Showing 1 - 20 results of 73 for search '"липополисахариды"', query time: 0.61s Refine Results
  1. 1
    Academic Journal

    Contributors: Авторы заявляют об отсутствии финансирования исследования.

    Source: Complex Issues of Cardiovascular Diseases; Том 14, № 1 (2025); 232-240 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 14, № 1 (2025); 232-240 ; 2587-9537 ; 2306-1278

    File Description: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1428/1003; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1428/1561; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1428/1562; Khan MA, Hashim MJ, Mustafa H, et al. Global Epidemiology of Ischemic Heart Disease: Results from the Global Burden of Disease Study. Cureus. 2020 Jul 23;12(7):e9349. doi:10.7759/cureus.9349.; WHO. Noncommunicable Diseases: Key Facts. 2023. URL: https://www.who.int/ru/news-room/fact-sheets/detail/noncommunicable-diseases; Драпкина О.М., Котова М.Б., Максимов С.А., и др. Приверженность здоровому образу жизни в России по данным исследования ЭССЕ-РФ: есть ли «ковидный след»? Кардиоваскулярная терапия и профилактика. 2023;22(8S):3788. doi:10.15829/1728-8800-2023-3788. EDN: OEMWFL.; Ghosh, S., Whitley, C. S., Haribabu, B. & Jala, V. R. Regulation of intestinal barrier function by microbial metabolites. Cell Mol. Gastroenterol. Hepatol. 2021;11:1463–1482. DOI:10.1016/j.jcmgh.2021.02.007; Vieira E.L., Leonel A.J., Sad A.P., Beltrao N.R., Costa T.F., Ferreira T.M. Oral administration of sodium butyrate attenuates inflammation and mucosal lesion in experimental acute ulcerative colitis. J.Nutr.Biochem. 2012. Vol. 23, N 5. P. 430–436. DOI:10.1016/j.jnutbio.2011.01.007; Pluznick J. Microbial short-chain fatty acids and blood pressure regulation. Curr. Hypertens. Rep. 2017;19(4):25. DOI:10.1007/s1 1906-017-0722-5; Pluznick JL, Protzko RJ, Gevorgyan H, et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci U S A 2013; 110(11): 4410-5.; Li M, van Esch BCAM, Henricks PAJ, Garssen J, Folkerts G. Time and Concentration Dependent Effects of Short Chain Fatty Acids on Lipopolysaccharide- or Tumor Necrosis Factor α-Induced Endothelial Activation. Front Pharmacol. 2018 Mar 19;9:233. doi:10.3389/fphar.2018.00233.; Li M, van Esch BCAM, Henricks PAJ, Folkerts G, Garssen J. The Anti-inflammatory Effects of Short Chain Fatty Acids on Lipopolysaccharide- or Tumor Necrosis Factor α-Stimulated Endothelial Cells via Activation of GPR41/43 and Inhibition of HDACs. Front Pharmacol. 2018 May 23;9:533. doi:10.3389/fphar.2018.00533; Aguilar, E.C.; Santos, L.C.; Leonel, A.J.; et al. Oral butyrate reduces oxidative stress in atherosclerotic lesion sites by a mechanism involving NADPH oxidase down-regulation in endothelial cells. J. Nutr. Biochem. 2016, 34, 99–105 DOI:10.1016/j.jnutbio.2016.05.002; Matey-Hernandez, M.L.; Williams, F.M.K.; Potter, T.; et al. Genetic and microbiome influence on lipid metabolism and dyslipidemia. Physiol. Genom. 2018;50:117–126. DOI:10.1152/physiolgenomics.00053.2017; Кардиоваскулярная профилактика 2022. Российские национальные рекомендации / под ред. С.А. Бойцова, Н.В. Погосовой. Москва, 2022. 357 с.; Tabas, I. 2016 Russell Ross Memorial Lecture in Vascular Biology: Molecular–Cellular Mechanisms in the Progression of Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2017; 37: 183–189. doi:10.1161/ATVBAHA.116.308036.; Ridker P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 2017; 377:1119–1131. doi:10.1056/NEJMoa1707914.; Nidorf S. M. et al. Colchicine in patients with chronic coronary disease. N. Engl. J. Med. 2020; 383:1838–1847. DOI:10.1056/NEJMoa2021372; Imamura F. Micha R. Khatibzadeh S. Fahimi S. Shi P. Powles J. Mozaffarian D. Global Burden of Diseases Nutrition and Chronic Diseases Expert Group (NutriCoDE). Dietary quality among men and women in 187 countries in 1990 and 2010: a systematic assessment. Lancet Glob. Health. 