Showing 1 - 20 results of 41 for search '"магнитно-резонансная ангиография"', query time: 0.67s Refine Results
  1. 1
  2. 2
    Academic Journal

    Source: Siberian Journal of Clinical and Experimental Medicine; Том 36, № 2 (2021); 115-122 ; Сибирский журнал клинической и экспериментальной медицины; Том 36, № 2 (2021); 115-122 ; 2713-265X ; 2713-2927

    File Description: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/1199/626; O’Byrne M.L., Glatz A.C., Song L., Griffis H.M., Millenson M.E., Gillespie M.J. et al. Association between variation in preoperative care before arterial switch operation and outcomes in patients with transposition of the great arteries. Circulation. 2018;138(19):2119–2129. DOI:10.1161/CIRCULATIONAHA.118.036145.; Chaix M.A., Khairy P. Dextro-transposition of the great arteries: Switching the switch. Transl. Pediatr. 2019;8(5):458–461. DOI:10.21037/tp.2019.05.01.; Frescura C., Thiene G. The spectrum of congenital heart disease with transposition of the great arteries from the cardiac registry of the University of Padua. Front. Pediatr. 2016;4:84. DOI:10.3389/fped.2016.00084.; Files M.D., Arya B. Preoperative physiology, imaging and management of transposition of the great arteries. Semin. Cardiothor. Vasc. Anesth. 2015;19(3):210–222. DOI:10.1177/1089253215581851.; Ma K., Qi L., Hua Z., Yang K., Zhang H., Li S. et al. Effectiveness of bidirectional Glenn shunt placement for palliation in complex congenitally corrected transposed great arteries. Tex. Heart Inst. J. 2020;47(1):15–22. DOI:10.14503/THIJ-17-6555.; Spigel Z., Ziyad M., Caldarone C. Congenitally corrected transposition of the great arteries: anatomic, physiologic repair, and palliation. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 2019;22:32–42. DOI:10.1053/j.pcsu.2019.02.008.; Morgan C.T., Mertens L., Grotenhuis H., Yoo S.-J., Seed M., Gross-Wortmann L. Understanding the mechanism for branch pulmonary artery stenosis after the arterial switch operation for transposition of the great arteries. Eur. Heart J. Cardiovasc. Imaging. 2017;18(2):180–185. DOI:10.1093/ehjci/jew046.; Slodki M., Axt-Fliedner R., Zych-Krekora K., Wolter A., Kawecki A., Enzensberger C. et al. New method to predict need for Rashkind procedure in fetuses with dextro-transposition of the great arteries. Ultrasound Obstet. Gynecol. 2018;51(4):531–536. DOI:10.1002/uog.17469.; Kumar T.K.S. Congenitally corrected transposition of the great arteries. J. Thorac. Dis. 2020;12(3):1213–1218. DOI:10.21037/jtd.2019.10.15.; Hazekamp M.G., Nevvazhay T, Sojak V. Nikaidoh vs reparation a l’Etage ventriculare vs Rastelli. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 2018;21:58–63. DOI:10.1053/j.pcsu.2017.10.001.; Hermsen J.L., Chen J.M. Surgical considerations in D-transposition of the great arteries. Semin. Cardiothorac. Vasc. Anesth. 2015;19(3):223–232. DOI:10.1177/1089253215584195.; Kutty S., Danfor D.A., Diller G.P., Tutarel O. Contemporary management and outcomes in congenitally corrected transposition of the great arteries. Heart. 2018;104(14):1148–1155. DOI:10.1136/heartjnl-2016-311032.; Chan A., Aijaz A., Zaidi A.N. Surgical outcomes in complex adult congenital heart disease: A brief review. J. Thorac. Dis. 2020;12(3):1224–1234. DOI:10.21037/jtd.2019.12.136.; Moe T.G., Bardo D. Long-term outcomes of the arterial switch operation for D-transposition of the great arteries. Prog. Cardiovasc. Dis. 2018;61(3-4):360–364. DOI:10.1016/j.pcad.2018.08.007.; Xie L.J., Jiang L., Yang Z.G., Shi K., Xu H., Li R. et al. Assessment of transposition of the great arteries associated with multiple malformations using dual-source computed tomography. PLOS One. 2017;12(11):e0187578. DOI:10.1371/journal.pone.0187578.; Muscogiuri G., Suranyi P., Eid M., Szemes A., Griffith L., Pontone G. et al. Pediatric cardiac MR imaging: Practical preoperative assessment. Magn. Reson. Imaging Clin. N. Am. 2019;27(2):243–262. DOI:10.1016/j.mric.2019.01.004.; Schicchi N., Secinaro A., Muscogiuri G., Ciliberti P., Leonardi B., Santangelo T. et al. Multicenter review: Role of cardiovascular magnetic resonance in diagnostic evaluation, pre-proceduralplanning and follow-up for patients with congenital heart disease. Radiol. Med. 2016;121(5):342–351. DOI:10.1007/s11547-015-0608-z.; Zucker E.J. Cross-sectional imaging of congenital pulmonary artery anomalies. Int. J. Cardiovasc. Imaging. 2019;35(8):1535–1548. DOI:10.1007/s10554-019-01643-4.; Mitchell F.M., Prasad S.K., Greil G.F., Drivas P., Vassiliou V.S., Raphael C.E. Cardiovascular magnetic resonance: Diagnostic utility and specific considerations in the pediatric population. World J. Clin. Pediatr. 2016;5(1):1–15. DOI:10.5409/wjcp.v5.i1.1.; Valsangiacomo Buechel E.R., Grosse-Wortmann L., Fratz S., Eichhorn J., Sarikouch S., Greil G.F. et al. Indications for cardiovascular magnetic resonance in children with congenital and acquired heart disease: An expert consensus paper of the Imaging Working Group of the AEPC and the Cardiovascular Magnetic Resonance Section of the EACVI. Eur. Heart J. Cardiovasc. Imaging. 2015;16(3):281–297. DOI:10.1093/ehjci/jeu129.; https://www.sibjcem.ru/jour/article/view/1199

  3. 3
    Academic Journal

    Source: Medical Visualization; Том 24, № 4 (2020); 81-101 ; Медицинская визуализация; Том 24, № 4 (2020); 81-101 ; 2408-9516 ; 1607-0763

