-
1Academic Journal
Συγγραφείς: N. V. Hounwanou, G. F. Monakhos, S. G. Monakhos, Н. В. Хунвану, Г. Ф. Монахос, С. Г. Монахос
Συνεισφορές: The work was carried out with the support of the Ministry of Science and Higher Education of the Russian Federation in accordance with agreement 075-15-2023-220 to support the University's development program «Priority-2030»., Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации в соответствии с соглашением 075-15-2023-220 на поддержку программы развития университета «Приоритет-2030».
Πηγή: Vegetable crops of Russia; № 5 (2024); 12-17 ; Овощи России; № 5 (2024); 12-17 ; 2618-7132 ; 2072-9146
Θεματικοί όροι: генетическая коллекция, late blight, marker-assisted selection, resistance, germplasm, фитофтороз, маркер-опосредованный отбор, устойчивость
Περιγραφή αρχείου: application/pdf
Relation: https://www.vegetables.su/jour/article/view/2486/1585; Andrivon D. Biology, ecology and epidemiology of the potato late blight pathogen Phytophthora infestans in soil. Phytopathology. 1995;85:1053-1056.; Nowicki M., Foolad M.R., Nowakowska M., Kozik E.U. Potato and tomato late blight caused by Phytophthora infestans: an overview of pathology and resistance breeding. Plant Disease. 2012;96:1–17.; Chunwongse J., Chunwongse C., Black L., Hanson P. Molecular mapping of the Ph-3 gene for late blight resistance in tomato. J. Hort. Sci. Biotechnol. 2002;77:281–286.; Poudel A., Pandey M., Shah K., Acharya B., Shrestha J. Evaluation of fungicides for management of late blight (Phytophthora infestans) of potato. Agrica. 2020;9(1):10–17. https://doi.org/10.5958/2394-448X.2020.00004.8; Mazumdar P., Singh P., Kethiravan D., Ramathani I., Ramakrishnan N. Late blight in tomato: insights into the pathogenesis of the aggressive pathogen Phytophthora infestans and future research priorities. Planta. 2021;253:119. https://doi.org/10.1007/s00425-021-03636-x; Wang Y.Y., Chen C.H., Hoffmann A., Hsu Y.C., Lu S.F., Wang J.F., Hanson P. Evaluation of the Ph-3 gene specific marker developed for marker assisted selection of late blight resistant tomato. Plant Breeding. 2016; 135(5):636-642. https://doi.org/10.1111.pbr.12395; Khavkin E., Sokolova E., Beketova M., Pankin A., Kuznetsova M., Kozlovskaya I., Spiglazova S., Statsyuk N., Yashina I., Potato resistance to late blight as related to the R1 and R3 genes introgressed from S. demissum. In: Schepers HTAM (ed.) PPO-Special Report no. 14. Wageningen, DLO Foundation. 2010. pp. 231-238.; Sokolova E., Pankin A., Beketova M., Rogozina E., Kuznetsova M., Spiglazova S., Yashina I., Khavkin E. SCAR markers of the Rgenes and germplasm of wild Solanum species for breeding late blight-resistant potato cultivars. Plant Genetic Resources. 2011;9(2):309–312. https://doi.org/10.1017/S1479262111000347; Paluchowska P, ´Sliwka J, Yin Z. Late blight resistance genes in potato breeding. Planta. 2022;255(6):127.; Matson M.E.H., Liang Q., Lonardi S., Judelson H.S. Karyotype variation, spontaneous genome rearrangements affecting chemical insensitivity, and expression level polymorphisms in the plant pathogen Phytophthora infestans revealed using its first chromosome-scale assembly. PLoS Pathog. 2022;18(10):e1010869. https://doi.org/10.1371/journal.ppat.1010869; Merk H.L., Ashrafi H., Foolad M.R. Selective genotyping to identify late blight resistance genes in an accession of the tomato wild species Solanum pimpinellifolium. Euphytica. 