Εμφανίζονται 1 - 20 Αποτελέσματα από 64 για την αναζήτηση '"лимфогенное метастазирование"', χρόνος αναζήτησης: 0,89δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: Siberian journal of oncology; Том 22, № 6 (2023); 35-44 ; Сибирский онкологический журнал; Том 22, № 6 (2023); 35-44 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2017-0-31-36

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/2833/1178; Саевец В.В., Семенов Ю.А., Мухин А.А., Таратонов А.В., Ивахно М.Н., Шмидт А.В. Лимфаденэктомия при онкогинекологической патологии: оценка формирования лимфатических кист и выявления метастазов в зависимости от количества удаленных лимфатических узлов. Уральский медицинский журнал. 2021; 20(4): 31–7. doi:10.52420/2071-5943-2021-20-4-31-37.; Состояние онкологической помощи населению России в 2020 году. Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М., 2021. 252 с.; Кравец О.А., Морхов К.Ю., Нечушкина В.М., Новикова Е.Г., Новикова О.В., Хохлова С.В., Чулкова О.В. Клинические рекомендации по диагностике и лечению больных раком эндометрия. Общероссийский союз общественных объединений. Ассоциация онкологов России. 15 с.; Анпилогов С.В., Шевчук А.С., Новикова Е.Г. Лапароскопическая экстирпация матки с тазовой лимфаденэктомией как альтернатива лапаротомии при лечении рака эндометрия. Злокачественные опухоли. 2016; (4): 41–7. doi:10.18027/2224-5057-2016-4-41-47.; Нечушкина В.М., Морхов К.Ю., Егорова А.В. Выбор объема хирургического лечения у больных раком тела матки. Злокачественные опухоли. 2020; 3s1: 3–10. doi:10.18027/2224-5057-2019-10-3s1-3-10.; Colombo N., Creutzberg C., Amant F., Bosse T., González-Martín A., Ledermann J., Marth C., Nout R., Querleu D., Mirza M.R., Sessa C.; ESMO-ESGO-ESTRO Endometrial Consensus Conference Working Group. ESMO-ESGO-ESTRO Consensus Conference on Endometrial Cancer: diagnosis, treatment and follow-up. Ann Oncol. 2016; 27(1): 16–41. doi:10.1093/annonc/mdv484.; Очиров М.О., Кишкина А.Ю., Коломиец Л.А., Чернов В.И. Биопсия сторожевых лимфатических узлов при хирургическом лечении рака эндометрия: история и современность. Опухоли женской репродуктивной системы. 2018; 14(4): 65–71. doi:10.17650/1994-4098-2018-14-4-65-71.; Нечушкина В.М., Коломиец Л.А., Кравец О.А., Морхов К.Ю., Новикова Е.Г., Новикова О.В., Тюляндина А.С., Ульрих Е.А., Феденко А.А., Хохлова С.В. Практические рекомендации по лекарственному лечению рака тела матки и сарком матки. Злокачественные опухоли. 2021; 11(3s2): 218–32. doi:10.18027/2224-5057-2021-11-3s2-14.; Todo Y., Kato H., Kaneuchi M., Watari H., Takeda M., Sakuragi N. Survival efect of para-aortic lymphadenectomy in endometrial cancer (SEPAL study): a retrospective cohort analysis. Lancet. 2010; 375(9721): 1165–72. doi:10.1016/S0140-6736(09)62002-X.; Petousis S., Christidis P., Margioula-Siarkou C., Papanikolaou A., Dinas K., Mavromatidis G., Guyon F., Rodolakis A., Vergote I., Kalogiannidi I. Combined pelvic and para-aortic is superior to only pelvic lymphadenectomy in intermediate and high-risk endometrial cancer: a systematic review and meta-analysis. Arch Gynecol Obstet. 2020; 302(1): 249–63. doi:10.1007/s00404-020-05587-2.; Guo W., Cai J., Li M., Wang H., Shen Y. Survival benefits of pelvic lymphadenectomy versus pelvic and para-aortic lymphadenectomy in patients with endometrial cancer: A meta-analysis. Medicine (Baltimore). 2018; 97(1). doi:10.1097/MD.0000000000009520.; Frost J.A., Webster K.E., Bryant A., Morrison J. Lymphadenectomy for the management of endometrial cancer. Cochrane Database Syst Rev. 2017; 10(10). doi:10.1002/14651858.CD007585.pub4.; Беришвили А.И., Ли О.В., Кочоян Т.М., Левкина Н.В., Керимов Р.А., Поликарпова С.Б. Сторожевые лимфатические узлы при раке тела матки. Опухоли женской репродуктивной системы. 2017; 17(2): 68–74. doi:10.17650/1994-4098-2017-13-2-68-74.; Антонова И.Б., Алешикова О.И., Ригер А.Н., Мамурова Г.А. Диагностическая значимость лимфаденэктомии и биопсии сторожевого лимфоузла у пациенток с I и II стадией рака тела матки. Доктор. Ру. 2021; 20(8): 59–63. doi:10.31550/1727-2378-2021-20-8-59-63.; Кочатков А.В., Харлов Н.С. Биопсия сторожевых лимфатических узлов, маркированных индоцианином зеленым, в хирургическом лечении рака эндометрия: обзор литературы и собственный опыт. Сибирский онкологический журнал. 2019; 18(2): 52–7. doi:/10.21294/1814-4861-2019-18-2-52-57.; Bogani G., Murgia F., Ditto A., Raspagliesi F. Sentinel node mapping vs. lymphadenectomy in endometrial cancer: A systematic review and meta-analysis. Gynecol Oncol. 2019; 153(3): 676–83. doi:10.1016/j.ygyno.2019.03.254.; Accorsi G.S., Paiva L.L., Schmidt R., Vieira M., Reis R., Andrade C. Sentinel Lymph Node Mapping vs Systematic Lymphadenectomy for Endometrial Cancer: Surgical Morbidity and Lymphatic Complications. J Minim Invasive Gynecol. 2020; 27(4): 938–45. doi:10.1016/j.jmig.2019.07.030.; Grassi T., Dell’Orto F., Jaconi M., Lamanna M., De Ponti E., Paderno M., Landoni F., Leone B.E., Fruscio R., Buda A. Two ultrastaging protocols for the detection of lymph node metastases in early-stage cervical and endometrial cancers. Int J Gynecol Cancer. 2020; 30(9): 1404–10. doi:10.1136/ijgc-2020-001298.; Берлев И.В., Ульрих Е.А., Ибрагимов З.Н., Гусейнов К.Д., Городнова Т.В., Новиков С.Н., Крживицкий П.И., Роговская Т.Т., Мкртчян Г.Б., Трифанов Ю.Н., Некрасова Е.А., Бежанова Е.Г., Ахмеров Р.Д., Микая Н.А., Урманчеева А.Ф., Канаев С.В. Возможности детекции сигнальных лимфатических узлов при раке эндометрия радиоизотопным и флуоресцентным (ICG). Вопросы онкологии. 2017; 63(2): 304–8.; Мкртчян Г.Б., Ибрагимов З.Н., Бежанова Е.Г., Ульрих Е.А., Урманчеева А.Ф., Берлев И.В. Эффективность флуоресцентного метода с использованием индоцианин сигнальных лимфатических узлов у больных с раком шейки матки. Доктор.Ру. 2018; 146(2): 41–5.; Berek J.S., Matias-Guiu X., Creutzberg C., Fotopoulou C., Gaffney D., Kehoe S., Lindemann K., Mutch D., Concin N.; Endometrial Cancer Staging Subcommittee, FIGO Women’s Cancer Committee. FIGO staging of endometrial cancer: 2023. Int J Gynaecol Obstet. 2023; 162(2): 383–94. doi:10.1002/ijgo.14923.; https://www.siboncoj.ru/jour/article/view/2833

  2. 2
    Academic Journal

    Συνεισφορές: The study was carried out using the equipment of the Center for Collective Use “Medical Genomics” of the Tomsk National Research Medical Center, Работа выполнена с использованием оборудования ЦКП «Медицинская геномика» Томского НИМЦ

    Πηγή: Siberian journal of oncology; Том 22, № 1 (2023); 74-81 ; Сибирский онкологический журнал; Том 22, № 1 (2023); 74-81 ; 2312-3168 ; 1814-4861

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/2433/1078; Шевченко Ю.А., Кузнецова М.С., Христин А.А., Сидоров С.В., Сенников С.В. Современная терапия рака молочной железы: от тамоксифена до Т-клеточной инженерии. Сибирский онкологический журнал. 2022; 21(5): 109–22. doi:10.21294/1814-4861-2022-21-5-109-122.; Graziani V., Rodriguez-Hernandez I., Maiques O., Sanz-Moreno V. The amoeboid state as part of the epithelial-to-mesenchymal transition programme. Trends Cell Biol. 2022; 32(3): 228–42. doi:10.1016/j.tcb.2021.10.004.; Wong S.Y., Hynes R.O. Lymphatic or hematogenous dissemination: how does a metastatic tumor cell decide? Cell Cycle. 2006; 5(8): 812–7. doi:10.4161/cc.5.8.2646.; Zavyalova M.V., Denisov E.V., Tashireva L.A., Savelieva O.E., Kaigorodova E.V., Krakhmal N.V., Perelmuter V.M. Intravasation as a Key Step in Cancer Metastasis. Biochemistry (Mosc). 2019; 84(7): 762–72. doi:10.1134/S0006297919070071.; Yang Y., Zheng H., Zhan Y., Fan S. An emerging tumor invasion mechanism about the collective cell migration. Am J Transl Res. 2019; 11(9): 5301–12.; Pearson G.W. Control of Invasion by Epithelial-to-Mesenchymal Transition Programs during Metastasis. J Clin Med. 2019; 8(5): 646. doi:10.3390/jcm8050646.; Lin Y.H., Zhen Y.Y., Chien K.Y., Lee I.C., Lin W.C., Chen M.Y., Pai L.M. LIMCH1 regulates nonmuscle myosin-II activity and suppresses cell migration. Mol Biol Cell. 2017; 28(8): 1054–65. doi:10.1091/mbc.E15-04-0218.; Zavyalova M.V., Denisov E.V., Tashireva L.A., Gerashchenko T.S., Litviakov N.V., Skryabin N.A., Vtorushin S.V., Telegina N.S., Slonimskaya E.M., Cherdyntseva N.V., Perelmuter V.M. Phenotypic drift as a cause for intratumoral morphological heterogeneity of invasive ductal breast carcinoma not otherwise specified. Biores Open Access. 2013; 2(2): 148–54. doi:10.1089/biores.2012.0278.; Wittekind C. Diagnosis and staging of lymph node metastasis. Recent Results Cancer Res. 2000; 157: 20–8. doi:10.1007/978-3-64257151-0_3.; Alifanov V.V., Tashireva L.A., Zavyalova M.V., Perelmuter V.M. LIMCH1 as a New Potential Metastasis Predictor in Breast Cancer. Asian Pac J Cancer Prev. 2022; 23(11): 3947–52. doi:10.31557/APJCP.2022.23.11.3947.; https://www.siboncoj.ru/jour/article/view/2433

  3. 3
    Academic Journal

    Πηγή: Siberian journal of oncology; Том 22, № 5 (2023); 180-189 ; Сибирский онкологический журнал; Том 22, № 5 (2023); 180-189 ; 2312-3168 ; 1814-4861

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/2772/1168; Klimek M. Pulmonary lymphangitis carcinomatosis: systematic review and meta-analysis of case reports, 1970–2018. Postgrad Med. 2019 Jun; 131(5): 309–18. doi:10.1080/00325481.2019.1595982.; Doyle L. Gabriel Andral (1797–1876) and the first reports of lymphangitis carcinomatosa. J R Soc Med. 1989; 82(8): 491–3. doi:10.1177/014107688908200814.; Trapnell D.H. Radiological Appearances of Lymphangitis Carcinomatosa of the Lung. Thorax. 1964; 19: 251–60. doi:10.1136/thx.19.3.251.; Babu S., Satheeshan B., Geetha M., Salih S. A rare presentation of pulmonary lymphangitic carcinomatosis in cancer of lip: case report. World J Surg Oncol. 2011; 9: 77. doi:10.1186/1477-7819-9-77.; Yamamoto T., Nakane T., Kimura T., Osaki T. Pulmonary lymphangitic carcinomatosis from an oropharyngeal squamous cell carcinoma: a case report. Oral Oncol. 2000; 36(1): 125–8. doi:10.1016/s1368-8375(99)00060-3.; Tighe D., Cavilla S., Simcock R. Pulmonary lymphangitic carcinomatosis from head and neck squamous cell carcinoma. Int J Oral Maxillofac Surg. 2014; 43(7): 806–10. doi:10.1016/j.ijom.2013.12.003.; Iguchi H., Hashimoto K., Sunami K., Yamane H. A case of fatal respiratory failure after surgery for advanced supraglottic laryngeal carcinoma. Acta Otolaryngol Suppl. 2004; (554): 71–3. doi:10.1080/03655230410018327.; Zieske L.A., Myers E.N., Brown B.M. Pulmonary lymphangitic carcinomatosis from hypopharyngeal adenosquamous carcinoma. Head Neck Surg. 1988; 10(3): 195–8. doi:10.1002/hed.2890100308.; Fend F., Gruber U., Fritzsche H., Rothmund J., Breitfellner G., Mikuz G. Occult papillary carcinoma of the thyroid with pulmonary lymphangitic spread diagnosed by lung biopsy. Klin Wochenschr. 1989; 67(13): 687–90. doi:10.1007/BF01718031.; Digumarthy S.R., Fischman A.J., Kwek B.H., Aquino S.L. Fluorodeoxyglucose positron emission tomography pattern of pulmonary lymphangitic carcinomatosis. J Comput Assist Tomogr. 2005; 29(3): 346–9. doi:10.1097/01.rct.0000163952.03192.ef.; Jiménez-Fonseca P., Carmona-Bayonas A., Font C., PlasenciaMartínez J., Calvo-Temprano D., Otero R., Beato C., Biosca M., Sánchez M., Benegas M., Varona D., Faez L., Antonio M., de la Haba I., Madridano O., Solis M.P., Ramchandani A., Castañón E., Marchena P.J., Martín M., de la Peña F.A., Vicente V.; EPIPHANY study investigators and the Asociación de Investigación de la Enfermedad Tromboembólica de la Región de Murcia. The prognostic impact of additional intrathoracic findings in patients with cancer-related pulmonary embolism. Clin Transl Oncol. 2018; 20(2): 230–42. doi:10.1007/s12094-017-1713-3.; Belhassine M., Papakrivopoulou E., Venet C., Mestdagh C., Schroeven M. Gastric adenocarcinoma revealed by atypical pulmonary lymphangitic carcinomatosis. J Gastrointest Oncol. 2018; 9(6): 1207–12. doi:10.21037/jgo.2018.07.06.; Bruce D.M., Heys S.D., Eremin O. Lymphangitis carcinomatosa: a literature review. J R Coll Surg Edinb. 1996; 41(1): 7–13.; Pandey S., Ojha S. Delays in Diagnosis of Pulmonary Lymphangitic Carcinomatosis due to Benign Presentation. Case Rep Oncol Med. 2020. doi:10.1155/2020/4150924.; Okayama M., Kanemitsu Y., Oguri T., Asano T., Fukuda S., Ohkubo H., Takemura M., Maeno K., Ito Y., NIImi A. A Rare Case of Isolated Chronic Cough Caused by Pulmonary Lymphangitic Carcinomatosis as a Primary Manifestation of Rectum Carcinoma. Intern Med. 2018; 57(18): 2709–12. doi:10.2169/internalmedicine.0572-17.; Charest M., Armanious S. Prognostic implication of the lymphangitic carcinomatosis pattern on perfusion lung scan. Can Assoc Radiol J. 2012; 63(4): 294–303. doi:10.1016/j.carj.2011.04.004.; Prakash P., Kalra M.K., Sharma A., Shepard J.A., Digumarthy S.R. FDG PET/CT in assessment of pulmonary lymphangitic carcinomatosis. Am J Roentgenol. 2010; 194(1): 231–6. doi:10.2214/AJR.09.3059.; Yahng S.A., Kang H.H., Kim S.K., Lee S.H., Moon H.S., Lee B.Y., Kim H.S., Seo E.J. Erdheim-Chester disease with lung involvement mimicking pulmonary lymphangitic carcinomatosis. Am J Med Sci. 2009; 337(4): 302–4. doi:10.1097/MAJ.0b013e31818d7a64.; Im Y., Lee H., Lee H.Y., Baek S.Y., Jeong B.H., Lee K., Kim H., Kwon O.J., Han J., Lee K.S., Ahn M.J., Kim J., Um S.W. Prognosis of pulmonary lymphangitic carcinomatosis in patients with non-small cell lung cancer. Transl Lung Cancer Res. 2021; 10(11): 4130–40. doi:10.21037/tlcr-21-677.; https://www.siboncoj.ru/jour/article/view/2772

