-
1Academic Journal
Authors: N. S. Kolesnik, A. A. Margun
Source: Научно-технический вестник информационных технологий, механики и оптики, Vol 22, Iss 3, Pp 492-500 (2024)
Subject Terms: детектирование отказов, локализация отказов, двигатель постоянного тока, направленный генератор рассогласований, Information technology, T58.5-58.64
File Description: electronic resource
-
2Academic Journal
Authors: J. V. Bondarenko, E. Yu. Zybin, Ю. В. Бондаренко, Е. Ю. Зыбин
Source: Civil Aviation High Technologies; Том 24, № 5 (2021); 32-48 ; Научный вестник МГТУ ГА; Том 24, № 5 (2021); 32-48 ; 2542-0119 ; 2079-0619 ; 10.26467/2079-0619-2021-24-5
Subject Terms: пороговое значение, control system, sensors, health monitoring, failures detection and isolation, nonparametric criterion, sensitivity, threshold value, система управления, датчики, контроль технического состояния, обнаружение и локализация отказов, непараметрический критерий, чувствительность
File Description: application/pdf
Relation: https://avia.mstuca.ru/jour/article/view/1868/1267; Kosyanchuk V., Selvesyuk N., Kulchak A. Aircraft control law reconfiguration // Aviation. 2015. Vol. 19, no. 1. P. 14–18. DOI:10.3846/16487788.2015.1015290; Reppa V., Polycarpou M.M., Panayiotou C.G. Sensor fault diagnosis // Foundations and trends in systems and control. 2016. Vol. 3, no. 1-2. P. 1–248. DOI:10.1561/2600000007; Lopes P.V.P. Model-based sensor fault detection in an autonomous solar-powered aircraft / P.V.P. Lopes, L. Hsu, M. Vilzmann, K. Kondak // FT2019. Proceedings of the 10th Aerospace Technology Congress, 2019. No. 162. P. 247–254. DOI:10.3384/ecp19162029; Prabhu S., Anitha G. An innovative analytic redundancy approach to air data sensor fault detection // The Aeronautical Journal. 2020. Vol. 124, no. 1273. P. 346–367. DOI:10.1017/aer.2019.143; Fravolini M.L. Experimental interval models for the robust fault detection of aircraft air data sensors / M.L. Fravolini, M.R. Napolitano, G.Del Core, U. Papa // Control Engineering Practice. 2018. Vol. 78. P. 196–212. DOI: https://doi.org/10.1016/j.conengprac.2018.07.002; Косьянчук В.В. Контроль и диагностирование подсистем в замкнутом контуре управления // Известия Российской академии наук. Теория и системы управления. 2004. № 1. С. 67–76.; Tidriri K. Bridging data-driven and model-based approaches for process fault diagnosis and health monitoring: A review of researches and future challenges / K. Tidriri, N. Chatti, S. Verron, T. Tiplica // Annual Reviews in Control. 2016. Vol. 42. P. 63–81. DOI:10.1016/j.arcontrol.2016.09.008; Fravolini M.L. Data-driven schemes for robust fault detection of air data system sensors / M.L. Fravolini, G. Del Core, U. Papa, P. Valigi, M.R. Napolitano // IEEE Transactions on Control Systems Technology. 2017. Vol. 27, no. 1. P. 234–248. DOI:10.1109/TCST.2017.2758345; Wang K., Chen J., Song Z. Data-driven sensor fault diagnosis systems for linear feedback control loops // Journal of Process Control. 2017. Vol. 54. P. 152–171. DOI:10.1016/j.jprocont.2017.03.001; Cartocci N. A Comprehensive case study of data-driven methods for robust aircraft sensor fault isolation / N. Cartocci, M.R. Napolitano, G. Costante, M.L. Fravolini // Sensors. 2021. Vol. 21, no. 5. P. 1645. DOI:10.3390/s21051645; Gao T. MEMS inertial sensor fault diagnosis using a cnn-based data-driven method / T. Gao, W. Sheng, M. Zhou, B. Fang, L. Zheng // International Journal of Pattern Recognition and Artificial Intelligence. 