2015; 3: e132-e142. DOI:10.1016/S2214-109X(14)70381-X; Bhupathiraju S.N. Tobias D.K. Malik V.S. et al. Glycemic index, glycemic load, and risk of type 2 diabetes: results from 3 large US cohorts and an updated meta-analysis. Am. J. Clin. Nutr. 2014; 100: 218-232 DOI:10.3945/ajcn.113.079533; Emoto T., Yamashita T., Sasaki N. et al. Analysis of gut microbiota in coronary artery disease patients: a possible link between gut microbiota and coronary artery disease // J. Atheroscler. Thromb. 2016;23(8):908–921. DOI:10.5551/jat.32672; Jie Z., Xia H., Zhong S.L. et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 2017;8(1): 845. DOI: https:10.1038/s41467-017-00900-1; Фомина А.А., Коннова О.Н., Тихомирова Е.И., Коннова С.А. Влияние липополисахарида бактерий аzospirillum irakense КВС1 на индукцию синтеза цитокинов in vivo и in vitro фагоцитирующими макрофагами. Фундаментальные исследования. 2006;4: 55–56.; Драпкина О.М., Жамалов Л.М. Микробиота кишечника – новый фактор риска атеросклероза? Профилактическая медицина. 2022;25(11):92-97. DOI:10.17116/profmed20222511192; Обрезан А.А., Пономаренко Г.Н., Кантемирова Р.К., и др. Нерациональное питание и хронический стресс - ключевые причины возникновения сердечно-сосудистых заболеваний и преждевременного старения человека? Кардиология: новости, мнения, обучение. 2023;11(1): 8-18. DOI:10.33029/2309-1908-2023-11-1-8-18; Ивашкин В.Т., Кашух Е.А. Влияние потребления продуктов, содержащих L-карнитин и фосфатидилхолин, на продукцию проатерогенного метаболита триметиламин-N-оксида и кишечный микробиом у пациентов с ишемической болезнью сердца. Вопросы питания. 2019; 88(4): 25–33. DOI:10.24411/00428833-201910038; Gatarek, P.; Kaluzna-Czaplinska, J. Trimethylamine N-oxide (TMAO) in human health. EXCLI J. 2021; 20: 301–319. doi:10.17179/excli2020-3239; Zhu W., Gregory J.C., Org E. et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016;165(1):111–124. DOI:10.1016/j.cell.2016.02.011; Seldin M.M., Meng Y, Qi H. et al. Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-KB. J. Am. Heart Assoc. 2016;5(2). Article ID e002767. DOI:10.1161/JAHA.115.002767; Fu, Q.; Zhao, M.; Wang, D.; et al. Coronary Plaque Characterization Assessed by Optical Coherence Tomography and Plasma Trimethylamine-N-oxide Levels in Patients With Coronary Artery Disease. Am. J. Cardiol. 2016;118: 1311–1315. DOI:10.1016/j.amjcard.2016.07.071; Григорьева И.Н. Атеросклероз и триметиламин-N-оксид – потенциал кишечной микробиоты. Российский кардиологический журнал. 2022;27(9): 142–147. DOI:10.15829/1560-4071-2022-5038; Hiippala, K. et al. The potential of gut commensals in reinforcing intestinal barrier function and alleviating inflammation. Nutrients. 2018;10,988. DOI:10.3390/nu10080988; Paradis, T., Bègue, H., Basmaciyan, L., Dalle, F. & Bon, F. Tight junctions as a key for pathogens invasion in intestinal epithelial cells. Int. J. Mol. Sci. 2021;22: 2506. DOI:10.3390/ijms22052506; Wang, W., Xia, T. & Yu, X. Wogonin suppresses inflammatory response and maintains intestinal barrier function via TLR4-MyD88-TAK1-mediated NF-κB pathway in vitro. Inflamm. Res. 2015; 64: 423–431. DOI:10.1007/s00011-015-0822-0; Han, Y. H. et al. Enterically derived high-density lipoprotein restrains liver injury through the portal vein. Science 2021;373: 6729. DOI:10.1126/science.abe6729; Carpino, G. et al. Increased liver localization of lipopolysaccharides in human and experimental NAFLD. Hepatology. 