-
1Academic Journal
Authors: Sharafaddinova , Gozzal
Source: Eurasian Journal of Medical and Natural Sciences; Vol. 5 No. 10 (2025): Eurasian Journal of Medical and Natural Sciences; 314-325 ; Евразийский журнал медицинских и естественных наук; Том 5 № 10 (2025): Евразийский журнал медицинских и естественных наук; 314-325 ; Yevrosiyo tibbiyot va tabiiy fanlar jurnali; Jild 5 Nomeri 10 (2025): Евразийский журнал медицинских и естественных наук; 314-325 ; 2181-287X
Subject Terms: Болезнь Пайра, детская радиология, флюороскопия, мультиспиральная компьютерная томография (МСКТ), магнитно-резонансная томография (МРТ), левосторонний колонический синдром, моторика желудочно-кишечного тракта, Payra’s disease, pediatric radiology, fluoroscopy, MSCT, MRI, left colonic syndrome, gastrointestinal motility
File Description: application/pdf
Availability: https://in-academy.uz/index.php/EJMNS/article/view/63220
-
2Academic Journal
Authors: V. M. Pivsaeva, A. O. Agafonov, M. G. Shatokhina, N. V. Prosalova, В. М. Пивсаева, А. О. Агафонов, М. Г. Шатохина, Н. В. Просалова
Source: Diagnostic radiology and radiotherapy; Том 16, № 1 (2025); 113-125 ; Лучевая диагностика и терапия; Том 16, № 1 (2025); 113-125 ; 2079-5343
Subject Terms: предрасполагающие факторы, bile duct cancer, gallbladder cancer, cholangiocarcinoma, adenomyomatosis, computed tomography (CT), magnetic resonance imaging (MRI), magnetic resonance cholangiography (MRCG), radiography, molecular profiling, predisposing factors, рак билиарного тракта, рак желчных протоков, рак желчного пузыря, холангиокарцинома, аденомиоматоз, компьютерная томография (КТ), магнитно-резонансная томография (МРТ), магнитнорезонансная холангиография (МРХГ), рентгенография, молекулярное профилирование
File Description: application/pdf
Relation: https://radiag.bmoc-spb.ru/jour/article/view/1072/681; Ramachandran A., Srivastava D.N., Madhusudhan K.S. Gallbladder cancer revisited: the evolving role of a radiologist // Br. J. Radiol. 2021. Jan 1; Vol. 94, No. 1117. Р. 20200726. doi:10.1259/bjr.20200726.; Ciardiello D., Maiorano B.A., Parente P., Rodriquenz M.G., Latiano T.P., Chiarazzo C., Pazienza V., Guerrera L.P., Amoruso B., Normanno N., Martini G., Ciardiello F., Martinelli E., Maiello E. Immunotherapy for Biliary Tract Cancer in the Era of Precision Medicine: Current Knowledge and Future Perspectives // Int. J. Mol. Sci. 2022. Jan 13; Vol. 23, No. 2. Р. 820. doi:10.3390/ijms23020820.; Zhao L., Xing D., Pang K., Meng F., Xing Y., Ding Q. The effect of MRI combined with CT on the diagnostic rate of cholangiocarcinoma // Panminerva Med. 2023. Mar; Vol. 65, No. 1. Р. 125–126. doi:10.23736/S0031-0808.21.04339-1.; Lamarca A., Edeline J., Goyal L. How I treat biliary tract cancer // ESMO Open. 2022 Feb; Vol. 7, No. 1. Р. 100378. doi:10.1016/j.esmoop.2021.100378.; Riddell Z.C., Corallo C., Albazaz R., Foley K.G. Gallbladder polyps and adenomyomatosis // Br. J. Radiol. 2023. Feb; Vol. 96, No. 1142. Р. 20220115. doi:10.1259/bjr.20220115.; Sun D., Xu Z., Cao S., Wu H., Lu M., Xu Q., Wang K., Ji G. Imaging features based on CT and MRI for predicting prognosis of patients with intrahepatic cholangiocarcinoma: a single-center study and meta-analysis // Cancer Imaging. 2023. Jun 7; Vol. 23, No. 1. Р. 56. doi:10.1186/s40644-023-00576-5.; Yu M.H., Kim Y.J., Park H.S., Jung S.I. Benign gallbladder diseases: Imaging techniques and tips for differentiating with malignant gallbladder diseases // World J. Gastroenterol. 2020. Jun 14; Vol. 26, No. 22. Р. 2967–2986. doi:10.3748/wjg.v26.i22.2967.; Corvera C.U., Blumgart L.H., Akhurst T., DeMatteo R.P., D’Angelica M., Fong Y. et al. 18F-Fluorodeoxyglucose positron emission tomography influences management decisions in patients with biliary cancer // J. Am. Coll Surg. 2008. Vol. 206. Р. 57–65. doi:10.1016/j.jamcollsurg.2007.07.002.; Veldhuijzen van Zanten S.E.M., Pieterman K.J., Wijnhoven B.P.L., Pruis I.J., Groot Koerkamp B., van Driel L.M.J.W., Verburg F.A., Thomeer M.G.J. FAPI PET versus FDG PET, CT or MRI for Staging Pancreatic-, Gastric- and Cholangiocarcinoma: Systematic Review and Head-to-Head Comparisons of Diagnostic Performances // Diagnostics (Basel). 2022. Aug 12; Vol. 12, No. 8. Р. 1958. doi:10.3390/diagnostics12081958.
-
3Academic Journal
Authors: Васильева Ирина Геннадьевна, Цивильский аграрно-технологический техникум Минобразования Чувашии ОСП в п. Вурнары, Irina G. Vasileva, Гордеева Татьяна Владимировна, Tatiana V. Gordeeva
Source: Technopark of universal pedagogical competencies; ; Технопарк универсальных педагогических компетенций
Subject Terms: пространственное мышление, геометрические формы, ветеринария, магнитно-резонансная томография (МРТ), ультразвуковое исследование (УЗИ), моделирование костей, анатомия животных
File Description: text/html
Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-908083-09-6; https://phsreda.com/e-articles/10795/Action10795-151164.pdf; Иванов А.А. Биологическая механика и ее клиническое значение / А.А. Иванов, Ю.Ю. Смирнов // Научные труды Академии ветеринарной медицины. – 2022. – №8.; Семёнов И.И. Современная рентгенодиагностика в ветеринарии: учебное пособие / И.И. Семёнов, В.С. Волков. – СПб.: Издательство СПбГУ, 2023.; https://phsreda.com/article/151164/discussion_platform
-
4Academic Journal
-
5Academic Journal
-
6Academic Journal
Source: Eastern-European Journal of Enterprise Technologies; Vol. 4 No. 9(112) (2021): Information and controlling system; 23-31
Eastern-European Journal of Enterprise Technologies; Том 4 № 9(112) (2021): Информационно-управляющие системы; 23-31
Eastern-European Journal of Enterprise Technologies; Том 4 № 9(112) (2021): Інформаційно-керуючі системи; 23-31Subject Terms: магнитно-резонансная томография (МРТ), згорткова нейронна мережа (ЗНМ), сегментації, опухоли головного мозга, Magnetic Resonance Imaging (MRI), магнітно-резонансна томографія (МРТ), сегментации, deep learning, глибоке навчання, Convolutional Neural Network (CNN), архітектура 3D U-Net, segmentations, 3. Good health, 03 medical and health sciences, 0302 clinical medicine, архитектура 3D U-Net, сверточная нейронная сеть (СНС), 3D U-Net architecture, brain tumors, пухлини головного мозку, глубокое обучение
File Description: application/pdf
-
7Report
Subject Terms: простой герпес (HSV-1), magnetic resonance imaging (MRI), герпетический энцефалит, магнитно-резонансная томография (МРТ), неврологические симптомы, повреждения коры головного мозга, herpes simplex virus type 1 (HSV-1), herpes simplex encephalitis, neurological symptoms, acute phase, mortality rate, летальность, postencephalitic complications, острый период, central nervous system infection, cerebral cortex lesions, antiviral therapy, инфекция ЦНС, противовирусная терапия, постэнцефалитические осложнения
-
8Academic Journal
Authors: E. A. Perina, E. S. Khmelevskaya, O. S. Fedorova, V. V. Ivanov, Е. А. Перина, Е. С. Хмелевская, О. С. Федорова, В. В. Иванов
Contributors: The study was supported by the RFBR grant within the research project No. 19-515-70004 “Tools to diagnose carcinogenic liver fluke infection”, Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта «Идентификация новых диагностических маркеров для разработки технологий популяционного скрининга трематодозов» № 19-515-70004.