  4. 4
    Academic Journal

    Πηγή: Siberian journal of oncology; Том 21, № 5 (2022); 69-81 ; Сибирский онкологический журнал; Том 21, № 5 (2022); 69-81 ; 2312-3168 ; 1814-4861

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/2310/1032; Wu Y., Han C., Gong L., Wang Z., Liu J., Liu X., Chen X., Chong Y., Liang N., Li S. Metastatic Patterns of Mediastinal Lymph Nodes in SmallSize Non-small Cell Lung Cancer (T1b). Front Surg. 2020; 7. doi:10.3389/fsurg.2020.580203.; Sereno M., Rodríguez-Esteban I., Gómez-Raposo C., Merino M., López-Gómez M., Zambrana F., Casado E. Lung cancer and peritoneal carcinomatosis. Oncol Lett. 2013; 6(3): 705–8. doi:10.3892/ol.2013.1468.; Meza R., Meernik C., Jeon J., Cote M.L. Lung cancer incidence trends by gender, race and histology in the United States, 1973-2010. PLoS One. 2015; 10(3). doi:10.1371/journal.pone.0121323.; Yuan M., Liu J.Y., Zhang T., Zhang Y.D., Li H., Yu T.F. Prognostic Impact of the Findings on Thin-Section Computed Tomography in stage I lung adenocarcinoma with visceral pleural invasion. Sci Rep. 2018; 8(1): 4743. doi:10.1038/s41598-018-22853-1.; Lakha S., Gomez J.E., Flores R.M., Wisnivesky J.P. Prognostic significance of visceral pleural involvement in early-stage lung cancer. Chest. 2014; 146(6): 1619–26. doi:10.1378/chest.14-0204.; Савенкова О.В., Завьялова М.В., Бычков В.А., Чойнзонов Е.Л, Перельмутер В.М. Связь экспрессии матриксных металлопротеиназ с морфологической гетерогенностью, дифференцировкой опухоли и лимфогенным метастазированием плоскоклеточной карциномы гортани. Сибирский онкологический журнал. 2015; 1(1): 51–8.; An N., Leng X., Wang X., Sun Y., Chen Z. Survival comparison of Three histological subtypes of lung squamous cell carcinoma: A populationbased propensity score matching analysis. Lung Cancer. 2020; 142: 13–9. doi:10.1016/j.lungcan.2020.01.020.; Pankova O.V., Denisov E.V., Ponomaryova A.A., Gerashchenko T.S., Tuzikov S.A., Perelmuter V.M. Recurrence of squamous cell lung carcinoma is associated with the co-presence of reactive lesions in tumor-adjacent bronchial epithelium. Tumour Biol. 2016; 37(3): 3599–607. doi:10.1007/s13277-015-4196-2.; Pankova O.V., Rodionov E.O., Miller S.V., Tuzikov S.A., Tashireva L.A., Gerashchenko T.S., Denisov E.V., Perelmuter V.M. Neoadjuvant chemotherapy combined with intraoperative radiotherapy is effective to prevent recurrence in high-risk non-small cell lung cancer (NSCLC) patients. Transl Lung Cancer Res. 2020; 9(4): 988–99. doi:10.21037/tlcr-19-719.; Amin M.B., Greene F.L., Edge S.B., Compton C.C., Gershenwald J.E., Brookland R.K., Meyer L., Gress D.M., Byrd D.R., Winchester D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J Clin. 2017; 67(2): 93–9. doi:10.3322/caac.21388.; Nicholson A.G., Tsao M.S., Beasley M.B., Borczuk A.C., Brambilla E., Cooper W.A., Dacic S., Jain D., Kerr K.M., Lantuejoul S., Noguchi M., Papotti M., Rekhtman N., Scagliotti G., van Schil P., Sholl L., Yatabe Y., Yoshida A., Travis W.D. The 2021 WHO Classification of Lung Tumors: Impact of Advances Since 2015. J Thorac Oncol. 2022; 17(3): 362–87. doi:10.1016/j.jtho.2021.11.003.; Salgado R., Denkert C., Demaria S., Sirtaine N., Klauschen F., Pruneri G., Wienert S., Van den Eynden G., Baehner F.L., Penault-Llorca F., Perez E.A., Thompson E.A., Symmans W.F., Richardson A.L., Brock J., Criscitiello C., Bailey H., Ignatiadis M., Floris G., Sparano J., Kos Z., Nielsen T., Rimm D.L., Allison K.H., Reis-Filho J.S., Loibl S., Sotiriou C., Viale G., Badve S., Adams S., Willard-Gallo K., Loi S.; International TILs Working Group 2014. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol. 2015; 26(2): 259–71. doi:10.1093/annonc/mdu450.; https://www.siboncoj.ru/jour/article/view/2310

  5. 5
    Academic Journal

    Συνεισφορές: The study was carried out within the framework of the Russian Science Foundation grant No. 19-75-30016, Equipment of the Center for Collective Use «Medical Genomics» of the Tomsk NIMC., Работа выполнена в рамках гранта РНФ № 19-75-30016, Оборудование ЦКП «Медицинская геномика» Томского НИМЦ.

    Πηγή: Siberian journal of oncology; Том 21, № 5 (2022); 59-68 ; Сибирский онкологический журнал; Том 21, № 5 (2022); 59-68 ; 2312-3168 ; 1814-4861

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/2309/1031; Harbeck N., Gnant M. Breast cancer. Lancet. 2017; 389(10074): 1134–50. doi:10.1016/S0140-6736(16)31891-8.; Каприн А.Д., Александрова Л.М., Старинский В.В., Мамонтов А.С. Технологии диагностики и скрининга в раннем выявлении злокачественных новообразований. Онкология. Журнал им. П.А. Герцена. 2018; 7(1): 34–40. doi:10.17116/onkolog20187134–40.; Zalatnai A. Molecular aspects of stromal-parenchymal interactions in malignant neoplasms. Curr Mol Med. 2006; 6(6): 685–93. doi:10.2174/156652406778195053.; Psaila B., Lyden D. The metastatic niche: adapting the foreign soil. Nat Rev Cancer. 2009; 9(4): 285–93. doi:10.1038/nrc2621.; Augsten M. Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment. Front Oncol. 2014; 4: 62. doi:10.3389/fonc.2014.00062.; Luo H., Tu G., Liu Z., Liu M. Cancer-associated fibroblasts: a multifaceted driver of breast cancer progression. Cancer Lett. 2015; 361(2): 155–63. doi:10.1016/j.canlet.2015.02.018.; Karnoub A.E., Dash A.B., Vo A.P., Sullivan A., Brooks M.W, Bell G.W., Richardson A.L., Polyak K., Tubo R., Weinberg R.A. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007; 449(7162): 557–63. doi:10.1038/nature06188.; Sepúlveda P., Martinez-León J., García-Verdugo J.M. Neoangiogenesis with endothelial precursors for the treatment of ischemia. Transplant Proc. 2007; 39(7): 2089–94. doi:10.1016/j.transproceed.2007.07.009.; Timmermans F., Plum J., Yöder M.C., Ingram D.A., Vandekerckhove B., Case J. Endothelial progenitor cells: identity defined? J Cell Mol Med. 2009; 13(1): 87–102. doi:10.1111/j.1582-4934.2008.00598.x.; Lewis C.E., Pollard J.W. Distinct role of macrophages in different tumor microenvironments. Cancer Res. 2006; 66(2): 605–12. doi:10.1158/0008-5472.CAN-05-4005.; Cuiffo B.G., Karnoub A.E. Mesenchymal stem cells in tumor development: emerging roles and concepts. Cell Adh Migr. 2012; 6(3): 220–30. doi:10.4161/cam.20875.; Nishimura K., Semba S., Aoyagi K., Sasaki H., Yokozaki H. Mesenchymal stem cells provide an advantageous tumor microenvironment for the restoration of cancer stem cells. Pathobiology. 2012; 79(6): 290–306. doi:10.1159/000337296.; Botelho M.C., Alves H. Endothelial Progenitor Cells in Breast Cancer. Int J Immunother Cancer Res. 2016; 2: 1–2.; Sica A., Larghi P., Mancino A., Rubino L., Porta C., Totaro M.G., Rimoldi M., Biswas S.K., Allavena P., Mantovani A. Macrophage polarization in tumour progression. Semin Cancer Biol. 2008; 18(5): 349–55. doi:10.1016/j.semcancer.2008.03.004.; Noy R., Pollard J.W. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014; 41(1): 49–61. doi:10.1016/j.immuni.2014.06.010.; Fox J.M., Chamberlain G., Ashton B.A., Middleton J. Recent advances into the understanding of mesenchymal stem cell trafficking. Br J Haematol. 2007; 137(6): 491–502. doi:10.1111/j.1365-2141.2007.06610.x.; Oberoi P., Kamenjarin K., Ossa J.F.V., Uherek B., Bönig H., Wels W.S. Directed Differentiation of Mobilized Hematopoietic Stem and Progenitor Cells into Functional NK cells with Enhanced Antitumor Activity. Cells. 2020; 9(4): 811. doi:10.3390/cells9040811.; Jayasingam S.D., Citartan M., Thang T.H., Mat Zin A.A., Ang K.C., Ch’ng E.S. Evaluating the Polarization of Tumor-Associated Macrophages Into M1 and M2 Phenotypes in Human Cancer Tissue: Technicalities and Challenges in Routine Clinical Practice. Front Oncol. 2020; 9: 1512. doi:10.3389/fonc.2019.01512.; Klimek M. Pulmonary lymphangitis carcinomatosis: systematic review and meta-analysis of case reports, 1970-2018. Postgrad Med. 2019; 131(5): 309–18. doi:10.1080/00325481.2019.1595982.; https://www.siboncoj.ru/jour/article/view/2309

  6. 6
    Academic Journal

    Συνεισφορές: 0

    Πηγή: Almanac of Clinical Medicine; Vol 50, No 1 (2022); 31-37 ; Альманах клинической медицины; Vol 50, No 1 (2022); 31-37 ; 2587-9294 ; 2072-0505

    Περιγραφή αρχείου: application/pdf

  7. 7
    Academic Journal

    Συνεισφορές: Исследование выполнено при поддержке гранта Президента РФ НШ-2701.2020.7.