2020; 72: 470–485. DOI:10.1002/hep.31056; Carnevale, R. et al. Low-grade endotoxaemia enhances artery thrombus growth via toll-like receptor 4: implication for myocardial infarction. Eur. Heart J. 2020; 41: 3156–3165. DOI:10.1093/eurheartj/ehz893; Liu, T., Zhang, L., Joo, D. & Sun, S. C. NF-κB signaling in inflammation. Sig. Transduct. Target. Ther. 2017; 2:17023. DOI:10.1038/sigtrans.2017.23; Hersoug, L. G., Møller, P. & Loft, S. Role of microbiota-derived lipopolysaccharide in adipose tissue inflammation, adipocyte size and pyroptosis during obesity. Nutr. Res. Rev. 2018; 31: 153–163. doi:10.1017/S0954422417000269.; Rehues, P. et al. Characterization of the LPS and 3OHFA contents in the lipoprotein fractions and lipoprotein particles of healthy men. Biomolecules 2021; 12(1): 47. DOI:10.3390/biom12010047; Carnevale, R. et al. Localization of lipopolysaccharide from Escherichia coli into human atherosclerotic plaque. Sci. Rep. 2018; 8, 3598. DOI:10.1038/s41598-018-22076-4; Koupenova, M., Livada, A. C. & Morrell, C. N. Platelet and megakaryocyte roles in innate and adaptive immunity. Circ. Res. 2022; 130: 288–308. DOI:10.1161/CIRCRESAHA.121.319821; Jaw, J. E. et al. Lung exposure to lipopolysaccharide causes atherosclerotic plaque destabilisation. Eur. Respir. J. 2016; 48, 205–215. DOI:10.1183/13993003.00972-2015; Mawhin, M.-A. et al. Neutrophils recruited by leukotriene B4 induce features of plaque destabilization during endotoxaemia. Cardiovasc. Res. 2018; 114, 1656–1666. DOI:10.1093/cvr/cvy130; Schumski, A. et al. Endotoxinemia accelerates atherosclerosis through electrostatic charge-mediated monocyte adhesion. Circulation 2021; 143: 254–266. DOI:10.1161/CIRCULATIONAHA.120.046677; Violi, F., Carnevale, R., Loffredo, L., Pignatelli, P. & Gallin, J. I. NADPH oxidase-2 and atherothrombosis: insight from chronic granulomatous disease. Arterioscler. Thromb. Vasc. Biol. 2017; 37: 218–225. DOI:10.1161/ATVBAHA.116.308351; Nocella, C. et al. Lipopolysaccharide as trigger of platelet aggregation via eicosanoid over-production. Thromb. Haemost. 2017;117: 1558–1570. DOI:10.1160/TH16-11-0857; Koupenova, M., Clancy, L., Corkrey, H. A. & Freedman, J. E. Circulating platelets as mediators of immunity, inflammation, and thrombosis. Circ. Res. 2018;122: 337–351. DOI:10.1161/CIRCRESAHA.117.310795; Barillà, F. et al. Toll-like receptor 4 activation in platelets from myocardial infarction patients. Thromb. Res. 2022; 209: 33–40. DOI:10.1016/j.thromres.2021.11.019; Asada, M. et al. Serum lipopolysaccharide-binding protein levels and the incidence of cardiovascular disease in a general Japanese population: the Hisayama study. J. Am. Heart Assoc. 2019; 8, e013628 DOI:10.1161/JAHA.119.013628; Leskelä, J. et al. Genetic profile of endotoxemia reveals an association with thromboembolism and stroke. J. Am. Heart Assoc. 2021; 10, e022482. doi:10.1161/JAHA.121.022482; Zhou, X. et al. Gut-dependent microbial translocation induces inflammation and cardiovascular events after ST-elevation myocardial infarction. Microbiome 2018; 6: 66. DOI:10.1186/s40168-018-0441-4; Amar, J. Microbiota-host crosstalk: a bridge between cardiovascular risk factors, diet, and cardiovascular disease. Am. J. Hypertens. 2018;31: 941–944. DOI:10.1093/ajh/hpy067; De Filippis, F. et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 2016; 65: 1812–1821. DOI:10.1136/gutjnl-2015-309957; Bartimoccia, S. et al. Extra virgin olive oil reduces gut permeability and metabolic endotoxemia in diabetic patients. Nutrients 2022; 14: 2153. DOI:10.3390/nu14102153; Guevara-Cruz, M. et al. Improvement of lipoprotein profile and metabolic endotoxemia by a lifestyle intervention that modifies the gut microbiota in subjects with metabolic syndrome. J. Am. Heart Assoc. 2019; 8, e012401. DOI:10.1161/JAHA.119.012401; Cani, P. D. et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009; 58: 1091–1103. DOI:10.1136/gut.2008.165886

