-
1Academic Journal
Συγγραφείς: A. A. Kovalev, E. R. Mikheeva, I. V. Katraeva, D. A. Kovalev, A. M. Kozlov, Yu. V. Litti, А. А. Ковалев, Э. Р. Михеева, И. В. Катраева, Д. А. Ковалев, А. М. Козлов, Ю. В. Литти Ю.В
Συνεισφορές: Исследование выполнено за счет гранта Российского научного фонда № 21-79-10153, https://rscf.ru/project/21-79-10153/. Работа Ковалев Д.А. и Литти Ю.В. финансировалась Министерством науки и высшего образования Российской Федерации.
Πηγή: Alternative Energy and Ecology (ISJAEE); № 6 (2022); 50-65 ; Альтернативная энергетика и экология (ISJAEE); № 6 (2022); 50-65 ; 1608-8298
Θεματικοί όροι: теплота сгорания, two-stage anaerobic digestion, biohythane, mesophilic-thermophilic mode, heating value, двухстадийное анаэробное сбраживание, биогитан, мезофильно- термофильный режим
Περιγραφή αρχείου: application/pdf
Relation: https://www.isjaee.com/jour/article/view/2571/2088; Lunprom, S.; Phanduang, O.; Salakkam, A.; Liao, Q.; Imai, T.; Reungsang, A. Bio-Hythane Production from Residual Biomass of Chlorella Sp. Biomass through a Two-Stage Anaerobic Digestion. International Journal of Hydrogen Energy 2019, 44 (6), 3339–3346. https://doi.org/https://doi.org/10.1016/j.ijhydene.2018.09.064.; Antonopoulou, G.; Gavala, H. N.; Skiadas, I. V; Angelopoulos, K.; Lyberatos, G. Biofuels Generation from Sweet Sorghum: Fermentative Hydrogen Production and Anaerobic Digestion of the Remaining Biomass. Bioresource Technology 2008, 99 (1), 110–119. https://doi.org/https://doi.org/10.1016/j.biortech.2006.11.048.; Roy, S.; Das, D. Biohythane Production from Organic Wastes: Present State of Art. Environmental Science and Pollution Research 2016, 23 (10), 9391– 9410. https://doi.org/10.1007/s11356-015-5469-4.; Ghimire, A.; Kumar, G.; Sivagurunathan, P.; Shobana, S.; Saratale, G. D.; Kim, H. W.; Luongo, V.; Esposito, G.; Munoz, R. Bio-Hythane Production from Microalgae Biomass: Key Challenges and Potential Opportunities for Algal Bio-Refineries. Bioresource Technology 2017, 241, 525–536. https://doi.org/https://doi.org/10.1016/j.biortech.2017.05.156.; Шайкин А.П., Галиев И.Р. Влияние химического состава hythane на давление в камере сгорания двигателя. Альтернативная энергетика и экология (ISJAEE). 2019;(10-12):36-42. https://doi.org/10.15518/isjaee.2019.10-12.036-042.; Иванникова, Е. М., Систер В. Г., Чирков В. Г. Альтернативные топлива для двигателей внутреннего сгорания. Альтернативная энергетика и экология (ISJAEE). 2014;13(153):35-44. https://doi.org/10.15518/ISJAEE.1.20140601006.; Бризицкий О.Ф., Терентьев В.Я., Барелко В.В., Кириллов В.А., Собянин В.А., Снытников П.В., Бурцев В.А., Быков Л.А., Кузнецов М.В. О перспективах перевода двигателестроения на водородсодержащее топливо. Альтернативная энергетика и экология (ISJAEE). 2014;(20):95-102. https://doi.org/10.15518/isjaee.2014.20.008.; Столяревский А.Я. Технология производства водородометановой смеси для автотранспорта и энергетики. Альтернативная энергетика и экология (ISJAEE). 2009;5:8-16.; Liu, Z.; Si, B.; Li, J.; He, J.; Zhang, C.; Lu, Y.; Zhang, Y.; Xing, X.