-
1Academic Journal
Πηγή: BIOAsia-Altai; Том 4 № 1 (2024): Международный биотехнологический форум «BIOAsia–Altai»; 349-352
BIOAsia-Altai; Vol 4 No 1 (2024): International Biotechnology Forum “BIOAsia-Altai”; 349-352Θεματικοί όροι: SSR markers, PCR, marker assisted breeding, ПЦР, маркер-вспомогательная селекция, SSR-маркеры, гибридизация, hybridization, Triticum aestivum L
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: http://journal.asu.ru/bioasia/article/view/16361
-
2Academic Journal
Συγγραφείς: V. A. Biryukova, V. A. Zharova, N. A. Chalaya, I. V. Shmyglya, E. V. Rogozina, В. А. Бирюкова, В. А. Жарова, Н. А. Чалая, И. В. Шмыгля, Е. В. Рогозина
Συνεισφορές: Phenotyping of parental lines and hybrid progenies was carried out under the support of the Ministry of Science and Higher Education of the Russian Federation within the state assignment of the Federal Research Center the N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR) (theme No.0481-2022-0004). Genotyping of parental lines and hybrid progenies was carried out under the support of the Ministry of Science and Higher Education of the Russian Federation within the state assignment of Russian Potato Research Center (theme No. FNRZ-2019-0002). The authors thank the reviewers for their contribution to the peer review of this work., Фенотипирование родительских форм и гибридных популяций выполнено при поддержке Минобрнауки РФ в рамках Государственного задания ФГБНУ «Федеральный исследовательский центр Всероссийский институт генетических ресурсов растений имени Н. И. Вавилова» (ВИР) (№ 0481-2022-0004). Генотипирование родительских форм и гибридных популяций выполнено при поддержке Минобрнауки РФ в рамках Государственного задания ФГБНУ «Федеральный исследовательский центр картофеля имени А. Г. Лорха» (FNRZ-2019-0002). Авторы благодарят рецензентов за их вклад в экспертную оценку этой работы.
Πηγή: Agricultural Science Euro-North-East; Том 23, № 6 (2022); 777-787 ; Аграрная наука Евро-Северо-Востока; Том 23, № 6 (2022); 777-787 ; 2500-1396 ; 2072-9081
Θεματικοί όροι: молекулярные маркеры, resistance genes, marker-assistant selection, molecular markers, гены устойчивости, маркер-вспомогательная селекция
Περιγραφή αρχείου: application/pdf
Relation: https://www.agronauka-sv.ru/jour/article/view/1170/612; Song Y.-S., Schwarzfischer A. Development of STS markers for selection of extreme resistance (Ry sto ) to PVY and maternal pedigree analysis of extremely resistant cultivars. American Journal of Potato Research. 2008;85:159-170. DOI: https://doi.org/10.1007/s12230-008-9012-8; Valkonen J. P. T. Elucidation of virus-host interactions to enhance resistance breeding for control of virus diseases in potato. Breeding Science. 2015;65(1):69-76. DOI: https://doi.org/10.1270/jsbbs.65.69; Бекетова М. П., Соколова Е. А., Рогозина Е. В., Кузнецова М. А., Хавкин Э. Е. Два ортолога гена R1 устойчивости к фитофторозу у дикорастущих и культурных форм картофеля. Физиология растений. 2017;64(5):372-382. DOI: https://doi.org/10.7868/S0015330317050025; Гавриленко Т. А., Клименко Н. С., Алпатьева Н. В., Костина Л. И., Лебедева В. А., Евдокимова З. З., Апаликова О. В., Новикова Л. Ю., Антонова О. Ю. Генетическое разнообразие сортов картофеля российской селекции и стран ближнего зарубежья по типам цитоплазм. Вавиловский журнал генетики и селекции. 2019;23(6):753-764. DOI: https://doi.org/10.18699/VJ19.534; Бирюкова В. А., Шмыгля И. В., Жарова В. А., Бекетова М. П., Рогозина Е. В., Митюшкин А. В., Мелёшин А. А. Молекулярные маркеры генов экстремальной устойчивости к Y вирусу картофеля в сортах и гибридах Solanum tuberosum L. Российская сельскохозяйственная наука. 2019;(5):17-22. DOI: https://doi.org/10.31857/S2500-26272019517-22; Slater A. T., Schultz L., Lombardi M., Rodoni B. C., Bottcher C., Cogan N. O. I., Forster J. W. Screening for Resistance to PVY in Australian Potato Germplasm. Genes. 2020;11(4):429. DOI: https://doi.org/10.3390/genes11040429; Kasai K., Morikawa Y., Sorri V. A., Valkonen J. P. T., Gebhardt C., Watanabe K. N. Development of SCAR markers to the PVY resistance gene Ryadg based on a common feature of plant disease resistance genes. Genome. 2000; 43(1):1-8. DOI: https://doi.org/10.1139/g99-092; Sagredo B. D., Mathias R. M., Barrientos P. C., Acuña B. I., Kalazich B. J., Rojas J. S. Evaluation of a SCAR RYSC3 marker of the Ry adg gene to select resistant genotypes to potato virus Y (PVY) in the INIA potato breeding program. Chilean Journal of Agricultural Research. 2009;69(3):305-315. URL: https://scielo.conicyt.cl/pdf/chiljar/v69n3/at02.pdf; Ortega F., Lopez-Vizcon C. Application of Molecular Marker-Assisted Selection (MAS) for Disease Resistance in a Practical Potato Breeding Programme. Potato Research. 