Εμφανίζονται 1 - 4 Αποτελέσματα από 4 για την αναζήτηση '"лиганд рецептора программируемой клеточной гибели 1"', χρόνος αναζήτησης: 0,52δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: Obstetrics, Gynecology and Reproduction; Vol 19, No 4 (2025); 575-589 ; Акушерство, Гинекология и Репродукция; Vol 19, No 4 (2025); 575-589 ; 2500-3194 ; 2313-7347

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2481/1376; Злокачественные новообразования в России в 2023 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2024. 276 с.; Kim D.H., Lee K.E. Discovering breast cancer biomarkers candidates through mRNA expression analysis based on The Cancer Genome Atlas Database. J Pers Med. 2022;12(10):1753. https://doi.org/10.3390/jpm12101753.; Venetis K., Pepe F., Pescia C. et al. ESR1 mutations in HR+/HER2-metastatic breast cancer: enhancing the accuracy of ctDNA testing. Cancer Treat Rev. 2023:121:102642. https://doi.org/10.1016/j.ctrv.2023.102642.; Guerini-Rocco E., Venetis K., Cursano G. et al. Standardized molecular pathology workflow for ctDNA-based ESR1 testing in HR+/HER2-metastatic breast cancer. Review Crit Rev Oncol Hematol. 2024:201:104427. https://doi.org/10.1016/j.critrevonc.2024.104427.; Мехтиева Н.И. Современные тенденции в диагностике и лечении первично операбельного рака молочной железы (обзор литературы). Опухоли женской репродуктивной системы. 2018;14(4):24–34. https://doi.org/10.17650/1994-4098-2018-14-4-24-34.; Tzanikou E., Markou A., Politaki E. et al. PIK3CA hotspot mutations in circulating tumor cells and paired circulating tumor DNA in breast cancer: a direct comparison study. Mol Oncol. 2019;13(12):2515–30. https://doi.org/10.1002/1878-0261.12540.; Bonacho T., Rodrigues F., J Liberal J. Immunohistochemistry for diagnosis and prognosis of breast cancer: a review. Biotech Histochem. 2020;95(2):71–91. https://doi.org/10.1080/10520295.2019.1651901.; Ravelli A., Reuben J.M., Lanza F. et al. Breast cancer circulating biomarkers: advantages, drawbacks, and new insights. Tumour Biol. 2015;36(9):6653–65. https://doi.org/10.1007/s13277-015-3944-7.; Stergiopoulou D., Georgoulias V., Markou A. et al. Development and validation of a multi-marker liquid bead array assay for the simultaneous detection of PIK3CA and ESR1 hotspot mutations in single circulating tumor cells (CTCs). Heliyon. 2024;10(19):e37873. https://doi.org/10.1016/j.heliyon.2024.e37873.; Dieci M.V., Tsvetkova V., Gaia Griguolo G. et al. Integration of tumour infiltrating lymphocytes, programmed cell-death ligand-1, CD8 and FOXP3 in prognostic models for triple-negative breast cancer: Analysis of 244 stage I-III patients treated with standard therapy. Eur J Cancer. 2020:136:7–15. https://doi.org/10.1016/j.ejca.2020.05.014.; Клинические рекомендации – Рак молочной железы – 2021-2022-2023 (20.01.2023). М.: Министерство здравоохранения Российской Федерации, 2023. 94 с. Режим доступа: https://cr.minzdrav.gov.ru/preview-cr/379_4. [Дата обращения: 15.01.2025].; Loibl S., Poortmans P., Morrow M. et al. Breast cancer. Lancet. 2021;397(10286):1750–69. https://doi.org/10.1016/S0140-6736(20)32381-3.; Зикиряходжаев А.Д., Сарибекян Э.К., Сухотько А.С., Трегубова А.В. Генетически-ассоциированный рак молочной железы. Профилактика и лечение. Медицинская генетика. 2019;18(10):3–9. https://doi.org/10.25557/2073-7998.2019.10.3-9.; Lin C.-L., Jin X., Ma D. et al. Genetic interactions reveal distinct biological and therapeutic implications in breast cancer. Cancer Cell. 2024;42(4):701–719.e12. https://doi.org/10.1016/j.ccell.2024.03.006.; De Talhouet S., Peron J., Vuilleumier A. et al. Clinical outcome of breast cancer in carriers of BRCA1 and BRCA2 mutations according to molecular subtypes. Sci Rep. 2020;10(1):7073. https://doi.org/10.1038/s41598-020-63759-1.; Loi S., Drubay D., Adams S. et al. Tumor-infiltrating lymphocytes and prognosis: a pooled individual patient analysis of early-stage triple-negative breast cancers. J Clin Oncol. 