    Πηγή: Siberian journal of oncology; Том 19, № 3 (2020); 54-63 ; Сибирский онкологический журнал; Том 19, № 3 (2020); 54-63 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2020-19-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/1488/747; Candido J., Hagemann T. Cancer-related inflammation. J Clin Immunol. 2013 Jan; 33 Suppl 1: S79–84. doi:10.1007/s10875-012-9847-0.; Перельмутер В.М., Манских В.Н. Прениша как отсутствующее звено концепции метастатических ниш, объясняющее избирательное метастазирование злокачественных опухолей и форму метастатической болезни. Биохимия. 2012; 77(1): 130–139. doi:10.1134/S0006297912010142.; Barcellos-Hoff M.H., Lyden D., Wang T.C. The evolution of the cancer niche during multistage carcinogenesis. Nat Rev Cancer. 2013 Jul; 13(7): 511–8. doi:10.1038/nrc3536.; Retsky M., Demicheli R., Hrushesky W.J., Forget P., De Kock M., Gukas I., Rogers R.A., Baum M., Pachmann K., Vaidya J.S. Promising development from translational or perhaps anti-translational research in breast cancer. Clin Transl Med. 2012 Aug 28; 1(1): 17. doi:10.1186/2001-1326-1-17.; Zhao Z., Zhao X., Lu J., Xue J., Liu P., Mao H. Prognostic roles of neutrophil to lymphocyte ratio and platelet to lymphocyte ratio in ovarian cancer: a meta-analysis of retrospective studies. Arch Gynecol Obstet. 2018 Apr; 297(4): 849–857. doi:10.1007/s00404-018-4678-8.; Yu X., Wen Y., Lin Y., Zhang X., Chen Y., Wang W., Wang G., Zhang L. The value of preoperative Glasgow Prognostic Score and the C-Reactive Protein to Albumin Ratio as prognostic factors for long-term survival in pathological T1N0 esophageal squamous cell carcinoma. J Cancer. 2018 Feb 12; 9(5): 807–815. doi:10.7150/jca.22755.; Chen S., Guo J., Feng C., Ke Z., Chen L., Pan Y. The preoperative platelet-lymphocyte ratio versus neutrophil-lymphocyte ratio: which is better as a prognostic factor in oral squamous cell carcinoma? Ther Adv Med Oncol. 2016 May; 8(3): 160–7. doi:10.1177/1758834016638019.; Sun H., Yin C.Q., Liu Q., Wang F., Yuan C.H. Clinical Significance of Routine Blood Test-Associated Inflammatory Index in Breast Cancer Patients. Med Sci Monit. 2017 Oct 25; 23: 5090–5095. doi:10.12659/msm.906709.; Feng J.F., Chen S., Yang X. Systemic immune-inflammation index (SII) is a useful prognostic indicator for patients with squamous cell carcinoma of the esophagus. Medicine (Baltimore). 2017; 96(4): e5886. doi:10.1097/MD.0000000000005886.; Geng Y., Shao Y., Zhu D., Zheng X., Zhou Q., Zhou W., Ni X., Wu C., Jiang J. Systemic Immune-Inflammation Index Predicts Prognosis of Patients with Esophageal Squamous Cell Carcinoma: A Propensity Score-matched Analysis. Sci Rep. 2016 Dec 21; 6: 39482. doi:10.1038/srep39482.; Ma M., Yu N., Wu B. High systemic immune-inflammation index represents an unfavorable prognosis of malignant pleural mesothelioma. Cancer Manag Res. 2019 May 2; 11: 3973–3979. doi:10.2147/CMAR.S201269.; Stotz M., Pichler M., Absenger G., Szkandera J., Arminger F., Schaberl-Moser R., Samonigg H., Stojakovic T., Gerger A. The preoperative lymphocyte to monocyte ratio predicts clinical outcome in patients with stage III colon cancer. Br J Cancer. 2014 Jan 21; 110(2): 435–40. doi:10.1038/bjc.2013.785.; Chan J.C., Chan D.L., Diakos C.I., Engel A., Pavlakis N., Gill A., Clarke S.J. The Lymphocyte-to-Monocyte Ratio is a Superior Predictor of Overall Survival in Comparison to Established Biomarkers of Resectable Colorectal Cancer. Ann Surg. 2017 Mar; 265(3): 539–546. doi:10.1097/SLA.0000000000001743.; Селье Г., Саарма Ю.М., Лука А.Н., Хорол И.С. Стресс без дистресса. М., 1979. 126 с. [Selye H., Saarma Ju.M., Luka A.N., Horol I.S. Stress without Distress. Moscow, 1979. 126 p. (in Russian)].; Гаркави Л.Х., Квакина Е.Б., Уколова М.А. Адаптационные реакции и резистентность организма. Ростов-на-Дону, 1990. 256 с.; Karagiannis G.S., Pastoriza J.M., Wang Y., Harney A.S., Entenberg D., Pignatelli J., Sharma V.P., Xue E.A., Cheng E., D’Alfonso T.M., Jones J.G., Anampa J., Rohan T.E., Sparano J.A., Condeelis J.S., Oktay M.H. Neoadjuvant chemotherapy induces breast cancer metastasis through a TMEM-mediated mechanism. Sci Transl Med. 2017 Jul 5; 9(397): eaan0026. doi:10.1126/scitranslmed.aan0026.; Zhang Y., Xiao G., Wang R. Clinical significance of systemic immune-inflammation index (SII) and C-reactive protein-to-albumin ratio (CAR) in patients with esophageal cancer: a meta-analysis. Cancer Manag Res. 2019 May 7; 11: 4185–200. doi:10.2147/CMAR.S190006.; Shoenfeld Y., Gurewich Y., Gallant L.A., Pinkhas J. Prednisoneinduced leukocytosis. Influence of dosage, method and duration of administration on the degree of leukocytosis. Am J Med. 1981 Nov; 71(5): 773–8. doi:10.1016/0002-9343(81)90363-6.; https://www.siboncoj.ru/jour/article/view/1488

  8. 8
    Academic Journal

    Συνεισφορές: Исследование проведено при финансовой поддержке РФФИ и администрации Томской области (№18-415-703014).

    Πηγή: Siberian journal of oncology; Том 18, № 6 (2019); 67-74 ; Сибирский онкологический журнал; Том 18, № 6 (2019); 67-74 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2019-18-6

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/1245/687; Amin M.B., Greene F.L., Edge S.B., Compton C.C., Gershenwald J.E., Brookland R.K., Meyer L., Gress D.M., Byrd D.R., Winchester D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more «personalized» approach to cancer staging. CA Cancer J Clin. 2017 Mar; 67(2): 93–99. doi:10.3322/caac.21388.; Philip J., James R. Maxillary squamous cell carcinoma: An 11-year retrospective study of one regional cancer centre. Int J Oral Maxillofac Surg. 2014 Oct; 43(10): 1195–8. doi:10.1016/j.ijom.2014.05.020.; Montes D.M., Carlson E.R., Fernandes R., Ghali G.E., Lubek J., Ord R., Bell B., Dierks E., Schmidt B.L. Oral maxillary squamous carcinoma: An indication for neck dissection in the clinically negative neck. Head Neck. 2011 Nov; 33(11): 1581–5. doi:10.1002/hed.21631.; Yang X., Song X., Chu W., Li L., Ma L., Wu Y. Clinicopathological characteristics and outcome predictors in squamous cell carcinoma of the maxillary gingiva and hard palate. J Oral Maxillofac Surg. 2015 Jul; 73(7): 1429–36. doi:10.1016/j.joms.2014.12.034.; Boxberg M., Jesinghaus M., Dorfner C., Mogler C., Drecoll E., Warth A., Steiger K., Bollwein C., Meyer P., Wolff K.D., Kolk A., Weichert W. Tumour budding activity and cell nest size determine patient outcome in oral squamous cell carcinoma: proposal for an adjusted grading system. Histopathology. 2017 Jun; 70(7): 1125–1137. doi:10.1111/his.13173.; Савенкова О.В., Завьялова М.В., Бычков В.А., Чойнзонов Е.Л., Перельмутер В.М. Cвязь экспрессии матриксных металлопротеиназ с морфологической гетерогенностью, дифференцировкой опухоли и лимфогенным метастазированием плоскоклеточной карциномы гортани. Сибирский онкологический журнал. 2015; 1: 51–8.; deRuiter E.J., Ooft M.L., Devriese L.A., Willems S.M. The prognostic role of tumor infiltrating T-lymphocytes in squamous cell carcinoma of the head and neck: A systematic review and meta-analysis. Oncoimmunology. 2017 Aug 9; 6(11): e1356148. doi:10.1080/2162402X.2017.1356148.; Бычков В.А., Бондарь Л.Н., Чойнзонов Е.Л., Перельмутер В.М. Характер течения плоскоклеточных карцином головы и шеи в зависимости от морфологических особенностей исходной опухоли. Сибирский онкологический журнал. 2017; 16(2): 20–6. doi:10.21294/1814-4861-2017-16-2-20-26.; Salgado R., Denkert C., Demaria S., Sirtaine N., Klauschen F., Pruneri G., Wienert S., Van den Eynden G., Baehner F.L., Penault-Llorca F., Perez E.A., Thompson E.A., Symmans W.F., Richardson A.L., Brock J., Criscitiello C., Bailey H., Ignatiadis M., Floris G., Sparano J., Kos Z., Nielsen T., Rimm D.L., Allison K.H., Reis-Filho J.S., Loibl S., Sotiriou C., Viale G., Badve S., Adams S., Willard-Gallo K., Loi S. International TILs Working Group 2014. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol. 2015 Feb; 26(2): 259–71. doi:10.1093/annonc/mdu450.; Lyons J.G., Lobo E., Martorana A.M., Myerscough M.R. Clonal diversity in carcinomas: its implications for tumour progression and the contribution made to it by epithelial-mesenchymal transitions. Clin Exp Metastasis. 2008; 25(6): 665–77. doi:10.1007/s10585-007-9134-2.; Neelakantan D., Drasin D.J., Ford H.L. Intratumoral heterogeneity: Clonal cooperation in epithelial-to-mesenchymal transition and metastasis. Cell Adh Migr. 2015; 9(4): 265–76. doi:10.4161/19336918.2014.972761.; Cercelaru L., Stepan A.E., Mărgăritescu C., Osman A., Popa I.C., Florescu M.M., Simionescu C.E., Mărgăritescu O.C. E-cadherin, β-catenin and Snail immunoexpression in laryngeal squamous cell carcinoma. Rom J MorpholEmbryol. 2017; 58(3): 761–6.; Göppel J., Möckelmann N., Münscher A., Sauter G., Schumacher U. Expression of Epithelial-Mesenchymal Transition Regulating Transcription Factors in Head and Neck Squamous Cell Carcinomas. Anticancer Res. 2017 Oct; 37(10): 5435–5440. doi:10.21873/anticanres.11971.; Duray A., Demoulin S., Hubert P., Delvenne P., Saussez S. Immune suppression in head and neck cancers: a review. Clin Dev Immunol. 2010; 2010: 701657. doi:10.1155/2010/701657.; Czystowska M., Gooding W., Szczepanski M.J., Lopez-Abaitero A., Ferris R.L., Johnson J.T., Whiteside T.L. The immune signature of CD8(+) CCR7(+) T cells in the peripheral circulation associates with disease recurrence in patients with HNSCC. Clin Cancer Res. 2013 Feb 15; 19(4): 889–99. doi:10.1158/1078-0432.CCR-12-2191.; dos Santos M., Mercante A.M., Louro I.D., Gonçalves A.J., deCarvalho M.B., daSilva E.H., daSilva A.M. HIF1-alpha expression predicts survival of patients with squamous cell carcinoma of the oral cavity. Clin Cancer Res. 2013 Feb 15; 19(4): 889–99. doi:10.1158/1078-0432.CCR-12-2191.; Ames B.N., Wakimoto P. Are vitamin and mineral deficiencies a major cancer risk? Nat Rev Cancer. 2002 Sep; 2(9): 694–704. doi:10.1038/nrc886.; Bird R.P. The Emerging Role of Vitamin B6 in Inflammation and Carcinogenesis. Adv Food Nutr Res. 2018; 83: 151–194. doi:10.1016/bs.afnr.2017.11.004.; Wei S.C., Yang J. Forcing through Tumor Metastasis: The Interplay between Tissue Rigidity and Epithelial-Mesenchymal Transition. Trends Cell Biol. 2016; 26(2): 111–20. doi:10.1016/j.tcb.2015.09.009.; Mandal R., Şenbabaoğlu Y., Desrichard A., Havel J.J., Dalin M.G., Riaz N., Lee K.W., Ganly I., Hakimi A.A., Chan T.A., Morris L.G. The head and neck cancer immune landscape and its immunotherapeutic implications. JCI Insight. 2016 Oct 20; 1(17): e89829. doi:10.1172/jci.insight.89829.; Fridlender Z.G., Sun J., Kim S., Kapoor V., Cheng G., Ling L., Worthen G.S., Albelda S.M. Polarization of tumor-associated neutrophil phenotype by TGF-beta: «N1» versus «N2» TAN. Cancer Cell. 2009 Sep 8; 16(3): 183–94. doi:10.1016/j.ccr.2009.06.017.; Kumar A.T., Knops A., Swendseid B., Martinez-Outschoom U., Harshyne L., Philp N., Rodeck U., Luginbuhl A., Cognetti D., Johnson J., Curry J. Prognostic Significance of Tumor-Associated Macrophage Content in Head and Neck Squamous Cell Carcinoma: A Meta- Analysis. Front Oncol. 2019 Jul 23; 9: 656. doi:10.3389/fonc.2019.00656.; Kumar D., New J., Vishwakarma V., Joshi R., Enders J., Lin F., Dasari S., Gutierrez W.R., Leef G., Ponnurangam S., Chavan H., Ganaden L., Thornton M.M., Dai H., Tawfik O., Straub J., Shnayder Y., Kakarala K., Tsue T.T.,Girod D.A., Van Houten B., Anant S., Krishnamurthy P., Thomas S.M. Cancer-Associated Fibroblasts Drive Glycolysis in a Targetable Signaling Loop Implicated in Head and Neck Squamous Cell Carcinoma Progression. Cancer Res. 2018; 78(14): 3769–82. doi:10.1158/0008-5472.CAN-17-1076.; Stakheyeva M., Riabov V., Mitrofanova I., Litviakov N., Choynzonov E., Cherdyntseva N., Kzhyshkowska J. Role of the Immune Component of Tumor Microenvironment in the Efficiency of Cancer Treatment: Perspectives for the Personalized Therapy. Curr Pharm Des. 2017; 23(32): 4807–4826. doi:10.2174/1381612823666170714161703.; https://www.siboncoj.ru/jour/article/view/1245

  9. 9
    Academic Journal

    Πηγή: Medical Immunology (Russia); Том 21, № 6 (2019); 1115-1126 ; Медицинская иммунология; Том 21, № 6 (2019); 1115-1126 ; 2313-741X ; 1563-0625 ; 10.15789/1563-0625-2019-6

