-
1Academic Journal
-
2Academic Journal
-
3Academic Journal
Subject Terms: аппликационные лекарственные средства, лекарственные формы, гирогели, клинические испытания, биологически активные повязки, лечение ран, перевязочный материал
File Description: application/pdf
Access URL: https://elib.belstu.by/handle/123456789/69151
-
4Academic Journal
Subject Terms: противотуберкулезные препараты, лекарственные средства, Глюрифор, фтизиатрия, лекарственные формы, Рифампицин, клинические испытания, Рифампицин-Ферейн
File Description: application/pdf
Access URL: https://elib.belstu.by/handle/123456789/69153
-
5Academic Journal
Subject Terms: радиационно-химическая технология, качество лекарственных средств, гидрогелевые пластины, лекарственные формы, стандартизация лекарственных средств, контроль качества, лечение ран, лечение ожогов
File Description: application/pdf
Access URL: https://elib.belstu.by/handle/123456789/69145
-
6Academic Journal
Subject Terms: временные фармакопейные статьи, лекарственные препараты, лекарственные формы, количественное определение, пламенная фотометрия, раствор калия-магния аспарагината
File Description: application/pdf
Access URL: https://elib.belstu.by/handle/123456789/69136
-
7Academic Journal
Subject Terms: лекарственные средства, натрия салицилат, лекарственные препараты, лекарственные формы, растворы натрия аминосалицилата, лекарственно-устойчивые формы
File Description: application/pdf
Access URL: https://elib.belstu.by/handle/123456789/69125
-
8Academic Journal
Subject Terms: гидрогели, раневое заживление, мягкие ткани конечностей, лекарственные формы, открытые переломы голени, лечение травматических дефектов
File Description: application/pdf
Access URL: https://elib.belstu.by/handle/123456789/69088
-
9Academic Journal
Subject Terms: ранозаживляющие гели, лекарственные средства, сосна черная, мягкие лекарственные формы, гель на основе коры черной сосны и каланхоэ, каланхоэ Дегремона, кора черной сосны
File Description: application/pdf
Access URL: https://elib.belstu.by/handle/123456789/69090
-
10Academic Journal
Subject Terms: трансдермальные лекарственные формы, лекарственные средства, раствор ванкомицина, гидрофильные гели, полипептидные антибиотики, ванкомицин гидрохлорид
File Description: application/pdf
Access URL: https://elib.belstu.by/handle/123456789/69072
-
11Academic Journal
Source: Вопросы обеспечения качества лекарственных средств. :55-63
Subject Terms: детские лекарственные формы, гетерогенные системы, pediatric dosage forms, ибупрофен, heterogeneous systems, фармацевтическая разработка, pharmaceutical development, 3. Good health, ibuprofen
-
12Academic Journal
Source: Наука и здравоохранение. :141-148
Subject Terms: лабиринт Толмена, Tolman's labyrinth, мукоадгезивные лекарственные формы, Толмен лабиринті, mucoadhesive dosage forms, бас- мипатологиясы, мукоадгезивті дәрілікзаттар, патологии головного мозга, brain pathologies, экспериментальные мыши, experimental mice, эксперименталды тышқандар
-
13Academic Journal
Source: Вопросы обеспечения качества лекарственных средств. :18-27
Subject Terms: fractional composition, фракционный состав, flowability, форма частиц, dry extracts, particle size, твердые лекарственные формы, сыпучесть, размер частиц, solid dosage forms, экстракты сухие, физико-химические и технологические характеристики, particle shape, technological characteristics
-
14Academic Journal
Source: Вопросы обеспечения качества лекарственных средств. :50-55
Subject Terms: ophthalmic dosage forms, стабильность, глазные лекарственные формы, eye drops, вязкость, импортозамещение, капли глазные, viscosity, гель глазной, stability, import substitution, ophthalmic gel, 3. Good health
-
15Academic Journal
Subject Terms: фитопрепараты, лекарственные средства, лекарственные препараты, ранозаживляющие средства, мягкие лекарственные формы, гидрофильные мази, анализ микробиологической чистоты
File Description: application/pdf
Access URL: https://elib.belstu.by/handle/123456789/63594
-
16Academic Journal