2019;37(7):559–69. https://doi.org/10.1200/JCO.18.01010.; André F., Ciruelos E., Rubovszky G. et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N Engl J Med. 2019;380(20):1929–40. https://doi.org/10.1056/NEJMoa1813904.; Pohl-Rescigno E., Hauke J., Loibl S. et al. Association of germline variant status with therapy response in high-risk early-stage breast cancer: a secondary analysis of the GeparOcto Randomized Clinical Trial. JAMA Oncol. 2020;6(5):744–8. https://doi.org/10.1001/jamaoncol.2020.0007.; Herzog S.K., Fuqua S.A.W. ESR1 mutations and therapeutic resistance in metastatic breast cancer: progress and remaining challenges. Br J Cancer. 2022;126(2):174–86. https://doi.org/10.1038/s41416-021-01564-x.; Najim O., Seghers S., Sergoynne L. et al. The association between type of endocrine therapy and development of estrogen receptor-1 mutation(s) in patients with hormone-sensitive advanced breast cancer: a systematic review and meta-analysis of randomized and non-randomized trials. Biochim Biophys Acta Rev Cancer. 2019;1872(2):188315. https://doi.org/10.1016/j.bbcan.2019.188315.; Tokat U.M., Bilgiç S.N., Aydın E. et al. Elacestrant plus alpelisib in an ESR1 and PIK3CA co-mutated and heavily pretreated metastatic breast cancer: the first case report for combination efficacy and safety. Ther Adv Med Oncol. 2024:16:17588359241297101. https://doi.org/10.1177/17588359241297101.; Gelsomino L., Caruso A., Tasan E. et al. Evidence that CRISPR-Cas9 Y537S-mutant expressing breast cancer cells activate Yes-associated protein 1 to driving the conversion of normal fibroblasts into cancer-associated fibroblasts. Cell Commun Signal. 2024;22(1):545. https://doi.org/10.1186/s12964-024-01918-x.; Wang M.-H., Liu Z.-H., Zhang H.-X. et al. Hsa_circRNA_000166 accelerates breast cancer progression via the regulation of the miR-326/ ELK1 and miR-330-5p/ELK1 axes. Ann Med. 2024;56(1):2424515. https://doi.org/10.1080/07853890.2024.2424515.; Angelico G., Broggi G., Tinnirello G. et al. Tumor infiltrating lymphocytes (TILS) and PD-L1 expression in breast cancer: a review of current evidence and prognostic implications from pathologist's perspective. Cancers (Basel). 2023;15(18):4479. https://doi.org/10.3390/cancers15184479.; van den Ende N.S., Nguyen A.H., Jager A. et al. Triple-negative breast cancer and predictive markers of response to neoadjuvant chemotherapy: a systematic review. Int J Mol Sci. 2023;24(3):2969. https://doi.org/10.3390/ijms24032969.; The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70. https://doi.org/10.1038/nature11412.; Barzaman K., Karami J., Zarei Z. et al. Breast cancer: biology, biomarkers, and treatments. Int Immunopharmacol. 2020:84:106535. https://doi.org/10.1016/j.2020.106535.; Grüntkemeier L., Khurana A., Bischoff F.Z. et al. Single HER2-positive tumor cells are detected in initially HER2-negative breast carcinomas using the DEPArray™-HER2-FISH workflow. Breast Cancer. 2022;29(3):487–97. https://doi.org/10.1007/s12282-022-01330-8.; Zhang L., Chen W., Liu S. et al. Targeting breast cancer stem cells. Int J Biol Sci. 2023;19(2):552–70. https://doi.org/10.7150/ijbs.76187.; Gonzalez-Ericsson P.I., Stovgaard E.S., Sua L.F. et al. The path to a better biomarker: application of a risk management framework for the implementation of PD-L1 and TILs as immuno-oncology biomarkers in breast cancer clinical trials and daily practice. J Pathol. 2020;250(5):667–84. https://doi.org/10.1002/path.5406.; Loi S., Michiels S., Adams S. et al. The journey of tumor-infiltrating lymphocytes as a biomarker in breast cancer: clinical utility in an era of checkpoint inhibition. Ann Oncol. 