Εμφανίζονται 1 - 11 Αποτελέσματα από 11 για την αναζήτηση '"лекарственно-индуцированные заболевания"', χρόνος αναζήτησης: 0,64δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
    Academic Journal

    Συνεισφορές: The study was performed without external funding, Работа выполнена без спонсорской поддержки

    Πηγή: Safety and Risk of Pharmacotherapy; Том 12, № 2 (2024); 167-177 ; Безопасность и риск фармакотерапии; Том 12, № 2 (2024); 167-177 ; 2619-1164 ; 2312-7821 ; 10.30895/2312-7821-2024-12-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.risksafety.ru/jour/article/view/392/1153; https://www.risksafety.ru/jour/article/downloadSuppFile/392/462; https://www.risksafety.ru/jour/article/downloadSuppFile/392/471; https://www.risksafety.ru/jour/article/downloadSuppFile/392/528; Yu Y, Nie X, Song Z, Xie Y, Zhang X, Du Z, et al. Signal detection of potentially drug-induced liver injury in children using electronic health records. Front Pediatr. 2020;8:171. https://doi.org/10.3389/fped.2020.00171; Yu Z, Zhao Y, Jin J, Zhu J, Yu L, Han G. Prevalence and risk factors of tigecycline-induced liver injury: a multicenter retrospective study. Int J Infect Dis. 2022;120:59–64. https://doi.org/10.1016/j.ijid.2022.04.024; Baietto L, Corcione S, Pacini G, Perri GD, D’Avolio A, De Rosa FG. A 30-years review on pharmacokinetics of antibiotics: is the right time for pharmacogenetics? Curr Drug Metab. 2014;15(6):581–98. https://doi.org/10.2174/1389200215666140605130935; Daly AK, Day CP. Genetic association studies in drug-induced liver injury. Semin Liver Dis. 2009;29(4):400–11. https://doi.org/10.1055/s-0029-1240009; Zed PJ, Haughn C, Black KJL, Fitzpatrick EA, Ackroyd-Stolarz S, Murphy NG, et al. Medication-related emergency department visits and hospital admissions in pediatric patients: a qualitative systematic review. J Pediatr. 2013;163(2):477–83. https://doi.org/10.1016/j.jpeds.2013.01.042; Ersulo TA, Yizengaw MA, Tesfaye BT. Incidence of adverse drug events in patients hospitalized in the medical wards of a teaching referral hospital in Ethiopia: a prospective observational study. BMC Pharmacol Toxicol. 2022;23(1):30. https://doi.org/10.1186/s40360-022-00570-w; Lucena MI, Molokhia M, Shen Y, Urban TJ, Aithal GP, Andrade RJ, et al. Susceptibility to amoxicillin-clavulanate-induced liver injury is influenced by multiple HLA class I and II alleles. Gastroenterology. 2011;141(1):338–47. https://doi.org/10.1053/j.gastro.2011.04.001; Alshabeeb M, Alomar FA, Khan A. Impact of ­SLCO1B1*5 on flucloxacillin and co-amoxiclav-related liver injury. Front Pharmacol. 2022;13:882962. https://doi.org/10.3389/fphar.2022.882962; Власова АВ, Шубина ЮФ, Сычев ДА. Лекарственное поражение печени, ассоциированное с антибиотиками, у детей в критических состояниях: проспективное наблюдательное исследование. Безопасность и риск фармакотерапии. 2024. https://doi.org/10.30895/2312-7821-2023-389; Manolis E, Musuamba FT, Karlsson KE. The European Medicines Agency experience with pediatric dose selection. J Clin Pharmacol. 2021;61:S22–S27. https://doi.org/10.1002/jcph.1863; Иващенко ДВ, Буромская НИ, Савченко ЛМ, Шевченко ЮС, Сычев ДА. Значение метода глобальных триггеров для выявления неблагоприятных событий, связанных с оказанием медицинской помощи в педиатрии. Медицинский совет. 2018;(17):56–65. https://doi.org/10.21518/2079-701X-2018-17-56-65; Власова АВ, Смирнова ЕВ, Горев ВВ, Сычев ДА. Нежелательные реакции детей на антимикробные препараты: ограничения метода спонтанных сообщений и возможности метода глобальных триг­геров лекарственно-индуцированных состояний. Фарматека. 2023;30(1/2):18–31. https://doi.org/10.18565/pharmateca.2023.1-2.18-31; Classen DC, Resar R, Griffin F, Federico F, Frankel T, Kimmel N, et al. “Global Trigger Tool” shows that adverse events in hospitals may be ten times greater than previously measured. Health Aff (Millwood). 2011;30(4):581–9. https://doi.org/10.1377/hlthaff.2011.0190; Katarey D, Verma S. Drug-induced liver injury. Clin Med. 2016;16(Suppl 6):S104–S109. https://doi.org/10.7861/clinmedicine.16-6-s104; Yu Y, Mao YM, Chen CW, Chen JJ, Chen J, Cong WM, et al. CSH guidelines for the diagnosis and treatment of drug-induced liver injury. Hepatol Int. 2017;11(3):221–41. https://doi.org/10.1007/s12072-017-9793-2; Aleo MD, Luo Y, Swiss R, Bonin PD, Potter DM, Will Y. Human drug-induced liver injury severity is highly associated with dual inhibition of liver mitochondrial function and bile salt export pump. Hepatology. 2014;60(3):1015–22. https://doi.org/10.1002/hep.27206; Darwish MH, Farah RA, Farhat GN, Torbey PH, Ghandour FA, Bejjani-Doueihy NA, Dhaini HR. Association of CYP3A4/5 genotypes and expression with the survival of patients with neuroblastoma. Mol Med Rep. 2015;11(2):1462–8. https://doi.org/10.3892/mmr.2014.2835; Kameyama Y, Yamashita K, Kobayashi K, Hosokawa M, Chiba K. Functional characterization of ­SLCO1B1 (OATP-C) variants, SLCO1B1*5, SLCO1B1*15 and SLCO1B1*15+C1007G, by using transient expression systems of HeLa and HEK293 cells. Pharmacogenet Genomics. 2005;15(7):513–22. https://doi.org/10.1097/01.fpc.0000170913.73780.5f; Jindal C, Kumar S, Choudhari G, Goel H, Mittal B. Organic anion transporter protein (OATP1B1) encoded by SLCO1B1 gene polymorphism (388A>G) and susceptibility in gallstone disease. Indian J Med Res. 2009;129(2):170–5. PMID: 19293444; https://www.risksafety.ru/jour/article/view/392