    File Description: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/973/630; De Valois J.C., van Schaik C.C., Verzijlbergen F., van Ramshorst B., Eikelboom B.C., Meuwissen O.J.A.Th. Contrast venography: from gold standard to golden backup in clinically suspected deep vein thrombosis. Eur. J. Radiol. 1990; 11: 131–137. https://doi.org/10.1016/0720-048x(90)90162-5; Ozbudak O., Erogullari I., Ogus C., Cilli A., Turkay M., Ozdemir T. Doppler ultrasonography versus venography in the detection of deep vein thrombosis in patients with pulmonary embolism. J. Thromb. Thrombolysis. 2006; 21: 159–162. https://doi.org/10.1007/s11239-006-5207-3; Gloviczki Р., Comerota A.J., Dalsing M.C., Eklof Bo G., Gillespie D.L. The care of patients with varicose veins and associated chronic venous diseases: Clinical Practice Guidelines of the Society for Vascular Surgery and the American Venous Forum. J. Vasc. Surg. 2011; 53 (5, Suppl.): 2S–48S. https://doi.org/10.1016/j.jvs.2011.01.079; Wittens C., Davies A.H. Management of Chronic Venous Disease. Clinical Practice Guidelines of European Society for Vascular Surgery (ESVS). Eur. J. Vasc. Endovasc. Surg. 2015; 49 (6): 678–737. https://doi.org/10.1016/j.ejvs.2015.09.024; Mintz B.L., Araki C.T., Kritharis A., Hobson R.W. Venous Duplex Ultrasound of the Lower Extremity in Diagnosis of Deep Venous Thrombosis. Chapter in Book: Noninvasive Vascular Diagnosis. Eds Abu Rahma A.F., Bergan J.J. London: Springer, 2007: 385–393. https://doi.org/10.1007/978-1-84628-450-2_35; Righini M. Is it worth diagnosing and treating distal deep venous thrombosis? No. J. Thromb. Haemost. 2007; 5 (1): 55–59. https://doi.org/10.1111/j.1538-7836.2007.02468.x; Dalsing M., Eklof B. Management of chronic venous disorders. Book Chapter in Handbook of Venous Dis or ders. CRS Press; 2008. https://doi.org/10.1201/b13654-32; Kanne J.P., Lalani T.A. Role of Computed Tomography and Magnetic Resonance Imaging for Deep Venous Thrombosis and Pulmonary Embolism. Circulation. 2004; 109 (12): 15–21. https://doi.org/10.1161/01.cir.0000122871.86662.72; Carpenter J.P., Holland G.A., Baum R.A., Owen R.S., Carpenter J.T., Cope C. Magnetic resonance venography for the detection of deep venous thrombosis: Comparison with contrast venography and duplex Doppler ultrasonography. J. Vasc. Surg. 1993; 18 (5): 734–741. https://doi.org/10.1016/0741-5214(93)90325-g; Moody A.R., Pollock J.G., O’Connor A.R., Bagnall M. Lower-limb deep venous thrombosis: direct MR imaging of the thrombus. J. Radiol. 1998; 209 (2): 349–355. https://doi.org/10.1148/radiology.209.2.9807558; Coche E.E., Hamoir X.L., Hammer F.D., Hainaut P., Goffette P.P. Using dual-detector helical CT angiography to detect deep venous thrombosis in patients with suspicion of pulmonary embolism: diagnostic value andadditional findings. Am. J. Roentgenol. 2001; 176: 1035–1039. https://doi.org/10.2214/ajr.176.4.1761035; Evert J Blink. Basic MRI Physics, Application specialist MRI, 2004. https://www.mri-physics.net; Idrees M. An overview on MRI physics and its clinical applications. Int. J. Curr. Pharmac. & Clin. Res. 2014; 4: 185–193. https://www.researchgate.net; Kangarlu A., Robitaille P.M. Biological effects and health implications in magnetic resonance imaging. Concepts Magn. Resonance. 2000; 12: 321–359. https://doi.org/10.1002/1099-0534(2000); Anderson C.M., Edelman R.R., Turski P.A. Clinical Magnetic Resonance Angiography. New York: Raven Press, 1993. https://doi.org/10.1002/mrm.1910310519; Brown R.W., Cheng Yu.N., Haacke E.M., Thompson M.R., Venkatesan R. Magnetic Resonans Imaging. Physical Priciples and Sequence Design. 2nd ed. Wiley Blackwell, 2014. ISBN: 9781118633984. https://doi.org/10.1002/9781118633953; Westbrook C., Roth C., Talbot J. MRI in Practice. 4th ed. Oxford, UK: Blackwell Publishing, 2011. ISBN 978- 1444337433. https://doi.org/10.2214/ajr.11.8252; Obuchowski N.A., Gazelle G.S. Handbook for Clinical Trials of Imaging and Image-Guided Interventions. Wiley Blackwell, 2016. ISBN: 9781118849569. https://doi.org/10.1002/9781118849712.; Brawn M.A., Nishino T., Semelka R. MRI: Basic Principles and Applications. J. Med. Phy. 2004; 31 (1): 170. https://doi.org/10.1118/1.1636163; Kwong R.Y. Cardiovascular Magnetic Resonance Imaging. Springer nature Switzerland AG, 2008. ISBN 978-1- 59745-306-6. https://www.springer.com; Nasif M. Cardiovascular magnetic resonance imaging. J. Radiol. Brasileira. 2008; 41 (2): 18. https://doi.org/10.1590/s0100.39842008000100016; Dale B.M., Brown M.A,, Semelka R.C. MRI Basic Principles and Applications. Wiley-Blackwell, 2010. https://doi.org/10.1002/9781119013068; Va Hecke P., Rink P.A. Magnetic resonance in medicine. The Basic Texbook of the European Magnetic Resonance Forum. Eur. Radiol. 