2021;32(10):1236–44. https://doi.org/10.1016/j.annonc.2021.07.007.; Abdelrahman A.E., Rashed H.E., Toam M. et al. Clinicopathological significance of the immunologic signature (PDL1, FOXP3+ Tregs, TILs) in early stage triple-negative breast cancer treated with neoadjuvant chemotherapy. Ann Diagn Pathol. 2021:51:151676. https://doi.org/10.1016/j.anndiagpath.2020.151676.; Тюляндин С.А., Артамонова Е.В., Жукова Л.Г. и др. Практические рекомендации по лекарственному лечению рака молочной железы. Злокачественные опухоли. 2022;12(3s2–1):155–197. https://doi.org/10.18027/2224-5057-2022-12-3s2-155-197.; Liu Y. HER2-low breast cancer: insights on pathological testing. Transl Breast Cancer Res. 2023:4:15. https://doi.org/10.21037/tbcr-23-15.; Horisawa N., Adachi Y., Takatsuka D. et al. The frequency of low HER2 expression in breast cancer and a comparison of prognosis between patients with HER2-low and HER2-negative breast cancer by HR status. Breast Cancer. 2022;29(2):234–41. https://doi.org/10.1007/s12282-021-01303-3.; Denkert C., Lambertini C., Fasching P.A. et al. Biomarker data from the phase III KATHERINE study of adjuvant T-DM1 versus trastuzumab for residual invasive disease after neoadjuvant therapy for HER2-positive breast cancer. Clin Cancer Res. 2023;29(8):1569–81. https://doi.org/10.1158/1078-0432.CCR-22-1989.; Takada M., Toi M. Neoadjuvant treatment for HER2-positive breast cancer. Chin Clin Oncol. 2020;9(3):32. https://doi.org/10.21037/cco-20-123.; Takano T., Masuda N., Ito M. et al. Long-term outcomes of neoadjuvant trastuzumab emtansine + pertuzumab (T-DM1 + P) and docetaxel + carboplatin + trastuzumab + pertuzumab (TCbHP) for HER2-positive primary breast cancer: results of the randomized phase 2 JBCRG20 study (Neo-peaks). Breast Cancer Res Treat. 2024;207(1):33–48. https://doi.org/10.1007/s10549-024-07333-7.; Masuda N., Ohtani S., Takano T. et al. A randomized, 3-arm, neoadjuvant, phase 2 study comparing docetaxel + carboplatin + trastuzumab + pertuzumab (TCbHP), TCbHP followed by trastuzumab emtansine and pertuzumab (T-DM1+P), and T-DM1+P in HER2-positive primary breast cancer. Breast Cancer Res Treat. 2020;180(1):135–46. https://doi.org/10.1007/s10549-020-05524-6.; https://www.gynecology.su/jour/article/view/2481

  2. 2
    Academic Journal

    Συνεισφορές: The study was conducted without sponsorship, Исследование проведено без спонсорской поддержки

    Πηγή: Advances in Molecular Oncology; Vol 11, No 1 (2024); 46-54 ; Успехи молекулярной онкологии; Vol 11, No 1 (2024); 46-54 ; 2413-3787 ; 2313-805X

    Περιγραφή αρχείου: application/pdf

  3. 3
    Academic Journal

    Συνεισφορές: The study was conducted without sponsorship, Исследование проведено без спонсорской поддержки

    Πηγή: Advances in Molecular Oncology; Том 11, № 1 (2024); 46-54 ; Успехи молекулярной онкологии; Том 11, № 1 (2024); 46-54 ; 2413-3787 ; 2313-805X

    Περιγραφή αρχείου: application/pdf

    Relation: https://umo.abvpress.ru/jour/article/view/648/337; Arnold M., Singh D., Laversanne M. et al. Global burden of cutaneous melanoma in 2020 and projections to 2040. JAMA Dermatol 2022;158(5):495–503. DOI:10.1001/jamadermatol.2022.0160; Rabbie R., Ferguson P., Molina-Aguilar C. et al. Melanoma subtypes: genomic profiles, prognostic molecular markers and therapeutic possibilities. J Pathol 2019;247(5):539–51. DOI:10.1002/path.5213; Tehranian C., Fankhauser L., Harter P.N. et al. The PI3K/Akt/ mTOR pathway as a preventive target in melanoma brain metastasis. Neuro Oncol 2022;24(2):213–25. DOI:10.1093/neuonc/noab159; Ito T., Hashimoto H., Kaku-Ito Y. et al. Nail apparatus melanoma: current management and future perspectives. J