  4. 4
  5. 5
  6. 6
    Academic Journal
  7. 7
    Academic Journal

    Συνεισφορές: The study was performed without external funding, Работа выполнена без спонсорской поддержки

    Πηγή: Safety and Risk of Pharmacotherapy; Том 12, № 2 (2024); 155-166 ; Безопасность и риск фармакотерапии; Том 12, № 2 (2024); 155-166 ; 2619-1164 ; 2312-7821 ; 10.30895/2312-7821-2024-12-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.risksafety.ru/jour/article/view/389/1152; https://www.risksafety.ru/jour/article/downloadSuppFile/389/379; Amin MD, Harpavat S, Leung DH. Drug-induced liver injury in children. Curr Opin Pediatr. 2015;27(5):625–33. https://doi.org/10.1097/mop.0000000000000264; Lee HH, Ho RH. Interindividual and interethnic variability in drug disposition: polymorphisms in organic anion transporting polypeptide 1B1 (OATP1B1; SLCO1B1). Br J Clin Pharmacol. 2017;83(6):1176–84. https://doi.org/10.1111/bcp.13207; Katarey D, Verma S. Drug-induced liver injury. Clin Med (Lond). 2016;16(Suppl. 6):s104–s109. https://doi.org/10.7861/clinmedicine.16-6-s104; Anand AC, Nandi B, Acharya SK, Arora A, Babu S, Batra Y, et al. Indian national association for the study of the liver consensus statement on acute liver failure (Part 1): epidemiology, pathogenesis, presentation and prognosis. J Clin Exp Hepatol. 2020;10(4):339–76. https://doi.org/10.1016/j.jceh.2020.04.012; Donati M, Motola D. Leone R, Moretti U, Stoppa G, Arzenton E, et al. Liver injury due to amoxicillin vs. amoxicillin/clavulanate: a subgroup analysis of a drug-induced liver injury case-control study in Italy. J Hepatol Gastroint Dis. 2017;3(2):1–5. https://doi.org/10.4172/2475-3181.1000143; Teixeira M, Macedo S, Batista T, Martins S, Correia A, Costa Matos L. Flucloxacillin-induced hepatotoxicity-association with HLA-B*5701. Rev Assoc Med Bras (1992). 2020;66(1):12–7. https://doi.org/10.1590/1806-9282.66.1.12; Yu Y, Mao YM, Chen CW, Chen JJ, Chen J, Cong WM, et al. CSH guidelines for the diagnosis and treatment of drug-induced liver injury. Hepatol Int. 2017;11(3):221–41. https://doi.org/10.1007/s12072-017-9793-2; Zhou Y, Yang L, Liao Z, He X, Zhou Y, Guo H. Epidemiology of drug-induced liver injury in China: a systematic analysis of the Chinese literature including 21789 patients. Eur J Gastroenterol Hepatol. 2013;25(7):825–9. https://doi.org/10.1097/meg.0b013e32835f6889; Sgro C, Clinard F, Ouazir K, Chanay H, Allard C, Guilleminet C, et al. Incidence of drug-induced hepatic injuries: a French population-based study. Hepatology. 2002;36(2):451–5. https://doi.org/10.1053/jhep.2002.34857; Pinna AP, Locci G, Furno M, Fanni D, Faa G, Nurchi AM. DILI (drug-induced liver injury) in a 9-month-old infant: a rare case of phenobarbital-induced hepatotoxicity. J Pediatr Neonatal Individ Med JPNIM. 2013;2:93–5. https://doi.org/10.7363/020114; Sridharan K, Al Daylami A, Ajjawi R, Al Ajooz HA. Drug-induced liver injury in critically ill children taking antiepileptic drugs: a retrospective study. Curr Ther Res Clin Exp. 2020;92:100580. https://doi.org/10.1016/j.curtheres.2020.100580; Andrade RJ, Lucena MI, Fernández MC, Pelaez G, Pachkoria K, García-Ruiz E, et al. Drug-induced liver injury: an analysis of 461 incidences submitted to the Spanish registry over a 10-year period. Gastroenterology. 