  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
    Academic Journal
  7. 7
  8. 8
    Academic Journal

    Source: Microbiology&Biotechnology; No. 3(53) (2021); 6-27 ; Микробиология и биотехнология; № 3(53) (2021); 6-27 ; Мікробіологія і біотехнологія; № 3(53) (2021); 6-27 ; 2307-4663 ; 2076-0558

    File Description: application/pdf

  9. 9
    Academic Journal

    Contributors: Работа выполнена при финансовой поддержке фонда содействия развитию малых форм предприятий в научно-технической сфере по программе «УМНИК-Хелснет-НТИ-2017»

    Source: Russian Journal of Infection and Immunity; Vol 11, No 1 (2021); 93-100 ; Инфекция и иммунитет; Vol 11, No 1 (2021); 93-100 ; 2313-7398 ; 2220-7619

    File Description: application/pdf

  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
    Academic Journal

    Contributors: Работа выполнена в рамках государственного задания № 0478-2017-006 «Общие механизмы ответа врожденного иммунитета при сепсисе и аллергических заболеваниях».

    Source: Medical Immunology (Russia); Том 21, № 4 (2019); 789-796 ; Медицинская иммунология; Том 21, № 4 (2019); 789-796 ; 2313-741X ; 1563-0625 ; 10.15789/1563-0625-2019-4