Clin Med 2023; 12(6):2203. DOI:10.3390/jcm12062203; Manzano J.L., Martin-Liberal J., Fernández-Morales L.A. et al. Adjuvant dabrafenib and trametinib for patients with resected BRAF-mutated melanoma: DESCRIBE-AD real-world retrospective observational study. Melanoma Res 2023;33(5):388–97. DOI:10.1097/CMR.0000000000000888; Johnson D.B., Menzies A.M., Zimmer L. et al. Acquired BRAF inhibitor resistance: a multicenter meta-analysis of the spectrum and frequencies, clinical behaviour, and phenotypic associations of resistance mechanisms. Eur J Cancer 2015;51(18):2792–9. DOI:10.1016/j.ejca.2015.08.022; Schadendorf D., van Akkooi A.C.J., Berking C. et al. Melanoma. Lancet 2018;392(10151):971–84. DOI:10.1016/S0140-6736(18)31559-9; Teixido C., Castillo P., Martinez-Vila C. et al. Molecular markers and targets in melanoma. Cells 2021;10(9):2320. DOI:10.3390/cells10092320; Ito T., Tanaka Y., Murata M. et al. BRAF heterogeneity in melanoma. Curr Treat Options Oncol 2021;22(3):20. DOI:10.1007/s11864-021-00818-3; Long J., Pi X. Polyphyllin I promoted melanoma cells autophagy and apoptosis via PI3K/Akt/mTOR signaling pathway. Biomed Res Int 2020;2020:5149417. DOI:10.1155/2020/5149417; Zhang Z., Richmond A., Yan C. Immunomodulatory properties of PI3K/AKT/mTOR and MAPK/MEK/ERK inhibition augment response to immune checkpoint blockade in melanoma and triplenegative breast cancer. Int J Mol Sci 2022;23(13):7353. DOI:10.3390/ijms23137353; Спирина Л.В., Чижевская С.Ю., Кондакова И.В. Экспрессия транскрипционных, ростовых факторов и компонентов AKT/ M-TOR сигнального пути в ткани папиллярного рака щитовидной железы. Проблемы эндокринологии 2018;64(4):208–15. DOI:10.14341/probl9310; Deng G., Zeng F., Su J. et al. BET inhibitor suppresses melanoma progression via the noncanonical NF-κB/SPP1 pathway. Theranostics 2020;10(25):11428–43. DOI:10.7150/thno.47432; Malekan M., Ebrahimzadeh M.A., Sheida F. The role of hypoxiainducible factor-1alpha and its signaling in melanoma. Biomed Pharmacother 2021;141:111873. DOI:10.1016/j.biopha.2021.111873; Das R., Mehta D.K., Dhanawat M. Medicinal plants in cancer treatment: contribution of nuclear factor-kappa B (NF-kB) inhibitors. Mini Rev Med Chem 2022;22(15):1938–62. DOI:10.2174/1389557522666220307170126; Chen G., Huang A.C., Zhang W. et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 2018;560(7718):382–6. DOI:10.1038/s41586-018-0392-8; Nanamori H., Sawada Y. Epigenetic modification of PD-1/PD-L1-mediated cancer immunotherapy against melanoma. Int J Mol Sci 2022;23(3):1119. DOI:10.3390/ijms23031119; Finger E.C., Cheng C.F., Williams T.R. et al. CTGF is a therapeutic target for metastatic melanoma. Oncogene 2014;33(9):1093–100. DOI:10.1038/onc.2013.47; https://umo.abvpress.ru/jour/article/view/648

  4. 4
    Academic Journal

    Πηγή: Head and Neck Tumors (HNT); Том 14, № 1 (2024); 39-48 ; Опухоли головы и шеи; Том 14, № 1 (2024); 39-48 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2024-14-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/967/618; De Sanjose S., Quint W.G., Alemany L. et al. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol 2010;11(11):1048—56. DOI:10.1016/S1470-2045(10)70230-8; Chaturvedi A.K., Engels E.A., Pfeiffer R.M. et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol 2011;29(32):4294-301. DOI:10.1200/JCO.2011.36.4596; Nasman A., Attner P., Hammarstedt L. et al. Incidence of human papillomavirus (HPV) positive tonsillar carcinoma in Stockholm, Sweden: an epidemic of viral-induced carcinoma? Int J Cancer 2009;125(2):362-6. DOI:10.1002/ijc.24339; Gillison M.L., Broutian T., Pickard R.K. et al. Prevalence of oral HPV infection in the United States, 2009-2010. JAMA 2012;307(7):693-703. DOI:10.1001/jama.2012.101; Mehanna