Source: Bulletin of Siberian Medicine; Том 22, № 1 (2023); 132-142 ; Бюллетень сибирской медицины; Том 22, № 1 (2023); 132-142 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2023-22-1
Subject Terms: ультразвуковое исследование (УЗИ), opisthorchiasis, clonorchiasis, duodenal probe, microscopic helminth detection, immunoassay, molecular diagnosis, molecular genetic diagnosis, endoscopic examination, computed tomography (CT), magnetic resonance imaging (MRI), ultrasound examination (US), описторхоз, клонорхоз, дуоденальное зондирование, гельминтоовоскопия, иммуноферментный анализ, молекулярно-генетическая диагностика, эндоскопическое исследование, компьютерная томография (КТ), магнитно-резонансная томография (МРТ)
File Description: application/pdf
Relation: https://bulletin.ssmu.ru/jour/article/view/5144/3358; Mas-Coma S., Valero M.A., Bargues M.D. Fascioliasis. Adv. Exp. Med. Biol. 2019;1154:71–103. DOI:10.1007/978-3-03018616-6_4.; Da Silva V.B.R., Campos B.R.K.L., de Oliveira J.F., Decout J.L., do Carmo Alves de Lima M. Medicinal chemistry of antischistosomal drugs: Praziquantel and oxamniquine. Bioorg. Med. Chem. 2017;25(13):3259–3277. DOI:10.1016/j.bmc.2017.04.031.; Khalil R.G., Ibrahim A.M., Bakery H.H. A novel immunomodulatory, antifibrotic, and schistosomicidal agent to ameliorate liver damage in murine Schistosomiasis mansoni. Int. Immunopharmacol. 2022;113(PtA):109415. DOI:10.1016/j.intimp.2022.109415.; Huang X., Kou J., Deng X., Li D., Zhang B, Cheng P. et al. Review of the control of clonorchiasis in Shandong Province, China from 1962 to 2015. Int. J. Infect. Dis. 2020;96:199–204. DOI:10.1016/j.ijid.2020.04.052.; Yurlova N.I., Yadrenkina E.N., Rastyazhenko N.M., Serbina E.А., Glupov V.V. Opisthorchiasis in Western Siberia: Epidemiology and distribution in human, fish, snail, and animal populations. Parasitol. Int. 2017;66(4):355–364. DOI:10.1016/j.parint.2016.11.017.; www.who.int [Internet]. Foodborne parasitic infections: Clonorchiasis and opisthorchiasis. URL: https://www.who.int/publications/i/item/WHO-UCN-NTD-VVE-2021.2; Phupiewkham W., Rodpai R., Inthavongsack S., Laymanivong S., Thanchomnang T., Sadaow L. et al. High prevalence of opisthorchiasis in rural populations from Khammouane Province, central Lao PDR: serological screening using total IgGand IgG4-based ELISA. Trans. R. Soc. Trop. Med. Hyg. 2021;115(12):1403–1409. DOI:10.1093/trstmh/trab066.; www.who.int [Internet]. Foodborne trematode infections; [cited 2022 Dec 23].URL: https://www.who.int/news-room/fact-sheets/detail/foodborne-trematode-infections; Позднякова Л.Л., Краснова Е.И., Кузнецова В.Г., Малов И.В. Описторхоз у. взрослых: клинические рекомендации. М.: Некоммерческое партнерство «Национальное научное общество инфекционистов», 2014:53.; Siqueira L.M.V., Senra C., de Oliveira Á.A., Carneiro N.F.F., Gomes L.I., Rabello A. et al. A real-time PCR assay for the diagnosis of intestinal schistosomiasis and cure assessment after the treatment of individuals with low parasite burden. Front. Immunol. 2021;11:620417. DOI:10.3389/fimmu.2020.620417.; Bärenbold O., Raso G., Coulibaly J.T., N’Goran E.K., Utzinger J., Vounatsou P. Estimating sensitivity of the Kato-Katz technique for the diagnosis of Schistosoma mansoni and hookworm in relation to infection intensity. PLoS Negl. Trop. Dis. 2017;11(10):e0005953. DOI:10.1371/journal.pntd.0005953.; Rahman M.O., Sassa M., Parvin N., Islam M.R., Yajima A., Ota E. Diagnostic test accuracy for detecting Schistosoma japonicum and S. mekongi in humans: A systematic review and meta-analysis. PLoS Negl. Trop. Dis. 2021;15(3):e0009244. DOI:10.1371/journal.pntd.0009244.; Frickmann H., Lunardon L.M., Hahn A., Loderstädt U., Lindner A.K., Becker S.L. et al. Evaluation of a duplex real-time PCR in human serum for simultaneous detection and differentiation of Schistosoma mansoni and Schistosoma haematobium infections – cross-sectional study. Travel. Med. Infect. Dis. 2021;41:102035. DOI:10.1016/j.tmaid.2021.102035.; Saadh M.J., Tanash S.A., Almaaytah A.M., Sa’adeh I.J., Aldalaen S.M., Al-Hamaideh K.D. Immunodiagnosis of cattle fascioliasis using a 27 kDa Fasciola gigantica antigen. Vet. World. 2021;14(8):2097–2101. DOI:10.14202/vetworld.2021.2097-2101.; Gillardie M.L., Babba O., Mahinc C., Duthel M., de Bengy C., Morineaud C. et al. Molecular approach to the epidemiology of urinary schistosomiasis in France. PLoS Negl. Trop. Dis. 2021;15(7):e0009515. DOI:10.1371/journal.pntd.0009515.; Frickmann H., Loderstädt U., Nickel B., Poppert S., Odermatt P., Sayasone S. et al. Low sensitivity of real time PCRs targeting retrotransposon sequences for the detection of Schistosoma japonicum complex DNA in human serum. Pathogens. 2021;10(8):1067. DOI:10.3390/pathogens10081067.; Amiri S., Shemshadi B., Fallahi S., Shirali S. Detection of Fasciola hepatica in lori sheep using polymerase Chain reaction and conventional diagnostic methods in Western Iran. Arch. Razi. Inst. 2021;76(2):223–229. DOI:10.22092/ari.2020.128417.1413.; Amiri S., Shemshadi B., Shirali S., Kheirandish F., Fallahi S. Accurate and rapid detection of Fasciola hepatica copro-DNA in sheep using loop-mediated isothermal amplification (LAMP) technique. Vet. Med. Sci. 2021;7(4):1316–1324. DOI:10.1002/vms3.455.; Coulibaly J.T., Ouattara M., D’Ambrosio M.V., Fletcher D.A., Keiser J., Utzinger J. et al. Accuracy of mobile phone and handheldl Light microscopy for the diagnosis of Schistosomiasis and intestinal Protozoa infections in Côte d’Ivoire. PLoS Negl. Trop. Dis. 2016;10(6):e0004768. DOI:10.1371/journal.pntd.0004768.; Ephraim R.K., Duah E., Cybulski J.S., Prakash M., D’Ambrosio M.V., Fletcher D.A. et al. Diagnosis of Schistosoma haematobium infection with a mobile phone-mounted Foldscope and a reversed-lens CellScope in Ghana. Am. J. Trop. Med. Hyg. 2015;92(6):1253–1256. DOI:10.4269/ajtmh.14-0741.; Mones A., Sherif M.M., Abdel Halim R.M. Superiority of rectal snip over serology in detection of schistosomiasis eradication: A pilot study. Arab. J. Gastroenterol. 2021;22(1):52–55. DOI:10.1016/j.ajg.2020.11.001.; Pearson M.S., Tedla B.A., Mekonnen G.G., Proietti C., Becker L., Nakajima R. et al. Immunomics-guided discovery of serum and urine antibodies for diagnosing urogenital schistosomiasis: a biomarker identification study. Lancet Microbe. 2021;2(11):e617–e626. DOI:10.1016/S26665247(21)00150-6.; Cai P., Mu Y., Weerakoon K.G., Olveda R.M., Ross A.G., McManus D.P. Performance of the point-of-care circulating cathodic antigen test in the diagnosis of Schistosomiasis japonica in a human cohort from Northern Samar, the Philippines. Infect. Dis. Poverty. 2021;10(1):121. DOI:10.1186/ s40249-021-00905-5.; Zhang Y., Zhao J., Wang X., Xu X., Pan W. Evaluation of six novel antigens as potential biomarkers for the early immunodiagnosis of schistosomiasis. Parasit. Vectors. 2015;8:447. DOI:10.1186/s13071-015-1048-2.; Macalanda A.M.C., Angeles J.M.M., Moendeg K.J., Dang-Trinh M.A., Higuchi L., Kirinoki M. et al. Schistosoma japonicum cathepsin B as potential diagnostic antigen for Asian zoonotic schistosomiasis. Parasitol Res. 2019;118(9):2601–2608. DOI:10.1007/s00436-019-06410-x.; Chen Y., Giri B.R., Li X., He X., Jing Z., Cheng G. Preliminary evaluation of the diagnostic potential of Schistosoma japonicum extracellular vesicle proteins for Schistosomiasis japonica. Acta. Trop. 2020;201:105184. DOI:10.1016/j.actatropica.2019.105184.; Chimponda T.N., Mushayi C., Osakunor D.N.M., Vengesai A., Enwono E., Amanfo S. et al. Elevation of C-reactive protein, P-selectin and Resistin as potential inflammatory biomarkers of urogenital Schistosomiasis exposure in preschool children. BMC Infect. Dis. 2019;19(1):1071. DOI:10.1186/s12879019-4690-z.; Ferrer E., Villegas B., Mughini-Gras L., Hernández D., Jiménez V., Catalano E. et al. Diagnostic performance of parasitological, immunological and molecular tests for the diagnosis of Schistosoma mansoni infection in a community of low transmission in Venezuela. Acta. Trop. 2020;204:105360. DOI:10.1016/j.actatropica.2020.105360.; Ji R., Shen Y., Shi B., Li H., Tang W., Xia C. et al. An ELISA based on soluble egg antigens for the serodiagnosis of animal schistosomiasis turkestanica. PLoS One. 2020;15(1):e0228184. DOI:10.1371/journal.pone.0228184.; Silva-Moraes V., Shollenberger L.M., Castro-Borges W., Rabello A.L.T., Harn D.A., Medeiros L.C.S. et al. Serological proteomic screening and evaluation of a recombinant egg antigen for the diagnosis of low-intensity Schistosoma mansoni infections in endemic area in Brazil. PLoS Negl. Trop. Dis. 2019;13(3):e0006974. DOI:10.1371/journal.pntd.0006974.; Rodpai R., Sadaow L., Boonroumkaew P., Phupiewkham W., Thanchomnang T., Limpanont Y. et al. Comparison of point-of-care test and enzyme-linked immunosorbent assay for detection of immunoglobulin G antibodies in the diagnosis of human Schistosomiasis japonica. Int. J. Infect. Dis. 2021;107:47–52. DOI:10.1016/j.ijid.2021.04.039.; Song H.B., Kim J., Jin Y., Lee J.S., Jeoung H.G., Lee Y.H. et al. Comparison of ELISA and urine microscopy for diagnosis of Schistosoma haematobium infection. J. Korean. Med. Sci. 2018;33(33):e238. DOI:10.3346/jkms.2018.33.e238.; Angeles J.M.M., Goto Y., Kirinoki M., Leonardo L.R., Moendeg K.J., Ybañez A.P. et al. Detection of canine Schistosoma japonicum infection using recombinant thioredoxin peroxidase-1 and tandem repeat proteins. J. Vet. Med. Sci. 2019;81(10):1413–1418. DOI:10.1292/jvms.19-0126.; Clements M.N., Corstjens P.L.A.M., Binder S., Campbell C.H. Jr., de Dood C.J. et al. Latent class analysis to evaluate performance of point-of-care CCA for low-intensity Schistosoma mansoni infections in Burundi. Parasit. Vectors. 