    File Description: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/1884/1177; Agache I., Ciobanu C., Agache C., Anghel M. Increased serum IL-17 is an independent risk factor for severe asthma. Respir. Med., 2010, Vol. 104, no. 8, pp. 1131-1137.; Andersson U., Matsuda T. Human interleukin 6 and tumor necrosis factor alpha production studied at a single-cell level. Eur. J. Immunol., 1989. Vol. 19, no. 6, pp. 1157-1160.; Arend W.P., Interleukin-1 receptor antagonist. Adv. Immunol., 1993, Vol. 54, pp. 167-227.; Arend W.P., Malyak M., Guthridge C.J., Gabay C. Interleukin-1 receptor antagonist: role in biology. Annu. Rev. Immunol., 1998, Vol. 16, pp. 27-55.; Arend W.P. The balance between IL-1 and IL-1Ra in disease. Cytokine Growth Factor Rev., 2002, Vol. 13, no. 4-5, pp. 323-340.; Arend W.P., Gaba C. Physiologic role of interleukin-1 receptor antagonist. Arthritis Res., 2000, Vol. 2, no. 4, pp. 245-248.; Atkinson T.P. Is asthma an infectious disease? New evidence. Curr. Allergy. Asthma Rep., 2013, Vol. 13, no. 6, pp. 702-709.; Baines K.J., Simpson J.L., Wood L.G., Scott R.J., Gibson P.G. Transcriptional phenotypes of asthma defined by gene expression profiling of induced sputum samples. J. Allergy. Clin. Immunol., 2011, Vol. 127, no. 1, pp. 153-160.; Becker K.J., Dankwa D., Lee R., Schulze J., Zierath D., Tanzi P., Cain K., Dressel A., Shibata D., Weinstein J. Stroke, IL- 1ra, IL1RN, infection and outcome. Neurocrit. Care., 2014, Vol. 21, no. 1, pp. 140-146.; Berry M.A., Brightling C., Pavord I., Wardlaw A. TNF-alpha in asthma. Curr. Opin. Pharmacol., 2007, Vol. 7, no. 3, pp. 279-282.; Berry M.A., Hargadon B., Shelley M., Parker D., Shaw D.E., Green R.H., Bradding P., Brightling C.E., Wardlaw A.J., Pavord I.D. Evidence of a role of tumor necrosis factor alpha in refractory asthma. N. Engl. J. Med., 2006, Vol. 354, no. 7, pp. 697-708.; Boguniewicz M., Schneider L.C., Milgrom H., Newell D., Kelly N., Tam P., Izu A.E., Jaffe H.S., Bucalo L.R., Leung D.Y. Treatment of steroid-dependent asthma with recombinant interferon-gamma. Clin. Exp. Allergy, 1993, Vol. 23, no. 9, pp. 785-790.; de Bont N., Netea M.G., Rovers C., Smilde T., Hijmans A., Demacker P.N. LPS-induced release of IL-1 beta, IL-1Ra, IL- 6, and TNF-alpha in whole blood from patients with familial hypercholesterolemia: no effect of cholesterol-lowering treatment.J. Interferon Cytokine Res., 2006, Vol. 26, no. 2, pp. 101-107.; Cookson B. The alliance of genes and environment in asthma and allergy. Nature, 1999, Vol. 402, B5-11.; Cunha F.Q., Moncada S., Liew F.Y. Interleukin-10 (IL-10) inhibits the induction of nitric oxide synthase by interferongamma in murine macrophages. Biochem. Biophys. Res. Commun., 1992, Vol. 182, no. 3, pp. 1155-1159.; Davies R.J., Wang J., Jiahua W,. Abdelaziz M., Calderon M.A., Khair O., Devalia J.L., Rusznak C. New insights into the understanding of asthma. Chest, 1997, Vol. 111, pp. 2-10.; Desai D., Brightling C. TNF-alpha antagonism in severe asthma? Recent Pat. Inflamm. Allergy Drug Discov., 2010, Vol. 4, no. 3, pp. 193-200.; Earl C.S., An S.Q., Ryan R.P. The changing face of asthma and its relation with microbes. Trends Microbiol., 