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/1764/1208; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1764/4965; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1764/4966; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1764/4967; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1764/4968; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1764/4969; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1764/4970; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1764/4971; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1764/4972; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1764/4973; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1764/4974; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1764/4975; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1764/4976; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1764/4977; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1764/4978; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1764/4979; Соснина А.В., Великая Н.В., Вараксин Н.А., Гришаев М.П., Аутеншлюс А.И. Роль цитокинов в патогенезе злокачественных новообразований. Новосибирск: Офсет, 2014. 128 с.; Cetean S., Cainap C., Constantin A., Cainap S., Gherman A., Oprean L., Hangan A., Oprean R. The importance of the granulocyte-colony stimulating factor in oncology. Clujul Med., 2015, Vol. 88, no. 4, pp. 468-472.; Coppe J., Desprez P., Krtolica A., Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol., 2010, Vol. 5, pp. 99-118.; Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet, 2005, Vol. 365, no. 1687, p. 717.; Gameiro C.M., Romao F., Castelo-Branco C. Menopause and aging: changes in the immune system - a review. Maturitas, 2010, Vol. 67, no. 4, p. 316.; Garcla-Tunon I., Ricote M., Ruiz A.A., Fraile B., Paniagua R., Royuela M. Influence of IFN-gamma and its receptors in human breast cancer. BMC Cancer, 2007, Vol. 7, p. 158.; Giordano S.B., Gradishar W. Breast cancer: updates and advances in 2016. Curr. Opin. Obstet. Gynecol., 2017, Vol. 29, no. 1, pp. 12-17.; Gonzalez H., Hagerling C., Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes and Dev., 2018, Vol. 32, no. 19-20, pp. 1267-1284.; Herrera A.C., Panis C., Victorino V.J., Campos F.C., Colado-Simao A.N., Cecchini A.L., Cecchini R. Molecular subtype is determinant on inflammatory status and immunological profile from invasive breast cancer patients. Cancer Immunol. Immunother., 2012, Vol. 61, no. 11, pp. 2193-201.; Keunhee O., Ok-Young L., Yeonju P., Myung W.S., Dong-Sup L. IL-1 p induces IL-6 production and increases invasiveness and estrogen-independent growth in a TG2-dependent manner in human breast cancer cells. BMC Cancer, 2016, Vol. 16, no. 1, p. 724.; Li Z., Jiang J., Wang Z., Zhang J., Xiao M., Wang C., Lu Y., Qin Z. Endogenous interleukin-4 promotes tumor development by increasing tumor cell resistance to apoptosis. Cancer Res., 2008, Vol. 68, no. 21, p. 94.; Mauer J., Denson J.L., Bruning J.C. Versatile functions for IL-6 in metabolism and cancer. Trends Immunol., 2015, Vol. 36, no. 2, pp. 92-101.; Nagini S. Breast cancer: current molecular therapeutic targets and new players. Anticancer Agents Med. Chem., 2017, Vol. 17, no. 2, pp. 152-163.; Pfeilschifter J., Kbditz R., Pfoh M., Schatz H. Changes in proinflammatory cytokine activity after menopause. Endocr. Rev., 2002, Vol. 23, no. 1, pp. 90-119.; Szomolay B., Eubank T.D., Roberts R.D., Marsh C.B., Friedman A. Modeling the inhibition of breast cancer growth by GM-CSF. J. Theor. Biol., 2012, Vol. 303, no. 141 p. 51.; Todaro M., Lombardo Y., Francipane M.G., Alea M.P., Cammareri P., Iovino F., Di Stefano A.B., di Bernardo C., Agrusa A., Condorelli G., Walczak H., Stassi G. Apoptosis resistance in epithelial tumors is mediated by tumor-cell-derived interleukin-4. Cell Death Differ., 2008, Vol. 4, no. 762, p. 72.; Tortorella C., Simone O., Piazzolla G., Stella I., Antonaci S. Age-related impairment of GM-CSF-induced signalling in neutrophils: role of SHP-1 and SOCS proteins. Ageing Res. Rev., 2007, Vol. 6, no. 2, pp. 81-93.; Yazdkhasti M., Tourzani Z.M., Roozbeh N., Hasanpour V. Saeieh S.E., Abdi F. The association between diabetes and age at the onset of menopause: a systematic review protocol. Syst. Rev., 2019, Vol. 8, no. 1, p. 80.; https://www.mimmun.ru/mimmun/article/view/1764

  10. 10
    Academic Journal

    Πηγή: Siberian journal of oncology; Том 18, № 5 (2019); 29-37 ; Сибирский онкологический журнал; Том 18, № 5 (2019); 29-37 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2019-18-5

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/1185/664; Fletcher C.D.M., Bridge J.A., Hogendoorn P.C.W., Mertens F. WHO Classification of Tumours of Soft Tissue and Bone. IARC: Lyon, 2013. 468 p.; Unni K.K., Inwards C.Y. Dahlin’s bone tumors: General aspects and data on 10,165 cases. 6th ed. 2010. Р. 402.; Sahin K., Bayram S., Salduz A. Calcaneal Ewing’s Sarcoma With Skip Metastases to Tarsals and Lymph Node Involvement: A Case Report. J Foot Ankle Surg. 2018 Jan Feb; 57(1): 162–166. doi:10.1053/j.jfas.2017.07.002.; Vázquez A.C., Flores P.G., Chilla Á.H. Involvement of Mediastinal Lymph Nodes by Ewing’s Sarcoma. Arch Bronconeumol. 2017 Apr; 53(4): 215–216. doi:10.1016/j.arbres.2016.08.003.; Pinto A., Dickman P., Parham D. Pathobiologic Markers of the Ewing Sarcoma Family of Tumors: State of the Art and Prediction of Behaviour. Sarcoma. 2011; 2011: 856190. doi:10.1155/2011/856190.; Devi A. Extraskeletal Ewings sarcoma of the paravertebral region with lymph node metastasis. University Journal of Pre and Para Clinical Sciences. 2016. 2(5): 1–5. doi:10.1016/j.canlet.2006.12.009.; Applebaum M.A., Worch J., Matthay K.K., Goldsby R., Neuhaus J., West D.C., DuBois S.G. Clinical Features and Outcomes in Patients with Extraskeletal Ewing Sarcoma. Cancer. 2011 Jul 1; 117(13): 3027–32. doi:10.1002/cncr.25840.; Llombart-Bosch A., Machado I., Navarro S., Bertoni F., Bacchini P., Alberghini M., Karzeladze A., Savelov N., Petrov S., Alvarado-Cabrero I., Mihaila D., Terrier P., Lopez-Guerrero J.A., Picci P. Histological heterogeneity of Ewing’s sarcoma/PNET: an immunohistochemical analysis of 415 genetically confirmed cases with clinical support. Virchows Arch. 2009 Nov; 455(5): 397–411. doi:10.1007/s00428-009-0842-7.; Loverro G., Resta L., Di Naro E., Caringella A.M., Mastrolia S.A., Vicino M., Tartagni M., Schonauer L.M. Conservative Treatment of Ewing’s Sarcoma of the Uterus in Young Women. Case Rep Obstet Gynecol. 2015; 2015: 871821. doi:10.1155/2015/871821.; Machado I., Navarro S., Lopez-Guerrero J.A., Alberghini M., Picci P., Llombart-Bosch A. Epithelial marker expression does not rule out a diagnosis of Ewing’s sarcoma family of tumours. Virchows Arch. 2011 Oct; 459(4): 40914. doi:10.1007/s00428-011-1138-2.; Arpaci E., Yetisyigit T., Seker M., Uncu D., Uyeturk U., Oksuzoglu B., Demirci U., Coskun U., Kucukoner M., Isıkdogan A., Inanc M., Alkis N., Ozkan M. Prognostic factors and clinical outcome of patients with Ewing’s sarcoma family of tumors in adults: Multicentric study of the Anatolian Society of Medical Oncology. Med Oncol. 2013 Mar; 30(1): 469. doi:10.1007/s12032-013-0469-z.; Landuzzi L., De Giovanni C., Nicoletti G., Rossi I., Ricci C., Astolfi A., Scopece L., Scotlandi K., Serra M., Bagnara G.P., Nanni P., Lollini P.-L. The Metastatic Ability of Ewing’s Sarcoma Cells Is Modulated by Stem Cell Factor and by Its Receptor c-KIT. Am J Pathol. 2000 Dec; 157(6): 212331. doi:10.1016/S0002-9440(10)64850-X.; Pandure M., Karle R., Angerkar N., Kachewar S. Case Report Ewing’s Sarcoma/Primitive Neuroectodermal tumor of plantar aspect of foot (soft tissue) in adult female: A case report. Int J Biomed Adv Res. 2014. 05 (12): 654–657. doi:10.7439/ijbar.; Applebaum M.A., Goldsby R., Neuhaus J., DuBois S.G. Clinical features and outcomes in patients with Ewing sarcoma and regional lymph node involvement. Pediatr Blood Cancer. 2012 Oct; 59(4): 617–20. doi:10.1002/pbc.24053.; Васильев Н.В. Лимфогенное метастазирование сарком кости. Архив патологии. 2016; 78(4): 58–64.; Leavey P.J., Collier A.B. Ewing sarcoma: prognostic criteria, outcomes and future treatment. Expert Rev Anticancer Ther. 2008 Apr; 8(4): 617–24. doi:10.1586/14737140.8.4.617.; Lee Y.T., Moore T.M., Schwinn C.P. Metastasis of sarcomatous lesion in regional lymph node. J Surg Oncol. 1982 May; 20(1): 53–8. doi:10.1002/jso.2930200113.; Hamidi N., Esen B., Kıvrak H., Sertçelik A., Gülpınar Ö. A large and metastatic primitive neuroectodermal tumor of the kidney. Turk J Urol. 2015 Sep; 41(3): 152–4. doi:10.5152/tud.2015.92653.; Huh J., Kim K.W., Park S.J., Kim H.J., Lee J.S., Ha H.K., Tirumani S.H., Ramaiya N.H. Imaging Features of Primary Tumors and Metastatic Patterns of the Extraskeletal Ewing Sarcoma Family of Tumors in Adults: A 17-Year Experience at a Single Institution. Korean J Radiol. 2015 JulAug; 16(4): 783–90. doi:10.3348/kjr.2015.16.4.783.; Miller M.E., Emerson L., Clayton F., Bentz B.G., Data R.E., Salzman K.L., Smith L. M., Yu M.K. Extraosseous Ewing’s Sarcoma. J Clin Oncol. 2007 Oct 20; 25(30): 4845–8.; Tan Y., Zhang H., Ma G.-L., Xiao E.-H., Wang X.-C. Peripheral primitive neuroectodermal tumor: Dynamic CT, MRI and clinicopathological characteristics analysis of 36 cases and review of the literature. Oncotarget. 2014 Dec 30; 5(24): 12968–77. doi:10.18632/oncotarget.2649.; Zhang K., Lu R., Zhang P., Shen S., Li X. Askin’s tumor: 11 cases and a review of the literature. Oncol Lett. 2016 Jan; 11(1): 253–256. doi:10.3892/ol.2015.3902.; Cotterill S.J., Ahrens S., Paulussen M., Jürgens H.F., Voûte P.A., Gadner H., Craft A.W. Prognostic factors in Ewing’s tumor of bone: analysis of 975 patients from the European intergroup cooperative Ewing’s sarcoma study group. J Clin Oncol. 2000 Sep; 18(17): 3108–14. doi:10.1200/JCO.2000.18.17.3108.; Франк Г.А., Завалишина Л.Э., Андреева Ю.Ю. Методы иммуногистохимии и гибридизации in situ в онкоморфологии. М., 2009. 14 c.; Dabbs D.J. Diagnostic immunohistochemistry: theranostic and genomic. Saunders, 2010. P. 941.; De Silva M.V.C., McMahon A.D., Paterson L., Reid R. Identification of poorly differentiated synovial sarcoma: a comparison of clinicopathological and cytogenetic features with those of typical synovial sarcoma. Histopathology. 2003, 43 (3): 220–230. doi:10.1046/j.13652559.2003.01668.x.; Fisher C. Low-grade Sarcomas with CD34-Positive Fibroblasts and Low-Grade Myofibroblastic Sarcomas. Ultrastruct Pathol. 2004 SepDec; 28(5–6): 291–305. doi:10.1080/019131290882187.; Weinreb I., Goldstein D., Perez-Ordoñez B. Primary extraskeletal Ewing family tumor with complex epithelial differentiation: a unique case arising in the lateral neck presenting with Horner syndrome. Am J Surg Pathol. 2008 Nov; 32(11): 1742–8. doi:10.1097/PAS.0b013e3181706252.; Greco M.A., Steiner G.C., Fazzini E. Ewing’s Sarcoma with Epithelial Differentiation: Fine Structural and Immunocytochemical Study. Ultrastruct Pathol. 1988 May-Jun; 12(3): 317–25. doi:10.3109/01913128809098044.; Gu M., Antonescu C. R., Guiter G., Huvos A. G., Ladanyi M., Zakowski M.F. Cytokeratin immunoreactivity in Ewing’s sarcoma: prevalence in 50 cases confirmed by molecular diagnostic studies. Am J Surg Pathol. 2000 Mar; 24(3): 410–6.; Schuetz A.N., Rubin B.P., Goldblum J.R., Shehata B., Weiss S.W., Liu W., Wick M.R., Folpe A.L. Intercellular junctions in Ewing sarcoma/ primitive neuroectodermal tumor: additional evidence of epithelial differentiation. Mod Pathol. 2005 Nov; 18(11): 1403–10. doi:10.1038/modpathol.3800435.; Vakar-Lopez F., Ayala A.G., Raymond A.K., Czerniak B. Epithelial Phenotype in Ewing’s Sarcoma/Primitive Neuroectodermal Tumor. Int. J. Surg. Pathol. 2000. 8 (1): 59–65. doi:10.1177/106689690000800111.; Olsen S.H., Thomas D.G., Lucas D.R. Cluster analysis of immunohistochemical profiles in synovial sarcoma, malignant peripheral nerve sheath tumor, and Ewing sarcoma. Mod Pathol. 2006 May; 19(5): 659–68. doi:10.1038/modpathol.3800569.; Elbashier S.H.A., Nazarina A.R., Looi L.M. Cytokeratin immunoreactivity in Ewing sarcoma/primitive neuroectodermal tumour. Malaysian J Pathol. 2013; 35 (2): 139–145.; https://www.siboncoj.ru/jour/article/view/1185