Subject Terms: лекарственные формы, нестероидные противовоспалительные препараты, трансдермальные терапевтические системы, противовоспалительные препараты
File Description: application/pdf
Access URL: https://elib.belstu.by/handle/123456789/62474
-
17Academic Journal
Authors: S. Yu. Serebrova, V. V. Evteev, E. Yu. Demchenkova, M. V. Zhuravleva, A. B. Prokofiev, С. Ю. Сереброва, В. А. Евтеев, Е. Ю. Демченкова, М. В. Журавлева, А. Б. Прокофьев
Contributors: This study was conducted by the Scientific Centre for Expert Evaluation of Medicinal Products as part of the applied research funded under State Assignment No. 056-00026-24-01 (R&D Registry No. 124022200076-2), Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00026-24-01 на проведение прикладных научных исследований (номер государственного учета НИР № 124022200076-2)
Source: Safety and Risk of Pharmacotherapy; Том 12, № 4 (2024); 367-379 ; Безопасность и риск фармакотерапии; Том 12, № 4 (2024); 367-379 ; 2619-1164 ; 2312-7821 ; 10.30895/2312-7821-2024-12-4
Subject Terms: сополимер метакриловой кислоты и метилметакрилата, mesalamine, 5-aminosalicylic acid, ulcerative colitis, Crohn’s disease, colon, inflammatory bowel disease, enteric coatings, enteric-coated dosage forms, methacrylic acid-methyl methacrylate copolymer, месаламин, 5-аминосалициловая кислота, язвенный колит, болезнь Крона, толстая кишка, воспалительные заболевания кишечника, кишечнорастворимые оболочки, кишечнорастворимые лекарственные формы
File Description: application/pdf
Relation: https://www.risksafety.ru/jour/article/view/456/1275; https://www.risksafety.ru/jour/article/downloadSuppFile/456/553; https://www.risksafety.ru/jour/article/downloadSuppFile/456/570; https://www.risksafety.ru/jour/article/downloadSuppFile/456/572; https://www.risksafety.ru/jour/article/downloadSuppFile/456/580; https://www.risksafety.ru/jour/article/downloadSuppFile/456/581; https://www.risksafety.ru/jour/article/downloadSuppFile/456/582; https://www.risksafety.ru/jour/article/downloadSuppFile/456/586; GBD 2017 Inflammatory Bowel Disease Collaborators. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol. 2020;5(1):17–30. https://doi.org/10.1016/S2468-1253(19)30333-4; Iacucci M, de Silva S, Ghosh S. Mesalazine in inflammatory bowel disease: a trendy topic once again? Can J Gastroenterol. 2010;24(2):127–33. https://doi.org/10.1155/2010/586092; Ciorba MA. Inflammatory bowel diseases 2024. Curr Opin Gastroenterol. 2024;40(4):233–4. https://doi.org/10.1097/MOG.0000000000001038; Mukherji G, Wilson CG. Biopolymers and colonic delivery. In: Rathbone MJ, Hadgraft J, Roberts MS, eds. Modified-release drug delivery technology. New York: Marcel Dekker; 2003. P. 223–32.; Mohylyuk V, Yerkhova A, Katynska M, Sirko V, Patel K. Effect of elevated pH on the commercial enteric-coated omeprazole pellets resistance: patent review and multisource generics comparison. AAPS PharmSciTech 2021;22(5):188. https://doi.org/10.1208/s12249-021-02038-2; Little RD, Jayawardana T, Koentgen S, Zhang F, Connor SJ, Boussioutas A, et al. Pathogenesis and precision medicine for predicting response in inflammatory bowel disease: advances and future directions. Gastroenterology. 2024;2:e100006. https://doi.org/10.3390/diagnostics13172797; Fiocchi C, Dragoni G, Iliopoulos D, Katsanos K, Ramirez VH, Suzuki K. Results of the Seventh Scientific Workshop of ECCO: precision medicine in IBD—what, why, and how. J Crohns Colitis. 2021;15(9):1410–30. https://doi.org/10.1093/ecco-jcc/jjab051; Svartz N. Salazopyrin, a new sulfanilamide preparation. A. Therapeutic results in rheumatic polyarthritis. B. Therapeutic results in ulcerative colitis. C. Toxic manifestations in treatment with sulfanilamide preparations. Acta Med Scand. 1942;110:577–98. https://doi.org/10.1111/j.0954-6820.1942.tb06841.x; Шапина МВ, Халиф ИЛ. Применение препаратов 5-аминосалициловой кислоты для лечения язвенного колита в различных режимах дозирования. Медицинский совет. 