2012;55:1-13 DOI: https://doi.org/10.1007/s11540-011-9202-5; Fulladolsa A. C., Navarro F. M., Kota R., Severson K., Palta J. P., Charkowski A. O. Application of Marker Assisted Selection for Potato Virus Y Resistance in the University of Wisconsin Potato Breeding Program. American Journal of Potato Research. 2015;92(3):444-450. DOI: https://doi.org/10.1007/s12230-015-9431-2; Dalla Rizza M., Vilar F. L., Torres D. G., Maeso D. Detection of PVY Extreme Resistance Genes in Potato Germplasm from the Urnguayan Breeding Program. Amer J of Potato Res. 2006;83:297-304. URL: https://link.springer.com/article/10.1007/BF02871590; Ottoman R. J., Hane D. C., Brown C. R., Yilma S., James S. R., Mosley A. R., Crosslin J. M., Vales M. I. Validation and Implementation of Marker-Assisted Selection (MAS) for PVY Resistance (Ry adg gene) in a Tetraploid Potato Breeding Program. American Journal of Potato Research. 2009;86:304-314. DOI: https://doi.org/10.1007/s12230-009-9084-0; Lopez Pardo R., Barandalla L., Ritter E., de Galarreta J. I. R. Validation of molecular markers for pathogen resistance in potato. Plant Breeding. 2013;132(3):246-251. DOI: https://doi.org/10.1111/pbr.12062; Herrera M. D. R., Vidalon L. J., Montenegro J. D., Riccio C., Guzman F., Bartolini I., Ghislain M. Molecular and genetic characterization of the Ry adg locus on chromosome XI from Andigena potatoes conferring extreme resistance to potato virus Y. Theoretical and Applied Genetics. 2018;131(9):1925-1938. DOI: https://doi.org/10.1007/s00122-018-3123-5; Gebhardt C., Valkonen J. P. T. Organization of genes controlling disease resistance in the potato genome. Annual Review of Phytopathology. 2001;39: 79-102. DOI: https://doi.org/10.1146/annurev.phyto.39.1.79; Elison G. L., Hall D. G., Novy R. G., Whitworth J. L. Development and Application of a Multiplex Marker Assay to Detect PVY Resistance Genes in Solanum tuberosum. American Journal of Potato Research. 2020;97:289-296. DOI: https://doi.org/10.1007/s12230-020-09777-1; Sanetomo R., Gebhardt C. Cytoplasmic genome types of European potatoes and their effects on complex agronomic traits. BMC Plant Biology. 2015;15(162):162. DOI: https://doi.org/10.1186/s12870-015-0545-y; Рогозина Е. В., Бирюкова В. А., Симаков Е. А., Жарова В. А., Чалая Н. А., Кузнецова М. А., Рогожин А. Н., Бекетова М. П., Фадина О. А., Хавкин Э. Е. Межвидовые гибриды как родительские формы для упреждающей селекции картофеля на устойчивость к болезням и вредителям. Достижения науки и техники АПК. 2018;32(1):26-31. DOI: https://doi.org/10.24411/0235-2451-2018-1010519.; Рогозина Е. В., Терентьева Е. В., Потокина Е. К., Юркина Е. Н., Никулин А. В., Алексеев Я. И. Идентификация родительских форм для селекции картофеля, устойчивого к болезням и вредителям, методом мультиплексного ПЦР-анализа. Сельскохозяйственная биология. 2019;54(1):19-30. DOI: https://doi.org/10.15389/agrobiology.2019.1.19rus; Склярова Н. П., Яшина И. М. Аутотетраплоидное наследование у картофеля. Картофель и овощи. 1970;10:11-14.; Ермишин А. П., Свиточ О. В., Воронкова Е. В., Гукасян О. Н., Лукша В. И. Определение состава и аллельного состояния генов устойчивости к болезням и вредителям у родительских линий картофеля с помощью ДНК-маркеров. Генетика. 2016;52(5):569-578. DOI: https://doi.org/10.7868/S0016675816050052
-
3Academic Journal
Συγγραφείς: I. F. Lapochkina, O. A. Baranova, N. R. Gainullin, G. V. Volkova, E. V. Gladkova, E. O. Kovaleva, A. V. Osipova, И. Ф. Лапочкина, О. А. Баранова, Н. Р. Гайнуллин, Г. В. Волкова, Е. В. Гладкова, Е. О. Ковалева, А. В. Осипова
Πηγή: Vavilov Journal of Genetics and Breeding; Том 22, № 6 (2018); 676-684 ; Вавиловский журнал генетики и селекции; Том 22, № 6 (2018); 676-684 ; 2500-3259
Θεματικοί όροι: пирамида генов устойчивости, marker assistant selection, stem rust, pyramid genes for resistance, маркер-вспомогательная селекция, стеблевая ржавчина
Περιγραφή αρχείου: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/1652/1117; Baranova O.A., Lapochkina I.F., Anisimova A.V., Gajnullin N.R., Iordanskaya I.V., Makarova I.Yu. Identification of Sr genes in new common wheat sources of resistance to stem rust race Ug99 using molecular markers. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2015;19(3):316322. (in Russian); Bhavani S. Presentation: Breeding durable adult plant resistance to stem rust in spring wheat: Progress made in a decade since the bunch of the Borlaug Global Rust Initiative.//BGRI Workshop. 2015. Available at: https://www.youtube.com/watch?v=GfWTH7lKiQs.; Bystrov A., Izosimov V. Relationship of the properties of wheat flour and the quality of flour confectionery. Khleboproducty = Bread Products. 2007;7:4243. (in Russian); Fetch T. Surveillance of Ug99 stem rust and the search for new resistance genes, 2014. https://www.globalrust.org/sites/default/files/fetch.pdf; Gainullin N.R., Lapochkina I.F. Identification of chromosome rearrangements in accessions of the “Arsenal” collection using SSR markers for the B genome. Abstr. II Vavilov Int. Conf. “Genetic Resources of Cultivated Plants in the 21st Century: State, Problems, Perspectives”. St. Peterburg, 2007; 253254. (in Russian); Grens K. Putting Up Resistance. 