2012;187(1):63–75. https://doi.org/10.1007/s10681-012-0729-6; Robbins M.D., Masud M.A.T., Panthee D.R., Gardner R.G., Francis D.M., Stevens M.R. Marker-assisted selection for coupling phase resistance to Tomato spotted wilt virus and Phytophthora infestans (late blight) in tomato. Hortic. Sci. 2010;45:1424–1428.; Doyle J. DNA Protocols for Plants. In: Hewitt, G.M., Johnston, A.W.B., Young, J.P.W. (Eds). Molecular Techniques in Taxonomy. Berlin, Heidelberg: Springer. 1991. 283-293. https://doi.org/10.1007/978-3-642-83962-7_18; Mullis K.B. The unusual origin of the polymerase chain reaction. Sci Am. 1990;262:56–61.; Ballvora A., Ercolano M.R., Weiss J., Meksem K., Bormann C.A., Oberhagemann P., Salamini F., Gebhardt C. The R1 gene for potato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes. Plant J. 2002;30(3):361-71. https://doi.org/10.1046/j.1365-313x.2001.01292.x; Huang, S., Van Der Vossen, E.A.G., Kuang, H., Vleeshouwers, V.G.A.A., Zhang, N., Borm, T.J.A., Van Eck, H.J., Baker, B., Jacobsen, E. and Visser, R.G.F. Comparative genomics enabled the isolation of the R3a late blight resistance gene in potato. The Plant Journal. 2005;42:251-261. https://doi.org/10.1111/j.1365313X.2005.02365.x; Hansona P., Lua S.-F., Wanga J.-F., Chena W., Kenyona L., Tana C.-W., Teeb K.L., Wanga Y.-Y., Hsua Y.-C., Schafleitnera R., Ledesmaa D., Yanga R.-Y. Conventional and molecular markerassisted selection and pyramiding of genes for multiple disease resistance in tomato. Scientia Horticulturae. 2016;201:346-354. https://doi.org/10.1016/j.scienta.2016.02.020; Shekasteband R., Hutton S.F., Scott J.W. Designing new DNA markers and determining the effective size of Ph-2 and Ph-3 introgressions for late blight resistance stacking purposes in tomato. TGC REPORT. 2015;65:22-31.; https://www.vegetables.su/jour/article/view/2486
-
2Academic Journal
Συγγραφείς: I. I. Suprun, S. V. Tokmakov, E. A. Al-Nakib, E. V. Lobodina, И. И. Супрун, С. В. Токмаков, Е. А. Аль-Накиб, Е. В. Лободина
Συνεισφορές: This work was supported by the Ministry of Science and Higher Education of the Russian Federation under agreement No. 075-15-2021-1050 at 28.09.2021.
Πηγή: Vavilov Journal of Genetics and Breeding; Том 26, № 7 (2022); 645-651 ; Вавиловский журнал генетики и селекции; Том 26, № 7 (2022); 645-651 ; 2500-3259 ; 10.18699/VJGB-22-72
Θεματικοί όροι: пирамидирование генов, breeding, marker-assisted selection, fruit quality, scab resistance, Md-Exp7, Md-PG1, Md-ACS1, Rvi6, complex donors, gene pyramiding, селекция, маркер-опосредованный отбор, качество плодов, устойчивость к парше, комплексные доноры
Περιγραφή αρχείου: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/3530/1655; Bai S., Wang A., Igarashi M., Kon T., Fukasawa-Akada T., Li T., Harada T., Hatsuyama Y. Distribution of MdACS3 null alleles in apple (Malus × domestica Borkh.) and its relevance to the fruit ripening characters. Breed. Sci. 2012;62(1):46-52. DOI:10.1270/jsbbs.62.46.; Brummell D.A., Harpster M.H. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol. Biol. 2001;47(1-2):311-340. DOI:10.1023/A:1010656104304.; Chagné D., Vanderzande S., Kirk C., Profitt N., Weskett R., Gardiner S.E., Peace C.P., Volz R.K., Bassil N.V. Validation of SNP markers for fruit quality and disease resistance loci in apple (Malus × domestica Borkh.) using the OpenArray® platform. Hort. Res. 2019; 6:30. DOI:10.1038/s41438-018-0114-2.; Cosgrove D.J. Loosening of plant cell walls by expansins. Nature. 