2018;11(1):111. DOI:10.1186/s13071-018-2700-4.; Cai P., Weerakoon K.G, Mu Y., Olveda R.M., Ross A.G., Olveda D.U., McManus D.P. Comparison of Kato Katz, antibody-based ELISA and droplet digital PCR diagnosis of Schistosoma japonicum: Lessons learnt from a setting of low infection intensity. PLoS Negl. Trop. Dis. 2019;13(3):e0007228. DOI:10.1371/journal.pntd.0007228.; Cai P., Weerakoon K.G., Mu Y., Olveda D.U., Piao X., Liu S. et al. A parallel comparison of antigen candidates for development of an optimized serological diagnosis of Schistosoma japonicum in the Philippines. EBioMedicine. 2017;24:237–246. DOI:10.1016/j.ebiom.2017.09.011.; Liu S., Zhou X., Piao X., Hou N., Shen Y., Zou Y. et al. Saposin-like proteins, a multigene family of Schistosoma species, are biomarkers for the immunodiagnosis of Schistosoma japonicum. J. Infect. Dis. 2016;214(8):1225–1234. DOI:10.1093/infdis/jiw188.; Chimponda T.N., Mduluza T. Inflammation during Schistosoma haematobium infection and anti-allergy in pre-school-aged children living in a rural endemic area in Zimbabwe. Trop. Med. Int. Health. 2020;25(5):618–623. DOI:10.1111/tmi.13376.; Kardoush M.I., Ward B.J., Ndao M. Serum carbonic anhydrase 1 is a biomarker for diagnosis of human Schistosoma mansoni infection. Am. J. Trop. Med. Hyg. 2017;96(4):842– 849. DOI:10.4269/ajtmh.16-0021.; Viana A.G., Gazzinelli-Guimarães P.H., Castro V.N., Santos Y.L.O.D., Ruas A.C.L., Bezerra F.S.M. et al. Discrepancy between batches and impact on the sensitivity of point-of-care circulating cathodic antigen tests for Schistosoma mansoni infection. Acta. Trop. 2019;197:105049. DOI:10.1016/j.actatropica.2019.105049.; Fuss A., Mazigo H.D., Tappe D., Kasang C., Mueller A. Comparison of sensitivity and specificity of three diagnostic tests to detect Schistosoma mansoni infections in school children in Mwanza region, Tanzania. PLoS One. 2018;13(8):e0202499. DOI:10.1371/journal.pone.0202499.; Ferreira F.T., Fidelis T.A., Pereira T.A., Otoni A., Queiroz L.C., Amâncio F.F. et al. Sensitivity and specificity of the circulating cathodic antigen rapid urine test in the diagnosis of Schistosomiasis mansoni infection and evaluation of morbidity in a lowendemic area in Brazil. Rev. Soc. Bras. Med. Trop. 2017;50(3):358–364. DOI:10.1590/0037-8682-0423-2016.; Armoo S., Cunningham L.J., Campbell S.J., Aboagye F.T., Boampong F.K., Hamidu B.A. et al. Detecting Schistosoma mansoni infections among pre-school-aged children in southern Ghana: a diagnostic comparison of urine-CCA, real-time PCR and Kato-Katz assays. BMC Infect. Dis. 2020;20(1):301. DOI:10.1186/s12879-020-05034-2.; Bezerra D.F., Pinheiro M.C.C., Barbosa L., Viana A.G., Fujiwara R.T., Bezerra F.S.M. Diagnostic comparison of stool exam and point-of-care circulating cathodic antigen (POC-CCA) test for Schistosomiasis mansoni diagnosis in a high endemicity area in northeastern Brazil. Parasitology. 2021;148(4):420–426. DOI:10.1017/S0031182020002164.; López Corrales J., Cwiklinski K., De Marco Verissimo C., Dorey A., Lalor R., Jewhurst H. et al. Diagnosis of sheep fasciolosis caused by Fasciola hepatica using cathepsin L enzyme-linked immunosorbent assays (ELISA). Vet. Parasitol. 2021;298:109517. DOI:10.1016/j.vetpar.2021.109517.; Carnevale S., Malandrini J.B., Pantano M.L., Sawicki M., Kamenetzky L., Soria C.C. et al. Use of the PCR in a combined methodological approach for the study of human fascioliasis in an endemic area. Acta. Parasitol. 2021;66(2):455– 460. DOI:10.1007/s11686-020-00302-2.; Saad M.F., Attia M.M. Milk as a new diagnostic tool for rapid detection of fascioliasis in dairy goats using excretory/secretory antigen. Acta. Parasitol. 2021;66(2):336–345. DOI:10.1007/s11686-020-00286-z.; Aghamolaei S., Kazemi B., Bandehpour M., Ranjbar M.M., Rouhani S., Javadi Mamaghani A. et al. Design and expression of polytopic construct of cathepsin-L1, SAP-2 and FhTP16.5 proteins of Fasciola hepatica. J. Helminthol. 2020;94:e134. DOI:10.1017/S0022149X20000140.; Mokhtarian K., Akhlaghi L., Mohammadi M., Meamar A.R., Razmjou E., Khoshmirsafa M. et al. Evaluation of anti-cathepsin L1: a more reliable method for serodiagnosis of human fasciolosis. Trans. R. Soc. Trop. Med. Hyg. 2016;110(9):542–550. DOI:10.1093/trstmh/trw063.; Meshgi B., Jalousian F., Fathi S., Jahani Z. Design and synthesis of a new peptide derived from Fasciola gigantica cathepsin L1 with potential application in serodiagnosis of fascioliasis. Exp. Parasitol. 2018;189:76–86. DOI:10.1016/j.exppara.2018.04.013.; Sugiyama T., Ichikawa-Seki M., Sato H., Kounosu A., Tanaka M., Maruyama H. Enzyme-linked immunosorbent assay (ELISA) using recombinant Fasciola cathepsin L1 for the diagnosis of human fasciolosis caused by Fasciola hepatica/gigantica hybrid type. Parasitol. Int. 2021;82:102311. DOI:10.1016/j.parint.2021.102311.; Xifeng W., Mengfan Q., Kai Z., Guowu Z., Jing L., Lixia W. et al. Development and evaluation of a colloidal gold immunochromatographic assay based on recombinant protein CatL1D for serodiagnosis of sheep fasciolosis. J. Helminthol. 2019;94:e98. DOI:10.1017/S0022149X19000919.; Mokhtarian K., Akhlaghi L., Meamar A.R., Razmjou E., Manouchehri Naeini K., Gholami S. et al. Serodiagnosis of fasciolosis by fast protein liquid chromatography-fractionated excretory/secretory antigens. Parasitol. Res. 2016;115(8):2957–29665. DOI:10.1007/s00436-016-5049-7.; Kueakhai P., Chaithirayanon K., Chaiwichien A., Samrit T., Osotprasit S., Suksomboon P. et al. Monoclonal antibody against Fasciola gigantica glutathione peroxidase and their immunodiagnosis potential for fasciolosis. Vet. Parasitol. 2019;276:108979. DOI:10.1016/j.vetpar.2019.108979.; Aguayo V., Valdes B., Espino A.M. Assessment of Fasciola hepatica glutathione S-transferase as an antigen for serodiagnosis of human chronic fascioliasis. Acta. Trop. 2018;186:41– 49. DOI:10.1016/j.actatropica.2018.07.002.; Kwon S.B., Kim P., Woo H.S., Kim T.Y., Kim J.Y., Lee H.M. et al. Recombinant adenylate kinase 3 from liver fluke Clonorchis sinensis for histochemical analysis and serodiagnosis of clonorchiasis. Parasitology. 2018;145(12):1531–1539. DOI:10.1017/S0031182018000434.; Teimoori S., Arimatsu Y., Laha T., Kaewkes S., Sereerak P., Tangkawattana S. et al. Immunodiagnosis of opisthorchiasis using parasite cathepsin F. Parasitol. Res. 2015;114(12):4571– 4578. DOI:10.1007/s00436-015-4703-9.; Teimoori S., Arimatsu Y., Laha T., Kaewkes S., Sereerak P., Sripa M. et al. Chicken IgY-based coproantigen capture ELISA for diagnosis of human opisthorchiasis. Parasitol. Int. 2017;66(4):443–447. DOI:10.1016/j.parint.2015.10.011.; Worasith C., Kamamia C., Yakovleva A., Duenngai K., Wangboon C., Sithithaworn J. et al. Advances in the diagnosis of human opisthorchiasis: Development of Opisthorchis viverrini antigen detection in urine. PLoS Negl. Trop. Dis. 2015;9(10):e0004157. DOI:10.1371/journal.pntd.0004157.; Worasith C., Wangboon C., Duenngai K., Kiatsopit N., Kopolrat K., Techasen A. et al. Comparing the performance of urine and copro-antigen detection in evaluating Opisthorchis viverrini infection in communities with different transmission levels in Northeast Thailand. PLoS Negl. Trop. Dis. 2019;13(2):e0007186. DOI:10.1371/journal.pntd.0007186.; Kim J.G., Ahn C.S., Sripa B., Eom K.S., Kang I., Sohn W.M. et al. Clonorchis sinensis omega-class glutathione transferases are reliable biomarkers for serodiagnosis of clonorchiasis and opisthorchiasis. Clin. Microbiol. Infect. 2019;25(1):109. e1–109.e6. DOI:10.1016/j.cmi.2018.03.042.; Taron W., Jamnongkan W., Techasen A., Phetcharaburanin J., Namwat N., Sithithaworn P. et al. AuNPs-LISA, an efficient detection assay for Opisthorchis viverrini (Ov) antigen in urine. Talanta. 