2014. Available at: http://www.thescientist.com/?articles.view/articleNo/40085/title/PuttingUpResistance/; Jin Y., Szabo L.J., Pretorius Z.A., Singh R.P., Ward R., Fetch T.Jr. Detection of virulence to resistance gene Sr24 within race TTKS of Puccinia graminis f. sp. Tritici. Plant Dis. 2008;92:923926.; Kokhmetova A.M., Atishova M.N. Identification of sources of resistance to wheat stem rust using molecular markers. Russ. J. Genet.: Appl. Res. 2012;2(6):486493. DOI 10.1134/ S2079059712060081; Lapochkina I.F. Cytogenetic and morphological features of common wheat hybrids obtained with the use of irradiated pollen of Aegilops triuncialis L. Rus. J. Genetics. 1998;34(9):10631068.; Lapochkina I.F., Baranova O.V., Shamanin V.P., Volkova G.V., Gainullin N.R., Anisimova A.V., Galinger D.N., Lazareva E.N., Gladkova E.V., Vaganova O.F. The development of initial material of spring common wheat for breeding for resistance to stem rust (Puccinia graminis Pers. f. sp. tritici), including the Ug99 race, in Russia. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2016;20(3):320328. DOI 10.18699/VJ16.167. (in Russian); Leonova I.N. Molecular markers: Implementation in crop plant breeding for identification, introgression, and gene pyramiding. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2013;17(2):314325. (in Russian); Letta T., Maccaferri M., Badebo A., Ammar K., Ricci A., Crossa J., Tuberosa R. Searching for novel sources of field resistance to Ug99 and Ethiopian stem rust races in durum wheat via association mapping. Theor. Appl. Genet. 2013;126(5):12371256. DOI 10.1007/s0012201320508.; LopezVera E.E., Nelson S., Singh R.P., Basnet B.R., Haley S.D., Bhavani S., HuertaEspino J., XoconostleCazares B.G., RuizMedrano R., Rouse M.N., Singh S. Resistance to stem rust Ug99 in six bread wheat cultivars maps to chromosome 6DS. Theor. Appl. Genet. 2014;127:231239. DOI 10.1007/s0012201322128.; Martynov S.P. Statistical and biometricgenetic analysis in plant industry and breeding. Program Package AGROS, version 2.09. Tver, 1999. (in Russian); Miedaner T., Korzun V. Markerassisted selection for disease resistance in wheat and barley breeding. Phytopathology. 2012;102:560566. DOI 10.1094/PHYTO05110157.; Mukhitov L.A. Resistance of wheat varieties of Orenburg selection to the major grain crops diseases under the conditions of South Urals foreststeppe zone. Izvestiya Orenburgskogo Agrarnogo Universiteta = Proc. Orenburg Agrarian University. 2011;4(32):6163. (in Russian); Periyannan S., Moore J., Ayliffe M., Bansal U., Wang X., Huang L., Deal K., Luo M., Kong X., Bariana H., Mago R., McIntosh R., Dodds P., Dvorak J., Lagudah E. The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science. 2013;341(6147):786788. DOI 10.1126/science.1239028.; Roelfs A.P., Singh R.P., Saari E.E. Rust Diseases of Wheat: Concepts and Methods of Disease Management. CIMMYT, Mexico, D.F., 1992.; Rsaliev Sh.S. The virulence of new stem rust pathotypes in Kazakhstan. The Second AllRussian Conf. “Modern Problems of Immunity to Pests in Plants”. St. Petersburg, 2008;8790. (in Russian); Saintenac C., Zhang W., Salcedo A., Rouse M.N., Trick H.N., Akhu nov E., Dubcovsky J. Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race Group. Science. 2013;341(6147): 783786.; Shamanin V.P., Morgunov A.I., Petukhovskiy S.L., Likhenko I.E., Levshunov M.A., Salina E.A., Pototskaya I.V., Tru shchenko A.Yu. Breeding of spring soft wheat for resistance to stem rust in West Siberia. Ministry of Agriculture. Omsk Stolypin State Agrarian University, 2015. (in Russian); Shamanin V.P., Pototskaya I.V., Morgu nov A.I., Chursin A.S., Shepelev S.S., Pozerukova I.E., Kleva kina M.V. Breeding of spring bread wheat for resistance to stem rust in southern foreststeppe of Western Siberia. Proc. Int. Scientific and Research Conf. with Elements of School for Young Scientists and Students. Bolshie Vyazemy, Moscow oblast. 2016; 283288. (in Russian); Shamanin V., Salina E., Wanyera R., Zelenski Y., Olivera P., Morgunov A. Genetic diversity of spring wheat from Kazakhstan and Russia for resistance to stem rust Ug99. Euphytica. 2016;212:287296. DOI 10.1007/s1068101617690.; Sibikeev S.N., Voronina S.A., Druzhin A.E., Badaeva E.D. Study of resistance to leaf and stem rust in Triticum aestivum–Aegilops speltoides lines. Russ. J. Genet.: Appl. Res. 2016;6(4):351356. DOI 10.1134/S2079059716040183.; Singh R.P., Hodson D.P., HuertaEspino J., Jin Y., Bhavani S., Njau P., HerreraFoessel S., Singh P.K., Singh S., Govindan V. The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu. Rev. Phytopathol. 