2015, Vol. 23, no. 7, pp. 408-418.; Ghaffari J., Rafiei A.R., Ajami A., Mahdavi M., Hoshiar D. Serum interleukins 6 and 8 in mild and severe asthmatic patients, is it difference? Caspian J. Intern. Med., 2011, Vol. 2, no. 2, pp. 226-228.; Godwin M.S., Blackburn J., Steele C. IL-1R and IL-1RA differentially contribute to immunopathogenesis during fungal asthma. J. Immunol., 2017, Vol. 198, pp. 53-54.; Gomes N.E., Brunialti M.K., Mendes M.E., Freudenberg M., Galanos C., Salomão R. Lipopolysaccharide-induced expression of cell surface receptors and cell activation of neutrophils and monocytes in whole human blood. Braz. J. Med. Biol. Res., 2010, Vol. 43, no. 9, pp. 853-858.; Jansky L., Reymanova P., Kopecky J. Dynamics of cytokine production in human peripheral blood mononuclear cells stimulated by LPS or Infected by borrelia. Physiol. Res., 2003, Vol. 52, no. 6, pp. 593-598.; Holt P.G., Macaubas C., Stumbles P.A., Sly P.D. The role of allergy in the development of asthma. Nature, 1999, Vol. 402, B12-17.; Karjalainen J., Hulkkonen J., Nieminen M.M., Huhtala H., Aromaa A., Klaukka T., Hurme M. Interleukin-10 gene promoter region polymorphism is associated with eosinophil count and circulating immunoglobulin E in adult asthma. Clin. Exp. Allergy., 2003, Vol. 33, no. 1, pp. 78-83.; Holgate S.T., Davies D.E., Powell R.M., Howarth P.H., Haitchi H.M., Holloway J.W. Local genetic and environmental factors in asthma disease pathogenesis: chronicity and persistence mechanisms. Eur. Respir. J., 2007, Vol. 29, no. 4, pp. 793-803.; Kim Y., Lee S., Kim Y.S., Lawler S., Gho Y.S., Kim Y.K., Hwang H.J. Regulation of Th1/Th2 cells in asthma development: a mathematical model. Math. Biosci. Eng., 2013, Vol. 10, no. 4, pp. 1095-1133.; Kitchens R.L., Thompson P.A. Modulatory effects of sCD14 and LBP on LPS-host cell interactions. J. Endotoxin Res., 2005, Vol. 11, no. 4, pp. 225-229.; Kumolosasi E., Salim E., Jantan I., Ahmad W. Kinetics of intracellular, extracellular and production of pro-inflammatory cytokines in lipopolysaccharide stimulated human peripheral blood mononuclear cells. Trop. J. Pharm. Res., 2014, Vol. 13, pp. 536-543.; Liu G., Zhu R., Li B. TNF-alpha and IL-8 of the patients with allergic asthma. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2005, Vol. 25, no. 3, pp. 274-275.; McCracken J.L., Veeranki S.P., Ameredes B.T., Calhoun W.J. Diagnosis and management of asthma in adults: a review. JAMA, 2017, Vol. 318, no. 3, pp. 279-290.; Muszynski J.A., Nofziger R., Greathouse K., Nateri J., Hanson-Huber L., Steele L., Nicol K., Groner J.I., Besner G.E., Raffel C., Geyer S., El-Assal O., Hall M.W. Innate immune function predicts the development of nosocomial infection in critically injured children. Shock, 2014, Vol. 42, no. 4, pp. 313-321.; Nelson H.S. The importance of allergens in the development of asthma and the persistence of symptoms. Dis. Mon., 2001, Vol. 47, pp. 5-15.; Peters M.C. Measures of gene expression in sputum cells can identify T(H)2-high and T(H)2-low subtypes of asthma. J. Allergy Clin. Immunol., 2014, Vol. 133, no. 2, pp. 388-394.; Poynter M.E., Irvin C.G. Interleukin-6 as a biomarker for asthma: hype or is there