  11. 11
    Academic Journal

    Πηγή: Siberian journal of oncology; Том 18, № 4 (2019); 50-58 ; Сибирский онкологический журнал; Том 18, № 4 (2019); 50-58 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2019-18-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/1141/652; Lasisi T.J., Oluwasola A.O., Lasisi O.A., Akang E.E. Association between langerhans cells population and histological grade of oral squamous cell carcinoma. J Oral Maxillofac Pathol. 2013 Sep; 17(3): 329–33. doi:10.4103/0973-029X.125177.; Jaitley S., Saraswathi T. Pathophysiology of Langerhans cells. J Oral Maxillofac Pathol. 2012 May; 16(2): 239–44. doi:10.4103/0973-029X.99077.; Cutler C.W., Jotwani R. Dendritic cells at the oral mucosal interface. J Dent Res. 2006; 85: 678–89. doi:10.1177/154405910608500801.; Ma Y., Shurin G.V., Gutkin D.W., Shurin M.R. Tumor associated regulatory dendritic cells. Semin Cancer Biol. 2012 Aug; 22(4): 298–306. doi:10.1016/j.semcancer.2012.02.010.; Steinman R.M. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol. 1991; 9: 271–96. doi:10.1146/annurev.iy.09.040191.001415.; Ginhoux F., Tacke F., Angeli V., Bogunovic M., Loubeau M., Dai X-M., Stanley E.R., Randolph G.J., Merad M. Langerhans cells arise from monocytes in vivo. Nature Immunology 2006; 7: 265–273. doi:10.1038/ni1307.; Schuler G., Steinman R.M. Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J Exp Med 1985; 161: 526–546. doi:10.1084/jem.161.3.526.; Stoitzner P. The Langerhans cell controversy: are they immunostimulatory or immunoregulatory cells of the skin immune system? Immunol Cell Biol. 2010 May-Jun; 88(4): 348–50. doi:10.1038/icb.2010.46.; Rani S.V., Aravindha B., Leena S., Balachander N., Malathi L.K., Masthan M.K. Role of abnormal Langerhans cells in oral epithelial dysplasia and oral squamous cell carcinoma: A pilot study. J Nat Sci Biol Med. 2015 Aug; 6(Suppl 1): S128–33. doi:10.4103/0976-9668.166120.; de Witte L., Nabatov A., Pion M., Fluitsma D., de Jong M.A., de Gruijl T., Piguet V., van Kooyk Y., Geijtenbeek T.B. Langerin is a natural barrier to HIV-1 transmission by Langerhans cells. Nature Med. 2007; 13(3): 367–71. doi:10.1038/nm1541.; Ten Kate A.R. Oral Histology. Development, structure and Function. 5th edition. Missouri: Mosby Year Book Inc, 1996. 497.; Lombardi T., Hauser C., Budtz-Jörgensen E. Langerhans cells: structure, function and role in oral pathological conditions. J Oral Pathol Med. 1993 May; 22(5): 193–202.; Upadhyay J., Upadhyay R.B., Agrawal P., Jaitley S., Shekhar R. Langerhans cells and their role in oral mucosal diseases. N Am J Med Sci. 2013 Sep; 5(9): 505–14. doi:10.4103/1947-2714.118923.; Teunissen M.B. Dynamic nature and function of epidermal Langerhans cells in vivo and in vitro: a review, with emphasis on human Langerhans cells. Histochem J. 1992 Oct; 24(10): 697–716.; Barrett A.W., Cruchley A.T., Williams D.M. Oral mucosal Langerhans’ cells. Crit Rev Oral Biol Med. 1996; 7: 36–58.; Chomiczewska D., Trznadel-Budźko E., Kaczorowska A., Rotsztejn H. The role of Langerhans cells in the skin immune system. Pol Merkur Lekarski. 2009 Mar; 26(153): 173–7.; Furio L., Briotet I., Journeaux A., Billard H., Péguet-Navarro J. Human Langerhans cells are more efficient than CD14(-) CD1c(+) dermal dendritic cells at priming naive CD4(+) T cells. J Invest Dermatol. 2010 May; 130(5): 1345–54. doi:10.1038/jid.2009.424.; Kaplan D.H. In vivo function of Langerhans cells and dermal dendritic cells. Trends Immunol. 2010 Dec; 31(12): 446–51. doi:10.1016/j.it.2010.08.006.; Hogan A.D., Burks A.W. Epidermal Langerhans’ cells and their function in the skin immune system. Ann Allergy Asthma Immunol. 1995 Jul; 75(1): 5–10.; Lutz M.B., Schuler G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol. 2002; 23: 445–449.; Menges M., Rossner S., Voigtlander C., Schindler H., Kukutsch N.A., Bogdan C., Erb K., Schuler G., Lutz M.B. Repetitive injections of dendritic cells matured with tumor necrosis factor alpha induce antigen-specific protection of mice from autoimmunity. J Exp Med. 2002 Jan 7; 195(1): 15–21. doi:10.1084/jem.20011341.; Costa N.L., Gonçalves A.S., Martins A.F., Arantes D.A., Silva T.A., Batista A.C. Characterization of dendritic cells in lip and oral cavity squamous cell carcinoma. J Oral Pathol Med. 2016; 45(6): 418–24. doi:10.1111/jop.12380.; Maloth A., Dorankula S.P.R., Pasupula A.P., Thokala M.R., Muddana K., Ramavath R. A Comparative immunohistochemical analysis of Langerhans cells in oral mucosa, oral lichen planus and oral squamous cell carcinoma. J Clin Diagn Res. 2015 Jul; 9(7): ZC76–9. doi:10.7860/JCDR/2015/14170.6235.; Reichert T.E., Scheuer C., Day R., Wagner W., Whiteside T.L. The number of intratumoral dendritic cells and zeta-chain expression in T cells as prognostic and survival biomarkers in patients with oral carcinoma. Cancer. 2001; 91: 2136–47.; Shurin M., Salter R. Dendritic Cells in Cancer. New York: Springer; 2009. 396. doi:10.1007/978-0-387-88611-4.; Rao N.N., Upadhyay J., Upadhyay R.B. A comparative analysis of langerhans cell in oral epithelial dysplasia and oral squamous cell carcinoma using antibody CD-1a. J Cancer Res Ther. 2012 Oct-Dec; 8(4): 591–7. doi:10.4103/0973-1482.106565.; Diaconescu D.E., Dima L., Marinescu D.M., Ţânţu M.M., Rogozea L.M. S100-positive dendritic cells in squamous cell laryngeal cancer. Rom J Morphol Embryol. 2014; 55(4): 1371–5.; Kikuchi K., Kusama K., Taguchi K., Ishikawa F., Okamoto M., Shimada J., Sakashita H., Yamamo Y. Dendritic cells in human squamous cell carcinoma of the oral cavity. Anticancer Res. 2002 Mar-Apr; 22(2A): 545–57.; Yilmaz T., Gedikoglu G., Çelik A., Önerci M., Turan E. Prognostic significance of Langerhans cell infiltration in cancer of the larynx. Otolaryngol Head Neck Surg. 2005 Feb; 132(2): 309–16.; Ikeguchi M., Ikeda M., Tatebe S., Maeta M., Kaibara N. Clinical significance of dendritic cell infiltration in esophageal squamous cell carcinoma. OncolRep. 1998 Sep-Oct; 5(5): 1185–9. doi:10.1016/j. otohns.2004.04.018.; Esteban F., Ruiz-Cabello F., Gonzalez-Moles M.A., Lopez-Gonzalez M.A., Funez R., Redondo M. Clinical Significance of Langerhans Cells in Squamous Cell Carcinoma of the Larynx. J Oncol. 2012; 2012: 753296. doi:10.1155/2012/753296.; Schröder S., Schwarz W., Rehpenning W., Löning T., Böcker W. Dendritic/Langerhans cells and prognosis in patients with papillary thyroid carcinomas. Immunocytochemical study of 106 thyroid neoplasms correlated to follow-up data. Am J Clin Pathol. 1988 Mar; 89(3): 295–300. doi:10.1093/ajcp/89.3.295.; Lissoni P., Vigore L., Ferranti R., Bukovec R., Meregalli S., Mandala M., Barni S., Tancini G., Fumagalli L., Giani L. Circulating dendritic cells in early and advanced cancer patients: diminished percent in the metastatic disease. J. Biol. Regul. Homeost. Agents 1999; 13: 216–219.; Ma Y., Shurin G.V., Peiyuan Z., Shurin M.R. Dendritic Cells in the Cancer Microenvironment. J Cancer. 2013; 4(1): 36–44. doi:10.7150/jca.5046.; Yang W., Yu J. Immunologic Function of Dendritic Cells in Esophageal Cancer. Dig Dis Sci. 2008 Jul; 53(7): 1739–46. doi:10.1007/s10620-007-0095-8.; Chen W.K., Chen F.J., Zeng Z.Y., Wu G.H., Guo Z.M., Wei M.W., Yang A.K., Zhang Q., He J.H., Hou J.H. Expression of S100-labeled dendritic cells in glottic squamous cell carcinoma and its correlation to prognosis. Ai Zheng. 2005 Oct; 24(10): 1272–5.; Kikuchi K., Kusama K., Sano M., Nakanishi Y., Ishige T., Ohni S., Oinuma T., Nemoto N. Vascular Endothelial Growth Factor And Dendritic Cells In Human Squamous Cell Carcinoma Of The Oral Cavity. Аnticancer Res 2006; 26: 1833–1848.; O’Donnell R.K., Mick R., Feldman M., Hino S., Wang Y., Brose M.S., Muschel R.J. Distribution of dendritic cell subtypes in primary oral squamous cell carcinoma is inconsistent with a functional response. Cancer Lett. 2007 September 18; 255(1): 145–152. doi:10.1016/j.canlet.2007.04.003.; Karakök M., Bayazit Y.A., Ucak R., Ozer E., Kanlikama M., Mumbuc S., Sari I. Langerhans cell related inflammatory reaction in laryngeal squamous cell carcinoma. Auris Nasus Larynx. 2003 Feb; 30(1): 81–4.; Kim W.S., Kim H., Kwon K.W., Im S.H., Lee B.R., Ha S.J., Shin S.J. Cisplatin induces tolerogenic dendritic cells in response to TLR agonists via the abundant production of IL-10, thereby promoting Th2- and Tr1- biased T-cell immunity. Oncotarget. 2016 Jun 7; 7(23): 33765–82. doi:10.18632/oncotarget.9260.; Di Blasio S., Wortel I., van Bladel D.A.G., de Vries L.E., Duivemande Boer T., Worah K., de Haas N., Buschow S.I., de Vries I.J.M., Figdor C.G., Hato S.V. Human CD1c+ DCs are critical cellular mediators of immune responses induced by immunogenic cell death. Oncoimmunology. 2016 Aug 3; 5(8): e1192739. doi:10.1080/2162402X.2016.1192739.; Shurin M.R., Shurin G.V., Lokshin A., Yurkovetsky Z.R., Gutkin D.W., Chatta G., Zhong H., Han B., Ferris R.L. Intratumoral cytokines/chemokines/growth factors and tumor infiltrating dendritic cells: friends or enemies? Cancer Metastasis Rev. 2006 Sep; 25(3): 333–56.; Shurin M.R., Yurkovetsky Z.R., Tourkova I.L., Balkir L., Shurin G.V. Inhibition of CD40 expression and CD40-mediated dendritic cell function by tumor-derived IL-10. Int J Cancer. 2002 Sep 1; 101(1): 61–8. doi:10.1002/ijc.10576.; Tourkova I.L., Shurin G.V., Chatta G.S., Perez L., Finke J., Whiteside T.L., Ferrone S., Shurin M.R. Restoration by IL-15 of MHC class I antigen-processing machinery in human dendritic cells inhibited by tumor-derived gangliosides. J Immunol. 2005; 175: 3045–52. doi:10.4049/jimmunol.175.5.3045.; Tourkova I.L., Shurin G.V., Wei S., Shurin M.R. Small rho GTPases mediate tumor-induced inhibition of endocytic activity of dendritic cells. J Immunol. 2007 Jun 15; 178(12): 7787–93.; Makarenkova V.P., Shurin G.V., Tourkova I.L., Balkir L., Pirtskhalaishvili G., Perez L., Gerein V., Siegfried J.M., Shurin M.R. Lung cancerderived bombesin-like peptides down-regulate the generation and function of human dendritic cells. J Neuroimmunol. 2003; 145: 55–67; Bennaceur K., Popa I., Portoukalian J., Berthier-Vergnes O., Peguet-Navarro J. Melanoma-derived gangliosides impair migratory and antigen-presenting function of human epidermal Langerhans cells and induce their apoptosis. Int Immunol. 2006; 18: 879–86. doi:10.1093/intimm/dxl024.; Menetrier-Caux C., Montmain G., Dieu M.C., Bain C., Favrot M.C., Caux C., Blay J.Y. Inhibition of the differentiation of dendritic cells from CD34+ progenitors by tumor cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood. 1998; 92(12): 4778–4791.; Sombroek C.C., Stam A.G.M., Masterson A.J., Lougheed S.M., Schakel M.J., Meijer C.J., Pinedo H.M., van den Eertwegh A.J., Scheper R.J., de Gruijl T.D. Prostanoids play a major role in the primary tumor-induced inhibition of dendritic cell differentiation. J Immunol. 2002; 168(9): 4333–4343. doi:10.4049/jimmunol.168.9.4333.; Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer. 2005; 5(4): 263–274. doi:10.1038/nrc1586.; Mahnke K., Schmitt E., Bonifaz L., Enk A.H., Jonuleit H. Immature, but not inactive: the tolerogenic function of immature dendritic cells. Immunol Cell Biol. 2002 Oct; 80(5): 477–83.; Levings M.K., Gregori S., Tresoldi E., Cazzaniga S., Bonini C., Roncarolo M.G. Differentiation of Tr1 cells by immature dendritic cells requires IL-10 but not CD25+CD4+ Tr cells. Blood. 2005; 105: 1162–9. doi:10.1182/blood-2004-03-1211.; Dudek A.M., Martin S., Garg A.D., Agostinis P. Immature, SemiMature, and Fully Mature Dendritic Cells: Toward a DC-Cancer Cells Interface That Augments. Front Immunol. 2013 Dec 11; 4: 438. doi:10.3389/fimmu.2013.00438.; Enk A.H., Jonuleit H., Saloga J., Knop J. Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma. Int J Cancer. 1997; 73: 309–16. doi:10.1002/(sici)1097-0215(19971104)73:33.0.co;2-3.; Munn D.H., Sharma M.D., Lee J.R., Jhaver K.G., Johnson T.S., Keskin D.B., Marshall B., Chandler P., Antonia S.J., Burgess R., Slingluff C.L.Jr., Mellor A.L. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science. 2002; 297: 1867–70. doi:10.1126/science.1073514.; Mellor A.L., Chandler P., Baban B., Hansen A.M., Marshall B., Pihkala J., Waldmann H., Cobbold S., Adams E., Munn D.H. Specific subsets of murine dendritic cells acquire potent T cell regulatory functions following CTLA4-mediated induction of indoleamine 2,3dioxygenase. Int Immunol. 2004 Oct; 16(10): 1391–401.; Cuncha A., Michlein M., Murta E. Pattern response of dendritic cells in the tumor microenvironment and breast cancer. World J Clin Oncol. 2014 Aug 10; 5(3): 495–502. doi:10.5306/wjco.v5.i3.495.; Bjorck P., Leong H.X., Engleman E.G. Plasmacytoid dendritic cell dichotomy: identification of IFN-alpha producing cells as a phenotypically and functionally distinct subset. J Immunol. 2011 Feb 1; 186(3): 1477–85. doi:10.4049/jimmunol.1000454.; Reizis B., Colonna M., Trinchieri G., Barrat F., Gilliet M. Plasmacytoid dendritic cells: one-trick ponies or workhorses of the immune system? Nat Rev Immunol. 2011 Jul 22; 11(8): 558–65. doi:10.1038/nri3027.; Vermi W., Soncini M., Melocchi L., Sozzani S., Facchetti F. Plasmacytoid dendritic cells and cancer. J Leukoc Biol. 2011 Oct; 90(4): 681–90. doi:10.1189/jlb.0411190.; Akbari O., De Kruyff R.H., Umetsu D.T. Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nat Immunol. 2001; 2: 725–31. doi:10.1038/90667.; Watkins S.K., Zhu Z., Riboldi E., Shafer-Weaver K.A., Stagliano K.E., Sklavos M.M., Ambs S., Yagita H., Hurwitz A.A. FOXO3 programs tumor-associated DCs to become tolerogenic in human and murine prostate cancer. J Clin Invest. 2011; 121: 1361–72. doi:10.1172/JCI44325.; Hurwitz A.A., Watkins S.K. Immune suppression in the tumor microenvironment: a role for dendritic cell-mediated tolerization of T cells. Cancer Immunol Immunother. 2012 Feb; 61(2): 289–293. doi:10.1007/s00262-011-1181-5.; Krempski J., Karyampudi L., Behrens M.D., Erskine C.L., Hartmann L., Dong H., Goode E.L., Kalli K.R., Knutson K.L. Tumor-infiltrating programmed death receptor-1+ dendritic cells mediate immune suppression in ovarian cancer. J Immunol. 2011 Jun 15; 186(12): 6905–13. doi:10.4049/jimmunol.1100274.; Grohmann U., Fallarino F., Puccetti P. Tolerance, DCs and tryptophan: much ado about IDO. Trends Immunol. 2003 May; 24(5): 242–8.; Kusume A., Sasahira T., Luo Y., Isobe M., Nakagawa N., Tatsumoto N., Fujii K., Ohmori H., Kuniyasu H. Suppression of dendritic cells by HMGB1 is associated with lymph node metastasis of human colon cancer. Pathobiology. 2009; 76(4): 155–62. doi:10.1159/000218331.; Esche C., Lokshin A., Shurin G.V., Gastman B.R., Rabinowich H., Watkins S.C., Lotze M.T., Shurin M.R. Tumor’s other immune targets: dendritic cells. J Leukoc Biol. 1999; 66: 336–44. doi:10.1002/jlb.66.2.336.; Zou W. Immunosuppressive networks in the tumour environment and their effect in dendritic cells. Nat Rev Cancer. 2005 Apr; 5(4): 263–74. doi:10.1038/nrc1586.; Kiertscher S.M., Luo J., Dubinett S.M., Roth M.D. Tumors promote altered maturation and early apoptosis of monocyte-derived dendritic cells. J Immunol. 2000; 164: 1269–76. doi:10.4049/jimmunol.164.3.1269.; Onishi H., Morisaki T., Baba E., Kuga H., Kuroki H., Matsumoto K., Tanaka M., Katano M. Dysfunctional and short-lived subsets in monocyte-derived dendritic cells from patients with advanced cancer. Clin Immunol. 2002; 105: 286–95.; Dieu-Nosjean M.C., Antoine M., Danel C., Heudes D., Wislez M., Poulot V., Rabbe N., Laurans L., Tartour E., de Chaisemartin L., Lebecque S., Fridman W.H., Cadranel J. Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol. 2008 Sep 20; 26(27): 4410–7. doi:10.1200/JCO.2007.15.0284.; Gallo O., Libonati G.A., Gallina E., Fini-Storchi O., Giannini A., Urso C., Bondi R. Langerhans cells related to prognosis in patients with laryngeal carcinoma. Arch Otolaryngol Head Neck Surg. 1991 Sep; 117(9): 1007–10.; Karpathiou G., Casteillo F., Giroult J.B., Forest F., Fournel P., Monaya A, Froudarakis M, Dumollard J.M., Prades J.M., Peoc’h M. Prognostic impact of immune microenvironment in laryngeal and pharyngeal squamous cell carcinoma: Immune cell subtypes, immuno-suppressive pathways and clinicopathologic characteristics. Oncotarget. 2017 Mar 21; 8(12): 19310–19322. doi:10.18632/oncotarget.14242.; Brandwein-Gensler M., Teixeira M.S., Lewis C.M., Lee B., Rolnitzky L., Hille J.J., Genden E., Urken M.L., Wang B.Y. Oral Squamous Cell Carcinoma: Histologic Risk Assessment, but Not Margin Status, Is Strongly Predictive of Local Disease-free and Overall Survival. Am J Surg Pathol 2005; 29: 167–178.; Таширева Л.А., Перельмутер В.М., Манских В.Н., Денисов Е.В., Савельева О.Е., Кайгородова Е.В., Завьялова М.В. Типы иммуновоспалительных реакций как алгоритмы взаимодействия клеток в условиях репаративной регенерации и опухолевого роста. Биохимия. 2017; 82(5): 732–748.; Rissoan M.C., Soumelis V., Kadowaki N., Grouard G., Briere F., de Waal Malefyt R., Liu Y.J. Reciprocal control of T helper cell and dendritic cell differentiation. Science. 1999; 283: 1183–1186. doi:10.1126/science.283.5405.1183.; Vieira P.L., de Jong E.C., Wierenga E.A., Kapsenberg M.L., Kalinski P. Development of Th1-inducing capacity in myeloid dendritic cells requires environmental instruction. J Immunol. 2000; 164: 4507–4512. doi:10.4049/jimmunol.164.9.4507.; Labeur M.S., Roters B., Pers B., Mehling A., Luger T.A., Schwarz T., Grabbe S. Generation of tumor immunity by bone marrow-derived dendritic cells correlates with dendritic cell maturation stage. J Immunol. 1999; 162: 168–175.; https://www.siboncoj.ru/jour/article/view/1141