2011;49:465481. DOI 10.1146/annurevphyto072910095423.; Stakman E.C., Levine M.N. The determination of biologic forms of Puccinia graminis on Triticum spp. Minn. Agric. Res. Stn. Bull. 1922;8:110.; Volkova G.V., Kremneva O.Yu., Shumilov Yu.V., Sinyak E.V., Vaganova O.F., Danilova A.V., Trofimova I.A. Intraspecific and intrapopulational diversity of winter grain pathogens in southern Russia. Modern Mycology in Russia. Proceedings of the III Int. Mycological Forum. 2015;(5):155156. (in Russian); Volkova G.V., Shumilov Yu.V., Gladkova E.V., Vaganova O.F. Efficiency of known genes for resistance to North Caucasian populations of yellow, stem, and brown rust agents. Nauka Kubani = Science of Kuban. 2016;(2):1723. (in Russian); Volkova G.V., Sinyak E.V. Stem rust of wheat. Zashchita i Karantin Rasteniy = Plant Protection and Quarantine. 2011;11:1416. (in Russian); https://vavilov.elpub.ru/jour/article/view/1652
-
4Academic Journal
Συγγραφείς: VAN DE WEG W. ERIC, ROELAND E. VOORRIPS, JOHANNES W. KRUISSELBRINK, HANS JANSEN, ANNA PIKUNOVA, ZOYA SEROVA, NINA KRASOVA, EVGENY SEDOV, FRANÇOIS LAURENS, MARCO A.C.M. BINK
Περιγραφή αρχείου: text/html
-
5Academic Journal
Συγγραφείς: I. N. Leonova, И. Н. Леонова
Συνεισφορές: программf «Динамика и сохранение генофондов» (проект № 30.39), Российский фонд фундаментальных исследований (грант № 12-04-90010)
Πηγή: Vavilov Journal of Genetics and Breeding; Том 17, № 2 (2013); 314-325 ; Вавиловский журнал генетики и селекции; Том 17, № 2 (2013); 314-325 ; 2500-3259
Θεματικοί όροι: валидация, marker-assisted selection, validation, маркер-вспомогательная селекция
Περιγραφή αρχείου: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/153/155; Беспалова Л.А., Васильев А.В., Аблова И.Б. и др. Применение молекулярных маркеров в селекции пшеницы в Краснодарском НИИСХ им. П.П. Лукьяненко // Вавилов. журн. генет. и селекции. 2012. Т. 16. № 1. C. 37−43.; Гайнуллин Н.Р., Лапочкина И.Ф., Жемчужина А.И. и др. Использование фитопатологического и молекулярно-генетического методов для идентификации генов устойчивости к бурой ржавчине у образцов мягкой пшеницы с чужеродным генетическим материалом // Генетика. 2007. Т. 43. С. 1058−1064.; Тырышкин Л.Г. Наличие ДНК-маркеров как критерий постуляции Lr-генов устойчивости пшеницы Triticum aestivum L. к листовой ржавчине Puccinia triticina Erikss.: критический взгляд // С.-х. биология. 2010. № 3. С. 76−81.; Урбанович О.Ю., Малышев С.В., Долматович Т.В., Картель Н.А. Определение генов устойчивости к бурой ржавчине в сортах пшеницы (Triticum aestivum L.) с использованием молекулярных маркеров // Генетика. 2006. Т. 42. С. 675−683.; Хлесткина Е.А. Молекулярные методы анализа структурно-функциональной организации генов и геномов высших растений // Вавилов. журн. генет. и селекции. 2011. Т. 15. № 1. С. 757−768.; Basu S.K., Datta M., Sharma M., Kumar A. Haploid production technology in wheat and some selected higher plants // Austr. J. Crop Sci. 2011. V. 5. P. 1087−1093.; Blaszczyk L., Chelkowski J., Korzun V. et al. Verifi cation of STS markers for leaf rust resistance genes of wheat by seven European laboratories // Cell Mol. Biol. Lett. 2004. V. 9. P. 805−817.; Blaszczyk L., Kramer I., Ordon I. et al. Validity of selected DNA markers for breeding leaf rust resistant wheat // Cereal Res. Commun. 2008. V. 36. P. 201−213.; Brennan J.P., Martin P.J. Returns to investment in new breeding technologies // Euphytica. 2007. V. 157. P. 337−349.; Cakir M., Drake-Brockman F., Ma J. et al. Application and challenges of marker-assisted selection in the Western Australian Wheat Breeding Program. 2008. Available at: http://ses.library.usyd.au/bitstream/2123/3338/1/P279.pdf.; Canaran P., Buckler E.S., Glaubitz J.C. et al. Panzea: an update on new content and features // Nucl. Acids Res. 2008. V. 36 (Database issue): D1041-3.; Chelkowski J., Golka L., Stępień L. Application of STS markers for leaf rust resistance genes in near-isogenic lines of spring wheat cv. Thatcher // J. Appl. Genet. 2003. V. 44. P. 323−338.; Chhuneja P., Kaur S., Garg T. Mapping of adult plant stripe rust resistance genes in diploid A genome wheat species and their transfer to bread wheat // Theor. Appl. Genet. 2008. V. 116. P. 313–324.; Collard B.C.Y., Mackill D.J. Marker assisted selection: an approach for precision plant breeding in the twenty-fi rst century // Philos. Trans. R. Soc. B. 2008. V. 363. P. 557–572.; Delannay X., McLaren G., Ribaut J-M. Fostering molecular breeding in developing countries // Mol. Breed. 2012. V. 29. P. 857−873.; Eathington S.R., Crosbie T.M., Edwards M.D. et al. Molecular markers in a commercial breeding program // Crop Sci. 2007. V. 47. P. S154−S163.; Exner V., Hirsch-Hoffmann M., Gruissem W., Hennig L. PlantDB – a versatile database for managing plant research // Plant Methods. 2008. V. 4. P. 1.; Falke K.C., Frisch M. Power and false positive rate in QTL detection with near-isogenic line libraries // Heredity. 