H., Beech T., Nicholson T. et al. Prevalence of human papillomavirus in oropharyngeal and nonoropharyngeal head and neck cancer - systematic review and meta-analysis of trends by time and region. Head Neck 2013;35(5):747-55. DOI:10.1002/hed.22015; Marklund L., Holzhauser S., de Flon C. et al. Survival of patients with oropharyngeal squamous cell carcinomas (OPSCC) in relation to TNM 8 - risk of incorrect downstaging of HPV-mediated non- tonsillar, non-base of tongue carcinomas. Eur J Cancer 2020;139:192-200. DOI:10.1016/j.ejca.2020.08.003; Gillison M.L., Koch W.M., Capone R.B. et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst 2000;92(9):709-20. DOI:10.1093/jnci/92.9.709; Amin M., Edge S., Greene F. et al. AJCC Cancer Staging Manual, 8th edn. New York: Springer, 2017.; Masterson L., Moualed D., Liu Z.W. et al. De-escalation treatment protocols for human papillomavirus-associated oropharyngeal squamous cell carcinoma: a systematic review and meta-analysis of current clinical trials. Eur J Cancer 2014;50(15):2636-48. DOI:10.1016/j.ejca.2014.07.001; Economopoulou P., Kotsantis I., Psyrri A. Special issue about head and neck cancers: HPV positive cancers. Int J Mol Sci 2020;21(9):3388. DOI:10.3390/ijms21093388; Gillison M.L., Trotti A.M., Harris J. et al. Radiotherapy plus cetuximab or cisplatin in human papillomavirus-positive oropharyngeal cancer (NRG Oncology RTOG 1016): a randomised, multicentre, non-inferiority trial. Lancet 2019;393(10166):40-50. DOI:10.1016/s0140-6736(18)32779-x; Liu C., Mann D., Sinha U.K., Kokot N.C. The molecular mechanisms of increased radiosensitivity of HPV-positive oropharyngeal squamous cell carcinoma (OPSCC): an extensive review. J Otolaryngol Head Neck Surg 2018;47(1):59. DOI:10.1186/s40463-018-0302-y; Ang K.K., Harris J., Wheeler R. et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med 2010;363(1):24-35. DOI:10.1056/NEJMoa0912217; Posner M.R., Lorch J.H., Goloubeva O. et al. Survival and human papillomavirus in oropharynx cancer in TAX 324: a subset analysis from an international phase III trial. Ann Oncol 2011;22(5):1071-7. DOI:10.1093/annonc/mdr006; Roselló À., Albuquerque R., Roselló-Llabrés X. et al. Transoral robotic surgery vs open surgery in head and neck cancer. A systematic review of the literature. Med Oral Patol Oral Cir Bucal 2020;25(5):e599-607. DOI:10.4317/medoral.23632; Economopoulou P., De Bree R., Kotsantis I., Psyrri A. Diagnostic tumor markers in head and neck squamous cell carcinoma (HNSCC) in the clinical setting. Front Oncol 2019;9:827. DOI:10.3389/fonc.2019.00827; Bossi P., Miceli R., Benasso M. et al. Impact of treatment expertise on the outcome of patients with head and neck cancer treated within 6 randomized trials. Head Neck 2018;40(12):2648-56. DOI:10.1002/hed.25389; Szturz P., Wouters K., Kiyota N. et al. Weekly low-dose versus three-weekly high-dose cisplatin for concurrent chemoradiation in locoregionally advanced non-nasopharyngeal head and neck cancer: a systematic review and meta-analysis of aggregate data. Oncologist 2017;22(9):1056-66. DOI:10.1634/theoncologist.2017-0015; Vermorken J.B., Mesia R., Rivera F. et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med 2008;359(11):1116-27. DOI:10.1056/NEJMoa0802656; Mehanna H., Robinson M., Hartley A. et al. On behalf of the de-escalate HPV trial group. Radiotherapy plus cisplatin or cetuximab in low-risk human papillomavirus - positive oropharyngeal cancer (De-ESCALaTE HPV): an open-label randomised controlled phase 3 trial. Lancet 2019;393(10166):51-60. DOI:10.1016/S0140-6736(18)32752-1; Gleber-Netto F.O., Rao X., Guo T. et al. Variations in HPV function are associated with survival in squamous cell carcinoma. JCI Insight 2019;4(1):e124762. DOI:10.1172/jci.insight.124762; Brennan