-
1Academic Journal
Authors: E. A. Fonova, O. A. Salukova, N. A. Skryabin, G. N. Seitova, L. P. Nazarenko, Е. А. Фонова, О. А. Салюкова, Н. А. Скрябин, Г. Н. Сеитова, Л. П. Назаренко
Contributors: The study was carried out according to the state assignment of the Ministry of Science and Higher Education of the Russian Federation № 122013100190-6., Работа выполнена в рамках государственного задания Министерства науки и высшего образования № 122013100190-6 .
Source: Medical Genetics; Том 23, № 12 (2024); 72-76 ; Медицинская генетика; Том 23, № 12 (2024); 72-76 ; 2073-7998
Subject Terms: ген HGSNAT, lysosomal accumulation diseases, mucopolysaccharidosis, heparan sulfate, HGSNAT gene, лизосомальные болезни накопления, мукополисахаридоз, гепарансульфат
File Description: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2589/1841; Горбунова В.Н., Бучинская Н.В. Лизосомные болезни накопления. Мукополисахаридоз III типа, синдром Санфилиппо. Педиатр. 2021; 12(4):69-81. doi:10.17816/PED12469-81; Zhao B., Cao Z., Zheng Y., et al. Structural and mechanistic insights into a lysosomal membrane enzyme HGSNAT involved in Sanfilippo syndrome. Nat Commun. 2024;15(1):5388. doi:10.1038/s41467-024-49614-1.; Martins C., de Medeiros P.F.V., Leistner-Segal S., et al. Molecular characterization of a large group of Mucopolysaccharidosis type IIIC patients reveals the evolutionary history of the disease. Hum Mutat. 2019;40(8):1084-1100. doi:10.1002/humu.23752.; Navratna V., Kumar A., Rana J.K., Mosalaganti S. Structure of the human heparan-α-glucosaminide N-acetyltransferase (HGSNAT). bioRxiv [Preprint]. 2024 Jun 12:2023.10.23.563672. doi:10.1101/2023.10.23.563672. Update in: Elife. 2024 Aug 28;13:RP93510. doi:10.7554/eLife.93510.; Valstar M.J., Neijs S., Bruggenwirth H.T., et al. Mucopolysaccharidosis type IIIA: clinical spectrum and genotype-phenotype correlations. Ann Neurol. 2010c;68:876–87.; Hrebícek M., Mrázová L., Seyrantepe V., et al. Mutations in TMEM76* cause mucopolysaccharidosis IIIC (Sanfilippo C syndrome). Am J Hum Genet. 2006;79(5):807-19. doi:10.1086/508294.
-
2Academic Journal
Authors: А.С. Трепагина, В.Н. Трушникова
Subject Terms: болезнь Краббе, сфинголипидоз, лизосомальные болезни накопления, ГАЛК, орфанные заболевания
Relation: https://zenodo.org/records/4677431; oai:zenodo.org:4677431; https://doi.org/10.5281/zenodo.4677431
-
3
-
4Academic Journal
Authors: T. D. Krylova, T. Y. Proshlyakova, G. V. Baydakova, Y. S. Itkis, M. V. Kurkina, E. Y. Zakharova, Т. Д. Крылова, Т. Ю. Прошлякова, Г. В. Байдакова, Ю. С. Иткис, М. В. Куркина, Е. Ю. Захарова
Source: Medical Genetics; Том 15, № 7 (2016); 3-10 ; Медицинская генетика; Том 15, № 7 (2016); 3-10 ; 2073-7998
Subject Terms: peroxisomal disorders, наследственные болезни обмена веществ, лизосомальные болезни накопления, митохондриальные заболевания, пероксисомные заболевания, biomarkers, inherited metabolic disorders, lysosomal storage disorders, mitochondrial disorders
File Description: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/143/131; EMEA/EFPIA. Workshop on Biomarkers. http://www.ema.europa.eu/ema/ EMA 2006; Dietrich Matern, Devin Oglesbee, Silvia Tortorelli. Newborn Screening for Lysosomal Storage Disorders and Other Neuronopathic Conditions. Dev Disabil Res Rev. 2013; 17(3): 247-523.; Mathilde R, Claire G, Martial M et al. Expanding the spectrum of PEX10-related peroxisomal biogenesis disorders: slowly progressive recessive ataxia. Journal of Neurology. 