Showing 1 - 6 results of 6 for search '"липоксигеназы"', query time: 0.45s Refine Results
  1. 1
    Academic Journal

    Contributors: This work was supported by the Russian Foundation for Basic Research and Krasnodar Kray Ministry of Education, Science, and Youth, project r_mol_a 19-416-233033. Plant material was provided under project 0683-2019-0002 for gene pool preservation, Ministry of Science and Higher Education of the Russian Federation.

    Source: Vavilov Journal of Genetics and Breeding; Том 24, № 6 (2020); 598-604 ; Вавиловский журнал генетики и селекции; Том 24, № 6 (2020); 598-604 ; 2500-3259 ; 10.18699/VJ20.647

    File Description: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/2774/1420; Гвасалия М.В. Спонтанные и индуцированные сорта и формы чая (Camellia sinensis (L.) Kuntze) во влажных субтропиках России и Абхазии, перспективы их размножения и сохранения в культуре in vitro. Краснодар, 2015. [Gvasaliya M.V. Spontaneous and Induced Cultivars and Forms of Tea (Camellia sinensis (L.) Kuntze) in Humid Subtropics of Russia and Georgia: Prospects for their Cultivation and in vitro Conservation. Krasnodar, 2015. (in Russian)]; Самарина Л.С., Малюкова Л.С., Гвасалия М.В., Ефремов А.М., Маляровская В.И., Лошкарёва С.В., Туов М.Т. Генетические механизмы акклиматизации чайного растения (Camellia sinensis (L.) Kuntze) к холодовому стрессу. Вавиловский журнал генетики и селекции. 2019;23(8):958­963. DOI 10.18699/VJ19.572. [Samarina L.S., Malyukova L.S., Gvasaliya M.V., Efremov A.M., Malyarovskaya V.I., Loshkareva S.V., Tuov M.T. Genes underlying cold acclimation in the tea plant (Camellia sinensis (L.) Kuntze). Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2019;23(8):958­963. DOI 10.18699/VJ19.572. (in Russian)]; Туов М.Т., Рындин А.В. Итоги изучения перспективных гибридов чая в субтропиках Российской Федерации. Субтропическое и декоративное садоводство. 2011;44:101­109. [Tuov M.T., Ryndin A.V. The results of studying prospective hybrids of tea plant in subtropics of the Russian Federation. Subtropicheskoye i Dekorativnoye Sadovodstvo = Subtropical and Ornamental Horticulture. 2011;44:101­109. (in Russian)]; Bajji M., Kinet J.­M., Lutts S. The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regul. 2002;36:61­70. https://doi.org/10.1023/A:1014732714549.; Ban Q., Wang X., Pan C., Wang Y., Kong L., Jiang H., Xu Y., Wang W., Pan Y., Li Y., Jiang Ch. Comparative analysis of the response and gene regulation in cold resistant and susceptible tea plants. PLoS One. 2017;12(12):e0188514. DOI 10.1371/journal.pone.0188514.; Chen J., Gao T., Wan S., Zhang Y., Yang J., Yu Y., Wang W. Genomewide identification, classification and expression analysis of the HSP gene superfamily in tea plant (Camellia sinensis). Int. J. Mol. Sci. 2018;19:2633. DOI 10.3390/ijms19092633.; Cui X., Wang Y.­X., Liu Z.­W., Wang W.­L., Li H., Zhuang J. Transcriptome­wide identification and expression profile analysis of the bHLH family genes in Camellia sinensis. Funct. Integr. Genomics. 2018;18:489­503. https://doi.org/10.1007/s10142-018-0608-x.; Dubouzet J.G., Sakuma Y., Ito Y., Kasuga M., Dubouzet E.G., Miura S., Seki M., Shinozaki K., Yamaguchi­Shinozaki K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought­, high­salt­ and coldresponsive gene expression. Plant J. 2003;33:751e763.; Hanin M., Brini F., Ebel Ch., Toda Y., Takeda Sh., Masmoudi K. Plant dehydrins and stress tolerance. Plant Signal. Behav. 