2020;209:120592. DOI:10.1016/j.talanta.2019.120592.; Guegan H., Fillaux J., Charpentier E., Robert-Gangneux F., Chauvin P., Guemas E. et al. Real-time PCR for diagnosis of imported schistosomiasis. PLoS Negl. Trop. Dis. 2019;13(9):e0007711. DOI:10.1371/journal.pntd.0007711.; Wang N., Tang B., Hao Y., Bai X., Wang X., Li Y. et al. Acute shock caused by Clonorchis sinensis infection: a case report. BMC. Infect Dis. 2019;19(1):1014. DOI:10.1186/s12879019-4644-5.; Lamaningao P., Kanda S., Laimanivong S., Shimono T., Darcy A.W., Phyaluanglath A. et al. Development of a PCR assay for diagnosing trematode (Opisthorchis and Haplorchis) infections in human stools. Am. J. Trop. Med. Hyg. 2017;96(1):221–228. DOI:10.4269/ajtmh.16-0165.; Meng X., Jian-Hai Y., Sheng-Kui C., Jian-Ping C., Xiao-Fan Z., Yu-Juan S. Comparison of efficiency of Kato-Katz technique and PCR assay for detecting Clonorchis sinensis infection. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi. 2019;31(2):165–168. (In Chinese). DOI:10.16250/j.32.1374.2018233.; Esiere R.K., Ibeneme E.O., Effanga E.O., Imalele E.E., Esiere M.K., Inyang-Etoh P.C. et al. Detecting Schistosoma haematobium infection by microscopy and polymerase chain reaction (PCR) in school children in three senatorial districts of Cross River State, Nigeria. J. Parasit. Dis. 2022;46(1):272– 279. DOI:10.1007/s12639-021-01446-2.; Meurs L., Brienen E., Mbow M., Ochola E.A., Mboup S., Karanja D.M. et al. Is PCR the next reference standard for the diagnosis of Schistosoma in stool? A comparison with microscopy in Senegal and Kenya. PLoS Negl. Trop. Dis. 2015;9(7):e0003959. DOI:10.1371/journal.pntd.0003959.; Pomari E., Perandin F., La Marca G., Bisoffi Z. Improved detection of DNA Schistosoma haematobium from eggs extracted by bead beating in urine. Parasitol. Res. 2019;118(2):683– 686. DOI:10.1007/s00436-018-6137-7.; Sun K., Xing W., Yu X., Fu W., Wang Y., Zou M. et al. Recombinase polymerase amplification combined with a lateral flow dipstick for rapid and visual detection of Schistosoma japonicum. Parasit. Vectors. 2016;9(1):476. DOI:10.1186/s13071-016-1745-5.; Cabada M.M., Malaga J.L., Castellanos-Gonzalez A., Bagwell K.A., Naeger P.A., Rogers H.K. et al. Recombinase polymerase amplification compared to real-time polymerase chain reaction test for the detection of Fasciola hepatica in human stool. Am. J. Trop. Med. Hyg. 2017;96(2):341–346. DOI:10.4269/ajtmh.16-0601.; Frimpong M., Kyei-Tuffuor L., Fondjo L.A., Ahor H.S., Adjei-Kusi P., Maiga-Ascofare O. et al. Evaluation of a real-time recombinase polymerase amplification assay for rapid detection of Schistosoma haematobium infection in resource-limited setting. Acta. Trop. 2021;216:105847. DOI:10.1016/j.actatropica.2021.105847.; Lodh N., Mikita K., Bosompem K.M., Anyan W.K., Quartey J.K., Otchere J. et al. Point of care diagnosis of multiple schistosome parasites: Species-specific DNA detection in urine by loop-mediated isothermal amplification (LAMP). Acta. Trop. 2017;173:125–129. DOI:10.1016/j.actatropica.2017.06.015.; Rahman S.M.M., Song H.B., Jin Y., Oh J.K., Lim M.K., Hong S.T. et al. Application of a loop-mediated isothermal amplification (LAMP) assay targeting cox1 gene for the detection of Clonorchis sinensis in human fecal samples. PLoS Negl. Trop. Dis. 2017;11(10):e0005995. DOI:10.1371/journal.pntd.0005995.; Ghodsian S., Rouhani S., Fallahi S., Seyyedtabaei S.J., Taghipour N. Detection of spiked Fasciola hepatica eggs in stool specimens using LAMP technique. Iran. J. Parasitol. 2019;14(3):387–393.; Mesquita S.G., Neves F.G.D.S., Scholte R.G.C., Carvalho O.D.S., Fonseca C.T., Caldeira R.L. A loop-mediated isothermal amplification assay for Schistosoma mansoni detection in Biomphalaria spp. from schistosomiasis-endemic areas in Minas Gerais, Brazil. Parasit. Vectors. 2021;14(1):388. DOI:10.1186/s13071-021-04888-y.; Cheng G., Li X., Qin F., Xu R., Zhang Y., Liu J. et al. Functional analysis of the Frzb2 gene in Schistosoma japonicum. Vet. Res. 2019;50(1):108. DOI:10.1186/s13567-019-0716-1.; Pillay P., Downs J.A., Changalucha J.M., Brienen E.A.T, Ramarokoto C.E., Leutscher P.D.C. et al. Detection of Schistosoma DNA in genital specimens and urine: A comparison between five female African study populations originating from S. haematobium and/or S. mansoni endemic areas. Acta. Trop. 2020;204:105363. DOI:10.1016/j.actatropica.2020.105363.; Diab R.G., Mady R.F., Tolba M.M., Ghazala R.A. Urinary circulating DNA and circulating antigen for diagnosis of schistosomiasis mansoni: a field study. Trop. Med. Int. Health. 2019;24(3):371–378. DOI:10.1111/tmi.13193.; Schols R., Carolus H., Hammoud C., Mulero S., Mudavanhu A., Huyse T. A rapid diagnostic multiplex PCR approach for xenomonitoring of human and animal schistosomiasis in a ‘One Health’ context. Trans. R. Soc. Trop. Med. Hyg. 2019;113(11):722–729. DOI:10.1093/trstmh/trz067.; Pumpa S., Phadungsil W., Grams R., Martviset P., Ruang-Areerate T., Mungthin M. et al. Improvement of a PCRbased method for the detection of Opisthorchis viverrini eggs in human stool samples by targeting internal transcribed spacer-2 (ITS-2), cytochrome oxidase subunit 1 (cox1), and cytochrome b (cyb). J. Parasit. Dis. 2021;45(2):474–478. DOI:10.1007/s12639-020-01329-y.; Ullah H., Arbab S., Khan M.I.U., Li K., Muhammad N., Suleman Qadeer A. et al. Circulating cell-free mitochondrial DNA fragment: A possible marker for early detection of Schistosoma japonicum. Infect. Genet. Evol. 2021;88:104683. DOI:10.1016/j.meegid.2020.104683.; Cnops L., Huyse T., Maniewski U., Soentjens P., Bottieau E., van Esbroeck M. et al. Acute schistosomiasis with a Schistosoma mattheei × Schistosoma haematobium hybrid species in a cluster of 34 travelers infected in South Africa. Clin. Infect. Dis. 2021;72(10):1693–1698. DOI:10.1093/cid/ciaa312.; Meningher T., Lerman G., Regev-Rudzki N., Gold D., Ben-Dov I.Z., Sidi Y. et al Schistosomal microRNAsiIsolated from extracellular vesicles in sera of infected patients: a new tool for diagnosis and follow-up of human schistosomiasis. J. Infect. Dis. 2017;215(3):378–386. DOI:10.1093/infdis/jiw539.; Mu Y., Cai P., Olveda R.M., Ross A.G., Olveda D.U., McManus D.P. Parasite-derived circulating microRNAs as biomarkers for the detection of human Schistosoma japonicum infection. Parasitology. 2020;147(8):889–896. DOI:10.1017/S0031182019001690.; Huang W., Gu M., Cheng W., Zhao Q.P., Ming Z., Dong H. Characteristics and function of cathepsin L3 from Schistosoma japonicum. Parasitol. Res. 2020;119(5):1619–1628. DOI:10.1007/s00436-020-06647-x.; Oyeyemi O.T., Corsini C.A., Gonçalves G., de Castro Borges W., Grenfell R.F.Q. Evaluation of schistosomula crude antigen (SCA) as a diagnostic tool for Schistosoma mansoni in low endemic human population. Sci. Rep. 2021;11(1):10530. DOI:10.1038/s41598-021-89929-3.; Halili S., Grant J.R., Pilotte N., Gordon C.A., Williams S.A. Development of a novel real-time polymerase chain reaction assay for the sensitive detection of Schistosoma japonicum in human stool. 2021;15(10):e0009877. DOI:10.1371/journal.pntd.0009877.; Wang H., Itoh S., Matsumoto Y., Nishie A., Kurihara T., Shimagaki T. et al. Surgically resected hepatic mass caused by fascioliasis. Clin. J. Gastroenterol. 2021;14(2):662–667. DOI:10.1007/s12328-021-01339-0.; Valluru B., Zhou Z., Sah D., Du W., Ali M.O., Adam A.A. et al. Analysis of CT characteristics in the diagnosis of Schistosoma japonicum associated appendicitis with clinical and pathological correlation: a diagnostic accuracy study. Jpn. J. Radiol. 2020;38(2):178–191. DOI:10.1007/s11604-019-00905-4.; Castillo-Fernández N.,Soriano-Pérez M.J.,Lozano-Serrano A.B., Sánchez-Sánchez J.C., Villarejo-Ordóñez A., Cuenca-Gómez J.A. et al. Usefulness of ultrasound in sub-saharan patients with a serological diagnosis of schistosomiasis. Infection. 2021;49(5):919–926. DOI:10.1007/s15010-021-01612-x.; Pershina A.G., Ivanov V.V., Efimova L.V., Shevelev O.B., Vtorushin S.V., Perevozchikova T.V. et al. Magnetic resonance imaging and spectroscopy for differential assessment of liver abnormalities induced by Opisthorchis felineus in an animal model. PLoS Negl. Trop. Dis. 2017;11(7):e0005778. DOI:10.1371/journal.pntd.0005778.; Lu C.Y., Zhao S., Wei Y. Cerebral schistosomiasis: MRI features with pathological correlation. Acta. Radiol. 2021;62(5):646–652. DOI:10.1177/0284185120934475.; Ebigbo A., Kahn M., Zellmer S., Messmann H. Advanced endoscopic imaging of colonic schistosomiasis. Endoscopy. 2021;53(7):E251–E252. DOI:10.1055/a-1252-2637.; Pereira C.L.D., Santos J.C., Arruda R.M., Rodrigues M.L., Siqueira E.S., Lemos R.S. et al. Evaluation of Schistosomiasis mansoni morbidity by hepatic and splenic elastography. Ultrasound Med. Biol. 2021;47(5):1235–1243. DOI:10.1016/j.ultrasmedbio.2021.01.022.; Sotillo J., Pearson M.S., Becker L., Mekonnen G.G., Amoah A.S., van Dam G. et al. In-depth proteomic characterization of Schistosoma haematobium: Towards the development of new tools for elimination. PLoS Negl. Trop. Dis. 2019;13(5):e0007362. DOI:10.1371/journal.pntd.0007362.; Sotillo J., Pearson M.S., Loukas A. Trematode genomics and proteomics. Adv. Exp. Med. Biol. 2019;1154:411–436. DOI:10.1007/978-3-030-18616-6_13.; Aksorn N., Roytrakul S., Kittisenachai S., Leelawat K., Chanvorachote P., Topanurak S. et al. Novel potential biomarkers for Opisthorchis viverrini infection and associated cholangiocarcinoma. In Vivo. 2018;32(4):871–878. DOI:10.21873/invivo.11321.; Reamtong O., Simanon N., Thiangtrongjit T., Limpanont Y., Chusongsang P., Chusongsang Y. et al. Proteomic analysis of adult Schistosoma mekongi somatic and excretory-secretory proteins. Acta. Trop. 2020;202:105247. DOI:10.1016/j.actatropica.2019.105247.; https://bulletin.ssmu.ru/jour/article/view/5144