2020. Vol. 34, no. 14. P. 2059048. DOI:10.1142/s021800142059048x; Sheriff M.Z. Process monitoring using data-based fault detection techniques: Comparative studies / M.Z. Sheriff, Ch. Botre, M. Mansouri, H. Nounou, M. Nounou, M.N. Karim // Fault Diagnosis and Detection. 2017. Chapter 10. P. 237–261. DOI:10.5772/67347; Swischuk R., Allaire D. A machine learning approach to aircraft sensor error detection and correction // Journal of Computing and Information Science in Engineering. 2019. Vol. 19, no. 4. ID: 041009. 12 p. DOI:10.1115/1.4043567; Xu S. A survey of knowledge-based intelligent fault diagnosis techniques [Электронный ресурс] // Journal of Physics: Conference Series. IOP Publishing, 2019. Vol. 1187, no. 3. ID: 032006. DOI:10.1088/1742-6596/1187/3/032006 (дата обращения: 12.04.2021).; Balzano F. Air data sensor fault detection with an augmented floating limiter / F. Balzano, M.L. Fravolini, M.R. Napolitano, S. d’Urso, M. Crispoltoni, G. del Core [Электронный ресурс] // International Journal of Aerospace Engineering. 2018. Vol. 2018. Article ID: 1072056. 16 p. DOI:10.1155/2018/1072056 (дата обращения: 12.04.2021).; Bondarenko Ju.V., Zybin E.Yu. Functional control of the technical condition method for aircraft control system sensors under complete parametric uncertainty // Civil Aviation High Technologies. 2020. Vol. 23, no. 3. P. 39–51. DOI:10.26467/2079-0619-2020-23-3-39-51; Bondarenko Yu.V. Nonparametric method for aircraft sensor fault real-time detection and localization / Yu.V. Bondarenko, A.Yu. Chekin, E.Yu. Zybin, V.V. Kosyanchuk // IOP Conference Series: Materials Science and Engineering, 2020. Vol. 714. ID: 012004. 6 p. DOI:10.1088/1757-899X/714/1/012004; Зыбин Е.Ю., Мисриханов М.Ш., Рябченко В.Н. О минимальной параметризации решений линейных матричных уравнений // Вестник ИГЭУ. 2004. № 6. С. 127–131.; https://avia.mstuca.ru/jour/article/view/1868
-
3Academic Journal
Authors: J. V. Bondarenko, E. Yu. Zybin, Ю. В. Бондаренко, Е. Ю. Зыбин
Contributors: The study was conducted with the financial support of the Russian Foundation for Basic Research, grants №20-08-01215, №18-08-00453, №19-29-06091, Исследование выполнено при финансовой поддержке РФФИ в рамках научных проектов № 20-08-01215, №18-08-00453, №19-29-06091
Source: Civil Aviation High Technologies; Том 23, № 3 (2020); 39-51 ; Научный вестник МГТУ ГА; Том 23, № 3 (2020); 39-51 ; 2542-0119 ; 2079-0619 ; 10.26467/2079-0619-2020-23-3
Subject Terms: непараметрический метод, control system, sensors, health monitoring, localization and detection failure, parametric uncertainty, nonparametric method, система управления, датчики, контроль технического состояния, обнаружение и локализация отказов, параметрическая неопределенность
File Description: application/pdf
Relation: https://avia.mstuca.ru/jour/article/view/1702/1207; Gertler J. Fault detection and diagnosis in engineering systems. CRC Press, 2019. 504 p.; Edwards C., Lombaerts T., Smaili H. Fault tolerant flight control: a benchmark challenge. Berlin: Springer-Verlag, 2010. 560 p. DOI:10.1007/978-3-642-11690-2; Fekih A. Fault diagnosis and fault tolerant control design for aerospace systems: a bibliographical review // American Control Conference (ACC). IEEE, 2014. Pp. 1286–1291. DOI:10.1109/ACC.2014.6859271; Samy I., Postlethwaite I., Gu D.W. Survey and application of sensor fault detection and isolation schemes // Control Engineering Practice. 2011. Vol. 19, iss. 7. Pp. 658–674. DOI:10.1016/j.conengprac.2011.03.002; Dai X., Gao Z. From model, signal to knowledge: a data-driven perspective of fault detection and diagnosis // IEEE Transactions on Industrial Informatics. 