2017;(15):44–50. https://doi.org/10.21518/2079-701X-2017-15-44-50; Perrotta C, Pellegrino P, Moroni E, De Palma C, Cervia D, Danelli P, Clementi E. Five-aminosalicylic acid: an update for the reappraisal of an old drug. Gastroenterol Res Pract. 2015;2015:456895. https://doi.org/10.1155/2015/456895; Сереброва СЮ, Евтеев ВА, Демченкова ЕЮ, Прокофьев АБ. Компендиум рН-чувствительных полимеров в лекарственных препаратах, применяемых в гастроэнтерологии: фокус на кишечнорастворимые оболочки. Медицинский совет. 2024;(5):134–42. https://doi.org/10.21518/ms2024-039; Sester C, Ofridam F, Lebaz N, Gagnière E, Mangin D, Elaissari A. pH-sensitive methacrylic acid–methyl methacrylate copolymer Eudragit L100 and dimethylaminoethyl methacrylate, butyl methacrylate, and methyl methacrylate tri-copolymer Eudragit E100. Polym Adv Technol. 2019;31:440–50. https://doi.org/10.1002/pat.4780; Cole ET, Scott RA, Connor AL, Wilding IR, Petereit HU, Schminke C, et. al. Enteric coated HPMC capsules designed to achieve intestinal targeting. Int J Pharm. 2002;231(1):83–95. https://doi.org/10.1016/S0378-5173(01)00871-7; Foppoli A, Maroni A, Moutaharrik S, Melocchi A, Zema L, Palugan L, et al. In vitro and human pharmacoscintigraphic evaluation of an oral 5-ASA delivery system for colonic release. Int J Pharm. 2019;572:118723. https://doi.org/10.1016/j.ijpharm.2019.118723; Ibekwe VC, Khela MK, Evans DF, Basit AW. A new concept in colonic drug targeting: a combined pH-responsive and bacterially-triggered drug delivery technology. Aliment Pharmacol Ther. 2008;28(7):911–6. https://doi.org/10.1111/j.1365-2036.2008.03810.x; Varum F, Freire AC, Bravo R, Basit AW. OPTICORE™, an innovative and accurate colonic targeting technology. Int J Pharm. 2020;583:119372. https://doi.org/10.1016/j.ijpharm.2020.119372; Preisig D, Varum F, Bravo R, Hartig C, Spleiss J, Abbes S, et al. Colonic delivery of metronidazole-loaded capsules for local treatment of bacterial infections: a clinical pharmacoscintigraphy study. Eur J Pharm Biopharm. 2021;165:22–30. https://doi.org/10.1016/j.ejpb.2021.05.002; Gordon H, Minozzi S, Kopylov U, Verstockt B, Chaparro M, Buskens C, et al. ECCO guidelines on therapeutics in Crohn’s disease: medical treatment. J Crohns Colitis. 2024;18(10):1531–55. https://doi.org/10.1093/ecco-jcc/jjae091; Silverberg M, Satsangi J, Ahmad T, Arnott IDR, Bernstein CN, Brant SR et al. Toward an integrated clinical, molecular and serological classification of inflammatory bowel disease: report of a working party of the 2005 Montreal World Congress of Gastroenterology. Can J Gastroenterol. 2005;19:5–36. https://doi.org/10.1155/2005/269076; Wahlgren M, Axenstrand M, Hakansson A, Marefati A, Pedersen LB. In vitro methods to study colon release: state of the art and an outlook on new strategies for better in-vitro biorelevant release media. Pharmaceutics. 2019;11(2):95. https://doi.org/10.3390/pharmaceutics11020095; Yamamura R, Inoue KY, Nishino K, Yamasaki S. Intestinal and fecal pH in human health. Front Microbiomes. 2023;2:1192316. https://doi.org/10.3389/frmbi.2023.1192316; Hua S. Advances in oral drug delivery for regional targeting in the gastrointestinal tract—influence of physiological, pathophysiological and pharmaceutical factors. Front Pharmacol. 2020;11:524. https://doi.org/10.3389/fphar.2020.00524; Fallingborg J, Pedersen P, Jacobsen BA. Small intestinal transit time and intraluminal pH in ileocecal resected patients with Crohn’s disease. Dig Dis Sci. 1998;43(4):702–5. https://doi.org/10.1023/A:1018893409596; Nugent SG, Kumar D, Rampton DS, Evans DF. Intestinal luminal pH in inflammatory bowel disease: possible determinants and implications for therapy with aminosalicylates and other drugs. Gut. 2001;48(4):571–7. https://doi.org/10.1136/gut.48.4.571; Sasaki Y, Hada R, Nakajima H, Fukuda S, Munakata A. Improved localizing method of radiopill in measurement of entire gastrointestinal pH profiles: colonic luminal pH in normal subjects and patients with Crohn’s disease. Am J Gastroenterol. 1997;92(1):114–8. PMID: 8995949; Rane K, Kukreja G, Deshmukh S, Kakad U, Jadhav P, Patole V. Robotic pills as innovative personalized medicine tools: a mini review. Recent Adv Drug Deliv Formul. 