-
9Academic Journal
ПАТОГЕНЕТИЧЕСКИЕ ОСНОВЫ ИЗМЕНЕНИЙ ФУНКЦИЙ ПЕРИФЕРИЧЕСКОЙ И ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМ ПОСЛЕ СOVID-19
Authors: Суратзода, Саидмуродов Махмудали, кизи, Турсунова Дилнура Акрам, Фуркатзода, Давроний Дилфуза, Сафоевна, Хайдарова Дилором
Source: TA'LIM VA RIVOJLANISH TAHLILI ONLAYN ILMIY JURNALI; Vol. 2 No. 9 (2022): ТАЪЛИМ ВА РИВОЖЛАНИШ ТАҲЛИЛИ ОНЛАЙН ИЛМИЙ ЖУРНАЛИ; 4-10 ; 2181-2624
Subject Terms: SARS-CoV-2, церебральный гипометаболизм, позитронно-эмиссионная томография (ПЭТ), магнитно-резонансная томография (МРТ), гипоксическая кома
File Description: application/pdf
Relation: https://sciencebox.uz/index.php/ajed/article/view/3687/3333; https://sciencebox.uz/index.php/ajed/article/view/3687
Availability: https://sciencebox.uz/index.php/ajed/article/view/3687
-
10Academic Journal
Subject Terms: contrast-enhanced multispiral computed coronary angiography (MSCT CAG), magnetic resonance imaging (MRI), positron emission computed tomography (PET CT), эхокардиография (ЭХО-КГ), магнитно-резонансная томография (МРТ), echocardiography (EchoCG), селективная коронарография (КАГ), selective coronary angiography (CAG), контрастная мультиспиральная компьютерная коронарография (МСКТ КАГ), cardiac myxoma blood supply, кровоснабжение миксом сердца, позитронно-эмиссионная компьютерная томография (ПЭТ КТ), 3. Good health
-
11Academic Journal
Authors: Pavel Yu. Grishko, A. V. Mishchenko, O. V. Ivko, D. V. Samsonov, A. M. Karachun, П. Ю. Гришко, А. В. Мищенко, О. В. Ивко, Д. В. Самсонов, А. М. Карачун
Source: Diagnostic radiology and radiotherapy; № 4 (2019); 49-56 ; Лучевая диагностика и терапия; № 4 (2019); 49-56 ; 2079-5343 ; 10.22328/2079-5343-2019-4
Subject Terms: степень регресса опухоли, method, diagnostics, disease extent assessment, magnetic resonance imaging (MRI), circumferential resection margin (CRM), extramural venous invasion (EMVI), tumour regression grade (TRG), диагностика, оценка распространенности, магнитно-резонансная томография (МРТ), циркулярный край резекции, экстрамуральная венозная инвазия
File Description: application/pdf
Relation: https://radiag.bmoc-spb.ru/jour/article/view/454/370; Sauer R., Becker H., Hohenberger W., Rodel C., Wittekind C., Fietkau R., Martus P., Tschmelitsch J., Hager E., Hess C. F., Karstens J. H., Liersch T., Schmidberger H., Raab R., German Rectal Canc Study G. Preoperative versus postoperative chemoradiotherapy for rectal cancer // New England Journal of Medicine. 2004. Vol. 351, No. 17. P. 1731-1740. DOI:10.1056/NEJMoa040694.; Heald R.J. New approach to rectal-cancer // British Journal of Hospital Medicine. 1979. Vol. 22, No. 3. P. 277-281. PMID: 391315.; Kapiteijn E., Marijnen C.A.M., Nagtegaal I.D., Putter H., Steup W.H., Wiggers T., Rutten H.J.T., Pahlman L., Glimelius B., van Krieken J., Leer J.W.H., van de Velde C.J.H., Dutch Colorectal Canc G. Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer // New England Journal of Medicine. 2001. Vol. 345, No. 9. P. 638-646. DOI:10.1056/NEJMoa010580.; Tudyka V., Blomqvist L., Beets-Tan R.G.H., Boelens P.G., Valentini V., van de Velde C.J., Dieguez A., Brown G. EURECCA consensus conference highlights about colon & rectal cancer multidisciplinary management: The radiology experts review // Ejso. 2014. Vol. 40, No. 4. P. 469-475. DOI:10.1016/j.ejso.2013.10.029.; Балясникова С., Дронова Е., Лукьянченко А., Долгушин Б., Барсуков Ю., Царюк В., Полыновский А., Кузьмичев Д. Возможности стандартных режимов магнитно-резонансной томографии совместно с диффузионно-взвешенной магнитно-резонансной томографией в оценке местной распространенности рака прямой кишки // Онкологическая колопроктология. 2013. T. 3. № 1. C. 17-28. DOI:10.17650/2220-3478-2013-0-1-19-30.; Bipat S., Glas A.S., Slors F.J.M., Zwinderman A.H., Bossuyt P.M.M., Stoker J. Rectal cancer: Local staging and assessment of lymph node involvement with endoluminal US, CT, and MR imaging — A meta-analysis // Radiology. 2004. Vol. 232, No. 3. P. 773-783. DOI:10.1148/radiol.2323031368.; Smith N.J., Barbachano Y., Norman A.R., Swift R.I., Abulafi A.M., Brown G. Prognostic significance of magnetic resonance imaging-detected extramural vascular invasion in rectal cancer // British Journal of Surgery. 2008. Vol. 95, No. 2. P. 229-236. DOI:10.1002/bjs.5917.; Sclafani F., Brown G. Extramural Venous Invasion (EMVI) and Tumour Regression Grading (TRG) as Potential Prognostic Factors for Risk Stratification and Treatment Decision in Rectal Cancer // Current Colorectal Cancer Reports. 2016. Vol. 12, No. 3. P. 130-140. DOI:10.1007/s11888-016-0319-4.; Sclafani F., Brown G., Cunningham D., Wotherspoon A., Tait D., Peckitt C., Evans J., Yu S., Teixeira Mendes L. S., Tabernero J., Glimelius B., Cervantes A., Thomas J., Begum R., Oates J., Chau I. PAN-EX: a pooled analysis of two trials of neoadjuvant chemotherapy followed by chemoradio-therapy in MRI-defined, locally advanced rectal cancer // Annals of Oncology. 2016. Vol. 27, No. 8. P. 1557-1565. DOI:10.1093/annonc/mdw215.; Sclafani F., Chau I. Timing of Therapies in the Multidisciplinary Treatment of Locally Advanced Rectal Cancer: available Evidence and Implications for Routine Practice // Seminars in Radiation Oncology. 2016. Vol. 26, No. 3. P. 176-185. DOI:10.1016/j.semradonc.2016.02.008.; Van der Paardt M.P., Zagers M.B., Beets-Tan R.G.H., Stoker J., Bipat S. Patients Who Undergo Preoperative Chemoradiotherapy for Locally Advanced Rectal Cancer Restaged by Using Diagnostic MR Imaging: A Systematic Review and Meta-Analysis // Radiology. 2013. Vol. 269, No. 1. P. 101-112. DOI:10.1148/radiol.13122833.; Zhao R.-S., Wang H., Zhou Z.-Y., Zhou Q., Mulholland M.W. Restaging of Locally Advanced Rectal Cancer With Magnetic Resonance Imaging and Endoluminal Ultrasound After Preoperative Chemoradiotherapy: A Systemic Review and Meta-analysis // Diseases of the Colon & Rectum. 2014. Vol. 57, No. 3. P. 388-395. DOI:10.1097/DCR.0000000000000022.; Memon S., Lynch A.C., Bressel M., Wise A.G., Heriot A.G. Systematic review and meta-analysis of the accuracy of MRI and endorectal ultrasound in the restaging and response assessment of rectal cancer following neoadjuvant therapy // Colorectal Disease. 2015. Vol. 17, No. 9. P. 748-761. DOI: 10.111l/codi.12976.; Van den Broek J.J., van der Wolf F.S.W., Lahaye M.J., Heijnen L.A., Meischl C., Heitbrink M.A., Schreurs W.H. Accuracy of MRI in Restaging Locally Advanced Rectal Cancer After Preoperative Chemoradiation // Diseases of the Colon & Rectum. 2017. Vol. 60, No. 3. P. 274-283. DOI:10.1097/DCR.0000000000000743.; Patel U.B., Taylor F., Blomqvist L., George C., Evans H., Tekkis P., Quirke P., Sebag-Montefiore D., Moran B., Heald R., Guthrie A., Bees N., Swift I., Pennert K., Brown G. Magnetic Resonance Imaging-Detected Tumor Response for Locally Advanced Rectal Cancer Predicts Survival Outcomes: MERCURY Experience // Journal of Clinical Oncology. 2011. Vol. 29, No. 28. P. 3753-3760. DOI:10.1200/JC0.2011.34.9068.; Fornell-Perez R., Perez-Alonso E., Aleman-Flores P., Lozano-Rodriguez A., Loro-Ferrer J. F. Nodal staging in the rectal cancer follow-up MRI after chemoradiotherapy: use of morphology, size, and diffusion criteria // Clinical radiology. 2019. DOI:10.1016/j.crad.2019.08.003.; Chen Y., Yang X., Lu B., Xiao X., Zhuang X., Yu S. Diagnostic accuracy of 3.0T high-resolution MRI for assessment mesorectal lymph node metastases in patients with rectal cancer // Zhonghua wei chang wai ke za zhi=Chinese journal of gastrointestinal surgery. 2018. Vol. 21, No. 7. P. 786-792. PMID: 30051447.; Kreis M.E., Ruppert R., Kube R., Strassburg J., Lewin A., Baral J., Maurer C.A., Sauer J., Winde G., Thomasmeyer R., Stelzner S., Bambauer C., Scheunemann S., Faedrich A., Junginger T., Hermanek P., Merkel S., group O. MRI-Based Use of Neoadjuvant Chemoradiotherapy in Rectal Carcinoma: Surgical Quality and Histopathological Outcome of the OCUM Trial // Annals of surgical oncology. 