2002. https://www.link.Springer.com. https://doi.org/10.1007/s00330-001-1154-8; Schneider G., Prince M.R., Meaney J.F.M., Ho V.B. Magnetic Resonance Angiography. Techniques, Indi cations and Practical Applications, foreword by E.J. Potchen. Italia: Springer-Verlag, 2005. ISBN 88-470-0266-4. https://www.springer.com; Reichenboch J.R., Haacke E.M. Gradient Echo Imaging. Book Chapter in Susceptibility Weighted Imaging in MRI. Wiley-Blackwell, 2011. ISBN 9780470043431. https://doi.org/10.1002/9780470905203; Lenz G, Haacke E, Masaryk T, Laub G.A. Inplane vascular imaging: pulse sequence design and strategy. J. Radiol. 1988; 166 (3): 875–882. https://doi.org/10.1148/radiology.166.3.3340788; Laub G.A., Kaiser W.A. MR angiography with gradient motion refocusing. J. Comput. Assist. Tomogr. 1988; 12: 377–382. https://doi.org/10.1097/00004728-198805010-00002; Backeus M., Schmitz B. Unenhanced MR Angiography. Chapter in Book: Magnetic Resonance Angiography. Springer, 2005: 3–22. ISBN 88-470-0266-4. https://www.springer.com; Keller P.J., Drayer B.P., Fram E.K., Williams K.D. MR angiography with two-dimensional acquisition and threedimensional display. J. Radiol. 1989; 173 (2): 527–532. https://doi.org/10.1148/radiology.173.2.2798885; Parker D.L., Yuan C., Blatter D.D. MR angiography by multiple thin-slab 3D acquisitions. J. Magn. Reson. Med. 1991; 17 (2): 434–451. https://doi.org/10.1002/mrm.1910170215; Atkinson D., Brant-Zawadzki M., Gillan G. Improved MR angiography: Magnetization transfer suppression with variable flip angles excitation and increased resolution. J. Radiol. 1994; 190: 890–894. https://doi.org/10.1148/radiology.190.3.8115646; Axel L., Morton D. MR flow imaging by velocity-compensated/ uncompensated difference images. J. Comput. Assist. Tomogr. 1987; 11 (1): 31–34. https://doi.org/10.1097/00004728-198701000-00006; Dumoulin C.L., Hart H.R. Magnetic Resonance Angiography. J. Radiology. 1986; 161 (3): 717–720. https://doi.org/10.1148/radiology.161.3.3786721; Dumoulin C.L., Souza S.P., Walker M.F., Wagle W. Threedimensional phase contrast angiography. J. Magn. Reson. Med. 1989; 9 (1): 139–149. https://doi.org/10.1002/mrm.1910090117; Kaufman J.A., McCarter D., Geller S.C., Waltman A.C. Two-dimensional time-of-flight MR angiography of the lower extremities: artifacts and pitfalls. Am. J. Roentgenol. 1998; 171 (1): 129–135. https://doi.org/10.2214/ajr.171.1.9648776; Plein S., Geenwood J., Ridgway J.P. Cardiovascular MR Manual. Springer International Publishing, 2015. ISBN 978-3-319-20940-1. https://doi.org/10.1007/978-3-319-20940-1; Yucel E.K., Anderson C.M., Edelman R.R., Crist T.M., Baum R.A., Manning W.J. Magnetic resonance angiography. Circulation. 1999; 100 (22): 2284–2301. https://doi.org/10.1161/01.cir.100.22.2284; Koelemay M.J., Lijmer J.G., Stoker J., Legemate D.A., Bossuyt P.M.M. Magnetic resonance angiography for the evaluation of lower extremity arterial disease. A metaanalysis. JAMA. 2001; 285 (10): 1338–1345. https://doi.org/10.1001/jama.285.10.1338; Nelemans P.J., Leiner T., de Vet H.C., van Engelshoven J.M.A. Peripheral arterial disease: meta-analysis of the diagnostic performance of MR angiography. J. Radiol. 2000; 217 (1): 105–114. https://doi.org/10.1148/radiology.217.1.r00oc11105; Ho V.B., Foo T.K.F., Czum J.M., Marcos H., Choyke P.L., Knopp M.V. Contrast-Enhanced Magnetic Resonance Angiography: Technical Considerations for Optimized Clinical Implementation. Top Magn. Reson. Imaging. 2001; 12 (4): 283–299. https://doi.org/10.1097/00002142-200108000-00005; Maki J.H., Knopp M.V., Prince M. Contrast-enhanced MR angiography. App. Radiol. 2003; 32 (Suppl.): 3–31. https://doi.org/10.1201/b14328-16; Knopp M.V., von Tengg-Kobligk H., Floemer F.S., Schoenberg S.O. Contrast agents for MRA: future directions. JMRI. 1999; 10 (3): 314–316. https://doi.org/10.1002/(sici)1522-2586(199909); Reimer P., Bremer C., Allkemper T., Engelhardt M., Mahler M., Ebert W., Tombach B. Myocardial perfusion and MR angiography of chest with SHU555C: results of placebo-controlled clinical phase I study. Radiology. 2004; 231: 474–481. https://doi.org/10.1148/radiol.2312021251; Haacke E.M., Reichenbach L.R. Susceptibility Weighted Imaging in MRI. Basic Concepts and Clinical Applications. Wiley Blackwell. ISBN: 9780470905197. https://doi.org/10.1002/9780470905203; Gibby W.A., Gibby K.A., Gibby W.A. Comparison of Gd DTPA-BMA (Omniscan) versus Gd HP-DO3A (ProHance) retention in human bone tissue by Inductively Coupled Plasma Atomic Emission Spectroscopy. Invest. Radiol. 2004; 39 (3): 138–142. https://doi.org/10.1097/01.rli.0000112789.57341.01; Goyan M., Ruehm S.G., Debatin J.F. MR Angiography: the role of contrast agents. Eur. J. Radiol. 2000; 34 (3): 247–256. https://doi.org/10.1016/s0720-048x(00)00203-5; Hany T.F., Schmidt M., Hilfiker P.R., Steiner P., bachman U., debatin J.F. Optimization of contrast dosage for gadolinium-enhanced 3D MRA of the pulmonary and renal arteries. Magn. Reson. Imaging. 1998; 16: 901–906. https://doi.org/10.1016/s0730-725x(98)00012-5; de Haën C., Cabrini M., Akhnana L., Ratti D., Calabi L., Gozzini L. Gadobenate dimeglumine 0.5M solution for injection (Multi-Hance): pharmaceutical formulation and physicochemical properties of a new magnetic resonance imaging contrast medium. J. Comput. Assist. Tomogr. 