2016; 263 (8): 1552-1558.; Yamada K, Toribe Y, Yanagihara K, Mano T, Akagi M, Suzuki Y. Diagnostic accuracy of blood and CSF lactate in identifying children with mitochondrial diseases affecting the central nervous system. Brain Dev. 2012 Feb;34(2):92-7.; Debray FG, Mitchell GA, Allard P, Robinson BH, Hanley JA, Lambert M. Diagnostic accuracy of blood lactate-to-pyruvate molar ratio in the differential diagnosis of congenital lactic acidosis.Clin Chem. 2007 May;53(5):916-21; Davis RL, Liang C, Edema-Hildebrand F, Riley C, Needham M, Sue CM. Fibroblast growth factor 21 is a sensitive biomarker of mitochondrial disease. Neurology. 2013 Nov 19;81(21):1819-26.; Chamberlain P, Compston J, Cox TM, Hayman AR, Imrie RC, Reynolds K, Holmes SD. Generation and characterization of monoclonal antibodies to human type-5 tartrate-resistant acid phosphatase: development of a specific immunoassay of the isoenzyme in serum. Clin Chem. 1995 Oct;41(10):1495-9.; Краснопольская КД. Наследственные болезни обмена веществ. Москва, 2005 г.; Meikle PJ, Hopwood, JJ, Clague, AE et al. Prevalence of lysosomal storage disorders. JAMA. 1999; 281: 249-254.; Rohrbach M, Clarke JT. Treatment of lysosomal storage disorders: progress with enzyme replacement therapy. Drugs. 2007; 67: 2697-2716.; Smid BE, van der Tol L, Biegstraaten M et al. Plasma globotriaosylsphingosine in relation to phenotypes of Fabry disease (ENG). J Med Genet. 2015; 52(4): 262-268.; Peterschmitt MJ, Zhang K, Lin Let et al. CoxEvaluation of glucosylsphingosine as a biomarker of the eliglustat treatment response in patients with Gaucher disease type 1 (GD1). Molecular Genetics and Metabolism (Abstracts). 2016; 117: S14-S124.; Chuang WL, Pacheco J, Zhang XK et al. Determination of psychosine concentration in dried blood spots from newborns that were identified via newborn screening to be at risk for Krabbe disease. Clin Chim Acta. 2013; 419: 73-76.; Chuang WL, Pacheco J, Cooper S et al. Lyso-sphingomyelin is elevated in dried blood spots of Niemann-Pick B patients. Mol Genet Metab. 2014; 111(2): 209-11.; Welford RW, Garzotti M, Lourenзo MC, Mengel E et al. Plasma lysosphingomyelin demonstrates great potential as a diagnostic biomarker for Niemann-Pick disease type C in a retrospective study. PLoS One. 2014; 9(12): e114669.; Ranierri E, Gerace RL, Ravenscroft EM et al. Pilot neonatal screening program for lysosomal storage disorders, using LAMP-1. Southeast Asian J Trop Med Public Health. 1999; 30(Suppl 2): 111-113.; Hollak CEM, van Weely S, van Oers MHJ et al. Marked elevation of plasma chitotriosidase activity. A novel hallmark of Gaucher disease. J Clin Invest. 1994; 93: 1288-1292.; Bussink AP, Eijk M, Renkema GH etal. The biology of the Gaucher cell: the cradle of human chitinases. Int Rev Cytol. 2006; 252: 71-128.; Hollak CE, Maas M, Aerts JM. Clinically relevant therapeutic endpoints in type I Gaucher disease. J Inherit Metab Dis. 2001; 24 (Suppl 2): 97-105.; Aguilera B, Ghauharali-van der Vlugt K, Helmond MT et al. The human chitotriosidase gene. Nature of inherited enzyme deficiency. J Biol Chem. 1998; 273: 25680-25685.; Elmonem MA, van den Heuvel LP, Levtchenko EN. Immunomodulatory Effects of Chitotriosidase Enzyme. Enzyme Res. 2016; 2016: 2682680.; Boot RG, Verhoek M, de Fost M et al. Marked elevation of the chemokine CCL18/PARC in Gaucher disease: a novel surrogate marker for assessing therapeutic intervention. Blood. 