2019. DOI:10.1245/s10434-019-07696-y.; Shihab O.C., How P., West N., George C., Patel U., Quirke P., Heald R.J., Moran B.J., Brown G. Can a Novel MRI Staging System for Low Rectal Cancer Aid Surgical Planning? // Diseases of the Colon & Rectum. 2011. Vol. 54, No. 10. P. 1260-1264. DOI:10.1097/DCR.0b013e31822abd78.; Bokey E.L., Chapuis P.H., Dent O.F., Newland R.C., Koorey S.G., Zelas P.J., Stewart P.J. Factors affecting survival after excision of the rectum for cancer — a multivariate analysis // Diseases of the Colon & Rectum. 1997. Vol. 40, No. 1. P. 3-10. DOI:10.1007/bf02055674.; Freedman L.S., Macaskill P., Smith A. N. Multivariate-analysis of prognostic factors for operable rectal-cancer // Lancet. 1984. Vol. 2, No. 8405. P. 733736. DOI:10.1016/s0140-6736(84)92636-9.; Smith N.J., Shihab O., Arnaout A., Swift R.I., Brown G. MRI for Detection of Extramural Vascular Invasion in Rectal Cancer // American Journal of Roentgenology. 2008. Vol. 191, No. 5. P. 1517-1522. DOI:10.2214/AJR.08.1298.; Kim Y.E., Park M.S., Hong H.S., Kang C.M., Choi J.Y., Lim J.S., Lee W.J., Kim M.J., Kim K.W. Effects of Neoadjuvant Combined Chemotherapy and Radiation Therapy on the CT Evaluation of Resectability and Staging in Patients with Pancreatic Head Cancer // Radiology. 2009. Vol. 250, No. 3. P. 758-765. DOI:10.1148/radiol.2502080501.; Messenger D.E., Driman D.K., Kirsch R. Developments in the assessment of venous invasion in colorectal cancer: implications for future practice and patient outcome // Human Pathology. 2012. Vol. 43, No. 7. P. 965-973. DOI:10.1016/j.humpath.2011.11.015.; Bae J.S., Kim S.H., Hur B.Y., Chang W., Park J., Park H.E., Kim J.H., Kang H.-J., Yu M.H., Han J.K. Prognostic value of MRI in assessing extramural № 4 (10) 2019 venous invasion in rectal cancer: multi-readers' diagnostic performance // European Radiology. 2019. Vol. 29, No. 8. P. 4379-4388. DOI:10.1007/s00330-018-5926-9.; Hotker A.M., Tarlinton L., Mazaheri Y., Woo K.M., Gonen M., Saltz L.B., Goodman K.A., Garcia-Aguilar J., Gollub M.J. Multiparametric MRI in the assessment of response of rectal cancer to neoadjuvant chemoradiotherapy: A comparison of morphological, volumetric and functional MRI parameters // European Radiology. 2016. Vol. 26, No. 12. P. 4303-4312. DOI:10.1007/s00330-016-4283-9.; Lambregts D.M.J., Rao S.X., Sassen S., Martens M.H., Heijnen L.A., Buijsen J., Sosef M., Beets G.L., Vliegen R.A., Beets-Tan R.G.H. MRI and Diffusion-weighted MRI Volumetry for Identification of Complete Tumor Responders After Preoperative Chemoradiotherapy in Patients With Rectal Cancer A Bi-institutional Validation Study // Annals of Surgery. 2015. Vol. 262, No. 6. P. 1034-1039. DOI:10.1097/SLA.0000000000000909.; Sclafani F., Brown G., Cunningham D., Wotherspoon A., Mendes L.S.T., Balyasnikova S., Evans J., Peckitt C., Begum R., Tait D., Tabernero J., Glimelius B., Rosello S., Thomas J., Oates J., Chau I. Comparison between MRI and pathology in the assessment of tumour regression grade in rectal cancer // British Journal of Cancer. 2017. Vol. 117, No. 10. P. 1478-1485. DOI:10.1038/bjc.2017.320.; Nahas S.C., Nahas C.S.R., Cama G.M., de Azambuja R.L., Horvat N., Marques C.F.S., Menezes M.R., Ribeiro U., Cecconello I. Diagnostic performance of magnetic resonance to assess treatment response after neoadjuvant therapy in patients with locally advanced rectal cancer // Abdominal Radiology. 2019. Vol. 44, No. 11. P. 3632-3640. DOI:10.1007/s00261-019-01894-8.; Sloothaak D.A.M., Geijsen D.E., van Leersum N.J., Punt C.J.A., Buskens C.J., Bemelman W.A., Tanis P.J., Dutch Surgical Colorectal A. Optimal time interval between neoadjuvant chemoradiotherapy and surgery for rectal cancer // British Journal of Surgery. 2013. Vol. 100, No. 7. P. 9331108. DOI:10.1002/bjs.9112.; Probst C.P., Becerra A.Z., Aquina C. T., Tejani M.A., Wexner S.D., Garcia-Aguilar J., Remzi F.H., Dietz D.W., Monson J.R.T., Fleming F.J. Consortium Optimizing Surgical T. Extended Intervals after Neoadjuvant Therapy in Locally Advanced Rectal Cancer: The Key to Improved Tumor Response and Potential Organ Preservation // Journal of the American College of Surgeons. 2015. Vol. 221, No. 2. P. 430-440. DOI:10.1016/j.jamcollsurg.2015.04.010.; Sun Z., Adam M.A., Kim J., Shenoi M., Migaly J., Mantyh C.R. Optimal Timing to Surgery after Neoadjuvant Chemoradiotherapy for Locally Advanced Rectal Cancer // Journal of the American College of Surgeons. 2016. Vol. 222, No. 4. P. 367-374. DOI:10.1016/j.jamcollsurg.2015.12.017.; Bhoday J., Smith F., Siddiqui M.R., Balyasnikova S., Swift R.I., Perez R., Habr-Gama A., Brown G. Magnetic Resonance Tumor Regression Grade and Residual Mucosal Abnormality as Predictors for Pathological Complete Response in Rectal Cancer Postneoadjuvant Chemoradiotherapy // Diseases of the Colon & Rectum. 2016. Vol. 59, No. 10. P. 925-933. DOI:10.1097/DCR.0000000000000667.; Siddiqui M.R.S., Bhoday J., Battersby N.J., Chand M., West N.P., Abulafi A.-M., Tekkis P.P., Brown G. Defining response to radiotherapy in rectal cancer using magnetic resonance imaging and histopathological scales // World Journal of Gastroenterology. 2016. Vol. 22, No. 37. P. 8414-8434. DOI:10.3748/wjg.v22.i37.8414.; Peacock O., Chang G.J. «Watch and Wait» for complete clinical response after neoadjuvant chemoradiotherapy for rectal cancer // Minerva chirurgica. 2019. DOI:10.23736/S0026-4733.19.08184-7.
-
12Academic Journal
-
13Academic Journal
Subject Terms: magnetic resonance imaging (MRI), магнитно-резонансная томография (МРТ), segmentation, medical prototyping, медицинское прототипирование, 3D printing, computed tomography (CT), сегментация, эхокардиография, heart 3D model, 3D-модель сердца, трехмерная печать, echocardiography, компьютерная томография (КТ)
-
14Academic Journal
ПЕРВИЧНАЯ ЭКСТРАНОДАЛЬНАЯ ЛИМФОМА: СОЧЕТАННОЕ ПОРАЖЕНИЕ ЖЕЛУДКА И СЕЛЕЗЕНКИ (КЛИНИЧЕСКОЕ НАБЛЮДЕНИЕ)
Subject Terms: stomach lymphoma, мультиспиральная компьютерная томография (МСКТ), магнитно-резонансная томография (МРТ), magnetic-resonance imaging (MRI), diagnostics, диагностика, лимфома селезенки, spleen lymphoma, multislice computed tomography (MSCT), ошибочная интерпретация данных, 3. Good health, лимфома желудка, misinterpretation of data
-
15Academic Journal
Authors: Aretinskiy, A. V., Zhilyakov, A. V., Aretinskiy, V. B., Shershever, A. S., Isupov, A. B., Shorikov, E. V., Аретинский, А. В., Жиляков, А. В., Аретинский, В. Б., Шершевер, А. С., Исупов, А. Б., Шориков, Е. В.
Subject Terms: EPILEPSY, POSITRON EMISSION TOMOGRAPHY/COMPUTED TOMOGRAPHY, 18F-FLUORO-2-DEOXY-D-GLUCOSE, MAGNETIC RESONANCE IMAGING (MRI), ELECTROENCEPHALOGRAPHY (EEG), ЭПИЛЕПСИЯ, ПОЗИТРОННО ЭМИССИОННАЯ ТОМОГРАФИЯ, СОВМЕЩЕННАЯ С КОМПЬЮТЕРНОЙ ТОМОГРАФИЕЙ, 18-ФТОРДЕЗОКСИГЛЮКОЗА, МАГНИТНО-РЕЗОНАНСНАЯ ТОМОГРАФИЯ (МРТ), ЭЛЕКТРОЭНЦЕФАЛОГРАФИЯ (ЭЭГ)
File Description: application/pdf
Relation: Уральский медицинский журнал. 2019. Т. 171, № 3.; http://elib.usma.ru/handle/usma/12519
Availability: http://elib.usma.ru/handle/usma/12519
-
16Academic Journal
Authors: P. Yu. Grishko, A. V. Mishchenko, Y. A. Grinfeld, D. V. Samsonov, A. M. Karachun, П. Ю. Гришко, А. В. Мищенко, Ю. А. Гринфельд, Д. В. Самсонов, А. М. Карачун
Source: Diagnostic radiology and radiotherapy; № 2 (2019); 102-107 ; Лучевая диагностика и терапия; № 2 (2019); 102-107 ; 2079-5343 ; 10.22328/2079-5343-2019-2
Subject Terms: магнитно-резонансная томография (МРТ), method, diagnostics, disease extent assessment, magnetic resonance imaging (MRI), методика, диагностика, оценка распространенности
File Description: application/pdf