something else? Eur. Respir. J., 2016, Vol. 48, no. 4, pp. 979-981.; Ray A., Oriss T.B., Wenzel S.E. Emerging molecular phenotypes of asthma. Am. J. Physiol. Lung Cell Mol. Physiol., 2015, Vol. 308, no. 2, pp. L130-140.; Rearte B., Landoni V., Laborde E., Fernández G., Isturiz M. Differential effects of glucocorticoids in the establishment and maintenance of endotoxin tolerance. Clin. Exp. Immunol., 2010, Vol. 159, no. 2, pp. 208-216.; Rincon M., Irvin C.G. Role of IL-6 in Asthma and other inflammatory pulmonary diseases. Int. J. Biol. Sci., 2012, Vol. 8, no. 9, pp. 1281-1290.; Saccani S., Polentarutti N., Penton-Rol G., Sims J.E., Mantovani A. Divergent effects of LPS on expression of IL-1 receptor family members in mononuclear phagocytes in vitro and in vivo. Cytokine, 1998, Vol. 10, no. 10, pp. 773-780.; Schnare M., Barton G.M., Holt A.C., Takeda K., Akira S., Medzhitov R. Toll-like receptors control activation of adaptive immune responses. Nat. Immunol., 2001, Vol. 2, no. 10, pp. 947-950.; Silva M.J., Santana M.B.R., Pitangueira H.M., Marques C.R., Carneiro V.L., Figueiredo C.A., Costa R.S. Glucocorticoid resistant asthma: the potential contribution of IL-17. Biomark. J., 2016, Vol. 1, p. 6.; Sousa A.R., Lane S.J., Nakhosteen J.A., Lee T.H., Poston R.N. Expression of interleukin-1 beta (IL-1beta) and interleukin-1 receptor antagonist (IL-1ra) on asthmatic bronchial epithelium. Am. J. Respir. Crit. Care Med., 1996, Vol. 154, no. 4, Pt 1, pp. 1061-1066.; Thomas S.S., Chhabra S.K. A study on the serum levels of interleukin-1beta in bronchial asthma. J. Indian. Med. Assoc., 2003, Vol. 101, no. 5, pp. 282-284.; Tillie-Leblond I., Pugin J., Marquette C.H., Lamblin C., Saulnier F., Brichet A., Wallaert B., Tonnel A.B., Gosset P. Balance between proinflammatory cytokines and their inhibitors in bronchial lavage from patients with status asthmaticus. Am. J. Resp. Crit. Care Med., 1999, Vol. 159, no. 2, pp. 487-494.; Uwaezuoke S.N., Ayuk A.C., Eze J.N. Severe bronchial asthma in children: a review of novel biomarkers used as predictors of the disease. J. Asthma Allergy, 2018, Vol. 11, pp. 11-18.; Vercelli D., Jabara H.H., Arai K., Yokota T., Geha R.S. Endogenous interleukin 6 plays an obligatory role in interleukin 4-dependent human IgE synthesis. Eur. J. Immunol., 1989, Vol. 19, no. 8, pp. 1419-1424.; Wegmann M. Th2 cells as targets for therapeutic intervention in allergic bronchial asthma. Expert Rev. Mol. Diagn., 2009, Vol. 9, no. 1, p. 85-100.; Wohlleben G., Erb K.J. Immune stimulatory strategies for the prevention and treatment of asthma. Curr. Pharm. Des., 2006, Vol. 12, no. 25, pp. 3281-3292.; Zahorska-Markiewicz B., Janowska J., Olszanecka-Glinianowicz М., Zurakowski A. Serum concentrations of TNF-α and soluble TNF-α receptors in obesity. Int. J. Obes. Relat. Metab. Disord., 2000, Vol. 24, no. 11, pp. 1392- 1395.; Zhu Z., Tang W., Ray A., Wu Y., Einarsson O., Landry M.L., Gwaltney J., Elias J.A. Rhinovirus stimulation of interleukin-6 in vivo and in vitro: Evidence for nuclear factor-kB-dependent transcriptional activation. J. Clin. Invest., 1996, Vol. 97, no. 2, pp. 421-430.; https://www.mimmun.ru/mimmun/article/view/1884