2011. V. 106. P. 576–584.; Falke K.C., Sušić Z., Hackauf B. et al. Establishment of introgression libraries in hybrid rye (Secale cereale L.) from an Iranian primitive accession as a new tool for rye breeding and genomics // Theor. Appl. Genet. 2008. V. 117. P. 641–652.; Falke K.C., Miedaner T., Frisch M. Selection strategies for the development of rye introgression libraries // Theor. Appl. Genet. 2009. V. 119. P. 595–603.; Frisch M., Bohn M., Melchinger A.E. Comparison of selection strategies for marker assisted backcrossing of a gene // Crop Sci. 1999. V. 39. P. 1295–1301.; Frisch M., Melchinger A.E. Selection theory for marker-assisted backcrossing // Genetics. 2005. V. 170. P. 909–917.; Ganal M.W., Röder M.S. Microsatellite and SNP markers in wheat breeding // Genomics-assisted crop improvement / Eds R.K. Varshney, R. Tuberosa. N.Y.: Springer, 2007. P. 1−24.; Gupta P.K., Langridge P., Mir R.R. Marker-assisted wheat breeding: present status and future possibilities // Mol. Breed. 2010. V. 26. P. 145−161.; Hayden M.J., Kuchel H., Chalmers K.J. Sequence tagged microsatellites for the Xgwm533 locus provide new diagnostic markers to select for the presence of stem rust resistance gene Sr2 in bread wheat (Triticum aestivum L.) // Theor. Appl. Genet. 2004. V. 109. P. 1641–1647.; Herzog E., Frisch M. Selection strategies for marker-assisted backcrossing with high-throughput marker systems // Theor. Appl. Genet. 2011. V. 123. P. 251−260.; Hospital F. Marker-assisted backcross breeding: a case-study in genotype building theory // Quantitative genetics, genomics, and plant breeding / Ed. M.S. Kang. Wallingford, UK, CABI Publishing, 2002. P. 135−142.; Huang X.Q., Börner A., Röder M.S., Ganal M.W. Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers // Theor. Appl. Genet. 2002. V. 105. P. 699–707.; Kolmer J.A., Singh R.P., Garvin D.F. et al. Analysis of the Lr34/Yr18 rust resistance region in wheat germplasm // Crop Sci. 2008. V. 48. P. 1841−1852.; Kuchel H., Fox R., Reinheimer J. et al. The successful application of a marker-assisted wheat breeding strategy // Mol. Breed. 2007. V. 20. P. 295–308.; Kuchel H., Fox R., Hollamby G. et al. The challenges of integrating new technologies into a wheat breeding programme. 2008. Available at http://ses.library.usyd.edu.au/bitstream/2123/3400/1/O54.pdf.; Landjeva S., Korzun V., Börner A. Molecular markers: actual and potential contributions to wheat genome; characterization and breeding // Euphitica. 2007. V. 156. P. 271−296.; Li Y., Zhou R., Wang J. et al. Novel and favorable QTL allele clusters for end-use quality revealed by introgression lines derived from synthetic wheat // Mol. Breed. 2012. V. 29. P. 627–643.; Liu S., Yu L-Xi, Singh R.P. et al. Diagnostic and co-dominant PCR markers for wheat stem rust resistance genes Sr25 and Sr26 // Theor. Appl. Genet. 2010. V. 120. P. 691–697.; Liu Y., He Z., Appels R., Xia X. Functional markers in wheat: current status and future prospects // Theor. Appl. Genet. 2012. V. 125. P. 1–10.; Marone D., Laido G., Gadaleta A. et al. A high-density consensus map of A and B wheat genomes // Theor. Appl. Genet. 2012. V. 125. P. 1619–1638.; McIntosh R.A., Yamazaki Y., Dubcovsky J. et al. Catalogue of Gene Symbols for Wheat. 2010. Supplement 2011, 2012. Available at: http://www.shigen.nig.ac.jp/wheat/komugi/genes/.; Milc J., Sala A., Bergamaschi S., Pecchioni N. A genotypic and phenotypic information source for marker-assisted selection of cereals: the CEREALAB database // Database. 2011. Article ID baq038, doi:10.1093/database/baq038.; Mohler V., Schwarz G. Genotyping tools in plant breeding: from restriction fragment length polymorphisms to single nucleotide polymorphisms // Molecular Marker Systems in Plant Breeding and Crop Improvement / Eds H. Lörtz, G. Wenzel. 2005. V. 55. P. 23–38.; Narain P. Quantitative genetics: past and present // Mol. Breed. 2010. V. 26. P. 135–143.; Neu C., Stein N., Keller B. Genetic mapping of the Lr20–Pm1 resistance locus reveals suppressed recombination on chromosome arm 7AL in hexaploid wheat // Genome. 2002. V. 45. P. 737–744.; Nocente F., Gazza L., Pasquini M. Evaluation of leaf rust resistance genes Lr1, Lr9, Lr24, Lr47 and their introgression into common wheat cultivars by marker-assisted selection // Euphytica. 2007. V. 155. P. 329–336.; Randhawa H.S., Mutti J.S., Kidwell K. et al. Rapid and targeted introgression of genes into popular wheat cultivars using marker-assisted background selection // PLoS One. 2009. V. 4. P. e5752.; Pardey P.G. A strategic look at global wheat production, productivity and R&D developments // Czech. J. Genet. Plant Breed. 2011. V. 47. P. S9–S19.; Prigge V., Melchinger A.E., Dhillon B.S., Frisch M. Efficiency gain of marker-assisted backcrossing by equentially increasing marker densities over generations // Theor. Appl. Genet. 