2004; 103(1): 33-9.; van Breemen MJ, Bleijlevens B, de Koster CG, Aerts JM. Limitations in quantitation of the biomarker CCL18 in Gaucher disease blood samples by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry. Biochim Biophys Acta. 2006; 1764(10): 1626-1632.; Cox TM, Aerts JM, Belmatoug N et al. Management of non-neuronopathic Gaucher disease with special reference to pregnancy, splenectomy, bisphosphonate therapy, use of biomarkers and bone disease monitoring. J Inherit Metab Dis. 2008; 31(3): 319-336.; Moran MT, Schofield JP, Hayman AR et al. Pathologic gene expression in Gaucher disease: up-regulation of cysteine proteinases including osteoclastic cathepsin K. Blood. 2000; 96: 1969-1978.; Aerts JM, Hollak CE. Plasma and metabolic abnormalities in Gaucher’s disease. Baillieres Clin Haematol. 1997; 10(4): 691-709.; Nilsson O, Svennerholm L. Accumulation of glucosylceramide and glucosylsphingosine (psychosine) in cerebrum and cerebellum in infantile and juvenile Gaucher disease. J Neurochem. 1982; 39: 709-718.; Dekker N, van Dussen L, Hollak CE et al. Elevated plasma glucosylsphingosine in Gaucher disease: relation to phenotype, storage cell markers, and therapeutic response. Blood. 2011; 118: 118-127.; van Dussen L, Lips P, Everts VE et al. Markers of bone turnover in Gaucher disease: modeling the evolution of bone disease. J Clin Endocrinol Metab. 2011; 96: 2194-2205.; Ioannou YA, Zeidner KM, Gordon RE et al. Fabry disease: preclinical studies demonstrate the effectiveness of alpha-galactosidase A replacement in enzyme-deficient mice. Am J Hum Genet. 2001; 68(1): 14-25.; Carstea ED, Morris JA, Coleman KG et al. Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science. 1997; 277: 228-31.; Porter FD, Scherrer DE, Lanier MH et al. Cholesterol oxidation products are sensitive and specific blood-based biomarkers for Niemann-Pick C1 disease. Sci Transl Med. 2010; 2(56): 56-81.; Jiang X, Sidhu R, Porter FD et al. A sensitive and specific LC-MS/MS method for rapid diagnosis of Niemann-Pick C1 disease from human plasma. J Lipid Res. 2011; 52(7): 1435-1445.; Auray-Blais C, Bherer P, Gagnon R et al. Efficient analysis of urinary glycosaminoglycans by LC-MS/MS inmucopolysaccharidoses type I, II and VI. Mol. Genet. Metab. 2011; 102: 49-56.; Randall DR, Sinclair GB, Colobong KE et al. Heparin cofactor II-thrombin complex in MPS I: a biomarker of MPS disease. Mol. Genet. Metab. 2006: 88: 235-243.; Langford-Smith KJ, Mercer J, Petty J et al. Heparin cofactor II-thrombin complex and dermatan sulphate:chondroitin sulphate ratio are biomarkers of short- and long-term treatment effects in mucopolysaccharide diseases. J. Inherit. Metab.Dis. 2011; 34: 499-508.; Clarke LA, Hemmelgarn H, Colobong K et al. Longitudinal observations of serum heparin cofactor II-thrombin complex in treated Mucopolysaccharidosis I and II patients. J. Inherit. Metab. Dis. 2011; 35: 355-362.; Langford-Smith K, Arasaradnam M, Wraith JE, Wynn R et al. Evaluation of heparin cofactor II-thrombin complex as a biomarker on blood spots from mucopolysaccharidosis I, IIIA and IIIB mice, Mol. Genet. Metab. 2010; 99: 269-274.; Beesley CE, Young EP, Finnegan N et al. Discovery of a new biomarker for th mucopolysaccharidoses(MPS), dipeptidyl peptidase IV (DPP-IV; CD26), by SELDI-TOF mass spectrometry. Mol. Genet. Metab. 2009; 96: 218-224.; Suomalainen A. Biomarkers for mitochondrial respiratory chain disorders J Inherit Metab Dis. 2011;34(2): 277-82.; Shaham O, State NG, Goldberger O et al. A plasma signature of human mitochondrial disease revealed through metabolic profiling of spent media from cultured muscle cells. Proc Natl Acad Sci USA. 2010; 107: 1571-1575.; Kurosu, H, Choi M, Ogawa, Y et al. Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J. Biol. Chem. 2007; 282: 26687-26695.; Tyynismaa H, Carroll CJ, Raimundo N et al. Mitochondrial myopathy induces a starvation-like response. Hum Mol Genet. 2010; 19(20): 3948-58.; Koene S, de Laat P, van Tienoven DH et al. Serum FGF21 levels in adult m.3243A>G carriers: clinical implications. Neurology. 2014; 83: 125-133.; Suomalainen A, Elo JM, Pietilainen KH et al. FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study. Lancet Neurol. 2011; 10(9): 806-18.; Kalko SG, Paco S, Jou C et al. Transcriptomic profiling of TK2 deficient human skeletal muscle suggests a role for the p53 signalling pathway and identifies growth and differentiation factor-15 as a potential novel biomarker for mitochondrial myopathies. BMC Genomics. 2014;15: 91.; Eggers KM, Kempf T, Allhoff T et al. Growth-differentiation factor-15 for early risk stratification in patients with acute chest pain. Eur Heart J. 2008; 29(19): 2327-35.; Montero R, Yubero D, Villarroya J et al. GDF-15 Is Elevated in Children with Mitochondrial Diseases and Is Induced by Mitochondrial Dysfunction. PLoS ONE. 2016; 11(2): e0148709.; Corzo D, Gibson W, Johnson K et al. Contiguous deletion of the X-linked adrenoleukodystrophy gene (ABCD1) and DXS1357E: a novel neonatal phenotype similar to peroxisomal biogenesis disorders. Am J Hum Genet. 2002; 70(6): 1520-31.; Odendall C, Kagan JC. Peroxisomes and the antiviral responses of mammalian cells. Subcell Biochem. 2013; 69: 67-75.; Nordgren M, Fransen M. Peroxisomal metabolism and oxidative stress. Biochimie. 2014; 98: 56-62.; Steinberg SJ, Dodt G, Raymond GV et al. Peroxisome biogenesis disorders, Biochim. Biophys. Acta. 2006; 1763 (12): 1733-1748.; Theda C, Woody RC, Naidu S et al. Increased very long chain fatty acids in patients on a ketogenic diet: a cause of diagnostic confusion, J. Pediatr. 1993: 122(5Pt1): 724-726.; Hubbard WC, Moser AB, Liu AC et al. Newborn screening for X-linked adrenoleukodystrophy (X-ALD): validation of a combined liquid chromatography-tandem massspectrometric (LC-MS/MS) method. Mol Genet Metab. 2009; 97(3): 212-20.; Haynes CA, De Jesus VR. Simultaneous quantitation of hexacosanoyl lysophosphatidylcholine, aminoacids, acylcarnitines, and succinylacetone during FIA-ESI-MS/MS analysis of dried blood spot extracts for newborn screening. Clin Biochem. 2016; 49(1):161- 5.; Orchard PJ, Lund T, Miller W et al. Chitotriosidase as a biomarker of cerebral adrenoleukodystrophy. J Neuroinflammation. 2011; 8: 144.; Schrader M, Fahimi HD. Peroxisomes and oxidative stress. Biochim Biophys Acta. 2006; 1763(12): 1755-66.; Turner T, Stein EA. Non-statin Treatments for Managing LDL Cholesterol and Their Outcomes. Clin Ther. 2015; 37(12): 2751-69.
-
5Academic Journal
Authors: Tuy Nga Brignol, J. Andoni Urtizberea
Source: Neuromuscular Diseases; Том 5, № 1 (2015); 19-24 ; Нервно-мышечные болезни; Том 5, № 1 (2015); 19-24 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2015-5-1
Subject Terms: птоз, glycogenosis type II, lysosomal storage disease, infantile-onset Pompe disease, late-onset Pompe disease, α-glucosidase, enzyme replacement therapy, extraocular motility disorder, ophthalmopathy, ptosism strabismus, myopia, гликогеноз II типа, лизосомальные болезни накопления, инфантильная форма болезни Помпе, болезнь Помпе с поздним дебютом, α-глюкозидаза, ферментная заместительная терапия, экстраокулярные двигательные расстройства, офтальмопатия
File Description: application/pdf