S., Baird A.M., O'Regan E., Sheils O. The role of human papilloma virus in dictating outcomes in head and neck squamous cell carcinoma. Front Mol Biosci 2021;8:677900. DOI:10.3389/fmolb.2021.677900; Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 2015;517(7536):576-82. DOI:10.1038/nature14129; Reder H., Wagner S., Gamerdinger U. et al. Genetic alterations in human papillomavirus-associated oropharyngeal squamous cell carcinoma of patients with treatment failure. Oral Oncol 2019;93:59-65. DOI:10.1016/j.oraloncology.2019.04.013; Harbison R.A., Kubik M., Konnick E.Q. et al. The mutational landscape of recurrent versus nonrecurrent human papillomavirus- related oropharyngeal cancer. JCI Insight 2018;3(14):e99327. DOI:10.1172/jci.insight.99327; Isaacsson Velho P.H., Castro G., Chung C.H. Targeting the PI3K pathway in head and neck squamous cell carcinoma. Am Soc Clin Oncol Educ Book 2015:123-8. DOI:10.14694/EdBook_AM.2015.35.123; Lechien J.R., Seminerio I., Descamps G. et al. Impact of HPV infection on the immune system in oropharyngeal and non- oropharyngeal squamous cell carcinoma: a systematic review. Cells 2019;8(9):1061. DOI:10.3390/cells8091061; Turksma A.W., Bontkes H.J., van den Heuvel H. et al. Effector memory T-cell frequencies in relation to tumour stage, location and HPV status in HNSCC patients. Oral Dis 2013;19(6):577-84. DOI:10.1111/odi.12037; Kareer R., Ahuja S., Chaudhary N., Arora R. Association of PD-L1 and p16 expression with clinicopathological parameters in oral cavity and oropharyngeal squamous cell carcinoma. Pathol Res Pract 2023;241:154266. DOI:10.1016/j.prp.2022.154266; Machiels J.P., Rene Leemans C., Golusinski W. et al. Squamous cell carcinoma of the oral cavity, larynx, oropharynx and hypopharynx: EHNS-ESMO-ESTRO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2020;31(11):1462-75. DOI:10.1016/j.annonc.2020.07.011; Mandal R., §enbabaoglu Y., Desrichard A. et al. The Head and Neck Cancer Immune Landscape and its Immunotherapeutic Implications. JCI Insight 2016;1(17):e89829. DOI:10.1172/jci.insight.89829; Wang Y., Xu Y., Hua Q. et al. Novel prognostic model based on im-mune signature for head and neck squamous cell carcinoma. BioMed Res Int 2020;2020:4725314. DOI:10.1155/2020/4725314; Zhang F., Liu Y., Yang Y., Yang K. Development and Validation of a fourteen-innate immunity-related gene pairs signature for predicting prognosis head and neck squamous cell carcinoma. BMC Cancer 2020;20(1):1015. DOI:10.1186/s12885-020-07489-7; Varilla V., Atienza J., Dasanu C.A. Immune alterations and immunotherapy prospects in head and neck cancer. Expert Opin Biol Ther 2013;13(9):1241-56. DOI:10.1517/14712598.2013.810716; Wang H., Zhao Q., Zhang Y. et al. Immunotherapy advances in locally advanced and recurrent/metastatic head and neck squamous cell carcinoma and its relationship with human papillomavirus. Front Immunol 2021;12:652054. DOI:10.3389/fimmu.2021.652054; Clancy K., Hamill C.S., O'Neill W.Q. et al. Impact of p16 status and anatomical site in anti-PD-1 immunotherapy-treated recurrent/ metastatic head and neck squamous cell carcinoma patients. Cancers (Basel) 2021;13(19):4861. DOI:10.3390/cancers13194861; Kanaan H., Kourie H.R., Awada A.H. Are virus-induced cancers more sensitive to checkpoint inhibitors? Future Oncol 2016;12(23):2665-8. DOI:10.2217/fon-2016-028; Näsman A., Romanitan M., Nordfors C. et al. Tumor infiltrating CD8+ and Foxp3+ lymphocytes correlate to clinical outcome and human papillomavirus (HPV) status in tonsillar cancer. PLoS One 2012;7(6):e38711. DOI:10.1371/journal.pone.0038711; Green V.L., Michno A., Stafford N.D., Greenman J. Increased prevalence of tumour infiltrating immune cells in oropharyngeal tumours in comparison to other