1999; 23: 161–168. https://doi.org/10.1097/00004728-199911001-00021; Cavagna F., Maggioni F., Castelli P. Gadolinium chelates with weak binding to serum proteins. A new class of highefficiency, general purpose contrast agents for magnetic resonance imaging. Invest. Radiol. 1997; 32 (2): 780–796. https://doi.org/10.1097/00004424-199712000-00009; Knopp M., Schoenberg S., Rehm C., Floemer F., Von- Tengg-Kobligk H. Assessment of Gadobenate Dimeglumine (Gd-BOPTA) for MR Angiography: Phase I Studies. Invest. Radiol. 2002; 37 (12): 706–715. https://doi.org/10.1097/00004424-200212000-00011; Völk M., Strotzer M., Lenhart M., Seitz J., Manke C., Feuerbach S., Link J. Renal time-resolved MR angiography: quantitative comparison of gadobenate dimeglumine and gadopentetate dimeglumine with different doses. J. Radiol. 2001; 220 (2): 484–488. https://doi.org/10.1148/radiology.220.2.r01au38484; Wyttenbach R., Gianella S., Alerci M., Braghett., Cozzi L., Gallino A. Prospective Blinded Evaluation of Gd-DOTA – versus Gd-BOPTA–enhanced Peripheral MR Angiography, as Compared with Digital Subtraction Angiography. J. Radiol. 2003; 227 (1): 261–269. https://doi.org/10.1148/radiol.2271011989; Herborn C.U., Goyen M., Lauenstein T.C. Comprehensive time-resolved MRI of peripheral vascular malformations Am. J. Roentgenol. 2003; 181 (3): 729–735. https://doi.org/10.2214/ajr.181.3.1810729; Perreault P., Edelman M.A., Baum R.A., Yucel E.K., Weisskoff R.M. MR angiography with gadofosveset trisodium for peripheral vascular disease: phase II trial. J. Radiol. 2003; 229 (3): 811–820. https://doi.org/10.1148/radiol.2293021180; Caravan P., Cloutier N.J., Greenfield M.T. The interaction of MS-325 with human serum albumin and its effect on proton relaxation rates. J. Am. Chem. Soc. 2002; 124 (12): 3152–3162. https://doi.org/10.1021/ja017168k; Stuber M., Botnar R.M., Danias P.G. Contrast agentenhanced, free-breathing, three-dimensional coronary magnetic resonance angiography. J. Magn. Reson. Imaging. 1999; 10: 790–799. https://doi.org/10.1002/(sici)1522-2586(199911); Kraitchman D.L., Chin B.B., Heldman A.W., Solaiyappen M., Bluemke D.A. MRI detection of myocardial perfusion defects due to coronary artery stenosis with MS-325. J. Magn. Reson. Imaging. 2002; 15 (2): 149–158. https://doi.org/10.1002/jmri.10051; Paetsch I., Huber M., Bornstedt A. Improved 3D freebreathing coronary MRA using gadocoletic acid (B-22956) for intravascular contrast enhancement. J. Magn. Reson. Imaging. 2004; 20: 288–293. https://doi.org/10.1002/jmri.20099; La Noce A., Stoelben S., Scheffler K. B22956/1, a new intravascular contrast agent for MRI: first administration to humans–preliminary results. Acad. Radiol. 2002; 9 (Suppl.): 404–406. https://doi.org/10.1016/s1076-6332(03)80245-3 60. Reimer P., Bremer C., Allkemper T., Engelhardt M. Myocardial perfusion and MR angiography of chest with SH U 555 C: results of placebo-controlled clinical phase I study. J. Radiol. 2004; 231 (2): 474–481. https://doi.org/10.1148/radiol.2312021251; Weishaupt D., Ruhm S., Binkert C. Equilibrium-phase MR angiography of the aortoiliac and renal arteries using a blood pool contrast agent. Am. J. Roentgenol. 2000; 175: 189–195. https://doi.org/10.2214/ajr.175.1.1750189; Taylor A., Panting J., Keegan J. Safety and preliminary findings with the intravascular contrast agent NC100150 injection for MR coronary angiography. J. Magn. Reson. Imaging. 1999; 9: 220–227. https://doi.org/10.1002/(sici)1522-2586(199902; Bachmann R., Conrad R., Kreft B. Evaluation of a new ultrasmall superparamagnetic iron oxide contrast agent Clariscan, (NC100150) for MRI of renal perfusion: experimental study in an animal model. J. Magn. Reson. Imaging. 2002; 16: 190–195. https://doi.org/10.1002/jmri.10149; Reimer P., Allkemper T., Matuszewski L. Contrast-enhanced 3D-MRA of the upper abdomen with a bolus-injectable SPIO (SH U 555 A). J. Magn. Reson. 1999; 10: 65–71. https://doi.org/10.1002/(sici)1522-2586(199907); Mayo-Smith W., Saini S., Slater G., Kaufman J.A., Sharma P., Hahn P.F. MR contrast material for vascular enhancement: value of superparamagnetic iron oxide. Am. J. Roentgenol. 1996; 166: 73–77. https://doi.org/10.2214/ajr.166.1.8571910; Ho V.B., Foo T.K.F, Czum J.M., Marcos H., Choyke P.L., Knopp M.V. Contrast-Enhanced Magnetic Resonance Angiography: Technical Considerations for Optimized Clinical Implementation. Top. Magn. Reson. Imaging. 2001; 12: 283–299. https://doi.org/10.1097/00002142-200108000-00005; Maki J.H., Knopp M.V., Prince M. Contrast-enhanced MR angiography. Appl. Radiol. 2003; 32: 3–31. https://doi.org/10.1201/b14328-16; Hohenschuh E., Watson A. Theory and mechanisms of contrast-enhancing agents. In: Higgins C., Hricak H., Helms C., eds. Magnetic Resonance Imaging of the Body. Philadelphia, Pa: Lippencott-Raven, 1997: 1439–1464. https://www.springer.com; Hany T.F., McKinnon G.C., Leung D.A., Pfammatter T., Debatin S.F. Optimization of contrast timing for breathhold three-dimensional MR angiography. J. Magn. Reson. Imaging. 