2005;129(2):512–21. https://doi.org/10.1016/j.gastro.2005.05.006; Chalasani N, Reddy K, Fontana R, Barnhart H, Gu J, Hayashi P, et al. Idiosyncratic drug-induced liver injury in African-Americans is associated with greater morbidity and mortality compared to Caucasians. Am J Gastroenterol. 2017;112(9):1382–8. https://doi.org/10.1038/ajg.2017.215; Björnsson ES. Hepatotoxicity of statins and other lipid-lowering agents. Liver Int. 2017;37(2):173–8. https://doi.org/10.1111/liv.13308; deLemos AS, Ghabril M, Rockey DC, Gu J, Barnhart HX, Fontana RJ, et al. Amoxicillin-clavulanate-induced liver injury. Dig Dis Sci. 2016;61(8):2406–16. https://doi.org/10.1007/s10620-016-4121-6; Iannelli V. 30 most commonly prescribed pediatric medications. 06.06.2023. https://www.verywellhealth.com/the-30-most-prescribed-drugs-in-pediatrics-2633435; Yamaguchi A, Tateishi T, Okano Y, Matuda T, Akimoto Y, Miyoshi T, et al. Higher incidence of elevated body temperature or increased C-reactive protein level in asthmatic children showing transient reduction of theophylline metabolism. J Clin Pharmacol. 2000;40(3):284–9. https://doi.org/10.1177/00912700022008955; Pokrajac M, Simić D, Varagić V. Pharmacokinetics of theophylline in hyperthyroid and hypothyroid patients with chronic obstructive pulmonary disease. Eur J Clin Pharmacol. 1987;33(5):483–6. https://doi.org/10.1007/bf00544240; Stephens M, Self T, Lancaster D, Nash T. Hypothyroidism: effect on warfarin anticoagulation. South Med J. 1989;82(12):1585–6. PMID: 2595433; Ersulo TA, Yizengaw MA, Tesfaye BT. Incidence of adverse drug events in patients hospitalized in the medical wards of a teaching referral hospital in Ethiopia: a prospective observational study. BMC Pharmacol Toxicol. 2022;23(1):30. https://doi.org/10.1186/s40360-022-00570-w; Kiguba R, Karamagi C, Bird SM. Incidence, risk factors and risk prediction of hospital-acquired suspected adverse drug reactions: a prospective cohort of Ugandan inpatients. BMJ Open. 2017;7(1):e010568. https://doi.org/10.1136/bmjopen-2015-010568; Zed PJ, Haughn C, Black KJL, Fitzpatrick EA, Ackroyd-Stolarz S, Murphy NG, et al. Medication-related emergency department visits and hospital admissions in pediatric patients: a qualitative systematic review. J Pediatr. 2013;163(2):477–83. https://doi.org/10.1016/j.jpeds.2013.01.042; Schumaker AL, Okulicz JF. Meropenem-induced vanishing bile duct syndrome. Pharmacotherapy. 2010;30(9):953. https://doi.org/10.1592/phco.30.9.953; Doß S, Blessing C, Haller K, Richter G, Sauer M. Influence of antibiotics on functionality and viability of liver cells in vitro. Curr Issues Mol Biol. 2022;44(10):4639–57. https://doi.org/10.3390/cimb44100317; Li L-M, Chen L, Deng G-H, Tan W-T, Dan Y-J, Wang R-Q, Chen W-S. SLCO1B1*15 haplotype is associated with rifampin-induced liver injury. Mol Med Rep. 2012;6(1):75–82. https://doi.org/10.3892/mmr.2012.900; Ghabril M, Bonkovsky HL, Kum C, Davern T, Hayashi PH, Kleiner DE, et al. Liver injury from tumor necrosis factor-α antagonists: analysis of thirty-four cases. Clin Gastroenterol Hepatol. 2013;11(5):558–64. https://doi.org/10.1016/j.cgh.2012.12.025; Breitkreutz J, Boos J. Paediatric and geriatric drug delivery. Expert Opin Drug Deliv. 2007;4(1):37–45. https://doi.org/10.1517/17425247.4.1.37; Buch S, Schafmayer C, Voelzke H, Seeger M, Miquel JF, Sookoian SC, et al. Loci from a genome-wide analysis of bilirubin levels are associated with gallstone risk and composition. Gastroenterology. 