-H. Bioprocess Engineering for Biohythane Production from Low-Grade Waste Biomass: Technical Challenges towards Scale Up. Current Opinion in Biotechnology 2018, 50, 25–31. https://doi.org/https://doi.org/10.1016/j.copbio.2017.08.014.; Dahiya, S.; Joseph, J. High Rate Biomethanation Technology for Solid Waste Management and Rapid Biogas Production: An Emphasis on Reactor Design Parameters. Bioresource Technology 2015, 188, 73–78. https://doi.org/https://doi.org/10.1016/j.biortech.2015.01.074.; Cavinato, C.; Bolzonella, D.; Fatone, F.; Cecchi, F.; Pavan, P. Optimization of Two-Phase Thermophilic Anaerobic Digestion of Biowaste for Hydrogen and Methane Production through Reject Water Recirculation. Bioresource Technology 2011, 102 (18), 8605– 8611. https://doi.org/https://doi.org/10.1016/j.biortech.2011.03.084.; Kumari, S.; Das, D. Biohythane Production from Sugarcane Bagasse and Water Hyacinth: A Way towards Promising Green Energy Production. Journal of Cleaner Production 2018, 207. https://doi.org/10.1016/j.jclepro.2018.10.050.; Bouallagui, H.; Touhami, Y.; Ben Cheikh, R.; Hamdi, M. Bioreactor Performance in Anaerobic Digestion of Fruit and Vegetable Wastes. Process Biochemistry 2005, 40 (3), 989–995. https://doi.org/10.1016/j.procbio.2004.03.007.; Tunçay, E. G.; Erguder, T. H.; Eroğlu, İ.; Gündüz, U. Dark Fermentative Hydrogen Production from Sucrose and Molasses. International Journal of Energy Research 2017, 41 (13), 1891–1902. https://doi.org/10.1002/er.3751.; Cheng, J.; Lin, R.; Ding, L.; Song, W.; Li, Y.; Zhou, J.; Cen, K. Fermentative Hydrogen and Methane Cogeneration from Cassava Residues: Effect of Pretreatment on Structural Characterization and Fermentation Performance. Bioresource Technology 2015, 179, 407–413. https://doi.org/https://doi.org/10.1016/j.biortech.2014.12.050.; Kumar, G.; Bakonyi, P.; Sivagurunathan, P.; Kim, S.-H.; Nemestóthy, N.; Bélafi-Bakó, K. Lignocellulose Biohydrogen: Practical Challenges and Recent Progress. Renewable and Sustainable Energy Reviews 2015, 44, 728–737. https://doi.org/10.1016/j.rser.2015.01.042.; Ghimire, A.; Luongo, V.; Frunzo, L.; Pirozzi, F.; Lens, P. N. L.; Esposito, G. Continuous Biohydrogen Production by Thermophilic Dark Fermentation of Cheese Whey: Use of Buffalo Manure as Buffering Agent. International Journal of Hydrogen Energy 2017, 42, 4861–4869.; Cota-Navarro, C. B.; Carrillo-Reyes, J.; Davila-Vazquez, G.; Alatriste-Mondragón, F.; Razo-Flores, E. Continuous Hydrogen and Methane Production in a Two-Stage Cheese Whey Fermentation System. Water Science and Technology 2011, 64 (2), 367–374. https://doi.org/10.2166/wst.2011.631.; Venetsaneas, N.; Antonopoulou, G.; Stamatelatou, K.; Kornaros, M.; Lyberatos, G. Using Cheese Whey for Hydrogen and Methane Generation in a Two-Stage Continuous Process with Alternative PH Controlling Approaches. Bioresource Technology 2009, 100 (15), 3713–3717. https://doi.org/https://doi.org/10.1016/j.biortech.2009.01.025.; Ramos, L. R.; de Menezes, C. A.; Soares, L. A.; Sakamoto, I. K.; Varesche, M. B. A.; Silva, E. L. Controlling Methane and Hydrogen Production from Cheese Whey in an EGSB Reactor by Changing the HRT. Bioprocess and Biosystems Engineering 2020, 43 (4), 673– 684. https://doi.org/10.1007/s00449-019-02265-9.; Mikheeva, E. R.; Katraeva, I. V; Kovalev, A. A.; Kovalev, D. A.; Nozhevnikova, A. N.; Panchenko, V.; Fiore, U.; Litti, Y. V. The Start-Up of Continuous Biohydrogen Production from Cheese Whey: Comparison of Inoculum Pretreatment Methods and Reactors with Moving and Fixed Polyurethane Carriers. Applied Sciences 2021, 11 (2). https://doi.org/10.3390/app11020510.; Ta, D. T.; Lin, C.