Relation: https://radiag.bmoc-spb.ru/jour/article/view/420/351; Harji D.P., Sagar P.M. Advancing the surgical treatment of locally recurrent rectal cancer // British Journal of Surgery. 2012. Vol. 99, No. 9. Р. 1169–1171. DOI:10.1002/bjs.8879.; Sagar P.M., Pemberton J.H. Surgical management of locally recurrent rectal cancer // British Journal of Surgery. 1996. Vol. 83, No. 3. Р. 293–304.; Siddiqui M.R.S., Simillis C., Hunter C., Chand M., Bhoday J., Garant A., Vuong T., Artho G., Rasheed S., Tekkis P., Abulafi A., Brown G. A meta-analysis comparing the risk of metastases in patients with rectal cancer and MRI-detected extramural vascular invasion (mrEMVI) vs mrEMVI-negative cases // British Journal of Cancer. 2017. Vol. 116, No. 12. Р. 1513–1519. DOI:10.1038/bjc.2017.99.; Карачун А.М., Петров А.С. Рак среднеампулярного отдела прямой кишки — какую операцию выбрать? — Низкая передняя резекция прямой кишки // Злокачественные опухоли. 2013. T. 2, № 2 (6). C. 23–32. DOI:10.18027/2224-5057-2013-2-23-32.; Rodel C., Sauer R., Fietkau R. The Role of Magnetic Resonance Imaging to Select Patients for Preoperative Treatment in Rectal Cancer // Strahlentherapie Und Onkologie. 2009. Vol. 185, No. 8. Р. 488–492. DOI:10.1007/s00066-009-2043-3.; Al-Sukhni E., Milot L., Fruitman M., Beyene J., Victor J. C., Schmocker S., Brown G., McLeod R., Kennedy E. Diagnostic Accuracy of MRI for Assessment of T Category, Lymph Node Metastases, and Circumferential Resection Margin Involvement in Patients with Rectal Cancer: A Systematic Review and Meta-analysis // Annals of Surgical Oncology. 2012. Vol. 19, No. 7. Р. 2212–2223. DOI:10.1245/s10434-011-2210-5.; Karatag O., Karatag G.Y., Ozkurt H., Degirmenci H.K., Avlanmis O., Basak M., Baykan A. The ability of phased-array MRI in preoperative staging of primary rectal cancer: correlation with histopathological results // Diagnostic and Interventional Radiology. 2012. Vol. 18, No. 1. Р. 20–26. DOI:10.4261/1305-3825.DIR.3394-10.2.; Kim S.H., Lee J.M., Park H.S., Eun H.W., Han J.K., Choi B.I. Accuracy of MRI for Predicting the Circumferential Resection Margin, Mesorectal Fascia Invasion, and Tumor Response to Neoadjuvant Chemoradiotherapy for Locally Advanced Rectal Cancer // Journal of Magnetic Resonance Imaging. 2009. Vol. 29, No. 5. Р. 1093–1101. DOI:10.1002/jmri.21742.; Beets-Tan R.G.H., Lambregts D.M.J., Maas M., Bipat S., Barbaro B., Curvo-Semedo L., Fenlon H.M., Gollub M.J., Gourtsoyianni S., Halligan S., Hoeffel C., Kim S.H., Laghi A., Maier A., Rafaelsen S.R., Stoker J., Taylor S.A., Torkzad M.R., Blomqvist L. Magnetic resonance imaging for clinical management of rectal cancer: Updated recommendations from the 2016 European Society of Gastrointestinal and Abdominal Radiology (ESGAR) consensus meeting // European Radiology. 2018. Vol. 28, No. 4. Р. 1465–1475. DOI:10.1007/s00330-017-5026-2.; Nougaret S., Reinhold C., Mikhael H. W., Rouanet P., Bibeau F., Brown G. The Use of MR Imaging in Treatment Planning for Patients with Rectal Carcinoma: Have You Checked the «DISTANCE»? // Radiology. 2013. Vol. 268, № 2. C. 329–343. DOI:10.1148/radiol.13121361.; Patel U.B., Taylor F., Blomqvist L., George C., Evans H., Tekkis P., Quirke P., Sebag-Montefiore D., Moran B., Heald R., Guthrie A., Bees N., Swift I., Pennert K., Brown G. Magnetic Resonance Imaging-Detected Tumor Response for Locally Advanced Rectal Cancer Predicts Survival Outcomes: MERCURY Experience // Journal of Clinical Oncology. 2011. Vol. 29, No. 28. Р. 3753–3760. DOI:10.1200/JCO.2011.34.9068.; Laghi A., Ferri M., Catalano C., Baeli I., Iannaccone R., Iafrate F., Ziparo V., Passariello R. Local staging of rectal cancer with MRI using a phased array body coil // Abdominal Imaging. 2002. Vol. 27, No. 4. Р. 425–431. DOI:10.1107/s00261-001-0123-7.; Gualdi G.F., Casciani E., Guadalaxara A., d’Orta C., Polettini E., Pappalardo G. Local staging of rectal cancer with transrectal ultrasound and endorectal magnetic resonance imaging — Comparison with histologic findings // Diseases of the Colon & Rectum. 2000. Vol. 43, No. 3. Р. 338–345.; Samdani T., Garcia-Aguilar J. Imaging in Rectal Cancer Magnetic Resonance Imaging Versus Endorectal Ultrasonography // Surgical Oncology Clinics of North America. 2014. Vol. 23, No. 1. Р. 59–77. DOI:10.1016/j.soc.2013.09.011.; Burdan F., Sudol-Szopinska I., Staroslawska E., Kolodziejczak M., Klepacz R., Mocarska A., Caban M., Zelazowska-Cieslinska I., Szumilo J. Magnetic resonance imaging and endorectal ultrasound for diagnosis of rectal lesions // European Journal of Medical Research. 2015. Vol. 20. DOI:10.1186/s40001-014-0078-0.; Piippo U., Paakko E., Makinen M., Makela J. Local staging of rectal cancer using the black lumen magnetic resonance imaging technique // Scandinavian Journal of Surgery. 2008. Vol. 97, No. 3. Р. 237–242. DOI:10.1177/145749690809700306.; Mulla M., Deb R., Singh R. MRI in T staging of rectal cancer: How effective is it? // The Indian journal of radiology & imaging. 2010. Vol. 20, No. 2. C. 118–121. DOI:10.4103/0971-3026.63055.; Brown G., Radcliffe A.G., Newcombe R.G., Dallimore N.S., Bourne M.W., Williams G.T. Preoperative assessment of prognostic factors in rectal cancer using high-resolution magnetic resonance imaging // British Journal of Surgery. 2003. Vol. 90, No. 3. Р. 355–364. DOI:10.1002/bjs.4034.; Blomqvist L., Glimelius B. The ‘good’, the ‘bad’, and the ‘ugly’ rectal cancers // Acta Oncologica. 2000. Vol. 47, No. 1. Р. 5–8. DOI:10.1080/02841860701802585.; Vliegen R.F.A., Beets G.L., von Meyenfeldt M.F., Kessels A.G.H., Lemaire E., van Engelshoven J.M.A., Beets-Tan R.G.H. Rectal cancer: MR Imaging in local staging — Is gadolinium-based contrast material helpful? // Radiology. 2005. Vol. 234, No. 1. Р. 179–188. DOI:10.1148/radiol.2341031403.; Jao S.Y., Yang B.Y., Weng H.H., Yeh C.H., Lee L.W. Evaluation of gadolinium-enhanced T1-weighted magnetic resonance imaging in the preoperative assessment of local staging in rectal cancer // Colorectal Disease. 2010. Vol. 12, No. 11. Р. 1139–1148. DOI:10.1111/j.1463-1318.2009.01959.x.; Okizuka H., Sugimura K., Yoshizako T., Kaji Y., Wada A. Rectal carcinoma: Prospective comparison of conventional and gadopentetate dimeglumine enhanced fat-suppressed MR imaging // Jmri-Journal of Magnetic Resonance Imaging. 1996. Vol. 6, No. 3. Р. 465–471.; Lim J.S., Kim D., Baek S.-E., Myoung S., Choi J., Shin S.J., Kim M.-J., Kim N.K., Suh J., Kim K. W., Keum K.C. Perfusion MRI for the prediction of treatment response after preoperative chemoradiotherapy in locally advanced rectal cancer // European Radiology. 2012. Vol. 22, No. 8. Р. 1693–1700. DOI:10.1007/s00330-012-2416-3.; Yeo D.M., Oh S.N., Choi M.H., Lee S.H., Lee M.A., Jung S.E. Histogram Analysis of Perfusion Parameters from Dynamic Contrast-Enhanced MR Imaging with Tumor Characteristics and Therapeutic Response in Locally Advanced Rectal Cancer // Biomed Research International. 2018. DOI:10.1155/2018/3724393.; Intven M., Reerink O., Philippens M.E.P. Dynamic contrast enhanced MR imaging for rectal cancer response assessment after neo-adjuvant chemoradiation // Journal of Magnetic Resonance Imaging. 2015. Vol. 41, No. 6. Р. 1646–1653. DOI:10.1002/jmri.24718.; Lu Z.H., Hu C.H., Qian W.X., Cao W.H. Preoperative diffusionweighted imaging value of rectal cancer: preoperative T staging and correlations with histological T stage // Clinical Imaging. 2016. Vol. 40, No. 3. Р. 563–568. DOI:10.1016/j.clinimag.2015.12.006.; Van Heeswijk M.M., Lambregts D.M.J., Palm W.M., Hendriks B.M.F., Maas M., Beets G.L., Beets-Tan R.G.H. DWI for Assessment of Rectal Cancer Nodes After Chemoradiotherapy: Is the Absence of Nodes at DWI Proof of a Negative Nodal Status? // American Journal of Roentgenology. 2017. Vol. 208, No. 3. Р. W79–W84. DOI:10.2214/AJR.16.17117.; Lambregts D.M.J., Vandecaveye V., Barbaro B., Bakers F.C.H., Lambrecht M., Maas M., Haustermans K., Valentini V., Beets G.L., Beets-Tan R.G.H. Diffusion-Weighted MRI for Selection of Complete Responders After Chemoradiation for Locally Advanced Rectal Cancer: A Multicenter Study // Annals of Surgical Oncology. 2011. Vol. 18, No. 8. Р. 2224–2231. DOI:10.1245/s10434-011-1607-5.; Foti P.V., Privitera G., Piana S., Palmucci S., Spatola C., Bevilacqua R., Raffaele L., Salamone V., Caltabiano R., Magro G., Destri G.L., Milone P., Ettorre G.C. Locally advanced rectal cancer: Qualitative and quantitative evaluation of diffusion-weighted MR imaging in the response assessment after neoadjuvant chemoradiotherapy // European Journal of Radiology Open. 2016. Vol. 3. Р. 145–152. DOI:10.1016/j.ejro.2016.06.003.; Wu L.M., Zhu J., Hu J.I., Yin Y., Gu H.Y., Hua J., Chen J., Xu J.R. Is there a benefit in using magnetic resonance imaging in the prediction of preoperative neoadjuvant therapy response in locally advanced rectal cancer? // International Journal of Colorectal Disease. 2013. Vol. 28, No. 9. Р. 1225–1238. DOI:10.1007/s00384-013-1676-y.; Kim S.H., Lee J.M., Lee M.W., Kim G.H., Han J.K., Choi B.I. Sonography transmission gel as endorectal contrast agent for tumor visualization in rectal cancer // American Journal of Roentgenology. 2008. Vol. 191, No. 1. Р. 186–189. DOI:10.2214/AJR.07.3067.
-
17Academic Journal
Subject Terms: 18-фтордезоксиглюкоза, magnetic resonance imaging (MRI), эпилепсия, магнитно-резонансная томография (МРТ), 18F-fluoro-2-deoxy-D-glucose, epilepsy, positron emission tomography/computed tomography, позитронно эмиссионная томография, совмещенная с компьютерной томографией, electroencephalography (EEG), электроэнцефалография (ЭЭГ), 3. Good health
-
18Academic Journal
Authors: Zyryanov, А. V., Keln, A. A., Ponomarev, А. V., Popov, I. В., Surikov, A. S., Salnykov, M. A., Lebedev, A. V., Petrosyan, G. S., Fedorov, N. M., Oschepkov, V. N., Зырянов, А. В., Кельн, A. A., Пономарев, А. В., Попов, И. Б., Суриков, А. С., Сальников, М. А., Лебедев, А. В., Петросян, А. С., Федоров, Н. М., Ощепков, В. Н.