2000;407(6802):321-326. DOI:10.1038/35030000.; Costa F., Peace C.P., Stella S., Serra S., Musacchi S., Bazzani M., Sansavini S., Van de Weg W.E. QTL dynamics for fruit firmness and softening around an ethylene-dependent polygalacturonase gene in apple (Malus × domestica Borkh.). J. Exp. Bot. 2010;61(11):30293039. DOI:10.1093/jxb/erq130.; Costa F., Sara S., Van de Weg W.E., Guerra W., Cecchinel M., Dallivina J., Koller B., Sansavini S. Role of the genes Md-ACO1 and Md-ACS1 in ethylene production and shelf life of apple (Malus domestica Borkh). Euphytica. 2005;141:181-190. DOI:10.1007/s10681-005-6805-4.; Costa F., Van de Weg W.E., Stella S., Dondini L., Pratesi D., Musacchi S., Sansavini S. Map position and functional allelic diversity of Md-Exp7, a new putative expansin gene associated with fruit softening in apple (Malus × domestica Borkh.) and pear (Pyrus communis). Tree Genet. Genomes. 2008;4:575-586. DOI:10.1007/s11295008-0133-5.; Dolzhikova M.A., Pikunova A.V., Tolpekina A.A., Sedov E.N. Allelic diversity of the gene for ethylene-dependent polygalacturonase Md-PG1 in the new hybrid gene pool of apple (Malus Mill.) VNIISPK. In: Biotechnology in Crop Production, Animal Husbandry, and Agricultural Microbiology: Abstracts from the 20th AllRussia Conference of Young Scientists (Moscow, October 27–29, 2020). Moscow: All-Russia Research Institute for Agricultural Biotechnology, 2020;97-99. DOI:10.48397/ARRIAB.2020.20.056. (in Russian); Dong J.G., Kim W.T., Yip W.K., Thompson G.A., Li L., Bennett A.B., Yang S.F. Cloning of a cDNA encoding 1-aminocyclopropane-1-carboxylate synthase and expression of its mRNA in ripening apple fruit. Planta. 1991;185(1):38-45. DOI:10.1007/BF00194512.; Dong J.G., Olson D., Silverstone A., Yang S.F. Sequence of a cDNA coding for a 1-aminocyclopropane-1-carboxylate oxidase homolog from apple fruit. Plant Physiol. 1992;98(4):1530-1531. DOI:10.1104/pp.98.4.1530.; Dougherty L., Zhu Y., Xu K. Assessing the allelotypic effect of two aminocyclopropane carboxylic acid synthase-encoding genes MdACS1 and MdACS3a on fruit ethylene production and softening in Malus. Hort. Res. 2016;3:16024. DOI:10.1038/hortres.2016.24.; Ji Y., Wang A. Recent advances in phytohormone regulation of applefruit ripening. Plants. 2021;10(10):2061. DOI:10.3390/plants10102061.; Kende H. Ethylene biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1993;44(1):283-307. DOI:10.1146/annurev.pp.44.060193.001435.; Kwon Y.S., Kwon S.I., Kim J.H., Park M.Y., Park J.T., Kim S.A. Validation assay of Md-ACS1, Md-ACO1, and Md-PG1 molecular markers associated with storability in apples. Korean J. Breed. Sci. 2020;52(4):322-331. DOI:10.9787/KJBS.2020.52.4.322.; Longhi S., Cappellin L., Guerra W., Costa F. Validation of a functional molecular marker suitable for marker-assisted breeding for fruit texture in apple (Malus domestica Borkh.) Mol. Breed. 2013a;32: 841-852. DOI:10.1007/s11032-013-9912-2.; Longhi S., Hamblin M.T., Trainotti L., Peace C.P., Velasco R., Costa F. A candidate gene based approach validates MdPG1 as the main responsible for a QTL impacting fruit texture in apple (Malus × domestica Borkh.). BMC Plant Biol. 2013b;13:37. DOI:10.1186/14712229-13-37.; Lyzhin A.S., Savelyeva N.N. Molecular analysis of the ethylene biosynthesis genes Md-ACS1 and Md-ACO1 in hybrid apple seedlings. Nauchnyye Trudy SKFNCSVV = Scientific Works of the North Caucasian Federal Center for Horticulture, Viticulture, and Wine Making. 