2009. V. 119. P. 23–32.; Salameh A., Buerstmayr M., Steiner B. et al. Effects of introgression of two QTL for fusarium head blight resistance from Asian spring wheat by marker-assisted backcrossing into European winter wheat on fusarium head blight resistance, yield and quality traits // Mol. Breed. 2011. V. 28. P. 485–494.; Salina E., Dobrovolskaya O., Efremova T. et al. Microsatellite monitoring of recombination around the Vrn-B1 locus of wheat during early backcross breeding // Plant Breed. 2003. V. 122. P. 116−119.; Salina E.A., Leonova I.N., Efremova T.T., Röder M.S. Wheat genome structure: translocations during the course of polyploidization // Funct. Integr. Genomics. 2006. V. 6. P. 71–80.; Schmierer D.A., Kandemir N., Kudrna D.A. et al. Molecular marker-assisted selection for enhanced yield in malting barley // Mol. Breed. 2004. V. 14. P. 463–473.; Serfl ing A., Krämer I., Lind V. et al. Diagnostic value of molecular markers for Lr genes and characterization of leaf rust resistance of German winter wheat cultivars with regard to the stability of vertical resistance // Eur. J. Plant Pathol. 2011. V. 130. P. 559–575.; Singh S., Sidhu J.S., Huang N. et al. Pyramiding three bacterial blight resistance genes (xa5, xa13 and Xa21) using marker-assisted selection into indica rice cultivar PR106 // Theor. Appl. Genet. 2001. V. 102. P. 1011–1015.; Sivasamy M., Vinod, Tiwari S. et al. Introgression of useful linked genes for resistance to stem rust, leaf rust and powdery mildew and their molecular validation in wheat (Triticum aestivum L.) // Indian J. Genet. 2009. V. 69. P. 17–27.; Somers D.J. Molecular marker systems and their evaluation for cereal genetics // Cereal Genomics / Eds P.K. Gupta, R.K. Varshney. Netherlands: Kluwer Acad. Publ., 2004. P. 19–34.; Sourdille P., Singh S., Cadalen T. et al. Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.) // Func. Integr. Genomics. 2004. V. 4. P. 12–25.; Spielmeyer W., Sharp P.J., Lagudah E.S. Identifi cation and validation of markers linked to broad-spectrum stem rust resistance gene Sr2 in wheat (Triticum aestivum L.) // Crop Sci. 2003. V. 43. P. 333–336.; Tester M., Langridge P. Breeding technologies to increase crop production in a changing world // Science. 2010. V. 237. P. 818–822.; Timonova E.M., Leonova I.N., Röder M.S., Salina E.A. Marker-assisted development and characterization of a set of Triticum aestivum lines carrying different introgressions from the T. timopheevii genome // Mol. Breed. 2013. V. 31. P. 123–136.; Torada A., Koike M., Ikeguchi S., Tsutsui I. Mapping of a major locus controlling seed dormancy using backcrossed progenies in wheat (Triticum aestivum L.) // Genome. 2008. V. 51. P. 426–432.; van den Berg J.H., Chasalow S.D., Waugh R. RFLP mapping of plant nuclear genomes: planning of experiments, linkage map construction, and QTL mapping // Plant molecular biology – a laboratory manual. Berlin: Springer-Verlag, 1997. P. 334–396.; Varshney R.K., Graner A., Sorrells M.E. Genomics-assisted breeding for crop improvement // Trends Plant Sci. 2005. V. 10. P. 621–630.; Varshney R.K., Mahendar T., Aggarwal R.K., Börner A. Genic molecular markers in plants: development and applications // Genomics-Assisted Crop Improvement / Eds R.K. Varshney, R. Tuberosa. 2007. V. 1. P. 13–29.; Vida G., Gal M., Uhrin A. et al. Molecular markers for the identifi cation of resistance genes and marker-assisted selection in breeding wheat for leaf rust resistance // Euphytica. 2009. V. 170. P. 67–76.; William H.M., Trethowan R., Crosby-Galvan E.M. Wheat breeding assisted by markers: CIMMYT’s experience // Euphytica. 2007. V. 157. P. 307–319.; Xu Y. Developing marker-assisted selection strategies for breeding hybrid rice // Plant Breed. Rev. 2003. V. 23. P. 73–174.; Xu Y. Molecular plant breeding. Wallington, UK: CAB-international, 2010. 752 p.; Xu Y., Crouch J.H. Marker-assisted selection in plant breeding: from publication to practice // Crop Sci. 2008. V. 48. P. 391–407.; Xu Y., Lu Y., Xie C. et al. Whole-genome strategies for marker-assisted plant breeding. Mol. Breed. 2012. V. 29. P. 833-854.; Yang L., Wang W., Yang W., Wang M. Marker-assisted selection for pyramiding the waxy and opaque-16 genes in maize using cross and backcross schemes // Mol. Breed. 2013. V. 31. P. 767–775.; Zhao W., Canaran P., Jurkuta R. et al. Panzea: a database and resource for molecular and functional diversity in the maize genome // Nucl. Acids Res. 2006. V. 34. (Database issue). P. D752–D757.; Zhang W., Lukaszewski A.J., Kolmer J. et al. Molecular characterization of durum and common wheat recombinant lines carrying leaf rust resistance (Lr19) and yellow pigment (Y) genes from Lophopyrum ponticum // Theor. Appl. Genet. 2005. V. 111. P. 573–582.; https://vavilov.elpub.ru/jour/article/view/153
Διαθεσιμότητα: https://vavilov.elpub.ru/jour/article/view/153
-
6Academic Journal
