and magnetic properties of nanocrystalline FexNi80-xCo20 ternary alloys. J. Magn. Magn. Mater. 2013; 344: 30—34. https://doi.org/10.1016/j.jmmm.2013.05.026; Prasad N.Kr., Kumar V. Microstructure and magnetic properties of equiatomic FeNiCo alloy synthesized by mechanical alloying. J. Mater. Sci: Mater. Electron. 2015; 26(12): 10109—10118. https://doi.org/10.1007/s10854-015-3695-7; Zehani K., Bez R., Boutahar A., Hlil E.K., Lassri H., Moscovici J., Mliki N., Bessais L. Structural, magnetic, and electronic properties of high moment FeCo nanoparticles. J. Alloys Compd. 2014; 591: 58—64. https://doi.org/10.1016/j.jallcom.2013.11.208; Nautiyal P., Seikh Md.M., Lebedev O.I., Kundu A.K. Sol-gel synthesis of Fe–Co nanoparticles and magnetization study. J. Magn. Magn. Mater. 2015; 377: 402—405. https://doi.org/10.1016/j.jmmm.2014.10.157; Ang K.H., Alexandrou I., Mathur N.D., Amaratunga G.A.J., Haq S. The effect of carbon encapsulation on the magnetic properties of Ni nanoparticles produced by arc discharge in de-ionized water. Nanotechnology. 2004; 15(5): 520—524. https://doi.org/10.1088/0957-4484/15/5/020; Afghahi S.S.S., Shokuhfar A. Two step synthesis, electromagnetic and microwave absorbing properties of FeCo@C core–shell nanostructure. J. Magn. Magn. Mater. 2014; 370: 37—44. https://doi.org/10.1016/j.jmmm.2014.06.040; Ibrahim E.M.M., Hampel S., Wolter A.U.B., Kath M., El-Gendy A.A., Klingeler R., Täschner C., Khavrus V.O., Gemming T., Leonhardt A., Büchner B. Superparamagnetic FeCo and FeNi nanocomposites dispersed in submicrometer-sized C spheres. J. Phys. Chem. C. 2012; 116(42): 22509—22517. https://doi.org/10.1021/jp304236x; Liu X.G., Ou Z.Q., Geng D.Y., Han Z., Jiang J.J., Liu W., Zhang Z.D. Influence of a graphite shell on the thermal and electromagnetic characteristics of FeNi nanoparticles. Carbon. 2010; 48(3): 891—897. https://doi.org/10.1016/j.carbon.2009.11.011; Liu X., Or S.W., Ho S.L., Cheung C.C., Leung C.M., Han Z., Geng D., Zhang Z. Full X–Ku band microwave absorption by Fe(Mn)/Mn7C3/C core/shell/shell structured nanocapsules. J. Alloys Compd. 2011; 509(37): 9071—9075. https://doi.org/10.1016/j.jallcom.2011.06.031; Liu Q., Cao B., Feng C., Zhang W., Zhu S., Zhang D. High permittivity and microwave absorption of porous graphitic carbons encapsulating Fe nanoparticles. Compos. Sci. Technol. 2012; 72(13): 1632—1636. https://doi.org/10.1016/j.compscitech.2012.06.022; Xie Zh., Geng D., Liu X., Ma S., Zhang Zh. Magnetic and microwave-absorption properties of graphite-coated (Fe,Ni) nanocapsules. J. Mater. Sci. Technol. 2011; 27(7): 607—614. https://doi.org/10.1016/S1005-0302(11)60115-1; Yang Y., Qia S., Wang J. Preparation and microwave absorbing properties of nickel-coated graphite nanosheet with pyrrole via in situ polymerization. J. Alloys Compd. 2012; 520: 114—121. https://doi.org/10.1016/j.jallcom.2011.12.136; Zhao D.L., Zhang J.M., Li X., Shen Z.M. Electromagnetic and microwave absorbing properties of Co-filled carbon nanotubes. J. Alloys Compd. 