2011;6(10): 1503­1509. DOI 10.4161/psb.6.10.17088.; Hao X., Horvath D.P., Chao W.S., Yang Y., Wang X., Xiao B. Identification and evaluation of reliable reference genes for quantitative real­time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze). Int. J. Mol. Sci. 2014;15:22155­22172. DOI 10.3390/ijms151 222155.; Hao X., Wang L., Zeng J., Yang Y., Wang X. Response and adaptation mechanisms of tea plant to low­temperature stress. In: Han W.Y., Li X., Ahammed G. (Eds.) Stress Physiology of Tea in the Face of Climate Change. Singapore: Springer, 2018:39­61. https://doi.org/10.1007/978-981-13-2140-5_3.; Li L., Lu X., Ma H., Lyu D. Jasmonic acid regulates the ascorbateglutathione cycle in Malus baccata Borkh. roots under low rootzone temperature. Acta Physiol. Plant. 2017;39:174.; Li Y., Wang X., Ban Q., Zhu X., Jiang Ch., Wei Ch., Bennetzen J.L. Comparative transcriptomic analysis reveals gene expression associated with cold adaptation in the tea plant Camellia sinensis. BMC Genomics. 2019;20(1):624. DOI 10.1186/s12864-019-5988-3.; Megha S., Basu U., Kav N.N.V. Regulation of low temperature stress in plants by microRNAs. Plant Cell Environ. 2018;41:1­15.; Morsy M.R., Almutairi A.M., Gibbons J., Yun S.J., de Los Reyes B.G. The OsLti6 genes encoding low­molecular­weight membrane proteins are differentially expressed in rice cultivars with contrasting sensitivity to low temperature. Gene. 2005;344:171e180.; Shen W., Li H., Teng R., Wang Y., Wang W., Zhuang J. Genomic and transcriptomic analyses of HD-Zip family transcription factors and their responses to abiotic stress in tea plant (Camellia sinensis). Genomics. 2018. DOI 10.1016/j.ygeno.2018.07.009.; Somerville C. Direct tests of the role of membrane lipid composition in low temperature­induced photoinhibition and chilling sensitivity in plants and cyanobacteria. Proc. Natl. Acad. Sci. USA. 1995; 92:6215e6218.; Szekely G., Abraham E., Cseplo A., Rigó G., Zsigmond L., Csiszár J., Ayaydin F., Strizhov N., Jásik J., Schmelzer E., Koncz C., Szabados L. Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J. 2008;53(1):11­28. https://doi.org/10.1111/j.1365-313X.2007.03318.x.; Thomashow M.F. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999;50:571­599.; Wang Y., Jiang C.J., Li Y.Y., Wei C.L., Deng W.W. CsICE1 and CsCBF1: two transcription factors involved in cold responses in Camellia sinensis. Plant Cell Rep. 2012;31:27­34. DOI 10.1007/s00299-011-1136-5.; Wang Y.­X., Liu Z.­W., Wu Z.­J., Li H., Zhuang J. Transcriptomewide identification and expression analysis of the NAC gene family in tea plant [Camellia sinensis (L.) O. Kuntze]. PLoS One. 2016a; 11(11):e0166727. DOI 10.1371/journal.pone.0166727.; Wang Y., Shu Z., Wang W., Jiang X., Li D., Pan J., Li X. CsWRKY2, a novel WRKY gene from Camellia sinensis, is involved in cold and drought stress responses. Biol. Plant. 2016b;60:443­451. DOI 10.1007/s10535-016-0618-2.; Yuan H.Y., Zhu X.P., Zeng W., Yang H.M., Sun N., Xie S.X., Cheng L. Isolation and transcription activation analysis of the CsCBF1 gene from Camellia sinensis. Acta Botanica Boreali-Occidentalia Sinica. 2013;110:147­151.; Yue C., Cao H.L., Wang L., Zhou Y.H., Huang Y.T., Hao X.Y., Wang Y.C., Wang B., Yang Y.J., Wang X.C. Effects of CA on sugar metabolism and sugar­related gene expression in tea plant during the winter season. Plant Mol. Biol. 2015;88:591­608. DOI 10.1007/s11103-015-0345-7.; Zhu J., Wang X., Guo L., Xu Q., Zhao S., Li F., Yan X., Liu Sh., Wei Ch. Characterization and alternative splicing profiles of the lipoxygenase gene family in tea plant (Camellia sinensis). Plant Cell Physiol. 2018;59(9):1765­1781. DOI 10.1093/pcp/pcy091.; https://vavilov.elpub.ru/jour/article/view/2774

  2. 2
  3. 3
  4. 4
  5. 5
  6. 6