2020;30:9-14. DOI:10.30679/2587-9847-2020-30-9-14. (in Russian); Murray M.G., Thompson W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980;8(19):4321-4325.; Nybom H., Ahmadi-Afzadi M., Garkava-Gustavsson L., Sehic J. Selection for improved fruit texture and storability in apple. Acta Hortic. 2012;934:849-854. DOI:10.17660/ActaHortic.2012.934.112.; Nybom H., Ahmadi-Afzadi M., Sehic J., Hertog M. DNA marker-assisted evaluation of fruit firmness at harvest and post-harvest fruit softening in a diverse apple germplasm. Tree Genet. Genomes. 2013;9:279-290. DOI:10.1007/s11295-012-0554-z.; Oraguzie N.C., Iwanami H., Soejima J., Harada T., Hall A. Inheritance of the Md-ACS1 gene and its relationship to fruit softening in apple (Malus × domestica Borkh.). Theor. Appl. Genet. 2004;108(8):15261533. DOI:10.1105/tpc.17.00349.; Oraguzie N.C., Volz R.K., Whitworth C.J., Bassett H.C.M., Hall A.J., Gardiner S. Influence of Md-ACS1 allelotype and harvest season within an apple germplasm collection on fruit softening during cold air storage. Postharvest Biol. Technol. 2007;44(3):212-219. DOI:10.1016/j.postharvbio.2006.12.013.; Prichko T.G. Apple Harvesting Terms and Storage Modes Taking into Account Varietal Features. Krasnodar: North Caucasian Federal Center for Horticulture, Viticulture, and Wine Making, 2018. (in Russian); Prichko T.G., Smelik T.L., Germanova M.G. Preservation of apple fruit quality indicators with regard to varietal features and medium composition in a controlled atmosphere. Nauchnyye Trudy SKFNCSVV = Scientific Works of the North Caucasian Federal Center for Horticulture, Viticulture, and Wine Making. 2019;23: 253-258. DOI:10.30679/2587-9847-2019-23-259-263. (in Russian); Savel’ev N.I., Shamshin I.N., Kudryavtsev F.M. Apple for the alleles of genes of shelf life and quality of fruits. Doklady Rossiyskoy Akademii Sel’skokhozyaystvennykh Nauk = Proceedings of the Russian Academy of Agricultural Sciences. 2014a;3:17-20. (in Russian); Savel’ev N.I., Shamshin I.N., Savel’eva N.N., Lyzhin A.S. Polymorphism for the Md-Exp-7 gene for expansin biosynthesis in wild species of the genus Malus Mill. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2014b;18(4/1): 713-717. (in Russian); Savelyeva N.N., Lyzhin A.S. Biosynthesis of ethylene (Md-ACS1 and Md-ACO1 genes) and expansin (Md-Exp7 gene) in the genoplasma of apple varieties and forms bred at the Michurin Federal Scientific Center. In: Agroecological Aspects of Sustainable Development of the Agro-industrial Complex: Proceedings of the XVI Int. sci. conf. Bryansk: Bryansk State Agrarian University, 2019;762-766. (in Russian); Shamshin I.N., Shlyavas A.V., Trifonova A.A., Boris K.V., Kudryavtsev A.M. Ethylene and expansin biosynthesis related genes polymorphism in local apple (Malus domestica Borkh.) cultivars from VIR Collection of plant genetic resources. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2018;22(6):660-666. DOI:10.18699/VJ18.408.; Shamshin I.N., Telezhinsky D.D., Shlyavas A.V. Evaluation of apple varieties of the Sverdlovsk horticultural breeding station according to the ethylene biosynthesis genes using molecular markers. Agrarnaya Nauka Evro-Severo-Vostoka = Agricultural Science of the Euro-North-East. 2020;21(6):706-712. DOI:10.30766/20729081.2020.21.6.706-712. (in Russian); Sunako T., Sakuraba W., Senda M., Akada S., Ishikawa R., Niizeki M., Harada T. An allele of the ripening-specific 1-aminocyclopropane1-carboxylic acid synthase gene (ACS1) in apple fruit with a long storage life. Plant Physiol. 