1997; 7 (3): 551–556. https://doi.org/10.1002/jmri.1880070316; Marks B., Mitchell D.G., Simelaro J.P. Breath-holding in healthy and pulmonary-compromised populations: Effects of hyperventilation and oxygen inspiration. J. Magn. Reson. Imaging. 1997; 7 (3): 595–597. https://doi.org/10.1002/jmri.1880070323; Foo T.K., Saranathan M., Prince M.R. Automated detection of bolus arrival and initiation of data acquisition in fast, three-dimensional, gadolinium-enhanced MR angiography. J. Radiol. 1997; 203 (1): 275–280. https://doi.org/10.1148/radiology.203.1.9122407; Lee V.S., Martin D.J., Krinsky G.A. Gadolinium-enhanced MR angiography: Artifacts and pitfalls. Am. J. Roentgenol. 2000; 175: 197–205. https://www.ncbi.nlm.nih.gov; Earls J.P., Rofsky N.M., DeCorato D.R., Krinsky G.A., Weinreb J.C. Breath-hold single dose Gd-enhanced three-dimensional MR aortography: usefulness of a timing examination and MR power injector. Radiology. 1996; 201 (3): 705–710. https://doi.org/10.1148/radiology.201.3.8939219; Kim J.K., Farb R.I., Wright G A. Test bolus examination in the carotid artery at dynamic gadolinium-enhanced MR angiography. J. Radiol. 1998; 206 (1): 283–289. https://doi.org/10.1148/radiology.206.1.9423685; Ho V.B., Foo T.K. Optimization of gadolinium-enhanced magnetic resonance angiography using an automated bolus detection algorithm (MR Smart-Prep). Original investigation. Invest. Radiol. 1998; 33 (9): 515–523. https://doi.org/10.1097/00004424-199809000-00006; Riederer S.J., Bernstein M.A., Breen J.F. Three-dimensional contrast-enhanced MR angiography with real-time fluoroscopic triggering: design specifications and techni cal reliability in 330 patient studies. J. Radiol. 2000. 215: 584–593. https://doi.org/10.1148/radiology.215.2.r00ma21584; Prince M.R. Gadolinium-enhanced MR aortography. J. Radiol. 1994; 191 (1): 155–164. https://doi.org/10.1148/radiology.191.1.8134563; Prince M.R., Narasimham D.L., Stanley J.C., Chenevert T.L., Williams D.M., Marx M.V., Cho K.J. Breathhold gadolinium-enhanced MR angiography of the abdominal aorta and its major branches. J. Radiol. 1995; 197 (3): 785–671. https://doi.org/10.1148/radiology.197.3.7480757; Meaney James F.M. MR Angiography of Peripheral Arteries: Lower Extremities. Chapter in Book: Magnetic Resonance Angiography. Springer. 2005: 3–22. ISBN 88-470-0266-4. https://doi.org/10.1007/88-470-0352-0_16; Meaney F.M., Ridgway J.P., Chakraverty S. Stepping- Table Gadolinium-enhanced Digital Substraction MR Angiography of the Aorta and lower extremity Arteries: Preliminary Experience. J. Radiol. 1999; 211 (1): 59–67. https://doi.org/10.1148/radiology.211.1.r99ap1859; Ho K.Y., de Haan M.W., Kessels A.G., Kitslaar P.J., van Engelshoven J.M. Peripheral vascular tree stenoses: detection with subtracted and nonsubtracted MR angiography. J. Radiol. 1998; 206: 673–681. https://doi.org/10.1148/radiology.206.3.9494485; Ruehm Stefan G. MR Venography. Chapter in Book: Magnetic Resonance Angiography. Springer, 2005: 3–22. ISBN 88-470-0266-4. https://www.springer.com; Sannikov A.B., Emelianenko V.M., Rachcov M.A. The Specific Anatomical of the Structure of the Calf Intramuscular Veins in the Healthy Subjects and in the Patients Presenting with Chronic Venous Disease: the Data Obtained by Multi-Spiral Computed Phlebography. Flebologiya. 2018; 12 (4): 292–299. https://doi.org/10.17116/flebo201812041292 (In Russian); Calhoun P.S., Kuszyk B.S., Heath D.G., Carley J.C., Fishman E.K. Three-dimensional volume rendering of spiral CT data: theory and method. Radiographics. 1999; 19: 745–764. https://doi.org/10.1148/radiographics.19.3.g99ma14745; Hu X., Alperin N., Levin D.N. Visualization of MR angiographic data with segmentation and volumerendering techniques. J. Magn. Reson. Imaging. 1991; 1 (5): 539–546. https://doi.org/10.1002/jmri.1880010506; Hernández-Hoyos M., Anwander A., Orkisz M. A deformable vessel model with single point initialization for segmentation, quantification and visualization of blood vessels in 3D MRA. In MICCAI 2000 Medical Image Computing & Computer-Assisted Intervention (Lecture Notes in Computer Sci-64 Magnetic Resonance Angiography ence). S.L. Delp, A.M. Digioia, B. Jaramaz, eds. Berlin, Germany: Springer-Verlag, 2000: 735–745. https://doi.org/10.1007/978-3-540-40899-4_76; Olga Kubassova. Automatic Segmentetion of the Blood Vessels from Dynamic MRI Datasets. Book Chapter in Medical Image Computing & Computer-Assisted Intervention. MICCAI 2007. Berlin, Germany: Springer-Verlag, 2007: 593–600. https://doi.org/10.1007/978-3-540-75757-3_72; Moeller T.B., Reif E. Pocket Atlas of Sectional Anatomy Computed Tomography and Magnetic Resonance Imaging. Vol, 1, Vol, 2. Stuttgart: Thieme, 2015. Eur. J. Nucl. Med. Molec. Imaging. 2015; 42 (6). ISBN 678-3-13-125504-4. https://www.linkSpringer.com. https://doi.org/10.1007/s00259-015-2998-5; https://medvis.vidar.ru/jour/article/view/973