subsites: relationship to peripheral immunity. Cancer Immunol Immunother 2013;62(5):863-73. DOI:10.1007/s00262-013-1395-9; Matlung S.E., Wilhelmina van Kempen P.M., Bovenschen N. et al. Differences in T-cell infiltrates and survival between HPV+ and HPV- oropharyngeal squamous cell carcinoma. Future Sci OA 2016;2(1):Fso88. DOI:10.4155/fso.15.88; Welters M.J.P., Ma W., Santegoets S. et al. Intratumoral HPV16- specific T cells constitute a type i-oriented tumor microenvironment to improve survival in HPV16-driven oropharyngeal cancer. Clin Cancer Res 2018;24(3):634-47. DOI:10.1158/1078-0432.CCR-17-2140; Heusinkveld M., Goedemans R., Briet R.J. et al. Systemic and local human papillomavirus 16-specific T-cell immunity in patients with head and neck cancer. Int J Cancer 2012;131(2):E74-85. DOI:10.1002/ijc.26497; Wood O., Woo J., Seumois G. et al. Gene expression analysis of TIL rich HPV-driven head and neck tumors reveals a distinct B-cell signature when compared to HPV independent tumors. Oncotarget 2016;7(35):56781-97. DOI:10.18632/oncotarget.10788; Schoenfeld J.D., Gjini E., Rodig S.J. et al. Evaluating the PD-1 axis and immune effector cell infiltration in oropharyngeal squamous cell carcinoma. Int J Radiat Oncol Biol Phys 2018;102(1):137-45. DOI:10.1016/j.ijrobp.2018.05.002; Oliveira-Costa J.P., de Carvalho A.F., da Silveira G.G. et al. Gene expression patterns through oral squamous cell carcinoma development: PD-L1 expression in primary tumor and circulating tumor cells. Oncotarget 2015;6(25):20902-20. DOI:10.18632/oncotarget.3939; Lyford-Pike S., Peng S., Young G.D. et al. Evidence for a Role of the PD-1:PD-L1 pathway in immune resistance of HPV- associated head and neck squamous cell carcinoma. Cancer Res 2013;73(6):1733-41. DOI:10.1158/0008-5472.CAN-12-2384; Green S.E., McCusker M.G., Mehra R. Emerging immune checkpoint inhibitors for the treatment of head and neck cancers. Expert Opin Emerg Drugs 2020;25(4):501-14. DOI:10.1080/14728214.2020.1852215; Sunshine J., Taube J.M. PD-1/PD-L1 inhibitors. Curr Opin Pharmacol 2015;23:32-8. DOI:10.1016/j.coph.2015.05.011; Ferris R.L., Blumenschein G., Fayette J. et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 2016;375(19):1856-67. DOI:10.1056/NEJMoa1602252; Gulley J.L., Repasky E.A., Wood L.S., Butterfield L.H. Highlights of the 31st Annual Meeting of the Society for Immunotherapy of Cancer (Sitc), 2016. J Immunother Cancer 2017;5(1):55. DOI:10.1186/s40425-017-0262-1; Adusumilli P.S., Cha E., Cornfeld M. et al. New cancer immunotherapy agents in development: a report from an associated program of the 31st annual meeting of the Society for Immunotherapy of Cancer, 2016. J Immunother Cancer 2017;5:50. DOI:10.1186/s40425-017-0253-2; Massarelli E., William W., Johnson F. et al. Combining immune checkpoint blockade and tumor-specific vaccine for patients with incurable human papillomavirus 16-related cancer: a phase 2 clinical trial. JAMA Oncol 2019;5(1):67-73. DOI:10.1001/jamaoncol.2018.4051; Seiwert T.Y., Burtness B., Mehra R. et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol 2016;17(7):956-65. DOI:10.1016/S1470-2045(16)30066-3; Cohen E.E.W., Soulieres D., Le Tourneau C. et al. Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study. Lancet 2019;393(10167):156-67. DOI:10.1016/S0140-6736(18)31999-8; Soulieres D., Harrington K.J., Le Tourneau C. et al. Pembrolizumab (pembro) vs standard-of-care (SOC) in previously treated recurrent/ metastatic (R/M) head and neck squamous cell carcinoma (HNSCC): 6-year follow-up of KEYNOTE-040. Ann Oncol 2022;33(Suppl_7):S295-322. DOI:10.1016/annonc/annonc1056; Burtness B., Harrington K.J., Greil R. et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. Lancet 2019;394(10212):1915-28. DOI:10.1016/s0140-6736(19)32591-7; Harrington K.J., Burtness B., Greil R. et al. Pembrolizumab with or without chemotherapy in recurrent or metastatic head and neck squamous cell carcinoma: updated results of the phase III KEYNOTE-048 study. JCO 2023;41(4):790-802. DOI:10.1200/JCO.21.02508.; Colevas A.D., Bahleda R., Braiteh F. et al. Safety and clinical activity of atezolizumab in head and neck cancer: results from a phase I trial. Ann Oncol. 