Συγγραφείς: M. M. Zlotina, O. N. Kovaleva, I. G. Loskutov, E. K. Potokina, М. М. Злотина, О. Н. Ковалева, И. Г. Лоскутов, Е. К. Потокина
Συνεισφορές: гранты межгосударственной целевой программы ЕврАзЭС «Инновационные биотехнологии» (2011-16-МЦП/16) и грант РФФИ № 12-04-01161-а
Πηγή: Vavilov Journal of Genetics and Breeding; Том 17, № 1 (2013); 50-62 ; Вавиловский журнал генетики и селекции; Том 17, № 1 (2013); 50-62 ; 2500-3259
Θεματικοί όροι: ячмень, alleles of the Ppd and Vrn genes, heading date, marker assisted selection, barley, аллели генов Ppd и Vrn, сроки колошения, маркер-вспомогательная селекция
Περιγραφή αρχείου: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/111/111; Батакова О.Б. Исходный материал для селекции ярового ячменя в условиях европейского Севера РФ: Автореф. дис. … канд. с.-х. наук. СПб., 2011.; Глуховцев В.В. Роль сорта в проблеме повышения урожайности и качества зерна в условиях Среднего Поволжья // Резервы повышения эффективности агропромышленного производства: Матер. регион. науч.-практ. конф. Уфа, 2004. С. 122–124.; Гуляев Г.В. Скороспелые сорта зерновых культур – важнейший резерв в борьбе с засухой // Селекция и семеноводство. 1999. № 2/3. С. 10–17.; Лукьяненко П.П. Избранные труды. М.: Агропромиздат, 1990. С. 125–126.; Сортовые ресурсы зернофуражных культур Нечерноземной зоны России (каталог) / Под ред. Г.А. Баталовой, Н.Н. Зезина. Екатеринбург: ГНУ Уральский НИИСХ, 2010.; Casao M.C., Karsai I., Igartua E. et al. Adaptation of barley to mild winters: A role for PPDH2 // BMC Plant Biology. 2011. V. 11. P. 164–177.; Cockram J., Jones H., Leigh F.J. et al. Control of fl owering time in temperate cereals: genes, domestication, and sustainable productivity // J. Exp. Bot. 2007. V. 58. P. 1231–1244.; Cockram J., Norris C., O'Sullivan D.M. PCR-based markers diagnostic for spring and winter seasonal growth habit in barley // Crop. Sci. 2009. V. 49. P. 403–410.; Corbesier L., Vincent C., Jang S. et al. FT protein movement contributes to long-distance signaling in fl oral induction of Arabidopsis // Science. 2007. V. 316. P. 1030–1033.; Distelfeld A., Li C., Dubcovsky J. Regulation of fl owering in temperate cereals // Curr. Opin. Plant Biol. 2009. V. 12. P. 178–184.; Dubcovsky J., Chen C., Yan L. Molecular characterization of the allelic variation at the VRN-H2 vernalization locus in barley // Mol. Breed. 2005. V. 15. P. 395–407.; Faure S., Higgins J., Turner A. et al. The FLOWERING LOCUS T-like gene family in barley (Hordeum vulgare) // Genetics. 2007. V. 176. P. 599–609.; Jaeger K.E., Wigge P.A. FT protein acts as a long-range signal in Arabidopsis // Curr. Biol. 2007. V. 17. P. 1050–1054.; Jones H., Leigh F.J., Mackay I. et al. Population based resequencing reveals that the fl owering time adaptation of cultivated barley originated east of the fertile crescent // Mol. Biol. Evol. 2008. V. 25. No. 10. P. 2211–2219.; Karsai I., Szucs P., Meszaros K. et al. The Vrn-H2 locus is a major determinant of fl owering time in a facultative winter growth habit barley (Hordeum vulgare L.) mapping population // Theor. Appl. Genet. 2005. V. 110. P. 1458–1466.; Kikuchi R., Kawahigashi H., Ando T. et al. Molecular and functional characterization of PEBP genes in barley reveal the diversifi cation of their roles in fl owering // Plant Physiol. 2009. V. 149. P. 1341–1353.; Laurie D.A., Pratchett N., Bezant J.H. et al. RFLP mapping of fi ve major genes and eight quantitative trait loci in a winter/ spring barley (Hordeum vulgare L.) cross // Genome. 1995. V. 38. P. 575–585.; Saghai-Maroof M.A., Soliman K.M., Jorgensen R.A. et al. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics // Proc. Natl Acad. Sci. USA. 1984. V. 81. P. 8014–8018.; See D., Kanazin V., Kephart K. et al. Mapping genes controlling variation in barley grain protein concentration // Crop Sci. 2002. V. 42. P. 680–685.; Takahashi R., Yasuda S. Genetics of earliness and growth habit in barley // Barley genetics II / Ed. R.A. Nilan. Washington State Univ. Press, Pullman, 1971. P. 388–408.; Trevaskis B., Bagnall D.J., Ellis M.H. et al. MADS box genes control vernalization-induced fl owering in cereals // Proc. Natl Acad. Sci. USA. 2003 V. 100. P. 13099–13104.; Turner A., Beales J., Faure S. et al. The pseudo response regulator Ppd-H1 provides adaptation to photoperiod in barley // Science. 2005. V. 310. P. 1031–1033.; Yan L., Fu D., Li C. et al. The wheat and barley vernalization gene VRN3 is an orthologue of FT // Proc. Natl Acad. Sci. USA. 2006. V. 103. P. 19581–19586.; Yan L., Loukoianov A., Tranquilli G. et al. Positional cloning of the wheat vernalization gene VRN1 // Proc. Natl Acad. Sci. USA. 2003. V. 100. P. 6263–6268.; Zitzewitz J., Szucs P., Dubcovsky J. et al. Molecular and structural characterization of barley vernalization genes // Plant Mol. Biol. 2005. V. 59. P. 449–467.; https://vavilov.elpub.ru/jour/article/view/111