  4. 4
    Academic Journal

    Source: Diagnostic radiology and radiotherapy; № 3 (2018); 85-91 ; Лучевая диагностика и терапия; № 3 (2018); 85-91 ; 2079-5343 ; 10.22328/2079-5343-2018-3

    File Description: application/pdf

    Relation: https://radiag.bmoc-spb.ru/jour/article/view/327/289; Национальные рекомендации по ведению пациентов с заболеваниями артерий нижних конечностей/ под ред. акад. А. В. Покровского. М., 2013. 68 с. [Nacional’nye rekomendacii po vedeniju pacientov s zabolevanijami arterij nizhnih konechnostej (National guidelines for the management of patients with diseases of lower limb arteries). рod red. akad. A. V. Pokrovskogo, Moscow, 2013, 68 p. (in Russ.)].; Lee C.H., Lin S.-E., Chen C.-L. Adventitial cystic disease // J. Formos. Med. Assoc. 2006. Vol. 105, No. 12. P. 1017–1021.; Tomasian A., Lai C., Finn J. P. et al. Cystic adventitial disease of the popliteal artery: features on 3T cardiovascular magnetic resonance // J. of Cardiovascular Magnetic Resonance. 2008. Vol. 10. P. 38–43.; Dharmaraj R.B., Griffin J., Ramanathan A., Buckenham T. Case report: cystic adventitial disease of the external iliac artery with imaging features of a complicating proximal dissection // J. European Society for Vascular Surgery. 2011. Vol. 21. P. e36–e38.; Atkins H.J., Key J.A. A case of myxomatous tumor arising in the adventitia of the left external iliac artery // Br. J. Surg. 1947. Vol. 34. P. 426–247.; Maeda H., Umeda T., Kawachi H. et al. Cystic adventitial disease of the common femoral artery. Case report and review of the literature // Ann. Thorac. Cardiovasc. Surg. 2016. Vol. 22, No. 5. P. 315–317.; Hai Z., Shao G. Cystic adventitial disease of the popliteal artery // Vascular Medicine. 2012. Vol. 17, No. 4. P. 283–284.; Mateo M.M.H., Hernando F.J.S., Lopez I.M. et al. Cystic adventitial degeneration of the popliteal artery: report on 3 cases and review of the literature // Ann. Vasc. Surg. 2014. Vol. 28. P. 1062–1069.; Michaelides M., Pervana S., Sotiridadis C., Tsitouridis I. Cystic adventitial disease of the popliteal artery // Diagn. Interv. Radiol. 2011. Vol. 17. P. 166–168.; Gagnon J., Doyle D. L. Adventitial cystic disease of common femoral artery // Ann. Vasc. Surg. 2007. Vol. 21. P. 84–86.; Park S.J., Park W.S., Min S.Y. et al. Cystic adventitial disease of the common femoral artery at a previous surgical dissection site // Ann. Vasc. Surg. 2015. Vol. 29. P. 365.e1–365.e3.; Peruyera P. Del C., Va´zquez M. J. V.-V., Velasco M. B. et al. Cystic adventitial disease of the popliteal artery: two case reports and a review of the literature // Vascular. 2015. Vol. 23, No. 2. P. 204–210.; Motaganahalli R.L., Smeds M.R., Harlander-Locke M.P., Lawrence P.F. A multi-institutional experience in adventitial cystic disease // J. of Vascular Surgery. 2017. Vol. 65. Issue 1. P. 157–161.; França M., Pinto J., Machado R., Fernandez G. C. Bilateral adventitial cystic disease of the popliteal artery // Radiology. 2010. Vol. 255, No. 2. P. 655–660.; Paravastu S. C. V., Regi J. M., Turner D. R., Gaines P. A. A contemporary review of cystic adventitial disease // Vasc. Endovascular Surg. 2012. Vol. 46. P. 5–14.; Sakamoto A., Tanaka K., Matsuda S. et al. Adventitial cystic disease of the popliteal vein: report of a case // Surg. Today. 2006. Vоl. 36. P. 1098–1100.; Drac P., Kőcher M., Utikal P. et al. Cystic adventitial disease of the popliteal artery: report on three cases and review of the literature // Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czech. Republic. 2011. Vol. 155. P. 309–322.; Monroe E., Ha A. Cystic adventitial disease of the popliteal artery // Radiology Case Reports. 2011. Vol. 6. Issue 4. http://radiology.casereports.net [электронный ресурс].; Desy N. M., Spinner R. J. The etiology and management of cystic adventitial disease // J. Vasc. Surg. 2014. Vol. 60. P. 235–245.; Taurino M., Rizzo L., Stella N. et al. Doppler ultrasonography and exercise testing in diagnosing a popliteal artery adventitial cyst // Cardiovascular Ultrasound. 2009. Vol. 7. P. 23.; Van Rutte P.W.J., Rouwet E.V., Belgers E.H.J. et al. In treatment of popliteal artery cystic adventitial disease, primary bypass graft not always first choice: two case reports and a review of the literature // Eur. J. Vasc. Endovasc. Surg. 2011. Vol. 42. P. 347–354.; Linquette M., Mesmacque R., Beghin B. et al. Degenere scence kystique de l’adventite de l’artere poplitee // Semaine Hop. Paris. 1967. Vol. 43. P. 3005–3013.; Shute K., Rothnie N. G. The aetiology of cystic arterial disease // Br. J. Surg. 1973. Vol. 60. P. 397–400.; Tsilimparis N., Hanack U., Yousefi S. et al. Cystic adventitial disease of the popliteal artery: an argument for the developmental theory // J. Vasc. Surg. 2007. Vol. 45. P. 1249–1252.; Maged I.M., Turba U.C., Housseini A.M. et al. High spatial resolution magnetic resonance imaging of cystic adventitial disease of the popliteal artery // J. Vasc. Surg. 2010. Vol. 51. P. 471–474.; Spinner R.J., Desy N.M., Agarwal G. et al. Evidence to support that adventitial cysts, analogous to intraneural ganglion cysts, are also joint-connected // Clin. Anat. 2013. Vol. 26. P. 267–281.; Hernandez Mateo M.M., Serrano Hernando F.J., Lopez I.M. et al. Cystic adventitial degeneration of the popliteal artery: report on three cases and review of the literature // Ann. Vasc. Surg. 2014. Vol. 28. P. 1062–1069.; Allemang M.T., Kashyap V.S. Adventitial cystic disease of the popliteal artery // J. Vasc. Surg. 2015. Vol. 62. P. 490.; Hao H., Ishibashi-Ueda H., Nishida N. et al. Distribution of myofibroblast and tenascin-C in cystic adventitial disease: comparison with ganglion // Pathol. Int. 2013. Vol. 63. P. 591–598.; O’Valle F., Hernandez-Cortes P., Aneiros-Fernandez J. et al. Morphological and immunohistochemical evaluation of ganglion cysts. Cross-sectional study of 354 cases // Histol. Histopathol. 2014. Vol. 29. P. 601–607.; Masaki N., Yajima N., Ogasawara T. et al. Adventitial cystic disease communicating with the knee joint: a case report with histopathological study of the connection // Ann. Vasc. Surg. 2017. http://dx.doi.org/10.1016/j.avsg.2017.04.034.; Talmon G., Wake L., Muirhead D. Podoplanin and clusterin are reliable markers of nonneoplastic synovium at various sites // Int. J. Surg. Pathol. 2013. Vol. 21. P. 587–590.; Del Rey M.J., Fare R., Izquierdo E. et al. Clinicopathological correlations of podoplanin (gp38) expression in rheumatoid synovium and its potential contribution to fibroblast platelet crosstalk // PLoS One. 2014. Vol. 9. P. e99607.; Keese M., Diehl S.J., Huck K. et al. Cystic adventitial degeneration of the popliteal artery // Ann. Vasc. Surg. 2012. Vol. 26. P. 859. e17–859.e21.; Familiar A.G., Fernandez J.C.F., Abuın J.S. et al. Cystic adventitial disease of the popliteal artery // Cir. Esp. 2013. Vol. 91, No. 9. P. 609–611.; Wright L.B., Matchett W.J., Cruz C.P. et al. Popliteal artery disease: diagnosis and treatment // RadioGraphics. 2004. Vol. 24. P. 467–479.; Maeng Y., Chang J. W., Kim S. H. Cystic adventitial disease of the popliteal artery: resection and repair with autologous vein patch // Korean J. Thorac. Cardiovasc. Surg. 2011. Vol. 44. P. 266–268.; Zhang L., Guzman R., Kirkpatrick I., Klein J. Spontaneous resolution of cystic adventitial disease: a word of caution // Ann. Vasc. Surg. 2012. Vol. 26. P. 422. e1–422.e4.; Ksepka M., Li A., Norman S. Cystic adventitial disease // Ultrasound Quarterly. 2015. Vol. 31, No. 3. P. 224–226.; Loffroy R., Rao P., Kraus D. et al. Use of 3.0-tesla high spatial resolution magnetic resonance imaging for diagnosis and treatment of cystic adventitial disease of the popliteal artery // Ann. Vasc. Surg. 2011. Vol. 25. P. 385.e5–385.e10.; Holden A., Merrilees S., Mitchell N., Hill A. Magnetic resonance imaging of popliteal artery pathologies // Europ. J. Radiology. 2008. Vol. 67. P. 159–168.; Misselhorn D., Beresford T., Khanafer A. Early recurrence of cystic adventitial disease following cyst excision and bypass surgery // EJVES Extra. 2013. Vol. 26, Issue 6. P. 51–53.; Warhadpande S., Go M. R., El Sayed H. et al. Popliteal artery cystic adventitial disease: early lessons in treatment // Ann. Vasc. Surg. 2017. Vol. 38. P. 255–259.; Kikuchi S., Sasajima T., Kokubo T. et al. Clinical results of cystic excision for popliteal artery cystic adventitial disease: long-term benefits of preserving the intact intima // Ann. Vasc. Surg. 2014. Vol. 28. P. 1567. e5–1567.e8.; Rai S., Davies R. S., Vohra R. K. Failure of endovascular stenting for popliteal cystic disease // Ann. Vasc. Surg. 2009. Vol. 410. P. e1–e5.

  5. 5
    Academic Journal

    Source: Medical Visualization; № 6 (2017); 130-139 ; Медицинская визуализация; № 6 (2017); 130-139 ; 2408-9516 ; 1607-0763