2018;29(11):2247—53. DOI:10.1093/annonc/mdy411; Prendergast G.C., Malachowski W.J., Mondal A. et al. Indoleamine 2,3-dioxygenase and its therapeutic inhibition in cancer. Int Rev Cell Mol Biol 2018;336:175-203. DOI:10.1016/bs.ircmb.2017.07.004; Godin-Ethier J., Hanafi L.A., Piccirillo C.A., Lapointe R. Indoleamine 2,3-dioxygenase expression in human cancers: clinical and immunologic perspectives. Clin Cancer Res 2011;17(22): 6985-91. DOI:10.1158/1078-0432.CCR-11-1331; Nayak-Kapoor A., Hao Z., Sadek R. et al. Phase Ia study of the indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor navoximod (GDC-0919) in patients with recurrent advanced solid tumors. J Immunother Cancer 2018;6(1):61. DOI:10.1186/s40425-018-0351-9; Mitchell T.C., Hamid O., Smith D.C. et al. Epacadostat plus pembrolizumab in patients with advanced solid tumors: phase I results from a multicenter, open-label phase i/ii trial (ECHO-202/ KEYNOTE-037). J Clin Oncol 2018;36(32):3223-30. DOI:10.1200/JCO.2018.78.9602; Outh-Gauer S., Alt M., Le Tourneau C. et al. Immunotherapy in head and neck cancers: a new challenge for immunologists, pathologists and clinicians. Cancer Treat Rev 2018;65:54-64. DOI:10.1016/j.ctrv.2018.02.008; Yearley J., Gibson C., Yu N. et al. PD-L2 expression in human tumors: relevance to anti-PD-1 therapy in cancer. Clin Cancer Res 2017;23:(12):3158-67. DOI:10.1158/1078-0432.CCR-16-1761; Stanley M. HPV-immune response to infection and vaccination. Infect Agent Cancer 2010;5:19. DOI:10.1186/1750-9378-5-19; Whiteside T.L. Immune responses to cancer: are they potential biomarkers of prognosis? Front Oncol 2013;3:107. DOI:10.3389/fonc.2013.00107; Nguyen N., Bellile E., Thomas D. et al. Tumor infiltrating lymphocytes and survival in patients with head and neck squamous cell carcinoma. Head Neck 2016;38(7):1074-84. DOI:10.1002/hed.24406; Chow L.Q.M., Haddad R., Gupta S. et al. Antitumor activity of pembrolizumab in biomarker-unselected patients with recurrent and/or metastatic head and neck squamous cell carcinoma: results from the phase Ib KEYNOTE-012 expansion cohort. J Clin Oncol 2016;34(32):3838-45. DOI:10.1200/jco.2016.68.1478; Bauml J., Seiwert T.Y., Pfister D.G. et al. Pembrolizumab for platinum- and cetuximab-refractory head and neck cancer: results from a single-arm, phase II study. J Clin Oncol 2017;35(14):1542-9. DOI:10.1200/JCO.2016.70.1524; Pfister D.G., Haddad R.I., Worden F.P. et al. Biomarkers predictive of response to pembrolizumab in head and neck cancer. Cancer Med 2023;12(6):6603-14. DOI:10.1002/cam4.5434; Kumar B., Cordell K.G., Leeet J.S. al. EGFR, p16, HPV titer, Bcl-xL and p53, sex, and Smoking as indicators of response to therapy and survival in oropharyngeal cancer. JCO 2008;26(19):3128-37. DOI:10.1200/JCO.2007.12.7662; Sato F., Ono T., Kawahara A. et al. Prognostic impact of p16 and PD-L1 expression in patients with oropharyngeal squamous cell carcinoma receiving a definitive treatment. J Clin Pathol 2019;72(8):542-9. DOI:10.1136/jclinpath-2019-205818; Galvis M.M., Borges G.A., Oliveira T.B. et al. Immunotherapy improves efficacy and safety of patients with HPV positive and negative head and neck cancer: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2020;150:102966. DOI:10.1016/j.critrevonc.2020.102966; https://ogsh.abvpress.ru/jour/article/view/967