  12. 12
  13. 13
    Academic Journal

    Συνεισφορές: Russian Foundation for Basic Research and the government of the Tomsk region of the Russian Federation, grant № 18-415-703014\18, РФФИ и администрация Томской области в рамках научного проекта № 18-415-703014\18

    Πηγή: Siberian journal of oncology; Том 17, № 6 (2018); 57-63 ; Сибирский онкологический журнал; Том 17, № 6 (2018); 57-63 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2018-17-6

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/903/587; Савенкова О.В., ЗавьяловаМ.В., Бычков В.А., Чойнзонов Е.Л., Перельмутер В.М. Связь экспрессии матриксных металлопротеиназ с морфологической гетерогенностью, дифференцировкой опухоли и лимфогенным метастазированием плоскоклеточной карциномы гортани. Сибирский онкологический журнал. 2015; 1: 51-58.; Бычков В.А., Бондарь Л.Н., Чойнзонов Е.Л., Перельмутер В.М. Характер течения плоскоклеточных карцином головы и шеи в зависимости от морфологических особенностей исходной опухоли. Сибирский онкологический журнал. 2017; 16 (2): 20-26. doi:10.21294/18144861-2017-16-2-20-26.; Grivennikov S.I., Greten F.R., Karin M. Immunity, inflammation, and cancer. Cell. 2010 Mar 19; 140 (6): 883-99. doi:10.1016/j.cell.2010.01.025.; Scheele C.L.G.J., Maynard C., van Rheenen J. Intravital insights into heterogeneity, metastasis, and therapy responses. Trends Cancer. 2016 Apr; 2 (4): 205-216. doi:10.1016/j.trecan.2016.03.001.; Bonnans C., Chou J., Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014 Dec; 15 (12): 786-801. doi:10.1038/nrm3904.; Salgado R., Denkert C., Demaria S., Sirtaine N., Klauschen F, Pruneri G., Wienert S., Van den Eynden G., Baehner F.L., Penault-Llorca F, Perez E.A., Thompson E.A., Symmans W.F., Richardson A.L., Brock J., Criscitiello C., Bailey H., Ignatiadis M., Floris G., Sparano J., Kos Z., Nielsen T., Rimm D.L., AllisonK.H., Reis-Filho J.S., Loibl S., Sotiriou C., Viale G., Badve S., Adams S., Willard-GalloK., Loi S.; International TILs Working Group 2014. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TlLs Working Group 2014. Ann Oncol. 2015 Feb; 26 (2): 259-71. doi:10.1093/annonc/mdu450.; Teunissen M.B. Dynamic nature and function of epidermal Langer-hans cells in vivo and in vitro: a review, with emphasis on human Langer-hans cells. Histochem J. 1992 Oct; 24 (10): 697-716.; Gallo O., Libonati GA., Gallina E., Fini-Storchi O., Giannini A., Urso C., Bondi R. Langerhans cells related to prognosis in patients with laryngeal carcinoma. Arch Otolaryngol Head Neck Surg. 1991; 117 (9): 1007-10. doi:10.1001/archotol.1991.01870210079015.; Esteban F, Ruiz-Cabello F, Gonzalez-Moles MA., Lopez-Gonza-lezMA., Funez R., RedondoM. Clinical significance of Langerhans cells in squamous cell carcinoma of the larynx. J Oncol. 2012; 2012: 753296. doi:10.1155/2012/753296.; MalothA., Dorankula S.P.R., PasupulaA.P., ThokalaM.R., Mud-dana K., Ramavath R. A Comparative immunohistochemical analysis of Langerhans cells in oral mucosa, oral lichen planus and oral squamous cell carcinoma. J Clin Diagn Res. 2015 Jul; 9 (7): ZC76-9. doi:10.7860/JCDR/2015/14170.6235.; https://www.siboncoj.ru/jour/article/view/903

  14. 14
    Academic Journal

    Πηγή: Siberian journal of oncology; Том 17, № 4 (2018); 41-47 ; Сибирский онкологический журнал; Том 17, № 4 (2018); 41-47 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2018-17-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/814/552; Haggar F.A., Boushey R.P. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg. 2009 Nov; 22(4): 191–7. doi:10.1055/s-0029-1242458.; Birgisson H., Wallin U., Holmberg L., Glimelius B. Survival endpoints in colorectal cancer and the effect of second primary other cancer on disease free survival. BMC Cancer. 2011 Oct 11; 11: 438. doi:10.1186/1471-2407-11-438.; Meyerhardt J.A., Mayer R.J. Systemic therapy for colorectal cancer. N. Engl. J. Med. 2005; 352(5): 476–487. doi:10.1056/NEJMra040958.; Brenner H., Kloor M., Pox C.P. Colorectal cancer. Lancet. 2014 Apr 26; 383(9927): 1490–1502. doi:10.1016/S0140-6736(13)61649-9.; Nagelkerke A., Sweep F.C., Geurts-Moespot A., Bussink J., Span P.N. Therapeutic targeting of autophagy in cancer. Part I: molecular pathways controlling autophagy. Semin Cancer Biol. 2015 Apr; 31: 89–98. doi:10.1016/j.semcancer.2014.05.004.; Klionsky D.J. Look people, “Atg” is an abbreviation for “autophagyrelated.” That’s it. Autophagy. 2012 Sep; 8(9): 1281–2. doi:10.4161/auto.21812.; Gil J., Pesz К.A., Sąsiadek M.M. May autophagy be a novel biomarker and antitumor target in colorectal cancer? Biomark Med. 2016 Oct; 10(10): 1081–1094. doi:10.2217/bmm-2016-0083; Nagelkerke A., Bussink J., Geurts-Moespot A., Sweep F.C., Span P.N. Therapeutic targeting of autophagy in cancer. Part II: pharmacological modulation of treatment- induced autophagy. Semin Cancer Biol. 2015 Apr; 31: 99–105. doi:10.1016/j.semcancer.2014.06.001.; Degenhardt K., Mathew R., Beaudoin B., Bray K., Anderson D., Chen G., Mukherjee C., Shi Y., Gélinas C., Fan Y., Nelson D.A., Jin S., White E. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell. 2006; 10: 51–64.; Schmitz K.J., Ademi C., Bertram S., Schmid K.W., Baba H.A. Prognostic relevance of autophagy-related markers LC3, p62/sequestosome 1, Beclin-1 and ULK1 in colorectal cancer patients with respect to KRAS mutational status. World J Surg Oncol. 2016 Jul 22; 14(1): 189. doi:10.1186/s12957-016-0946-x.; Degenhardt K., Mathew R., Beaudoin B., Bray K., Anderson D., Chen G., Mukherjee C., Shi Y., Gélinas C., Fan Y., Nelson D.A., Jin S., White E. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell. 2006; 10(1): 51–64. doi:10.1016/j.ccr.2006.06.001.; Lee J., Giordano S., Zhang J. Autophagy, mitochondria and oxidative stress: cross- talk and redox signalling. Biochem J. 2012 Jan 15; 441(2): 523–40. doi:10.1042/BJ20111451.; White E.J., Martin V., Liu J.L., Klein S.R., Piya S., Gomez-Manzano C., Fueyo J., Jiang H. Autophagy regulation in cancer development and therapy. Am. J. Cancer Res. 2011; 11(3):362–372.; Li B.X., Li C.Y., Peng R.Q., Wu X.J., Wang H.Y., Wan D.S., Zhu X.F., Zhang X.S. The expression of beclin 1 is associated with favorable prognosis in stage IIIB colon cancers. Autophagy. 2009; 5(3): 303–306.; Bambury R.M., Rosenberg J.E. Actionable mutations in muscleinvasive bladder cancer. Curr Opin Urol. 2013 Sep; 23(5): 472–8. doi:10.1097/MOU.0b013e328363a3cd.; Ng V.C., Johnson J.J., Cuellar S. Targeting the mammalian target of rapamycin pathway with everolimus: Implications for the management of metastatic breast cancer. J Oncol Pharm Pract. 2015 Dec; 21(6): 433–42. doi:10.1177/1078155214540732.; Rolfo C., Giovannetti E., Hong D.S., Bivona T., Raez L.E., Bronte G., Buffoni L., Reguart N., Santos E.S., Germonpre P., Taron M., Passiglia F., Van Meerbeeck J.P., Russo A., Peeters M., Gil-Bazo I., Pauwels P., Rosell R. Novel therapeutic strategies for patients with NSCLC that do not respond to treatment with EGFR inhibitors. Cancer Treat Rev. 2014 Sep; 40(8): 990–1004. doi:10.1016/j.ctrv.2014.05.009.; Loong H.H., Yeo W. Microtubule-targeting agents in oncology and therapeutic potential in hepatocellular carcinoma. Onco Targets Ther. 2014 Apr 16; 7: 575–85. doi:10.2147/OTT.S46019.; Li L., Liu D., Qiu Z-X., Zhao S., Zhang L., Li W-M. The Prognostic Role of m-TOR and P-mTOR for Survival in Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. PLoS ONE. 2015; 10(2): e0116771. doi:10.1371/journal.pone.0116771.; Zhou X., Tan M., Stone Hawthorne V., Klos K.S., Lan K.H., Yang Y., Yang W., Smith T.L., Shi D., Yu D. Activation of the Akt Mammalian Target of Rapamycin 4E-BP1 Pathway by ErbB2 Overexpression Predicts Tumor Progression in Breast Cancers. Clin Cancer Res. 2004; 10: 6779–6788. doi:10.1158/1078-0432.CCR-04-0112.; Zhou L., Huang Y., Li J., Wang Z. The mTOR pathway is associated with the poor prognosis of human hepatocellular carcinoma. Medical Oncology. 2009; 27: 255–261. doi:10.1007/s12032-009-9201-4.; Xiao L., Wang Y.C., Li W.S., Du Y. The role of mTOR and phospho-p70S6K in pathogenesis and progression of gastric carcinomas: an immunohistochemical study on tissue microarray. J Exp Clin Cancer Res. 2009 Dec 13; 28: 152. doi:10.1186/1756-9966-28-152.; Cho D.H., Jo Y.K., Kim S.C., Park I.J., Kim J.C. Down-regulated expression of ATG5 in colorectal cancer. AntiCancer Res. 2012; 32(9): 4091–4096.; Choi J.H., Cho Y.S., Ko Y.H., Hong S.U., Park J.H., Lee M.A. Absence of autophagy-related proteins expression is associated with poor prognosis in patients with colorectal adenocarcinoma. Gastroenterol Res Pract. 2014; 2014: 179586. doi:10.1155/2014/179586.; Giatromanolaki A., Koukourakis M.I., Harris A.L., Polychronidis A., Gatter K.C., Sivridis E. Prognostic relevance of light chain 3 (LC3A) autophagy patterns in colorectal adenocarcinomas. J Clin Pathol. 2010 Oct; 63(10): 867–72. doi:10.1136/jcp.2010.079525.; Pattingre S., Espert L., Biard-Piechaczyk M., Codogno P. Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie. 2008; 90: 313–323. doi:10.1016/j.biochi.2007.08.014.; Laddha S.V., Ganesan S., Chan C.S., White E. Mutational landscape of the essential autophagy gene BECN1 in human cancers. Mol Cancer Res. 2014 Apr; 12(4): 485–90. doi:10.1158/1541-7786.MCR-13-0614.; Gao J., Aksoy B.A., Dogrusoz U., Dresdner G., Gross B., Sumer S.O., Sun Y., Jacobsen A., Sinha R., Larsson E., Cerami E., Sander C., Schultz N. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013 Apr 2; 6(269): pl1. doi:10.1126/scisignal.2004088.; Kelley R.K., Wang G., Venook A.P. Biomarker use in colorectal cancer therapy. J Natl Compr Canc Netw. 2011 Nov; 9(11): 1293–302.; Xia P., Wang J.J., Zhao B.B., Song C. The role of beclin-1 expression in patients with gastric cancer: a meta-analysis. Tumour Biol. 2013 Dec; 34(6): 3303–7. doi:10.1007/s13277-013-1049-8.; Huang L., Wang S., Li S.S., Yang X.M. Prognostic significance of Beclin-1 expression in laryngeal squamous cell carcinoma. Pathol Oncol Res. 2013 Oct; 19(4): 771–7. doi:10.1007/s12253-013-9642-0.; Lin H.X., Qiu H.J., Zeng F., Rao H.L., Yang G.F., Kung H.F., Zhu X.F., Zeng Y.X., Cai M.Y., Xie D. Decreased expression of Beclin 1 correlates closely with Bcl-xL expression and poor prognosis of ovarian carcinoma. PLoS One. 2013; 8(4): e60516. doi:10.1371/journal.pone.0060516.; Miracco C., Cosci E., Oliveri G., Luzi P., Pacenti L., Monciatti I., Mannucci S., De Nisi M.C., Toscano M., Malagnino V., Falzarano S.M., Pirtoli L., Tosi P. Protein and mRNA expression of autophagy gene Beclin 1 in human brain tumours. Int. J. Oncol. 2007; 30(2): 429–436.; Liu L., Meng T., Wang Q.S., Jin H.Z., Sun Z.Q., Jin B., Fang F., Wang H.J. Association of Beclin-1 and microRNA-30a expression with the severity and treatment response of colorectal cancer. Genet Mol Res. 2016 Apr 7; 15(2). doi:10.4238/gmr.15027704.; https://www.siboncoj.ru/jour/article/view/814