1999;119(4):1297-304. DOI:10.1104/pp.119.4.1297.; Suprun I.I., Nasonov A.I., Lobdina E.V., Volodina E.A. An integrated approach to creating scab-resistant apple: phytopathological testing and marker-assisted selection. Biotehnologiâ i Selekciâ Rastenij = Plant Biotechnology and Breeding. 2018;1(1):25-33. DOI:10.30901/2658-6266-2018-1-25-33. (in Russian); Suprun I.I., Tokmakov S.V. Allelic diversity of ethylene biosynthesisrelated Md-ACS1 and Md-ACO1 genes in the Russian apple germplasm. Russ. J. Genet.: Appl. Res. 2013;6:451-454. DOI:10.1134/S2079059713060105.; Zhu Y., Barritt B.H. Md-ACS1 and Md-ACO1 genotyping of apple (Malus × domestica Borkh.) breeding parents and suitability for marker-assisted selection. Tree Genet. Genomes. 2008;4:555-562. DOI:10.1007/s11295-007-0131-z.; https://vavilov.elpub.ru/jour/article/view/3530
-
3Academic Journal
Συγγραφείς: Ya. T. Eidlin, G. F. Monakhos, S. G. Monakhos, Я. Т. Эйдлин, Г. Ф. Монахос, С. Г. Монахос
Πηγή: Vegetable crops of Russia; № 3 (2021); 34-39 ; Овощи России; № 3 (2021); 34-39 ; 2618-7132 ; 2072-9146
Θεματικοί όροι: Peronospora destructor, maintainer line, onion, line, marker-assisted selection, molecular marker, male sterility, Downy mildew, cytoplasm, закрепитель стерильности, лук репчатый, линия, маркер-опосредованный отбор, молекулярный маркер, мужская стерильность, пероноспороз, цитоплазма
Περιγραφή αρχείου: application/pdf
Relation: https://www.vegetables.su/jour/article/view/1758/1266; Collard B. C. Y., Mackill D. J. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences. 2008.;363(1491):557-572. https://doi.org/10.1098/rstb.2007.2170; Narasimhulu R. et al. Genetic variability and association studies for yield attributes in mungbean (Vigna radiata L. Wilczek). Indian J. Plant Sci. 2013;2(3):82-86.; Brumlop S., Finckh M.R. Applications and potentials of marker assisted selection (MAS) in plant breeding. Final report of the F+ E project “Applications and Potentials of Smart Breeding” (FKZ 350 889 0020) On behalf of the Federal Agency for Nature Conservation December. 2010.; Murovec N., Erker R.S., Prodan I. Determinants of environmental investments: testing the structural model. Journal of Cleaner Production. 2012;(37):265-277. https://doi.org/10.1016/j.jclepro.2012.07.024; Clarke, A.E., Jones H.A., Little T.M. Inheritance of bulb color in onion. Genetics. 1944;(29):569–575.; Berninger E. Contribution a l'etude de la sterilite male de l'oignon (Allium cepa L.). Ann. Amelior. Plant (Paris). 1965;(23):183–199.; Engelke T., Terefe D., Tatlioglu T. A PCR-based marker system monitoring CMS-(S), CMS-(T) and (N)-cytoplasm in the onion (Allium cepa L.). Theoretical and Applied Genetics. 2003;107(1):162-167. https://doi.org/10.1007/s00122-003-1230-3; Havey M.J. Seed yield, floral morphology, and lack of male-fertility restoration of male-sterile onion (Allium cepa) populations possessing the cytoplasm of Allium galanthum. Journal of the American Society for Horticultural Science. 1999;124(6):626-629.; Yarwood C. E. et al. Onion downy mildew. Hilgardia. 1943;14(11).; Jesperson G.D., Sutton J.C. Evaluation of a forecaster for downy mildew of onion (Allium cepa L.). Crop protection. 1987;6(2):95-103.; Demidov E.S. Methods of protecting onions from false powdery mildew (Peronospora destructor Berk.). Tiraspol: "Tipar", 2004. 92 p.; Jones H.A., Mann L.K. Onions and their allies. Soil Science. 1964;98(1):68.; Kofoet A. et al. Inheritance of resistance to downy mildew (Peronospora destructor [Berk.] Casp.) from Allium roylei Stearn in the backcross Allium cepa L.