    File Description: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/497/451; Koktzoglou I., Giri S., Piccini D., Grodzki D.M., Flanagan O., Murphy I.G, Gupta N., Collins J.D., Edelman R.R. Arterial Spin Labeled Carotid MR Angiography: A Phantom Study Examining the Impact of Technical and Hemodynamic Factors. Magn. Reson. Med. 2016; 75 (1): 295–301. DOI:10.1002/mrm.25611.; Bunck A.C., Jüttner A., Kröger J.R., Burg M.C., Kugel H., Niederstadt T., Tiemann K., Schnackenburg B., Crelier G.R., Heindel W., Maintz D. 4D phase contrast flow imaging for in-stent flow visualization and assessment of stent patency in peripheral vascular stents-a phantom study. Eur. J. Radiol. 2012; 81 (9): 929–937. DOI:10.1016/j.ejrad.2012.05.032.; Pauline W., Martin J.G., David J.L. Integrated physiological flow simulator and pulse sequence monitoring system for MRI. Med. Biol. Eng. Comput. 2008; 46 (4): 399–406. DOI:10.1007/s11517-008-0319-x.; Taviani V., Patterson A.J., Worters P., Sutcliffe M.P.F., Graves M.J., Gillard J.H. Accuracy of Phase Contrast, Black-Blood, and Bright-Blood pulse sequences for measuring compliance and distensibility coefficients in a human-tissue mimicking phantom. J. Magn. Reson. Imaging. 2010; 31: 160–167. DOI:10.1002/jmri.22005.; Irwan R., Rűssel I.K., Sijens P.E. Fast 3D coronary artery contrast-enhanced magnetic resonance angiography with magnetization transfer contrast, fat suppression and parallel imaging as applied on an anthropomorphic moving heart phantom. Magn. Reson. Imaging. 2006; 24: 895–902. DOI:10.1016/j.mri.2006.03.003.; Сергиенко В.И., Мартынов А.К., Петряйкин А.В., Кошурников Д.С., Фадеев А.А., Николаев Д.А., Кармазановский Г.Г., Осипова Н.Ю., Федоров В.Д. Новые аспекты технических испытаний сосудистых стентов. Бюллетень экспериментальной биологии и медицины. Приложение. 2007; 2: 112–116.; Kazerou A., Patatoukas G., Argiropoulos G., Efstathopoulos E. In vitro blood flow analysis using magnetic resonance angiography. Physica Medica. 2016; 32 (3): 305. DOI:10.1016/j.ejmp.2016.07.159.; Durand E.P., Jolivet O., Itti E., Tasu J.P., Bittoun J. Precision of Magnetic Resonance Velocity and Acceleration Measurements: Theoretical Issues and Phantom Experiments. J. Magn. Reson. Imaging. 2001; 13: 445–451.; Nilsson A., Bloch K.M., Töger J., Heiberg E., Ståhlberg F. Accuracy of four-dimensional phase-contrast velocity mapping for blood flow visualizations: a phantom study. Acta Radiol. 2013; 54: 663. DOI:10.1177/0284185113478005.; Громов А.И., Сергунова К.А., Петряйкин А.В., Поленок Я.А., Михайленко Е.А. Дисковый фантом для контроля измерения скоростей при фазо-контрастной магнитно-резонансной томографии и способ контроля измерения линейной и объемной скорости движения фантома: патtyn 2579824 Российская Федерация. 2016. Бюл. №10.; Nordell B., Ståhlberg F., Ericsson A., Ranta C. A rotating phantom for the study of flow effects in MR-imaging. Magn. Reson. Imaging. 1988; 6 (6): 695–705.; Allard L., Soulez G., Chayer B., Qin Z., Roy D., Cloutier G. A multimodality vascular imaging phantom of an abdominal aortic aneurysm with a visible thrombus. Med. Phys. 2013; 40 (6): 063701. DOI:10.1118/1.4803497.; Чижиумов С.Д. Основы гидродинамики: Учебное пособие. Комсомольск-на-Амуре: ГОУВПО “КнАГТУ”, 2007: 15–16.; Srichai M.B., Lim R.P., Wong S., Lee V.S. Cardiovascular Applications of Phase-Contrast MRI. Am. J. Roentgenol. 2009; 192 (3): 662–675. DOI:10.2214/AJR.07.3744.; Rigsby C.K., Hilpipre N., McNeal G.R., Zhang G., Boylan E.E., Popescu A.R., Choi G., Greiser A., Deng J. Analysis of an automated background correction method for cardiovascular MR phase contrast imaging in children and young adults. J. Pediatr. Radiol. 2014; 44 (3): 26515–16273. DOI:10.1007/s00247-013-2830-y.; Holland B.J., Printz B.F., Lai W.W. Baseline correction of phase-contrast images in congenital cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 2010; 12 (1): 11. DOI:10.1186/1532-429X-12-11.; https://medvis.vidar.ru/jour/article/view/497

  6. 6
    Academic Journal

    Source: Diagnostic radiology and radiotherapy; № 2 (2016); 73-78 ; Лучевая диагностика и терапия; № 2 (2016); 73-78 ; 2079-5343 ; 10.22328/2079-5343-2016-2

    File Description: application/pdf

    Relation: https://radiag.bmoc-spb.ru/jour/article/view/126/127; Rowlands R.P., Swan R.H. Tortuosity of both internal carotid arteries // Br. Med. J.- 1902.- Vol. 1, (2141).- P 76.; Tse G.G., Masuda E.M., Mcmurtray A.M., Nakamoto B.K. Case Report Coiled Internal Carotid Arteries Associated with Bilateral Sequential Strokes // Case Reports in Vascular Medicine.- 2013.- Vol. 2013: http://dx.doi.org/10.1155/2013/929530.; Zenteno M., Vinuela F., Moscote-Salazar L.R. et al. Clinical implications of internal carotid artery tortuosity, kinking and coiling: a systematic review // Rom. Neurosurg.- 2014.- Vol. 21, № 1.- P 51-60.; Ricotta J.J., Aburahma A., Ascher E. et al. Updated Society for Vascular Surgery guidelines for management of extracranial carotid disease // J. Vasc. Surg.- 2011.- Vol. 54, № 3.- P e1 - 31.; Oates C.P., Naylor A.R., Hartshorne T. et al. Joint recommendations for reporting carotid ultrasound investigations in the United Kingdom // Eur. J. Vasc. Endovasc. Surg.- 2009.- Vol. 37, № 3.- P. 251-261.; Gerhard-Herman M., Gardin J.M., Jaff M. et al. Guidelines for Noninvasive Vascular Laboratory Testing: A Report from the American Society of Echocardiography and the Society of Vascular Medicine and Biology // J. Am. Soc. Echocardiogr.- 2006.- Vol. 19, № 8.- P. 955-972.; Hashimoto B.E. Pitfalls in Carotid Ultrasound Diagnosis // Ultrasound Clin.- 2011.- Vol. 6, № 4.- P 463-476.; Gorev V., Tulupov A. The Phenomenon of Longitudinal Flow Vortices in the Sigmoid Sinus in Humans // Appl Magn Reson.- 2015.- Vol. 46, № 5.- P. 575-581.; Bogomyakova O., Stankevich Y., Shraibman L., Tulupov A. Multi-level Assessment Cerebrospinal Fluid Flow in Patients with Chiari I Malformation // Appl. Magn. Reson.- 2014.- Vol. 45, № 8.- P 785-796.; Tulupov A.A., Bogomyakova O.B., Savelyeva L.A., Prygova Y.A. Quantification of Flow of Cerebrospinal Fluid on Basal Level of Brain by a Phase-Contrast MRI Technique // Appl. Magn. Reson.- 2011.- Vol. 41, № 2-4.- P 543-550.; Tulupov A.A., Savelyeva L.A., Bogomyakova O.B., Prygova Y.A. Cerebral Venous Thrombosis: Diagnostic Features of Phase-Contrast MR Angiography // Appl. Magn. Reson.- 2011.- Vol. 41, № 2-4.- P. 551-560.; Багаев С.Н., Захаров В.Н., Орлов В.А. Основополагающие явления и законы в структурно-функциональной организации сердечно-сосудистой системы // Атеросклероз.- 2011.- Т. 7, № 2.- С. 68-89.; Zhao M., Amin-Hanjani S., Ruland S. et al. Regional cerebral blood flow using quantitative MR angiography // AJNR Am. J. Neuroradiol.- 2007.- Vol. 28, № 8.- P 1470-1473.; Железкова А.А., Скоробогатов Ю.Ю., Филатова О.В. Возрастное изменение диаметра внутренних сонных артерий // Известия алтайского государственного университета. Биологические науки.- 2010.- Т. 3-1.- С. 26-39.; Lam W.W.M., Ho S.S.Y., Leung S.F., Wong K.S. et al. Cerebral blood flow measurement by color velocity imaging in radiation-induced carotid stenosis // Ultrasound.- 2003.- Vol. 22, № 10.- P 1055-1060.