  15. 15
    Academic Journal

    Πηγή: Bulletin of Siberian Medicine; Том 17, № 3 (2018); 180-187 ; Бюллетень сибирской медицины; Том 17, № 3 (2018); 180-187 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2018-17-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/1297/837; Çлокачественные новообразования в России в 2016 году (заболеваемость и смертность); под ред. А.Д. Каприна и др. М.: МНИОИ им. П.А. Герцена; филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2018: 250 с.; Gray J.M., Rasanayagam S., Engel C., Rizzo J. State of the evidence 2017: an update on the connection between breast cancer and the environment. Environ Health. 2017; 16 (1): 94. DOI:10.1186/s12940-017-0287-4.; Liu F., Zhou J., Zhou P., Chen W., Guo F. The ubiquitin ligase CHIP inactivates NF-κB signaling and impairs the ability of migration and invasion in gastric cancer cells. Int. J. Oncol. 2015; 46 (5): 2096–2106. DOI:10.3892/ijo.2015.2893.; Kuo W.-H., Chang Y.-Y., Lai L.-C., Tsai M.-H., Hsiao C.K., Chang K.-J., Chuang E.Y. Molecular сharacteristics and metastasis рredictor genes of triple-negative breast сancer: а сlinical study of triple-negative breast сarcinomas. PLoS One. 2012; 7 (9): e45831. DOI:10.1371/journal.pone.0045831.; Kennecke H., Yerushalmi R., Woods R. et al. Metastatic behavior of breast cancer subtypes. J. Clin. Oncol. 2010; 28 (20): 3271–3277. DOI:10.1200/JCO.2009.25.9820.; Слонимская Е.М., Вторушин С.В., Бабышкина Н.Н., Паталяк С.В. Роль морфологических и генетических особенностей строения рецепторов ýстрогенов альфа в развитии резистентности к ýндокринотерапии тамоксифеном у пациенток люминальным раком молочной железы. Сибирский онкологический журнал. 2014; 3: 39–44.; Babyshkina N., Vtorushin S., Zavyalova M., Patalyak S., Dronova T., Litviakov N., Slonimskaya E., Kzhyshkowska J., Cherdyntseva N., Choynzonov E. The distribution pattern of ERa expression, ESR1 genetic variation and expression of growth factor receptors: association with breast cancer prognosis in Russian patients treated with adjuvant tamoxifen. Clin. Exp. Med. 2017; 17 (3): 383– 393. DOI:10.1007/s10238-016-0428-z.; Yamamoto M., Hosoda M., Nakano K., Jia S., Hatanaka K.C., Takakuwa E., Hatanaka Y., Matsuno Y., Yamashita H. P53 accumulation is a strong predictor of recurrence in estrogen receptor-positive breast cancer patients treated. Cancer Sci. 2014; 105 (1): 81–88. DOI:10.1111/cas.12302.; Molnár I.A., Molnár B.Б., Vízkeleti L., Fekete K., Tamás J., Deák P., Szundi C., Székely B., Moldvay J., Vári-Kakas S., Szász M.A., Kulka J., Tőkés A.M. Breast carcinoma subtypes show different patterns of metastatic behavior. Virchows Arch. 2017; 470 (3): 275–283. DOI:10.1007/s00428-017-2065-7.; Thangarajah F., Enninga I., W. Malter S. et al. Retrospective analysis of Ki-67 index and its prognostic significance in over 800 primary breast cancer cases. Anticancer Res. 2017; 37 (4): 1957–1964.; Perou C.M. Molecular Stratification of triple-negative breast сancer. The Oncologist. 2011; 16 (1): 61–70.; Кондакова И.В., Чойнзонов Е.Л. Прогнозирование метастазирования плоскоклеточных карцином головы и шеи. Вопросы онкологии. 2012; 58 (1): 26–32.; Моисеенко Ф.В., Волков Н.М., Богданов А.А. и др. Современные возможности клинического применения ýкспрессионного типирования опухолей молочной железы. Вопросы онкологии. 2016; 62 (1): 31–34.; Lub S., Maes K., Menu E. Novel strategies to target the ubiquitin proteasome system in multiple myeloma. Oncotarget. 2016; 7 (6): 6521–6537. DOI:10.18632/oncotarget.6658.; Колегова Е.С., Кондакова И.В., Çавьялов А.А. Малые белки теплового шока и убиквитин-протеасомная система при злокачественных опухолях. Вопросы онкологии. 2016; 3: 401–405.; Spirina L.V., Yunusova N.V., Kondakova I.V., Kolomiets L.A., Koval V.D., Chernyshova A.L., Shpileva O.V. Association of growth factors, HIF-1 and NF-κB expression with proteasomes in endometrial cancer. Molecular Biology Reports. 2012; 9: 8655–8662.; Kondakova I.V., Yunusova N.V., Spirina L.V. Association between intracellular proteinase activities and the content of locomotor proteins in tissues of primary tumors and metastases of ovarian cancer. Russian Journal of Bioorganic Chemistry. 2014; 40 (6): 681–687.; Kondakova I.V., Yunusova N.V., Spirina L.V., Shashova E.E., Kolegova E.S., Kolomiets L.A., Slonimskaya E.M., Villert A.B. Locomotor proteins in tissues of primary tumors and metastases of ovarian and breast cancer. Physics of Сancer: Interdisciplinary Problems and Clinical Applications. 2016: 020032. doi.org/10.1063/1.4960251.; Liu F., Zhou J., Zhou P. The ubiquitin ligase CHIP inactivates NF-κB signaling and impairs the ability of migration and invasion in gastric cancer cells. Int. J. Oncol. 2015; 46 (5): 2096–2106. DOI:10.3892/ijo.2015.2893.; Цимоха А.С. Протеасомы: участие в клеточных процессах. Цитология. 2010; 52 (4): 277–300.; Kakurina G.V., Kondakova I.V., Cheremisina O.V., Shishkin D.A., Choinzonov E.L. Adenylyl сyclase-аssociated рrotein 1 in the development of head and neck squamous сell сarcinomas. Bull. Exp. Biol. Med. 2016; 160 (5): 695–697. doi.org/10.1007/s10517-016-3252-2.; Powers G.L., Ellison-Zelski S.J., Casa A.J. et al. Proteasome inhibition represses ER gene expression in ER + cells – a new link between proteasome activity and estrogen signaling in breast cancer. Oncogene. 2010; 29 (10): 1509–1518.; Ogawa S., Shih L.-Y., Suzuki T., Otsu M., Nakauchi H., et al. Deregulated intracellular signaling by mutated c-CBL in myeloid neoplasms. Clinical Cancer Research. 2010; 16: 3825–3831. DOI:10.1158/1078-0432.CCR-09-2341.; Shashova E.E., Lyupina Y.V., Glushchenko S.A., Slonimskaya E.M., Savenkova et al. Proteasome unctioning in breast сancer: сonnection with сlinical-рathological factors. PLoS ONE. 2014; 9 (10): e109933. doi.org/10.1371/journal.pone.0109933.; Ivanova E.V., Kondakova I.V., Spirina L.V. et al. Chymotrypsin-like activity of proteasomes and total calpain activity in gastric and colorectal cancer. Bulleten of Experimental Biology and Medicine. 2014; 157 (6): 781–784.; Спирина Л.В., Кондакова И.В., Усынин Е.А., Юрмазов Ç.А. Регуляция ýкспрессии транскрипционных факторов и фактора роста ýндотелия протеасомной системой при метастазировании рака почки. Вестник РОНЦ им. Н.Н. Блохина РАМН. 2012; 23 (1): 27–32.; Kakurina G.V., Kondakova I.V., Choinzonov E.L. Degradome сomponents in рrogression of squamous cell carcinoma of the head andn Neck. Vestn. Ross. Akad. Med. Nauk. 2015; (6): 684–693.; https://bulletin.tomsk.ru/jour/article/view/1297

  16. 16
  17. 17
    Academic Journal

    Πηγή: Siberian journal of oncology; Том 16, № 3 (2017); 46-51 ; Сибирский онкологический журнал; Том 16, № 3 (2017); 46-51 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2017-16-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/540/442; Ferlay J., Soerjomataram I., Dikshit R., Eser S., Mathers C., Rebelo M., Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Intern J Cancer. 2015; 136 (5): E359–E386.; Афанасьев С.Г., Добродеев А.Ю. Циторедуктивные операции (Нужно ли удалять первичную опухоль? Где предел разумной циторедукции? Практическая онкология. 2014; 15 (2): 93–100.; Goel S., Duda D.G., Xu L., Munn L.L., Boucher Y., Fukumura D., Jain R.K. Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev. 2011 Jul; 91 (3): 1071–121. doi:10.1152/ physrev.00038.2010.; Oklu R., Walker T.G., Wicky S., Hesketh R.J. Angiogenesis and current antiangiogenic strategies for the treatment of cancer. J Vasc Interv Radiol. 2010 Dec; 21 (12): 1791–805. doi:10.1016/j.jvir.2010.08.009.; Marioni G., Staffiery A., Manzato E., Ralli G., Lionello M., Giacomelli L., Prosenikliev V., Marchese-Ragona R., Busnardo A., Bolzetta F., Blandamura S. A higher CD105-assessed microvessel density and vorse prognosis in elderly patients with laryngeal carcinoma. Arch Otolaryngol Head Neck Surg. 2011 Feb; 137 (2): 175–80. doi:10.1001/ archoto.2010.244.; Neri D., Bicknell R. The Discovery and Characterisation of Tumour Endothelial Markers. Vascular Disruptive Agents for the Treatment of Cancer. Springer New York, 2010; 31–48.; Seon B.K., Haba A., Matsuno F., Takahashi N., Tsujie M., She X., Harada N., Uneda S., Tsujie T., Toi H., Tsai H., Haruta Y. Endoglin-targeted cancer therapy. Curr Drug Deliv. 2011; 8 (1): 135–143.; Martins S.F., Reis R.M., Rodrigues A.M., Baltazar F., Longatto A. Role of endoglin and VEGF family expression in colorectal cancer prognosis and anti-angiogenic therapies. World J Clin Oncol. 2011; 2 (6): 272–80. doi:10.5306/wjco.v2.i6.272.; Kimura Y., Morohashi S., Yoshizawa T., Suzuki T., Morohashi H., Sakamoto Y., Hakamada K. Clinicopathological significance of vascular endothelial growth factor, thymidine phosphorylase and microvessel density in colorectal cancer. Mol Med Rep. 2016 Feb; 13 (2): 1551–7. doi:10.3892/mmr.2015.4687; Arimoto A., Uehara K., Tsuzuki T., Aiba T., Ebata T., Nagino M. Role of bevacizumab in neoadjuvant chemotherapy and its influence on microvessel density in rectal cancer. Int J Clin Oncol. 2015 Oct; 20 (5): 935–42. doi:10.1007/s10147-015-0818-3.; Svagzdys S., Lesauskaite V., Pavalkis D., Nedzelskienė I., Pranys D., Tamelis A. Microvessel density as new prognostic marker after radiotherapy in rectal cancer. BMC Cancer. 2009; 9: 95. doi:10.1186/1471- 2407-9-95.; Luengo-Gil G., González-Billalabeitia E., Chaves-Benito A., García Martínez E., García Garre E., Vicente V., Ayala de la Peña F. Effects of conventional neoadjuvant chemotherapy for breast cancer on tumor angiogenesis. Breast Cancer Res Treat. 2015 Jun; 151 (3): 577–87.; Ajili F., Kacem M., Tounsi H., Darouiche A., Enayfer E., Chebi M., Manai M., Boubaker S. Prognostic impact of angiogenesis in nonmuscle invasive bladder cancer as defined by microvessel density after immunohistochemical staining for CD34. Ultrastruct Pathol. 2012 Oct; 36 (5): 336–42.; https://www.siboncoj.ru/jour/article/view/540