2024;18(1):2–11. https://doi.org/10.2174/0126673878265457231205114925; Locatelli I, Kovacic NN, Mrhar A, Bogataj M. Gastric emptying of non-disintegrating solid drug delivery systems in fasted state: relevance to drug dissolution. Expert Opin Drug Deliv. 2010;7(8):967−76. https://doi.org/10.1517/17425247.2010.495982; Le Vee M, Lecureur V, Stieger B, Fardel O. Regulation of drug transporter expression in human hepatocytes exposed to the proinflammatory cytokines tumor necrosis factor-alpha or interleukin-6. Drug Metab Dispos. 2009;37(3):685–93. https://doi.org/10.1124/dmd.108.023630; Gong IY, Kim RB. Impact of genetic variation in OATP transporters to drug disposition and response. Drug Metab Pharmacokinet. 2013;28(1):4–18. https://doi.org/10.2133/dmpk.dmpk-12-rv-099; Clarke JD, Hardwick RN, Lake AD, Lickteig AJ, Goedken MJ, Klaassen CD, et al. Synergistic interaction between genetics and disease on pravastatin disposition. J Hepatol. 2014;61(1):139–47. https://doi.org/10.1016/j.jhep.2014.02.021; Billington S, Ray AS, Salphati L, Xiao G, Chu X, Humphreys WG, et al. Transporter expression in noncancerous and cancerous liver tissue from donors with hepatocellular carcinoma and chronic hepatitis C infection quantified by LC-MS/MS proteomics. Drug Metab Dispos. 2018;46(2):189–96. https://doi.org/10.1124/dmd.117.077289; Vildhede A, Kimoto E, Pelis RM, Rodrigues AD, Varma MVS. Quantitative proteomics and mechanistic modeling of transporter-mediated disposition in nonalcoholic fatty liver disease. Clin Pharmacol Ther. 2020;107(5):1128–37. https://doi.org/10.1002/cpt.1699; Murray M, Zhou F. Trafficking and other regulatory mechanisms for organic anion transporting polypeptides and organic anion transporters that modulate cellular drug and xenobiotic influx and that are dysregulated in disease. Br J Pharmacol 2017;174(13):1908–24. https://doi.org/10.1111/bph.13785; Xu D, You G. Loops and layers of post-translational modifications of drug transporters. Adv Drug Deliv Rev. 2017;116:37–44. https://doi.org/10.1016/j.addr.2016.05.003; Alam K, Crowe A, Wang X, Zhang P, Ding K, Li L, et al. Regulation of organic anion transporting polypeptides (OATP) 1B1- and OATP1B3-mediated transport: an updated review in the context of OATP-mediated drug–drug interactions. Int J Mol Sci. 2018;19(3):855. https://doi.org/10.3390/ijms19030855; Wojtal KA, Eloranta JJ, Hruz P, Gutmann H, Drewe J, Staumann A, et al. Changes in mRNA expression levels of solute carrier transporters in inflammatory bowel disease patients. Drug Metab Dispos. 2009;37(9):1871–7. https://doi.org/10.1124/dmd.109.027367; König J, Glaeser H, Keiser M, Mandery K, Klotz U, Fromm MF. Role of organic anion-transporting polypeptides for cellular mesalazine (5-aminosalicylic acid) uptake. Drug Metab Dispos. 2011;39(6):1097–102. https://doi.org/10.1124/dmd.110.034991; Hickman D, Pope J, Patil SD, Fakis G, Smelt V, Stanley LA, et al. Expression of arylamine N-acetyltransferase in human intestine. Gut. 1998;42(3):402–9. https://doi.org/10.1136/gut.42.3.402; Windmill KF, Gaedigk A, Hall PM, Samaratunga H, Grant DM, McManus ME. Localization of N-acetyltransferases NAT1 and NAT2 in human tissues. Toxicol Sci. 2000;54(1):19–29. https://doi.org/10.1093/toxsci/54.1.19; Deloménie C, Fouix S, Longuemaux S, Brahimi N, Bizet C, Picard B, et al. Identification and functional characterization of arylamine N-acetyltransferases in eubacteria: evidence for highly selective acetylation of 5-aminosalicylic acid. J Bacteriol. 2001;183(11):3417–27. https://doi.org/10.1128/jb.183.11.3417-3427.2001; Lichtenstein GR, Loftus EV, Isaacs KL, Regueiro MD, Gerson LB, Sands BE. ACG clinical guideline: management of Crohn’s disease in adults. Am J Gastroenterol. 2018;113(4):481–517. https://doi.org/10.1038/ajg.2018.27; Lamb CA, Kennedy NA, Raine T, Hendy PA, Smith PJ, Limdi JK, et al. British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut. 2019;68(Suppl 3):1–106. https://doi.org/10.1136/gutjnl-2019-318484; Ford AC, Kane SV, Khan KJ, Achkar J-P, Talley NJ, Marshall JK, et al. Efficacy of 5-aminosalicylates in Crohn’s disease: systematic review and meta-analysis. Am J Gastroenterol. 2011;106(4):617–29. https://doi.org/10.1038/ajg.2011.71; Torres J, Bonovas S, Doherty G, Kucharzik T, Gisbert JP, Raine T, et al. ECCO guidelines on therapeutics in Crohn’s disease: medical treatment. J Crohns Colitis. 2020;14(1):4–22. https://doi.org/10.1093/ecco-jcc/jjz180; https://www.risksafety.ru/jour/article/view/456