  7. 7
    Academic Journal

    Source: Medical Visualization; № 2 (2016); 29-35 ; Медицинская визуализация; № 2 (2016); 29-35 ; 2408-9516 ; 1607-0763

    File Description: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/259/260; Аметов A.C. Сахарный диабет 2 типа. Проблемы и решение. 2-е изд. М.: ГЭОТАР-Медиа, 2014. 1032 с.; Hingorani A., La Muraglia G.M., Henke P. et al. The management of diabetic foot: A clinical practice guideline by the Society for Vascular Surgery in collaboration with the American Podiatric Medical Association and the Society for Vascular Medicine. J. Vasc. Surg. 2016; 63 (2, Suppl.): 3-21.; Malhotra R., Chan C.S., Nather A. Osteomyelitis in the diabetic foot. Diabet. Foot Ankle. 2014; 30; 5.; Bargellini I., Piaggesi A., Cicorelli A. et al. Predictive value of angiographic scores for the integrated management of the ischemic diabetic foot. J. Vasc. Surg. 2013; 57 (5): 1204-1212.; Abbas Z.G. Reducing diabetic limb amputations in developing countries. Exp. Rev. End. Metab. 2015; 10: 425-434.; Manzi M., Cester G., Palena L.M. et al. Vascular imaging of the foot: the first step toward endovascular recanalization. Radiographics. 2011; 31 (6): 1623-1636.; Röhrl B., Kunz R.P., Oberholzer K. et al. Gadofosveset - enhanced MR angiography of the pedal arteries in patients with diabetes mellitus and comparison with selective intraarterial DSA. Eur. Radiol. 2009; 19 (12): 2993-3001.; Prince M.R., Chabra S.G., Watts R. et al. Contrast material travel times in patients undergoing peripheral MR angiography. Radiology. 2002; 224 (1): 55-61.; Игнатович И.Н. Влияние ранней диагностики на результаты реваскуляризации при нейроишемической форме синдрома диабетической стопы. Военная медицина. 2013; 4: 41-44.; Li J., Zhao J.G., Li M.H. Lower limb vascular disease in diabetic patients: a study with calf compression contrast-enhanced magnetic resonance angiography at 3.0 Tesla. Acad. Radiol. 2011; 18 (6): 755-763.; Шаповал С.Д., Савон И.Л., Смирнова Д.А., Софил каныч М.М. Характеристика микроциркуляции нижних конечностей у пациентов с осложненным синдромом диабетической стопы. Новости хирургии. 2013; 21 (3): 54-60.; Игнатович И.Н., Кондратенко Г.Г., Шкода М.В., Добровольская Ю.В. Критерии оценки артериального кровотока нижней конечности при синдроме диабетической стопы. Хирургия. Восточная Европа-2013; 2: 32-40.; https://medvis.vidar.ru/jour/article/view/259

  8. 8
    Academic Journal

    Source: Complex Issues of Cardiovascular Diseases; № 3 (2014); 139-145 ; Комплексные проблемы сердечно-сосудистых заболеваний; № 3 (2014); 139-145 ; 2587-9537 ; 2306-1278 ; 10.17802/2306-1278-2014-3

    File Description: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/74/77; К вопросу о некоторых механизмах физиологии оттока по венам шеи / А. Ю. Иванов [и др.] // Клиническая физиология кровообращения. 2009. № 3. С. 16–21.; Курбатов В. П., Тулупов А. А., Летягин А. Ю. Топографические особенности крупных венозных структур и вертебро-базилярной системы головы и шеи // Медицинская визуализация. 2004. № 2. С. 85–92.; Савельева Л. А., Тулупов А. А. Особенности венозного оттока от головного мозга по данным магнитно-резонансной ангиографии // Вестник Новосибирского государственного университета. Серия: Биология, клиническая медицина. 2009. Т. 7, вып. 1. С. 36–40.; Радиологические критерии стенозирования брахиоцефальных вен и клиническая выраженность церебрального венозного застоя / С. Е. Семенов [и др.] // Клиническая физиология кровообращения. 2013. № 2. С. 35–44.; Тулупов А. А., Савельева Л. А. Возможности фазоконтрастной магнитно-резонансной ангиографии в количественной оценке интракраниального венозного кровотока // Медицинская визуализация. 2009. № 1. С. 115–121.; Тулупов А. А., Савельева Л. А., Горев В. Н. МРТ-характеристики венозного оттока от головного мозга // Вестник НГУ. 2009. Т. 7, вып. 3. С. 34–40.; Тулупов А. А., Савельева Л. А., Горев В. Н. Функциональный анализ венозного оттока от головного мозга в условиях нормы по данным магнитно-резонансной томографии // Клиническая физиология кровообращения. 2009. № 2. С. 65–70.; Agostoni E. Headache in cerebral venous thrombosis // Neurology science. 2004. № 25. P. S206–S210.; Bergui M., Bradac G. B., Daniele D. Brain lesions due to cerebral venous thrombosis do not correlate with sinus thrombosis // Neuroradiology. 1999. № 41. P. 419–424.; Bousser M.-G. Cerebral venous thrombosis: diagnosis and management // Journal of neurology. 2000. № 247. P. 252–258.; Bruijn S. F., Haan R. J., Stam J. Clinical features and prognostic factors of cerebral venous sinus thrombosis in a prospective series of 59 patients // Journal of neurology, neurosurgery and psychiatry. 2001. № 70. P. 105–108.; Kimber J. Cerebral venous sinus thrombosis // Q. J. Med. 2002. Vol. 95. P. 137–142.; Stam J. Thrombosis of the cerebral veins and sinuses // The new England journal of medicine. 2005. № 352. P. 1791–1798.; Cerebral venous thrombosis: diagnostic features of phase-contrast MR angiography / A. Tulupov [et al.] // Applied Magnetic Resonance. 2011. Vol. 41, № 2. P. 551–560.

  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20