  18. 18
    Academic Journal

    Πηγή: Siberian journal of oncology; Том 16, № 2 (2017); 42-49 ; Сибирский онкологический журнал; Том 16, № 2 (2017); 42-49 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2017-16-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/518/425; Корытова Л.И. Непосредственные результаты комбинированной терапии местных рецидивов рака прямой кишки. Вопросы онкологии. 2015; 61 (1): 52–56.; Lescut N., Lepinoy A., Schipman B., Cerda T., Guimas V., Bednarek C., Bosset J.F. Preoperative chemoradiotherapy for rectal cancer: experience from one centre. Cancer Radiother. 2015; 19 (2): 98–105. doi:10.1016/j.canrad.2014.11.011.; Бердов Б.А. Комбинированное лечение больных с местнораспространенным раком прямой кишки. Вопросы онкологии. 2014; 4: 497–503.; Han W., Lo H.W. Landscape of EGFR signaling network in human cancers: biology and herapeutic response in relation to receptor subcellular locations. Cancer Lett. 2012 May 28; 318 (2): 124–34. doi:10.1016/j.canlet.2012.01.011.; Minder P., Zajac E., Quigley J.P., Deryugina E.I. EGFR Regulates the Development and Microarchitecture of Intratumoral Angiogenic Vasculature Capable of Sustaining Cancer Cell Intravasation. Neoplasia. 2015 Aug; 17 (8): 634–49. doi:10.1016/j.neo.2015.08.002.; Citri A., Yarden Y. EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol. 2006 Jul; 7 (7): 505–16.; Van Emburgh B.O., Sartore-Bianchi A., Di Nicolantonio F., Siena S., Bardelli A. Acquired resistance to EGFR-targeted therapies in colorectal cancer. Mol Oncol. 2014 Sep 12; 8 (6): 1084–94. doi:10.1016/j.molonc.2014.05.003.; Jeong W.J., Cha P.H., Choi K.Y. Strategies to overcome resistance to epidermal growth factor receptor monoclonal antibody therapy in metastatic colorectal cancer. World J Gastroenterol. 2014 Aug 7; 20 (29): 9862–71. doi:10.3748/wjg.v20.i29.9862.; Rego R.L., Foster N.R., Smyrk T.C., Le M., O’Connell M.J., Sargent D.J., Windschitl H., Sinicrope F.A. Prognostic effect of activated EGFR expression in human colon carcinomas: comparison with EGFR status. Br J Cancer. 2010 Jan 5; 102 (1): 165–72. doi:10.1038/sj.bjc.6605473.; Giralt J., de las Heras M., Cerezo L., Eraso A., Hermosilla E., Velez D., Benavente S. The expression of epidermal growth factor receptor results in a worse prognosis for patients with rectal cancer treated with preoperative radiotherapy: a multicenter, retrospective analysis. Radiother Oncol. 2005 Feb; 74 (2): 101–8.; Ohashi K., Maruvka Y.E., Michor F., Pao W. Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor–Resistant Disease. J Clin Oncol. 2013 Mar 10; 31 (8): 1070–80. doi:10.1200/JCO.2012.43.3912.; Richter I., Dvořák J., Urbanec M., Bluml A., Čermáková E., Bartoš J., Petera J. The prognostic significance of tumor epidermal growth factor receptor (EGFR) expression change after neoadjuvant chemoradiation in patients with rectal adenocarcinoma. Contemp Oncol (Pozn). 2015; 19 (1): 48–53. doi:10.5114/wo.2015.50013.; Du C., Zhao J., Xue W., Dou F., Gu J. Prognostic value of microsatellite instability in sporadic locally advanced rectal cancer following neoadjuvant radiotherapy. Histopathology. 2013 Apr; 62 (5): 723–30. doi:10.1111/his.12069.; McCollum A.D., Kocs D.M., Chadha P., Monticelli M.A., Boyd T.E., Fain J.D., Thummala A. Randomized phase II trial of preoperative chemoradiotherapy with or without cetuximab in locally advanced rectal adenocarcinoma. J. Clin. Oncol. 2014; 32 (suppl 3): abstr 537.; Ott K., Blank S., Becker K., Langer R., Weichert W., Roth W., Sisic L., Stange A., Jäger D., Büchler M., Siewert J.R., Lordick F. Factors predicting prognosis and recurrence in patients with esophago-gastric adenocarcinoma and histopathological response with less than 10% residual tumor. Langenbecks Arch Surg. 2013 Feb; 398 (2): 239–49. doi:10.1007/s00423-012-1039-0.; Kim S.Y., Shim E.K., Yeo H.Y., Baek J.Y., Hong Y.S., Kim D.Y., Kim T.W., Kim J.H., Im S.A., Jung K.H., Chang H.J. KRAS mutation status and clinical outcome of preoperative chemoradiation with cetuximab in locally advanced rectal cancer: a pooled analysis of 2 phase II trials. Int J Radiat Oncol Biol Phys. 2013 Jan 1; 85 (1): 201–7. doi:10.1016/j.ijrobp.2012.03.048.; Kurt A., Yanar F., Asoglu O., Balik E., Olgac V., Karanlik H., Kucuk S.T., Ademoglu E., Yegen G., Bugra D. Low Mmp 9 and VEGF levels predict good oncologic outcome in mid and low rectal cancer patients with neoadjuvant Chemoradiation. BMC Clin Pathol. 2012 Dec 31; 12: 27. doi:10.1186/1472-6890-12-27.; Yasuda H., Tanaka K., Saigusa S., Toiyama Y., Koike Y., Okugawa Y., Kusunoki M. Elevated CD133, but not VEGF or EGFR, as a predictive marker of distant recurrence after preoperative chemoradiotherapy in rectal cancer. Oncol Rep. 2009 Oct; 22 (4): 709–17.; Hainsworth J.D., Waterhouse D.M., Penley W.C., Shipley D.L., Thompson D.S., Webb C.D., Anthony Greco F. Sorafenib and everolimus in advanced clear cell renal carcinoma: a phase I/II trial of the SCRI Oncology Research Consortium. Cancer Invest. 2013 Jun; 31 (5): 323–9. doi:10.3109/07357907.2013.789900.; Ng K., Tabernero J., Hwang J., Bajetta E., Sharma S., Del Prete S.A., Arrowsmith E.R., Ryan D.P., Sedova M., Jin J., Malek K., Fuchs C.S. Phase II study of everolimus in patients with metastatic colorectal adenocarcinoma previously treated with bevacizumab-, fluoropyrimidine-, oxaliplatin-, and irinotecan-based regimens. Clin Cancer Res. 2013; 19: 3987–3995.; Bardelli A., Siena S. Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer. J Clin Oncol. 2010 Mar 1; 28 (7): 1254–61. doi:10.1200/JCO.2009.24.6116.; Van Cutsem E., Köhne C.H., Láng I., Folprecht G., Nowacki M.P., Cascinu S., Shchepotin I., Maurel J., Cunningham D., Tejpar S., Schlichting M., Zubel A., Celik I., Rougier P., Ciardiello F. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol. 2011 May 20; 29 (15): 2011–9. doi:10.1200/JCO.2010.33.5091.; Усова А.В., Фролова И.Г., Афанасьев С.Г., Тарасова А.С. Возможности МРТ в диагностике и оценке эффективности лечения рака прямой кишки. Сибирский онкологический журнал. 2012; 5: 74–80.; https://www.siboncoj.ru/jour/article/view/518

  19. 19
    Academic Journal

    Συγγραφείς: M. A. Belyaev, A. A. Zakharenko

    Πηγή: Учёные записки Санкт-Петербургского государственного медицинского университета им. Акад. И.П. Павлова, Vol 22, Iss 1, Pp 25-27 (2015)

    Περιγραφή αρχείου: electronic resource

    Σύνδεσμος πρόσβασης: https://doaj.org/article/eb9632403b18441f8c9234dd5a6b1436

  20. 20
    Academic Journal

    Πηγή: Siberian journal of oncology; № 5 (2013); 45-49 ; Сибирский онкологический журнал; № 5 (2013); 45-49 ; 2312-3168 ; 1814-4861 ; undefined

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/238/240; Кондакова И. В., Спирина Л. В., Шашова Е. Е. и др. Активность протеасом в опухолях женской репродуктивной системы//Биоорганическая химия. 2012. Т. 38, № 1. С. 106-110; Середа Е. Е., Кондакова И. В., Слонимская Е. М. Ферменты метаболизма эстрогенов и рецепторы как факторы риска развития и прогноза при раке молочной железы//Сибирский онкологический журнал. 2004. № 1 (9). С. 35-43; Спирина Л.В., Кондакова И.В., Усынин Е.А. и др. Активность протеасом в тканях злокачественных опухолей различных локализаций//Сибирский онкологический журнал. 2009. № 5 (35). С.49-52; Спирина Л.В., Кондакова И.В., Усынин Е.А. и др. Регуляция экспрессии транскрипционных факторов и фактора роста эндотелия протеасомной системой при метастазировании рака почки//Вестник РОНЦ им. Н.Н. Блохина РАМН. 2012. Т. 23, № 1. С. 27-32; Цимоха А.С. Протеасомы: участие в клеточных процессах//Цитология. 2010. Т. 52, № 4. С. 277-300; Чойнзонов Е. Л., Спирина Л. В., Кондакова И. В. и др. Роль внутриклеточныхпротеиназврегуляцииэкспрессиитранскрипционных факторов HIF-1, NF-kB и фактора роста сосудов при лимфогенном метастазировании плоскоклеточных карцином головы и шеи//Бюллетень СО РАМН. 2012. № 6. С. 15-21; Шашова Е.Е., Кондакова И.В., Слонимская Е.М. и др. Сравнительное изучение содержания рецепторов эстрогенов и прогестерона в неизмененной, опухолевой и метастатической тканях при раке молочной железы//Сибирский онкологический журнал. 2008. № 4 (28). С. 42-45; Ben-Shahar S., Komlosh A., Nadav E. et al. 26 S proteasome-mediated production of an authentic major histocompatibility class I-restricted epitope from an intact protein substrate//J. Biol. Chem. 1999. Vol. 274 (31). P. 21963-21972; Ha N.-H, Nair V.S., Reddy D.N. et al. Lactoferrin-endothelin-1 axis contributes to the development and invasiveness of triple-negative breast cancer phenotypes//Cancer Res. 2011. Vol.71. P. 7259-7269; Jones M.D., Liu J.C., Thomas K. A Proteasome Inhibitor, Bortezomib, Inhibits Breast Cancer Growth and Reduces Osteolysis by Downregulating Metastatic Genes//Clin. Cancer Res. 2010. Vol. 16. P. 4978-4989; Kretzer N.M., Cherian M.T., Mao C. et al. A Noncompetitive small molecule inhibitor of estrogen-regulated gene expression and breast cancer cell growth that enhances proteasome-dependent degradation of estrogen Receptor-α//J. Biol. Chem. 2010. Vol. 285 (53). P. 41863-41873; Kisselev A., Callard A., Goldberg A. Importance of the different proteolytic sites of the proteasome and the efficacy of inhibitors varies with the protein substrate//J. Biol. Chem. 2006. Vol. 281 (13). P. 8582-8590; Landis-Piwowar K.R., Milacic V., Chen D. et al. The proteasome as a potential target for novel anticancer drugs and chemosensitizers//Drug Resist. Updat. 2006. Vol. 9. P. 263-273; Lie C., Kiran M. Increased proteasome activity, ubiquitin-conjugating enzymes, and eEF1A translation factor detected in breast cancer tissue//Cancer Res. 2005. Vol. 65 (13). P. 5599-5606; Li C., Li R., Grandis J.R., Johnson D.E. Bortezomib induces apoptosis via Bim and Bik up-regulation and synergizes with cisplatin in the killing of head and neck squamous cell carcinoma cells//Mol. Cancer Ther. 2008. Vol. 7 (6). P. 1647-1655; Lowry O.H., Rosenbrough N.J., Randall R.J. Protein measurement with the folin phenol reagent//J. Biol. Chem. 1951. Vol. 193. Р. 265-275; La Rosa P., Pesiri V., Leclercq G. et al. Palmitoylation regulates 17-estradiol-induced estrogen receptor-degradation and transcriptional activity//Mol. Endocrinol. 2012. Vol. 26. P. 762-764; Marx C., Yau C., Banwait S. et al. Proteasome-Regulated ERBB2 and Estrogen Receptor Pathways in Breast Cancer//Mol. Pharmacol. 2007. Vol. 71. P. 1525-1534; Milano A., Iaffaioli R.V., Caponigro F. The proteasome: a worth while target for the treatment of solid tumours?//Eur. J. Cancer. 2007. Vol 43. P. 1125-1133; Spirina L.V., Yunusova N.V., Kondakova I.V. et al. Association of growth factors, HIF-1 and NF-κB expression with proteasomes in endometrial cancer//Mol. Biol. Repor. 2012. Vol. 39 (9). P. 8655-86; Spirina L.V., Kondakova I.V., Choynzonov E.L. et al. Expression of vascular endothelial growth factor and transcription factors HIF-1, NF-kB expression in squamous cell carcinoma of head and neck; association with proteasome and calpain activities//J. Cancer Res. Clin. Oncol. 2013. Vol. 139. P. 625-633; Sharova N.P., Astakhova T.M., Karpova Y.D. et al. Changes in proteasome pool in human papillary thyroid carcinoma development//Centr. Eur. J. Biol. 2011. Vol. 6 (4). P. 486-496; Xie Y. Structure, Assembly and Homeostatic Regulation of the 26S Proteasome//J. Mol. Cell Biol. 2010. Vol. 2 (6). P. 308-317; Xu H., Ju D., Jarois T., Xie Y. Diminished feedback regulation of proteasome expression and resistance to proteasome inhibitors in breast cancer cells//Breast Cancer Res. Treat. 2008. Vol. 107. P. 267-274; https://www.siboncoj.ru/jour/article/view/238; undefined

    Διαθεσιμότητα: https://www.siboncoj.ru/jour/article/view/238