Subject Terms: PROSTATE CANCER, MAGNETIC RESONANCE IMAGING (MRI), TARGETED BIOPSY, FUSION IMAGE, РАК ПРОСТАТЫ, МАГНИТНО-РЕЗОНАНСНАЯ ТОМОГРАФИЯ (МРТ), ТАРГЕТНАЯ БИОПСИЯ, FUSION-ИЗОБРАЖЕНИЕ
File Description: application/pdf
Relation: Уральский медицинский журнал. 2017. Т. 146, № 2.; http://elib.usma.ru/handle/usma/13633
Availability: http://elib.usma.ru/handle/usma/13633
-
19Academic Journal
Authors: V. I. Dombrovsky, E. V. Chaplygina, O. A. Kaplunova, I. M. Blinov, O. P. Sukhanova, M. N. Morgunov, Виктор Иосифович Домбровский, Елена Викторовна Чаплыгина, Ольга Антониновна Каплунова, Игорь Михайлович Блинов, Ольга Петровна Суханова, Максим Николаевич Моргунов
Source: Diagnostic radiology and radiotherapy; № 4 (2016); 6-14 ; Лучевая диагностика и терапия; № 4 (2016); 6-14 ; 2079-5343 ; 10.22328/2079-5343-2016-4
Subject Terms: magnetic resonance imaging (MRI), ультразвуковое исследование (УЗИ), рентгеновская компьютерная томография (РКТ), магнитно-резонансная томография (МРТ), malformation of the inferior vena cava (IVC), ultrasonography (US), computed tomography (CT)
File Description: application/pdf
Relation: https://radiag.bmoc-spb.ru/jour/article/view/174/174; Мухтарулина С. В., Каприн А. Д., Асташов В. Л., Асеева И. А. Варианты строения нижней полой вены и ее притоков: классификация, эмбриогенез, компьютерная диагностика и клиническое значение при парааортальной лимфодиссекции // Онкоурология.— 2013.— № 9 (3).— С. 10–16.1. Мухтарулина С. В., Каприн А. Д., Асташов В. Л., Асеева И. А. Варианты строения нижней полой вены и ее притоков: классификация, эмбриогенез, компьютерная диагностика и клиническое значение при парааортальной лимфодиссекции // Онкоурология.— 2013.— № 9 (3).— С. 10–16.; Мельниченко Ж. С., Вишнякова М. В., Вишнякова М. В. (мл.), Волкова Ю. Н., Горячев С. В. Аномалии развития нижней полой вены и ее притоков. Лучевая диагностика и клиническое значение // Альманах клинической медицины.— 2015.— № 43.— С. 72–81.; Bass J. E., Redwine M. D., Kramer L. A., Huynh P. T., Harris J. H. Spectrum of congenital anomalies of the inferior vena cava: cross-sectional imaging findings // Radiographics.— 2000.— Vol. 20 (3).— Р. 639–652.; Gil R. J., Pérez A. M., Arias J. B., Pascual F. B., Romero E. S. Agenesis of the inferior vena cava associated with lower extremities and pelvic venous thrombosis // J. Vascular Surgery.— 2006.— Vol. 44 (5).— Р. 1114–1116. doi:10.1016/j.jvs.2006.06.021.; Kose M. F., Turan T, Karasu Y., Gundogdu B, Boran N, Tulunay G. Anomalies of major retroperitoneal vascular structure // Int. J. Gynecal. Cancer.— 2011.— Vol. 21 (7).— Р. 1312–1319. doi:10.1097/IGC.0b013e3182259c57.; Malaki M., Willis A. P., Jones R. G. Congenital anomalies of the inferior vena cava // Clinical Radiology.— 2012.— Vol. 67 (2).— Р. 165–171.; Sorin P., Iulianu O. Anomalies of the inferior vena cava in patients with deep venous thrombosis. Pictorial essay // Med. Ultrasonography.— 2012.— Vol. 14 (1).— Р. 53–59.; Баженов Д. В., Лаврентьева Т. П., Сергеев А. И. Эмбриональное развитие человека.— Тверь: Альфа-Пресс, 2004.— 135 с.; Ferris E. J., Hipona F. A., Kahn P. C., Phillips E., Shapiro J. H., eds. Venography of the inferior vena cava and its branches.— Baltimore: Williams&Wilkins, 1969.— 229 p.; Schoenwolf G. C., Bleyl S. B., Brauer P. R., Francis-West P. H. Larsen’s Human Embryology.— 4th ed.— Philadelphia: Elsevier/Churchill Livingstone, 2009.— 687 p.; Geley T. E., Unsinn K. M., Auckenthaler T. M., Fink C. J., Gassner I. Azygos Continuation of the Inferior Vena Cava: Sonographic Demonstration of the Renal Artery Ventral to the Azygos Vein as a Clue to Diagnosis // AJR.— 1999.— Vol. 172 (6).— Р. 1659–1662.; Shindo S., Kubota K., Kojima A., Iyori K., Ishimoto T., Kobayashi M., Kamiya K., Tada Y. Anomalies of inferior vena cava and left renal vein: risks in aortic surgery // Ann. Vasc. Surg.— 2000.— Vol. 14 (4).— Р. 393–396.; Nam J. K., Park S. W., Lee S. D., Chung M. K. The clinical significance of a retroaortic left renal vein // Korean J. Urol.— 2010.— Vol. 51 (4).— Р. 276–280. doi:10.4111/kju.2010.51.4.276.; Obernosterer A., Aschauer M., Schnedl W., Lipp R. W. Anomalies of the Inferior Vena Cava in Patients with Iliac Venous Thrombosis // Ann. Intern. Med.— 2002.— Vol. 136 (1).— Р. 37–41. doi:10.7326/0003-4819-136-1-200201010-00009.; Abernethy J. Account of two instances of uncommon formation in the viscera of the human body. Philos. Trans. R. Soc.— 1793.— Vol. 83.— Р. 59–66.; Вишнякова М. В., Мельниченко Ж. С., Горячев С. В. Аплазия нижней полой вены (клинические наблюдения) // Лучевая диагностика и терапия.— 2010.— № 1 (1).— С. 85–89.; Phillips E. Embryology, normal anatomy and anomalies // Ferris E. J., Hipona F. A., Kahn P. C., Phillips E., Shapiro J. H., eds. Venography of the inferior vena cava and its branches.— Baltimore: Williams&Wilkins, 1969.— Р. 1–32.; Timmers G. J., Falke T. H., Rauwerda J. A., Huijgens P. C. Deep vein thrombosis as a presenting symptom of congenital interruption of the inferior vena cava // Int. J. Clin. Pract.— 1999.— Vol. 53 (1).— Р. 75–76.; Chee Y.-L., Culligan D J., Watson H. G. Inferior vena cava malformation as a risk factor for deep venous thrombosis in the young // Br. J. Haematol.— 2001.— Vol. 114 (4).— Р. 878–80. doi:10.1046/j.1365-2141.2001.03025.x; Leite J. M., Granese R., Jeanty P., Herbst S. S. Fetal syndromes // Callen P. W., editor. Ultrasonography in Obstetrics and Gynecology.— 5th ed.— Philadelphia: Saunders Elsevier, 2008.— Р. 112–180.; Ergun T., Lakadamyali H., Lakadamyali H., Eldem O. Adult Polysplenic Syndrome Accompanied by Aberrant Right Subclavian Artery and Hemangioma in a Cleft Spleen: A Case Report. Ann. Vasc. Surg. 2008.— Vol. 22 (4).— Р. 579–581.; Yilmaz G., Akpinar S. H., Alıcıoğlu B. Polysplenia Syndrome Detected after Chest Symptoms in Two Adult Patients: Case Report and Review of Literature // Pol. J. Radiol.— 2014.— Vol. 79 (1).— Р. 311–4. doi:10.12659/PJR.890643; Ginaldi S., Chuang V. P., Wallace S. Absence of hepatic segment of the inferior vena cava with azygous continuation // J. Comput. Assist. Tomogr.— 1980.— Vol. 4 (1).— Р. 112–114.; Баешко А. А., Богодяж Д. С., Улезко Е. А., Горецкая И. В., Вартанян В. Ф., Лопухов О. В., Юшкевич А. В., Клюй Е. А., Гусина А. А. Клинические проявления и диагностика пороков развития нижней полой вены // Здравоохранение.— 2012.— № 12.— Р. 50–55.; Thurnheer J., Hoess C., Binswanger R. A rare case of deep bone and pelvic vein thrombosis or: when the lower cavity vein fails // Schweiz. Med. Wochenschr.— 2000.— Vol. 130 (19).— Р. 720. (in German).; Kocaturk H., Erol M. K., Onbas O. Asymptomatic inferior vena cava anomaly in an adult: three dimensional multislice CT image // Heart.— 2005.— Vol. 91 (12).— Р. 1514.; Ramanathan T., Hughes T. M., Richardson A. J. Perinatal inferior vena cava thrombosis and absence of the infrarenal inferior vena cava // J. Vasc. Surg.— 2001.— Vol. 33 (5).— Р. 1097–1099.; Ruggeri M., Tosetto A., Castaman G., Rodeghiero F. Congenital absence of the inferior vena cava: a rare risk factor for idiopathic deep-vein thrombosis // Lancet.— 2001.— Vol. 357 (9254).— Р. 441.; Gayer G., Luboshitz J., Hertz M., Zissin R., Thaler M., Lubetsky A. et al. Congenital Anomalies of the Inferior Vena Cava Revealed on CT in Patients with Deep Vein Thrombosis // AJR. 2003.— Vol. 180 (3).— Р. 729–732.; D’Aloia A., Faggiano P., Fiorina C., Vizzardi E., Bontempi L., Grazioli L., Dei Cas L. Absence of inferior vena cava as a rare cause of deep venous thrombosis complicated by liver and lung embolism // Int. J. Cardiol.— 2003.— Vol. 88 (2–3).— Р. 327–379.; Nseir W., Mahamid M., Abu-Rahmeh Z., Markel A. Recurrent deep venous thrombosis in a patient with agenesis of inferior vena cava // Int. J. Gen. Med.— 2011.— Vol. 4.— Р. 457–459. doi:10.2147/IJGM.S21423.; Sarlon G., Bartoli M. A., Muller C., Acid S., Bartoli J.-M., Cohen S., Piquet P., Magnan P.-E. Congenital anomalies of inferior vena cava in young patients with iliac deep venous thrombosis // Ann. Vasc. Surg.— 2011.— Vol. 25 (2).— Р. 265. e5–8.; Lambert M., Marboeuf P., Midulla M., Trillot N., Beregi J.-P., Mounier-Vehier C., Hatron P.-Y., Jude B. Inferior vena cava agenesis and deep vein thrombosis: 10 patients and review of the literature. Vascular Medicine.— 2010.— Vol. 15 (6).— Р. 451–459. doi:10.1177/1358863X10391355.; O’Connor D. B., O’Brien N., Khani T., Sheehan S. Superficial and deep vein thrombosis associated with congenital absence of the infrahepatic inferior vena cava in a young male patient // Ann. Vasc. Surg.— 2011.— Vol. 25 (5).— Р. 697. e1–4.; Баешко А. А., Жук Г. В., Орловский Ю. П., Улезко Е. А., Савицкая Т. В., Горецкая И. В., Егорова В. В., Сомова О. А. Врожденные аномалии нижней полой вены: диагностика и консервативной лечение // Ангиология и сосудистая хирургия.— 2007.— № 12 (1).— Р. 91–95.; Yigit H., Yagmurlu B., Yigit N., Fitoz S., Kosar P. Low Back Pain as the Initial Symptom of Inferior Vena Cava Agenesis // Am. J. Neuroradiol.— 2006.— Vol. 27 (3).— Р. 593–595.; Sagban T. A., Grotemeyer D., Balzer K. M., Tekath B., Pillny M., Grabitz K., Sandman W. Surgical Treatment for Agenesis of the Vena Cava: A Single-centre Experience in 15 Cases // Eur. J. Endovasc. Surg. 2010.— Vol. 40 (2).— Р. 241–245. doi:10.1016/j.ejvs.2010.04.009.; Sheth S., Fishman E. K. Imaging of the Inferior Vena Cava with MDCT // AJR.— 2007.— Vol. 189 (5).— Р. 1243–1251.; Srivastava A., Singh K. J., Suri A., Vijjan V., Dubey D. Inferior vena cava in urology: importance of developmental abnormalities in clinical practice // Scientific World Journal.— 2005.— Vol. 22 (5).— Р. 558–563.; Zierler B. K. Ultrasonography and diagnosis of venous thromboembolism // Circulation.— 2004.— Vol. 109 (12 Suppl. 1).— Р. I-9-I-14. doi: 10. 1161/01.CIR.0000122870.22669.4; Callen P. W., ed. Ultrasonography in Obstetrics and Gynecology.— 5th ed.— Philadelphia: Saunders Elsevier, 2008.— 1239 p.; Zhang L., Yang G., Shen W., Qi J. Spectrum of the inferior vena cava: MDCT findings // Abdom. Imaging.— 2007.— Vol. 32 (4).— Р. 495–503.
-
20Academic Journal