-
18Academic Journal
Authors: N. B. Melnikova, I. A. Sheferov, A. A. Emasheva, A. A. Sheferova, D. A. Panteleev, A. I. Slivkin, Н. Б. Мельникова, И. А. Шеферов, А. А. Емашева, А. А. Шеферова, Д. А. Пантелеев, А. И. Сливкин
Source: Drug development & registration; Том 13, № 3 (2024); 52-65 ; Разработка и регистрация лекарственных средств; Том 13, № 3 (2024); 52-65 ; 2658-5049 ; 2305-2066
Subject Terms: проницаемость, math modeling, soft dosage forms, permeability, математическое моделирование, мягкие лекарственные формы
File Description: application/pdf
Relation: https://www.pharmjournal.ru/jour/article/view/1853/1293; https://www.pharmjournal.ru/jour/article/downloadSuppFile/1853/2309; Pünnel L. C., Lunter D. J. Film-Forming Systems for Dermal Drug Delivery. Pharmaceutics. 2021;13(7):932. DOI:10.3390/pharmaceutics13070932.; Patil P. B., Datir S. K., Saudagar R. B. A Review on Topical Gels as Drug Delivery System. Journal of Drug Delivery and Therapeutics. 2019;9(3-s):989–994. DOI:10.22270/jddt.v9i3-s.2930.; Chien Y. W, Liu J.-C. Transdermal Drug Delivery Systems. Journal of Biomaterials Applications. 1986;1(2):183–206. DOI:10.1177/088532828600100202.; Williams A. Transdermal and Topical Drug Delivery. London: Pharmaceutical Press; 2003. 242 p.; Karki S., Kim H., Na S.-J., Shin D., Jo K., Lee J. Thin Films as an Emerging Platform for Drug Delivery. Asian Journal of Pharmaceutical Sciences. 2016;11(5):559–574. DOI:10.1016/j.ajps.2016.05.004.; Villarreal-Gómez L. J., Serrano-Medina A., Torres-Martínez E. J., Perez-González G. L., Cornejo-Bravo J. M. Polymeric advanced delivery systems for antineoplasic drugs: doxorubicin and 5-fluorouracil. e-Polymers. 2018;18(4):359–372. DOI:10.1515/epoly-2017-0202.; Salamanca C. H., Barrera-Ocampo A., Lasso J. C., Camacho N., Yarce C. J. Franz Diffusion Cell Approach for Pre-Formulation Characterisation of Ketoprofen Semi-Solid Dosage Forms. Pharmaceutics. 2018;10(3):148. DOI:10.3390/pharmaceutics10030148.; Melnikova N., Sheferov I., Panteleev D., Emasheva A., Druzhkova I., Ignatova N., Mishchenko T., Vedunova M. Design and Study of Nanoceria Modified by 5-Fluorouracil for Gel and Polymer Dermal Film Preparation. Pharmaceuticals. 2023;16(8):1082. DOI:10.3390/ph16081082.; Tiozzo Fasiolo L., Manniello M.D., Banella S., Napoli L., Bortolotti F., Quarta E., Colombo P., Balafas E., Kostomitsopoulos N., Rekkas D.M., Valsami G., Papakyriakopoulou P., Colombo G., Russo P. Flurbiprofen sodium microparticles and soft pellets for nose-to-brain delivery: Serum and brain levels in rats after nasal insufflation. International Journal of Pharmaceutics. 2021;605:120827. DOI:10.1016/j.ijpharm.2021.120827.; Franz S. W. Instrumentation and methodology for in vitro skin diffusion cells. In: Kemppainen B. W., Reifenrath W. G. Methodology for skin absorption. Boca Raton: CRC Press; 1990. P. 35–59.; Franz T. J. Percutaneous absorption. On the relevance of in vitro data. Journal of Investigative Dermatology. 1975;64(3):190–195. DOI:10.1111/1523-1747.ep12533356.; Smith K. L. Penetrant characteristics influencing skin absorption. In: Kemppainen B. W., Reifenrath W. G. Methods for skin absorption. Boca Raton: CRC Press; 1990. P. 24–33.; Altun E., Yuca E., Ekren N., Kalaskar D. M., Ficai D., Dolete G., Ficai A., Gunduz O. Kinetic Release Studies of Antibiotic Patches for Local Transdermal Delivery. Pharmaceutics. 2021;13(5):613. DOI:10.3390/pharmaceutics13050613.; Adepu S., Ramakrishna S. Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules. 2021;26(19):5905. DOI:10.3390/molecules26195905.; Trucillo P. Drug Carriers: A Review on the Most Used Mathematical Models for Drug Release. Processes. 2022;10(6):1094. DOI:10.3390/pr10061094.; Watkinson A. C., Brain K. R. Basic Mathematical Principles in Skin permeation. In: Walters K. Dermatological and Transdermal Formulations. New York: Marcel Dekker; 2002. P. 61–88.; Flynn G. Physiochemical determinants of skin absorption. In: Gerrity T. R., Henry C. J., editors. Principles of route-to-route extrapolation for risk assessment. New York: Elsevier; 1990. P. 93–127.; Guy R. H., Hadgraft J. Physicochemical aspects of percutaneous penetration and its enhancement. Pharmaceutical research. 1988;5(12):753–758. DOI:10.1023/a:1015980516564.; Förster M., Bolzinger M.-A., Fessi H., Briançon S. Topical delivery of cosmetics and drugs. Molecular aspects of percutaneous absorption and delivery. European Journal of Dermatology. 2009;19(4):309–323. DOI:10.1684/ejd.2009.0676.; Tsai W., Tsai H., Wong Y., Hong J., Chang S., Lee M. Preparation and characterization of gellan gum/glucosamine/clioquinol film as oral cancer treatment patch. Materials Science and Engineering: C. 2018;82:317–322. DOI:10.1016/j.msec.2017.05.040.; Sangster J. M. Octanol-water partition coefficients: fundamentals and physical chemistry. Chichester: John Wiley & Sons; 1997. 184 p.; Potts R. O., Guy R. H. Predicting skin permeability. Pharmaceutical research. 1992;9:663–669. DOI:10.1023/a:1015810312465.; Bronaugh R. L., Barton C. N. Prediction of human percutaneous absorption with physicochemical data. In: Wang R. G. M., Knaak J. B., Maibach H. I. Health Risk Assessment Dermal and Inhalation Exposure and Absorption of Toxicants. Boca Raton: CRC Press; 1993.; Dash S., Murthy P. N., Nath L., Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Poloniae Pharmaceutica. 2010;67(3):217–223.; Singhvi G., Singh M. In Vitro Drug Release Characterization Models. International Journal of Pharmaceutical Sciences and Research. 2011;2(1):77–84.; Bhasarkar J., Bal D. Kinetic investigation of a controlled drug delivery system based on alginate scaffold with embedded voids. Journal of Applied Biomaterials & Functional Materials. 2019;17(2):2280800018817462. DOI:10.1177/2280800018817462.; Paarakh M., Jose P., Setty C., Christoper J. Release kinetics – concepts and applications. International Journal of Pharmacy Research & Technology. 2019. DOI:10.31838/ijprt/08.01.02.; Higuchi T. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. Journal of pharmaceutical sciences. 1963;52(12):1145–1149.; Nazir S., Khan M. U. A., Al-Arjan W. S., Abd Razak S. I., Javed A., Kadir M. R. A. Nanocomposite hydrogels for melanoma skin cancer care and treatment: In-vitro drug delivery, drug release kinetics and anti-cancer activities. Arabian Journal of Chemistry. 2021;14(5):103120. DOI:10.1016/j.arabjc.2021.103120.; Khamizov R. K. A pseudo-second order kinetic equation for sorption processes. Russian Journal of Physical Chemistry A. 2020;94(1);125–130. (In Russ.) DOI:10.31857/S0044453720010148.; Plazinski W., Dziuba J., Rudzinski W. Modeling of sorption kinetics: the pseudo-second order equation and the sorbate intraparticle diffusivity. Adsorption. 2013;19;1055–1064. DOI:10.1007/s10450-013-9529-0.; Chacin Ruiza E. A., Swindle-Reillyb K. E., Ford Versypt A. N. Experimental and mathematical approaches for drug delivery for the treatment of wet age-related macular degeneration. Journal of Controlled Release. 2023;363:464–483. DOI:10.1016/j.jconrel.2023.09.021.; Sankavarapu V., Aukunuru J. Development and evaluation of zero order sustained release matrix type transdermal films of ibuprofen. Journal of Global Pharma Technology. 2010;2(2):975–8542. DOI:10.1234/JGPT.V2I2.124.; Bao Q., Newman B., Wang Y., Choi S., Burgess D. J. In vitro and ex vivo correlation of drug release from ophthalmic ointments. Journal of Controlled Release. 