  15. 15
    Academic Journal

    Source: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 14, № 5 (2017); 42-50 ; Вестник анестезиологии и реаниматологии; Том 14, № 5 (2017); 42-50 ; 2541-8653 ; 2078-5658

    File Description: application/pdf

    Relation: https://www.vair-journal.com/jour/article/view/181/219; Cohen J. The immunopathogenesis of sepsis // Nature. – 2002. – Vol. 420. – P. 885–891.; Cruz D. N., Antonelli M., Fumagalli R. et al. Early use of polymyxin B hemoperfusion in abdominal septic shock: the EUPHAS randomized controlled trial // JAMA. – 2009. – Vol. 301. – P. 2445–2452.; Cruz D. N., Perazella M. A., Bellomo R. et al. Effectiveness of polymyxin B-immobilized fiber column in sepsis: a systematic review // Crit. Care. – 2007. – Vol. 11. – P. 1–12.; Engel C., Brunkhorst F. M., Bone H. G. et al. Epidemiology of sepsis in Germany: results from a national prospective multicenter study // Intens. Care Med. – 2007. – Vol. 33, № 4. – P. 606–618.; Esteban E., Ferrer R., Alsina L., Artigas A. Immunomodulation in Sepsis: The role of endotoxin removal by polymyxin B-immobilized cartridge // Mediat. Inflammation. – 2013. – Article ID 507539, 12 p.; Kushi H. et al. Early hemoperfusion with an immobilized polymyxin B fiber column eliminates humoral mediators and improves pulmonary oxygenation // Crit. Care. – 2005. – Vol. 9. – P. 653–661.; Marshall J. C., Foster D., Vincent J.-L. et al. Diagnostic and prognostic implications of endotoxemia in critical illness: results of the MEDIC study // J. Infect. Dis. – 2004. – Vol. 190. – P. 527–534.; Martin G. S., Mannino D. M., Eaton S., Moss M. The epidemiology of sepsis in the United States from 1979 through 2000 // New Engl. J. Med. – 2003. – Vol. 348. – P. 1546–1554.; Sato T., Shoji H., Koga N. Endotoxin adsorption by polymyxin B-immobilized fiber column in patients with systemic inflammatory response syndrome: the Japanese experience // Ther. Apher. Dial. – 2003. – Vol. 7, № 2. – P. 252–258.; Shimizu T., Hanasawa K., Sato K. et al. The clinical significance of serum procalcitonin levels following direct hemoperfusion with polymyxin B-immobilized fiber column in septic patients with colorectal perforation // Eur. Surg. Res. – 2009. – Vol. 42. – P. 109–117.; Shoji H. Extracorporeal endotoxin removal for the treatment of sepsis: endotoxin adsorption cartridge (Toraymyxin) // Ther. Apher. Dial. – 2003. – Vol. 7, № 1. – P. 108–114.; Stewart I., Schluter P. J., Shaw G. R. Cyanobacterial lipopolysaccharides and human health – a review // Environ Health. – 2006. – Vol. 5, № 7. – P. 1–23.; Tani T., Hanasawa K., Endo Y. et al. Therapeutic apheresis for septic patients with organ disfunction: hemoperfusion using a polymyxin B-immobilized column // Artif. Org. – 1998. – Vol. 22, № 12. – P. 1038–1044.; Tani T., Shoji H., Guadagni G., Parego A. Extracorporeal Removal of Endotoxin: The Polymyxin B-Immobilized Fiber Cartridge / Ronco C., Piccinni P., Rosner M. H. (eds) Endotoxemia and Endotoxin Shock: Disease, Diagnosis and Therapy. Contrib. Nephrol. Basel, Karger. – 2010. – Vol. 167. – P. 35.; Tani T., Shoji H., Guadagni G., Parego A. Extracorporeal Removal of Endotoxin: The Polymyxin B-Immobilized Fiber Cartridge / Ronco C., Piccinni P., Rosner M. H. (eds) Endotoxemia and Endotoxin Shock: Disease, Diagnosis and Therapy. Contrib. Nephrol. Basel, Karger. – 2010. – Vol. 167. – P. 129.; Vincent J. L., Sakr Y., Sprung C. L. et al. Sepsis Occurrence in Acutely Ill Patients Investigators. Sepsis in European intensive care units: results of the SOAP study // Crit. Care Med. – 2006. – Vol. 34, № 2. – P. 344–353.; Zhou F., Peng Z., Murugan R., Kellum J. A. Blood purification and mortality in sepsis: a meta-analysis of randomized trials // Crit. Care Med. – 2013. – Vol. 41. – P. 2209–2220.

  16. 16
    Academic Journal
  17. 17
  18. 18
  19. 19
  20. 20