Relation: https://nmb.abvpress.ru/jour/article/view/106/100; Smith R.S., Reinecke R.D. Electron microscopy of ocular muscle in type II glycogenosis (Pompe's disease). Am J Ophthalmol 1972;73(6):965–70.; Libert J., Martin J.J., Ceuterick C. et al. Ocular ultrastructural study in a fetus with type II glycogenosis. Br J Ophthalmol 1977; 61(7):476–82.; Goebel H.H., Kohlschütter A., Pilz H. Ultrastructural observations on the retina in type II glycogenosis (Pompe's disease). Ophthalmologica 1978;176(2):61–8.; Barnes D., Hughes R.A., Spencer G.T. Adult-onset acid maltase deficiency with prominent bulbar involvement and ptosis. J R Soc Med 1993;86(1):50.; De Wilde F., D'Haens M., Smet H. et al. Surgical treatment of myogenic blepharoptosis. Bull Soc Belge Ophtalmol 1995;255: 139–46.; Groen W.B., Leen W.G., Vos A.M. et al. Ptosis as a feature of late-onset glycogenosis type II. Neurology 2006;67(12):2261–2.; Ravaglia S., Repetto A., De Filippi P. et al. Ptosis as a feature of late-onset glycogenosis type II. Neurology 2007;69(1):116.; Yanovitch T.L., Banugaria S.G., Proia A.D. et al. Clinical and histologic ocular findings in Pompe disease. J Pediatr Ophthalmol Strabismus 2010;47(1):34–40.; Slingerland N.W., Polling J.R., van Gelder C.M. et al. Ptosis, extraocular motility disorder, and myopia as features of pompe disease. Orbit 2011;30(2):111–3.; Chien Y.H., Lee N.C., Tsai Y.J. et al. Prominent vacuolation of the eyelid levator muscle in an early-treated child with infantileonset Pompe disease. Muscle Nerve 2014;50(2):301–2.; Ravaglia S., Bini P., Garaghani K.S. et al. Ptosis in Pompe disease: common genetic background in infantile and adult series. J Neuroophthalmol 2010;30(4):389–90.; Prakalapakorn S.G., Proia A.D., Yanovitch T.L. et al. Ocular and histologic findings in a series of children with infantile Pompe disease treated with enzyme replacement therapy. J Pediatr Ophthalmol Strabismus 2014;51(6):355–62.; Anagnostou E., Kemanetzoglou E., Papadimas G. Extraocular muscle function in adult-onset Pompe disease tested by saccadic eye movements. Neuromuscul Disord 2014; 24(12):1073–8.; Yanovitch T.L., Casey R., Banugaria S.G. et al. Improvement of bilateral ptosis on higher dose enzyme replacement therapy in Pompe disease. J Neuroophthalmol 2010;30(2): 165–6.; Toussaint D., Danis P. Eye histopathology study of a case of generalized glycogenosis (Pompe disease). Bull Soc Belge Ophtalmol 1964;137:313–25.; Pokorny K.S., Ritch R., Friedman A.H. et al. Ultrastructure of the eye in fetal type II glycogenosis (Pompe's disease). Invest Ophthalmol Vis Sci 1982;22(1):25–31.; van der Walt J.D., Swash M., Leake J. et al. The pattern of involvement of adult-onset acid maltase deficiency at autopsy. Muscle Nerve 1987;10(3):272–81.; Toussaint D., Danis P. Ocular histopathology in generalized glycogenosis (Pompe disease). Arch Ophthalmol 1965;73:342–9.; Kishnani P.S., Steiner R.D., Bali D. et al. Pompe disease diagnosis and management guideline. Genet Med 2006;8(5):267–88.; https://nmb.abvpress.ru/jour/article/view/106
-
6Academic Journal
Authors: САЛОГУБ Г.Н.
File Description: text/html
-
7Academic Journal
Authors: Tuy, Nga, Andoni, Urtizberea
File Description: text/html
-
8Academic Journal
Source: Нервно-мышечные болезни.
Subject Terms: ЛИЗОСОМАЛЬНЫЕ БОЛЕЗНИ НАКОПЛЕНИЯ,БОЛЕЗНЬ ФАБРИ,α-ГАЛАКТОЗИДАЗА,ГЛОБОТРИАОЗИЛЦЕРАМИД,КЛИНИЧЕСКАЯ ГЕТЕРОГЕННОСТЬ,ФЕРМЕНТОЗАМЕСТИТЕЛЬНАЯ ТЕРАПИЯ,АГАЛСИДАЗА,АКРОПАРЕСТЕЗИЯ,НЕЙРОПАТИЧЕСКАЯ БОЛЬ,ПРОТЕИНУРИЯ,СКОРОСТЬ КЛУБОЧКОВОЙ ФИЛЬТРАЦИИ,КРИПТОГЕННОЕ НАРУШЕНИЕ МОЗГОВОГО КРОВООБРАЩЕНИЯ, 3. Good health
File Description: text/html