-Y.; Ta, T. M. N.; Chu, C.-Y. Biohythane Production via Single-Stage Anaerobic Fermentation Using Entrapped Hydrogenic and Methanogenic Bacteria. Bioresource Technology 2020, 300, 122702. https://doi.org/https://doi.org/10.1016/j.biortech.2019.122702.; Kovalev, A. A.; Kovalev, D. A.; Nozhevnikova, A. N.; Zhuravleva, E. A.; Katraeva, I. V; Grigoriev, V. S.; Litti, Y. V. Effect of Low Digestate Recirculation Ratio on Biofuel and Bioenergy Recovery in a Two-Stage Anaerobic Digestion Process. International Journal of Hydrogen Energy 2021, 46 (80), 39688–39699. https://doi.org/https://doi.org/10.1016/j.ijhydene.2021.09.239.; ГОСТ 31369-2008 (ИСО 6976:1995) Газ природный Вычисление теплоты сгорания, плотности, относительной плотности и числа Воббе на основе компонентного состава.; Srisowmeya, G.; Chakravarthy, M.; Bakshi, A.; Nandhini Devi, G. Improving Process Stability, Biogas Production and Energy Recovery Using Two-Stage Mesophilic Anaerobic Codigestion of Rice Wastewater with Cow Dung Slurry. Biomass and Bioenergy 2021, 152, 106184. https://doi.org/https://doi.org/10.1016/j.biombioe.2021.106184.; Engineering ToolBox (https://www.engineeringtoolbox.com/).; Harrison, K. W.; Remick, R. J.; Hoskin, A. J.; Martin, G. Hydrogen Production: Fundamentals and Case Study Summaries; Preprint; 2010 (To be presented at the 18th World Hydrogen Energy Conference Essen, Germany May 16-21, 2010).; Синха П., Гаурав К., Рой Ш., Балахандар Г., Дас Д. Повышение выработки биоводорода с помощью новой стратегии аугментации с использованием различных органических остатков. Альтернативная энергетика и экология (ISJAEE). 2019;(34-36):26-40. https://doi.org/10.15518/isjaee.2019.34-36.026-040.; Дас Д., Везироглу Т.Н. Достижения в области получения водорода биологическим путем. Альтернативная энергетика и экология (ISJAEE). 2017;(22-24):83-98. https://doi.org/10.15518/isjaee.2017.22-24.083-098.; Ali, M. M.; Mustafa, A. M.; Zhang, X.; Lin, H.; Zhang, X.; Abdulbaki Danhassan, U.; Zhou, X.; Sheng, K. Impacts of Molybdate and Ferric Chloride on Biohythane Production through Two-Stage Anaerobic Digestion of Sulfate-Rich Hydrolyzed Tofu Processing Residue. Bioresource Technology 2022, 355, 127239. https://doi.org/https://doi.org/10.1016/j.biortech.2022.127239.; Khongkliang, P.; Kongjan, P.; O-Thong, S. Hydrogen and Methane Production from Starch Processing Wastewater by Thermophilic Two-Stage Anaerobic Digestion. Energy Procedia 2015, 79, 827–832. https://doi.org/https://doi.org/10.1016/j.egypro.2015.11.573.; Kabir, S. Bin; Khalekuzzaman, M.; Hossain, N.; Jamal, M.; Alam, M. A.; Abomohra, A. E.-F. Progress in Biohythane Production from Microalgae-Wastewater Sludge Co-Digestion: An Integrated Biorefinery Approach. Biotechnology Advances 2022, 57, 107933. https://doi.org/https://doi.org/10.1016/j.biotechadv.2022.107933. ion in Biotechnology 2018, 50, 25–31. https://doi.org/https://doi.org/10.1016/j.copbio.2017.08.0; https://www.isjaee.com/jour/article/view/2571