2010; 505(2): 712—716. https://doi.org/10.1016/j.jallcom.2010.06.122; Zhao D.L., Li X., Shen Z.M. Preparation and electromagnetic and microwave absorbing properties of Fe-filled carbon nanotubes. J. Alloys Compd. 2009; 471(1-2): 457—460. https://doi.org/10.1016/j.jallcom.2008.03.127; Fan Y., Yang H., Liu X., Zhu H., Zou G. Preparation and study on radar absorbing materials of nickel-coated carbon fiber and flake graphite. J. Alloys Compd. 2008; 461(1-2): 490—494. https://doi.org/10.1016/j.jallcom.2007.07.034; Zhang T., Huang D., Yang Y., Kang F., Gu J. Fe3O4/carbon composite nanofiber absorber with enhanced microwave absorption performance. Mater. Sci. Eng. B. 2013; 178(1): 1—9. https://doi.org/10.1016/j.mseb.2012.06.005; Lu B., Dong X.L., Huang H., Zhang X.F., Zh X.G., Lei J.P., Sun J.P. Microwave absorption properties of the core/shell-type iron and nickel nanoparticles. J. Magn. Magn. Mater. 2008; 320(6): 1106—1111. https://doi.org/10.1016/j.jmmm.2007.10.030; Wang B., Zhang J., Wang T., Qiao L., Li F. Synthesis and enhanced microwave absorption properties of Ni@Ni2O3 core-shell particles. J. Alloys Compd. 2013; 567: 21—25. https://doi.org/10.1016/j.jallcom.2013.03.028; Wang Z., Xiao P., He N. Synthesis and characteristics of carbon encapsulated magnetic nanoparticles produced by a hydrothermal reaction. Carbon. 2006; 44(15): 3277—32841. https://doi.org/10.1016/j.carbon.2006.06.026; Singh A., Lavigne P. Deposition of diamond-like carbon films by low energy ion beam and d.c. magnetron sputtering. Surf. Coat. Technol. 1991; 47(1-3): 188—200. https://doi.org/10.1016/0257-8972(91)90281-Z; Dumitrache F., Morjan I., Fleaca С., Birjega R., Vasile E., Kuncser V., Alcxandrescu R. Parametric studies on iron-carbon composite nanoparticles synthesized by laser pyrolysis for increased passivation and high iron content. Appl. Surf. Sci. 2011; 257(12): 5265—5269. https://doi.org/10.1016/j.apsusc.2010.11.069; Yu F., Wang J.N., Sheng Z.M., Su L.F. Synthesis of carbon-encapsulated magnetic nanoparticles by spray pyrolysis of iron carbonyl and ethanol. Carbon. 2005; 43(14): 3018—3021. https://doi.org/10.1016/j.carbon.2005.06.008; Lin X.G., On Z.Q., Geng D.Y., Han Z., Jiang J.J., Lin W., Zhang Z.D. Influence of a graphite shell on the thermal and electromagnetic characteristics of FeNi nanoparticles. Carbon. 2010; 48(3): 891—897. https://doi.org/10.1016/j.carbon.2009.11.011; Патент 2686223 С1 (RU). Способ синтеза нанокомпозитов Ag/C. Л.В. Кожитов, В.С. Сонькин, А.Р. Муралеев, Е.Г. Сидин, Д.Д. Маганов, Д.Г. Муратов, Е.В. Якушко, А.В. Попкова, 2019. https://patents.s3.yandex.net/RU2686223C1_20190424.pdf; Патент 2593145 (RU). Способ получения нанокомпозита FeNi3/С в промышленных масштабах. В.В. Козлов, Д.Г. Муратов, В.Г. Костишин, Е.В. Якушко, Г.Е. Гельман, 2016. https://patents.s3.yandex.net/RU2593145C1_20160727.pdf; Муратов Д.Г., Козлов В.В., Крапухин В.В., Кожитов Л.В., Карпачева Г.П., Земцов Л.М. Исследование электропроводности и полупроводниковых свойств нового углеродного материала на основе ИК-пиролизованного полиакрилонитрила ((C3H3N)n). Известия вузов. Материалы электронной техники. 