2018;276:93–101. DOI:10.1016/j.jconrel.2018.03.003.; Moore T., Croy S., Mallapragada S., Pandit N. Experimental investigation and mathematical modeling of Pluronic® F127 gel dissolution: drug release in stirred systems. Journal of Controlled Release. 2000;67(2–3):191–202. DOI:10.1016/s0168-3659(00)00215-7.; Chacin Ruiz E. A., Carpenterb S. L., Swindle-Reillyc K. E., Ford Versypt A. N. Mathematical Modeling of Drug Delivery from Bi-Layered Core-Shell Polymeric Microspheres. bioRxiv. 2024. DOI:10.1101/2024.01.11.575289.; Al Sawaftah N., Paul V., Awad N., Husseini G. A. Modeling of Anti-Cancer Drug Release Kinetics From Liposomes and Micelles: A Review. EEE Transactions on NanoBioscience. 2021;20(4):565–576. DOI:10.1109/tnb.2021.3097909.; https://www.pharmjournal.ru/jour/article/view/1853
-
19Academic Journal
Authors: S. V. Denkina, M. Y. Gadaev, D. Yu. Grebenkin, A. V. Ryabova, I. V. Kislyakov, С. В. Денькина, М. Ю. Гадаев, Д. Ю. Гребенкин, А. В. Рябова, И. В. Кисляков
Source: Pharmacokinetics and Pharmacodynamics; № 4 (2023); 70-82 ; Фармакокинетика и Фармакодинамика; № 4 (2023); 70-82 ; 2686-8830 ; 2587-7836
Subject Terms: лекарственные формы, dissolution profile studies, tablets, capsules, dosage forms, ТСКР, таблетки, капсулы
File Description: application/pdf
Relation: https://www.pharmacokinetica.ru/jour/article/view/395/358; Roddy E, Zhang W, Doherty M. The changing epidemiology of gout. Nat Clin Pract Rheumatol. 2007 Aug;3(8):443–449. DOI:10.1038/ncprheum0556.; Khosravan R, Grabowski BA, Wu JT, Joseph-Ridge N, Vernillet L. Pharmacokinetics, pharmacodynamics and safety of febuxostat, a non-purine selective inhibitor of xanthine oxidase, in a dose escalation study in healthy subjects. Clin Pharmacokinet. 2006;45(8):821–841. DOI:10.2165/00003088-200645080-00005.; Osada Y, Tsuchimoto M, Fukushima H, et al. Hypouricemic effect of the novel xanthine oxidase inhibitor, TEI-6720, in rodents. Eur J Pharmacol. 1993 Sep 14;241(2-3):183–188. DOI:10.1016/0014-2999(93)90201-r.; Committee for Medicinal Products for Human Use, Assessment report Febuxostat Krka, EMA/123663/2019. [online] Available at: https://www.ema.europa.eu/en/documents/assessment-report/febuxostat-krka-epar-public-assessment-report_en.pdf [Accessed 05 June 2023].; Custodio JM, Wu CY, Benet LZ. Predicting drug disposition, absorption/elimination/transporter interplay and the role of food on drug absorption. Adv Drug Deliv Rev. 2008 Mar 17;60(6):717–733. DOI:10.1016/j.addr.2007.08.043.; Vaishali P. Anita P., Ashish S. Enhancing the dissolution rate of poorly soluble drug Febuxostat using spray dried amorphous solid dispersion technique. Ars Pharm. 2023;64(2):123–138. DOI:10.30827/ars.v64i2.27058.; Kovvasu S, Kunamaneni P, Kunderu RS. Cyclodextrins and their application in enhancing the solubility, dissolution rate and bioavailability. Innoriginal International Journal of Sciences. 2018;5(5):25–34.; Zhang M, Li H, Lang B, et al. Formulation and delivery of improved amorphous fenofibrate solid dispersions prepared by thin film freezing. Eur J Pharm Biopharm. 2012 Nov;82(3):534–544. DOI:10.1016/j.ejpb.2012.06.016.; Kaur M, Mittal A, Gulati M, Sharma D, Kumar R. Formulation and in vitro Evaluation of Fast Dissolving Tablets of Febuxostat Using Co- Processed Excipients. Recent Pat Drug Deliv Formul. 2020;14(1):48–62. DOI:10.2174/1872211314666191224121044. P; Алексеев К.В., Блынская Е.В., Буева В.В. и др. Применение копроцессных вспомогательных веществ в технологии таблетированных лекарственных форм. Волгоградский научно-медицинский журнал. 2019;3:43–48. Alekseyev KV, Blynskaya EV, Bueva VV, et al. The use of co-processed excipients in solid dosage form technology. Volgograd Journal of Medical Research. 2019;3:43–48.; Vishal B, Ashwani KD, Bhawna C, Kumar G. Co-processed excipients: Recent advances and future perspective. Journal of Drug Delivery Science and Technology. 2022;71(5-6):103316. DOI:10.1016/j.jddst.2022.103316; go.drugbank.com 2023. Febuxostat — DrugBank. [online] Available at: [Accessed 05 June 2023].; Rowe RC, Sheskey PJ, Quinn ME. Handbook of Pharmaceutical Excipients. Pharmaceutical Press and American Pharmacists Association 2009. http://repositorio.ub.edu.ar/handle/123456789/5143.; Елисеев МС, Желябина ОВ. Рациональное использование рекомендаций по применению уратснижающей терапии: клинические примеры. Современная ревматология. 2022;16(3):85–90. doi:10.14412/1996-7012-2022-3-85-90. Eliseev MS, Zhelyabina OV. Rational use of recommendations for uratelowering therapy: clinical examples. Sovremennaya Revmatologiya = Modern Rheumatology Journal. 2022;16(3):85–90. DOI:10.14412/1996-7012-2022-3-85-90.; https://www.pharmacokinetica.ru/jour/article/view/395