×(A. roylei × A. cepa). Plant Breeding. 1990;105(2):144-149.; Khrustaleva L. et al. The power of genomic in situ hybridization (GISH) in interspecific breeding of bulb onion (Allium cepa L.) resistant to downy mildew (Peronospora destructor [Berk.] Casp.). Plants. 2019;8(2):36. https://doi.org/10.3390/plants8020036; Scholten O.E., Van Heusden A.W., Khrustaleva L.I., Burger-Meijer K., Mank R.A., Antonise R.G.C., Harrewijn J.L., Van haecke W., Oocst E.H., Peters R.J. The long and winding road leading to the successful introgression of downy mildew resistance into onion. Euphytica 2007;(156):345–353. https://doi.org/10.1007/s10681-007-9383-9; Kim S. et al. Development of a simple PCR marker tagging the Allium roylei fragment harboring resistance to downy mildew (Peronospora destructor) in onion (Allium cepa L.). Euphytica. 2016;208(3):561-569. https://doi.org/10.1007/s10681-015-1601-2; Kim S. A codominant molecular marker in linkage disequilibrium with a restorer-of-fertility gene (Ms) and its application in reevaluation of inheritance of fertility restoration in onions. Mol. Breeding. 2014;(34):769-778. https://doi.org/10.1007/s11032-014-0073-8; Rogers S.O., Bendich A.J. Extraction of DNA from plant tissues. Plant molecular biology manual. Springer, Dordrecht, 1989. P.73-83.; https://www.vegetables.su/jour/article/view/1758
-
4Academic Journal
Συγγραφείς: Корниенко, А. В., Буторина, А. К.
Πηγή: Plant varieties studying and protection; No. 3(20) (2013); 45-49 ; «Plant Varieties Studying and Protection»; № 3(20) (2013); 45-49 ; Plant Varieties Studying and Protection; № 3(20) (2013); 45-49 ; 2518-7457 ; 2518-1017
Θεματικοί όροι: молекулярная селекция, маркер-опосредованный отбор, свекла сахарная, устойчивость, маркерные системы, молекулярные маркеры, генетическое картирование, физическое картирование, перенос генов, эпигенетика, УДК 633.413 633.63], 631.524, молекулярна селекція, маркер-усереднений відбір, буряк цукровий, стійкість, маркерні системи, молекулярні маркери, генетичне картування, фізичне картування, перенесення генів, епігенетика, molecular breeding, marker assisted selection, sugar beet, stability, marker systems, molecular markers, genetic mapping, physical mapping
Περιγραφή αρχείου: application/pdf
Relation: https://journal.sops.gov.ua/article/view/58324/54211; https://journal.sops.gov.ua/article/view/58324
Διαθεσιμότητα: https://journal.sops.gov.ua/article/view/58324
-
5Academic Journal
Πηγή: Plant varieties studying and protection; No. 3(20) (2013); 45-49
«Plant Varieties Studying and Protection»; № 3(20) (2013); 45-49
Plant Varieties Studying and Protection; № 3(20) (2013); 45-49Θεματικοί όροι: 0106 biological sciences, physical mapping, molecular markers, 631.524, генетичне картування, свекла сахарная, molecular breeding, 01 natural sciences, физическое картирование, молекулярна селекція, молекулярные маркеры, перенос генов, стійкість, молекулярні маркери, фізичне картування, маркерные системы, маркерні системи, перенесення генів, епігенетика, 2. Zero hunger, marker systems, transferring genes, устойчивость, 04 agricultural and veterinary sciences, sugar beet, stability, эпигенетика, маркер-опосредованный отбор, генетическое картирование, UDC 633.413 633.63], 0401 agriculture, forestry, and fisheries, marker assisted selection, genetic mapping, молекулярная селекция, буряк цукровий, маркер-усереднений відбір, epigenetic, УДК 633.413 633.63]
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://journal.sops.gov.ua/article/view/58324