2007; (3): 26—30.; Kozitov L.V., Kostikova A.V., Kozlov V.V., Bulatov M.F. The FeNi3/C nanocomposite formation from the composite of Fe and Ni salts and polyacrylonitrile under IR-heating. J. Nanoelectron. Optoelectron. 2012; (7): 419—422.; Земцов Л.М., Карпачева Г.П., Ефимов М.Н., Муратов Д.Г., Багдасарова К.А. Углеродные наноструктуры на основе ИК-пиролизованного полиакрилонитрила. Высокомолекулярные соединения. Сер. А. 2006; 48(6): 977—982.; Karpacheva G.P., Bagdasarova K.A., Bondarenko G.N., Zemtsov L.M., Muratov D.G., Perov N.S. Co-carbon nanocomposites based on IR-pyrolyzed polyacrylonitrile. Polymer Sci. A. 2009; 51(11-12): 1297—1302. https://doi.org/10.1134/S0965545X09110157; Dzidziguri L., Zemtsov L.M., Karpacheva G.P., Muratov D.G., Sidorova E.N. Preparation and structure of metal-carbon nanocomposites Cu-C. Nanotechnol. Russia. 2010; 5(9-10): 665—668. https://doi.org/10.1134/S1995078010090119; Ferrari A.C., Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B. 2000; 61(20): 14095—14107. https://doi.org/10.1103/physrevb.61.14095; Tuinstra F., Koenig J.L. Raman spectrum of graphite. J. Chem. Phys. 1970; 53(3): 1126—1130. https://doi.org/10.1063/1.167410; Ferrari A.C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007; 143(1-2): 47—57. https://doi.org/10.1016/j.ssc.2007.03.052; https://met.misis.ru/jour/article/view/450
-
6Academic Journal
Authors: Litvin, V. А., Shchepak, D. A., Kovalenko, D. O.
Subject Terms: нанокомпозиты, гуминовые вещества, синтетические гуминовые вещества, наночастицы металлов, металлоуглеродные нанокомпозиты, углеродсодержащие прекурсоры, фульвокислоты
File Description: application/pdf
Relation: https://elib.belstu.by/handle/123456789/44900; 546.26+546.74+547.992.2
Availability: https://elib.belstu.by/handle/123456789/44900
-
7Academic Journal
Authors: Муратов, Дмитрий Геннадьевич, Кожитов, Лев Васильевич, Коровушкин, Владимир Васильевич, Коровин, Евгений Юрьевич, Попкова, Алена Васильевна, Новоторцев, Владимир Михайлович
Source: Известия высших учебных заведений. Физика. 2018. Т. 61, № 10. С. 40-49
Subject Terms: магнитные материалы, наночастицы, металлоуглеродные нанокомпозиты, комплексная диэлектрическая проницаемость, магнитная проницаемость комплексная, тангенс угла потерь, коэффициенты отражения, мессбауэровская спектроскопия
File Description: application/pdf
Relation: koha:001148304; https://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001148304
-
8Academic Journal
Authors: Муратов, Дмитрий Геннадьевич, Кожитов, Лев Васильевич, Карпенков, Дмитрий Юрьевич, Якушко, Егор Владимирович, Коровин, Евгений Юрьевич, Васильев, Андрей Александрович, Попкова, Алена Васильевна, Казарян, Тигран Месропович, Шадринов, Алексей Викторович
Source: Известия высших учебных заведений. Физика. 2017. Т. 60, № 11. С. 67-73
Subject Terms: металлоуглеродные нанокомпозиты, намагниченность насыщения, коэрцитивная сила, коэффициент прямоугольности, ИК-нагрев, наночастицы Fe–Со–Ni
File Description: application/pdf
Relation: koha:001142322; https://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001142322