Διαθεσιμότητα: https://vavilov.elpub.ru/jour/article/view/111
-
7Academic Journal
Συγγραφείς: I. I. Suprun, S. V. Tokmakov, И. И. Супрун, С. В. Токмаков
Συνεισφορές: Росский фонд фундаментальных исследований, проект № 12-04-31947 мол_а
Πηγή: Vavilov Journal of Genetics and Breeding; Том 17, № 2 (2013); 298-302 ; Вавиловский журнал генетики и селекции; Том 17, № 2 (2013); 298-302 ; 2500-3259
Θεματικοί όροι: лежкость плодов, DNA marker analysis, marker-assisted selection, allelic diversity, ethylene biosynthesis genes, Md-ACS1, Md-ACO1, fruit storability, ДНК-маркерный анализ, маркер-вспомогательная селекция, аллельное разнообразие, гены синтеза этилена Md-ACS1 и Md-ACO1
Περιγραφή αρχείου: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/151/153; Adams D.O., Yang S.F. Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene // Proc. Natl Acad. Sci. USA. 1979. V. 76. P. 170–174.; Costa F., Sara S., Van de Weg W.E. et al. Role of the genes Md-ACO1 and Md-ACS1 in ethylene production and shelf life of apple (Malus domestica Borkh) // Euphytica. 2005. V. 141. P. 181–190.; Dong J.G., Kim W.T, Yip W.K. et al. Cloning of a cDNA encoding 1-aminocyclopropane-1-carboxylate synthase and expression of its mRNA in ripening apple fruit // Planta. 1991. V. 185. P. 38–45.; Dong J.G., Olson D., Silverstone A., Yang S.F. Sequence of a cDNA coding for a 1-aminocyclopropane-1-carboxylate oxidase homolog from apple fruit // Plant Physiol. 1992. V. 98. P. 1530–1531.; Fan X., Blankenship S.M., Mattheis J.P. 1-methylcyclopropene inhibits apple ripening // J. Am. Soc. Hortic. Sci. 1999. V. 124. P. 690–695.; Harada T., Sunako T., Wakasa Y. et al. An allele of 1-aminocyclopropane-1-carboxylate synthase gene (Md-ACS1) accounts for the low ethylene production in climacteric fruits of some apple cultivars // Theor. Appl. Genet. 2000. V. 101. P. 742–746.; Kende H. Ethylene biosynthesis // Annu. Rev. Plant Physiol. Plant Mol. Biol. 1993. V. 44. P. 283–307.; Mercantila F. Guide to Food Transport: Fruit and Vegetables. Copenhagen: Mercantila Publishers, 1989. 247 p.; Murray M.G., Thompson W.F. Rapid isolation of high molecular weight plant DNA // Nucl. Acids Res. 1980. V. 10. P. 4321–4325.; Nybom H., Ahmadi-Afzadi M., Sehic J., Hertog M. DNA marker-assisted evaluation of fruit fi rmness at harvest and post-harvest fruit softening in a diverse apple germplasm // Tree Genetics and Genomes. 2013. V. 9. P. 279–290.; Oraguzie N.C., Iwanami H., Soejima J. et al. A. Inheritance of Md-ACS1 gene and its relationship to fruit softening in apple (Malus × domestica Borkh.) // Theor. Appl. Genet. 2004. V. 108. P. 1526–1533.; Sunako T., Sakuraba W., Senda M. et al. An allele of the ripening-specifi c 1-aminocyclopropane-1-carboxylic acid synthase gene (ACS1) in apple fruit with a long storage life // Plant Physiol. 1999. V. 119. P. 1297–1304.; Tucker G.A. Introduction // Biochemistry of Fruit Ripening / Eds G.B. Seymour, J.E. Taylor, G.A. Tucker. London: Chapman and Hall, 1993. P. 3–51.; Wiersma P.A., Zhang H., Lu C. et al. Survey of the expression of genes for ethylene synthesis and perception during maturation and ripening of «Sunrise» and «Golden Delicious » apple fruit // Postharvest Biol. Technol. 2007. V. 44. No. 3. P. 204–211.; Zhu Y., Barrit B.H. Md-ACS1 and Md-ACO1 genotyping of apple (Malus × domestica Borkh.) breeding parents and suitability for marker-assisted selection // Tree Genetics and Genomes. 2008. V. 4. P. 555–562.; https://vavilov.elpub.ru/jour/article/view/151
Διαθεσιμότητα: https://vavilov.elpub.ru/jour/article/view/151
-
8Academic Journal
Συγγραφείς: Маркин, Н., Горбаченко, О., Тихонова, М., Усатов, А.
Θεματικοί όροι: ЦИТОПЛАЗМАТИЧЕСКАЯ МУЖСКАЯ СТЕРИЛЬНОСТЬ (ЦМС), ГЕНЫ ВОССТАНОВИТЕЛИ ФЕРТИЛЬНОСТИ ПЫЛЬЦЫ (RF), SCAR-МАРКЕРЫ, МАРКЕР-ВСПОМОГАТЕЛЬНАЯ СЕЛЕКЦИЯ, ПОДСОЛНЕЧНИК
Περιγραφή αρχείου: text/html
-
9Academic Journal
Συγγραφείς: van de Weg, W.E., Bink, M.C.A.M., Voorrips, R.E., Kruisselbrink, J.W., Jansen, H., Pikunova, Anna, Serova, Z.M., Krasova, N.G., Sedov, E., Laurens, F.
Πηγή: Современное садоводство – Contemporary horticulture.
Θεματικοί όροι: Life Science, МАРКЕР ВСПОМОГАТЕЛЬНАЯ СЕЛЕКЦИЯ,ОДНОНУКЛЕОТИДНЫЕ ПОЛИМОРФНЫЕ МАРКЕРЫ (SNP),ГЕНОТИПИРОВАНИЕ,ROSACEAE,MALUS DOMESTICA,MARKER ASSISTED SELECTION,MARKER-TRAIT ASSOCIATIONS SNP,GENOTYPING
Περιγραφή αρχείου: text/html
Σύνδεσμος πρόσβασης: http://cyberleninka.ru/article/n/pedigree-based-analyses-a-powerful-approach-for-qtl-discovery-in-pedigreed-breeding-germplasm-and-support-on-breeding-decisions
http://cyberleninka.ru/article_covers/16080681.png
https://research.wur.nl/en/publications/pedigree-based-analyses-a-powerful-approach-for-qtl-discovery-in- -
10Academic Journal
Πηγή: Масличные культуры. Научно-технический бюллетень Всероссийского научно-исследовательского института масличных культур.
Περιγραφή αρχείου: text/html