-
20Academic Journal
Authors: A. S. Sutaykina, N. A. Krishtanova, E. V. Vishnyakov, T. D. Sineva, А. С. Сутайкина, Н. А. Криштанова, Е. В. Вишняков, Т. Д. Синева
Source: Regulatory Research and Medicine Evaluation; Том 14, № 4 (2024); 411-418 ; Регуляторные исследования и экспертиза лекарственных средств; Том 14, № 4 (2024); 411-418 ; 3034-3453 ; 3034-3062 ; 10.30895/1991-2919-2024-14-4
Subject Terms: валидация, multivitamin syrup, paediatric dosage forms, riboflavin, thiamine hydrochloride, ascorbic acid, nicotinic acid, pyridoxine hydrochloride, quality assessment methods, identification, spectrofluorimetry, поливитаминный сироп, детские лекарственные формы, рибофлавин, тиамина гидрохлорид, аскорбиновая кислота, никотиновая кислота, пиридоксина гидрохлорид, методики оценки качества, подлинность, спектрофлуориметрия, спектрофотометрия, качественные реакции
File Description: application/pdf
Relation: https://www.vedomostincesmp.ru/jour/article/view/649/1609; https://www.vedomostincesmp.ru/jour/article/view/649/1473; https://www.vedomostincesmp.ru/jour/article/view/649/1474; https://www.vedomostincesmp.ru/jour/article/view/649/1484; https://www.vedomostincesmp.ru/jour/article/view/649/1485; https://www.vedomostincesmp.ru/jour/article/view/649/1487; https://www.vedomostincesmp.ru/jour/article/view/649/1488; https://www.vedomostincesmp.ru/jour/article/view/649/1538; https://www.vedomostincesmp.ru/jour/article/view/649/1541; https://www.vedomostincesmp.ru/jour/article/view/649/1542; https://www.vedomostincesmp.ru/jour/article/view/649/1543; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/649/566; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/649/567; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/649/568; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/649/647; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/649/648; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/649/649; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/649/650; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/649/651; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/649/657; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/649/658; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/649/659; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/649/660; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/649/661; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/649/662; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/649/709; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/649/710; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/649/711; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/649/712; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/649/713; Кугач ВВ. Аптечное изготовление и контроль качества лекарственных средств за рубежом. Вестник фармации. 2021;(2):64–79. https://doi.org/10.52540/2074-9457.2021.2.64; Смехова ИЕ, Ладутько ЮМ, Калинина ОВ. Экстемпоральное изготовление лекарственных препаратов: проблемы и решения. Вестник фармации. 2021;(1):48–52. https://doi.org/10.52540/2074-9457.2021.1.48; Наркевич ИА, Голант ЗМ, Юрочкин ДС, Лешкевич АА, Эрдни-Гаряев СЭ. Разработка предложений по совершенствованию процессов обращения экстемпоральных лекарственных препаратов и регулирования рецептурно-производственной деятельности аптечных организаций в Российской Федерации. Ремедиум. 2021;(4):14–29. https://doi.org/10.32687/1561-5936-2021-25-4-14-29; https://www.vedomostincesmp.ru/jour/article/view/649