2013. Vol. 9, iss. 4. Pp. 2226–2238. DOI:10.1109/TII.2013.2243743; Tidriri K. Bridging data-driven and model-based approaches for process fault diagnosis and health monitoring: A review of researches and future challenges / K. Tidriri, N. Chatti, S. Verron, T. Tiplica // Annual Reviews in Control. 2016. Vol. 42. Pp. 63–81. DOI:10.1016/j.arcontrol.2016.09.008; Gao Z., Cecati C., Ding S.X. A Survey of fault diagnosis and fault-tolerant techniques – Part I: Fault diagnosis with model-based and signal-based approaches // IEEE transactions on industrial electronics. 2015. Vol. 62, iss. 6. Pp. 3757–3767. DOI:10.1109/TIE.2015.2417501; Gao Z., Cecati C., Ding S.X. A survey of fault diagnosis and fault-tolerant techniques – Part II: Fault diagnosis with knowledge-based and hybrid/active-based approaches // IEEE transactions on industrial electronics. 2015. Vol. 62, iss. 6. Pp. 3768–3774. DOI:10.1109/TIE.2015.2419013; Zolghadri A. The challenge of advanced model-based FDIR for real-world flight-critical applications // Engineering Applications of Artificial Intelligence. 2018. Vol. 68. Pp. 249–259. DOI:10.1016/j.engappai.2017.10.012; Lopes P.V.P. Model-based sensor fault detection in an autonomous solar-powered aircraft / P.V.P. Lopes, L. Hsu, M. Vilzmann, K. Kondak // Proceedings of the 10th Aerospace Technology Congress. FTF, 2019. No. 162. Pp. 247–254. DOI:10.3384/ecp19162029; Ansari A., Bernstein D.S. Aircraft sensor fault detection using state and input estimation // American Control Conference (ACC). IEEE, 2016. Pp. 5951–5956. DOI:10.1109/ACC.2016.7526603; Зыбин Е.Ю. Об идентифицируемости линейных динамических систем в замкнутом контуре в режиме нормальной эксплуатации // Известия ЮФУ. Технические науки. 2015. № 4 (165). С. 160–170.; Xu S. A survey of knowledge-based intelligent fault diagnosis techniques // Journal of Physics: Conference Series. IOP Publishing. 2019. Vol. 1187, no. 3: 032006. 6 p. DOI:10.1088/1742-6596/1187/3/032006; Swischuk R., Allaire D. A machine learning approach to aircraft sensor error detection and correction // Journal of Computing and Information Science in Engineering. 2019. Vol. 19, no. 4: 041009. 12 p. DOI:10.1115/1.4043567; Жирабок А.Н., Шумский А.Е., Павлов С.В. Диагностирование линейных динамических систем непараметрическим методом // АиТ. 2017. № 7. С. 3–21.; Ding S.X. Data-driven design of fault diagnosis and fault-tolerant control systems. London: Springer-Verlag, 2014. 300 p. DOI:10.1007/978-1-4471-6410-4; Hakem A., Pekpe K.M., Cocquempot V. Fault detection and isolation for switching systems using a parameter-free method. Diagnostics and Prognostics of Engineering Systems: Methods and Techniques. IGI Global, 2013. Pp. 98–118. DOI:10.4018/978-1-4666-2095-7.ch005; Wang K., Chen J., Song Z. Data-driven sensor fault diagnosis systems for linear feedback control loops // Journal of Process Control. 2017. Vol. 54. Pp. 152–171. DOI:10.1016/j.jprocont.2017.03.001; Fravolini M.L. Data-driven schemes for robust fault detection of air data system sensors / M.L. Fravolini, G.D. Core, U. Papa, P. Valigi, M.R. Napolitano // IEEE Transactions on Control Systems Technology. 2017. Vol. 27, iss. 1. Pp. 234–248. DOI:10.1109/TCST.2017.2758345; Зыбин Е.Ю., Мисриханов М.Ш., Рябченко В.Н. О минимальной параметризации решений линейных матричных уравнений // Вестник ИГЭУ. 2004. № 6. С. 127–131.; https://avia.mstuca.ru/jour/article/view/1702