2010;139(6):1942–51. https://doi.org/10.1053/j.gastro.2010.09.003; Hoofnagle JH, Björnsson ES. Drug-induced liver injury — types and phenotypes. N Engl J Med. 2019;381(3):264–73. https://doi.org/10.1056/nejmra1816149; Daly AK, Day CP. Genetic association studies in drug-induced liver injury. Semin Liver Dis. 2009;29(4):400–11. https://doi.org/10.1055/s-0029-1240009; Manolis E, Musuamba FT, Karlsson KE. The European Medicines Agency experience with pediatric dose selection. J Clin Pharmacol. 2021;61:S22–S27. https://doi.org/10.1002/jcph.1863; Власова АВ, Смирнова ЕВ, Горев ВВ, Сычев ДА. Нежелательные реакции детей на антимикробные препараты: ограничения метода спонтанных сообщений и возможности метода глобальных триггеров лекарственно-индуцированных состояний. Фарматека. 2023;30(1–2):18–31. https://doi.org/10.18565/pharmateca.2023.1-2.18-31; Classen DC, Resar R, Griffin F, Federico F, Frankel T, Kimmel N, et al. ‘Global Trigger Tool’ shows that adverse events in hospitals may be ten times greater than previously measured. Health Aff (Millwood). 2011;30(4):581–9. https://doi.org/10.1377/hlthaff.2011.0190; Иващенко ДВ, Буромская НИ, Савченко ЛМ, Шевченко ЮС, Сычев ДА. Значение метода глобальных триггеров для выявления неблагоприятных событий, связанных с оказанием медицинской помощи в педиатрии. Медицинский совет. 2018;(17):56–65. https://doi.org/10.21518/2079-701X-2018-17-56-65; Johnson AD, Kavousi M, Smith AV, Chen M-H, Dehghan A, Aspelund T, et al. Genome-wide association meta-analysis for total serum bilirubin levels. Hum Mol Genet. 2009;18(14):2700–10. https://doi.org/10.1093/hmg/ddp202; Yu Y, Nie X, Song Z, Xie Y, Zhang X, Du Z, et al. Signal detection of potentially drug-induced liver injury in children using electronic health records. Front Pediatr. 2020;8:171. https://doi.org/10.3389/fped.2020.00171; Jiang T, Huang X, Liu Q, Feng H, Huang Y, Lin J, et al. Risk factors for tigecycline-associated hepatotoxicity in patients in the intensive care units of 2 tertiary hospitals: a retrospective study. J Clin Pharmacol. 2022;62(11):1426–34. https://doi.org/10.1002/jcph.2099; Ghanem CI, Gómez PC, Arana MC, Perassolo M, Ruiz ML, Villanueva SS, et al. Effect of acetaminophen on expression and activity of rat liver multidrug resistance-associated protein 2 and P-glycoprotein. Biochem Pharmacol. 2004;68(4):791–8. https://doi.org/10.1016/j.bcp.2004.05.014; Acevedo C, Bengochea L, Tchercansky DM, Ouviña G, Perazzo JC, Lago N, et al. Cholestasis as a liver protective factor in paracetamol acute overdose. Gen Pharmacol. 1995;26(7):1619–24. https://doi.org/10.1016/0306-3623(95)00061-5; https://www.risksafety.ru/jour/article/view/389

  8. 8
    Academic Journal

    Πηγή: Safety and Risk of Pharmacotherapy; Том 10, № 1 (2022); 48-64 ; Безопасность и риск фармакотерапии; Том 10, № 1 (2022); 48-64 ; 2619-1164 ; 2312-7821 ; 10.30895/2312-7821-2022-10-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.risksafety.ru/jour/article/view/245/465; https://www.risksafety.ru/jour/article/downloadSuppFile/245/232; https://www.risksafety.ru/jour/article/downloadSuppFile/245/235; https://www.risksafety.ru/jour/article/downloadSuppFile/245/243; Tisdale JE, Miller DA, eds. Drug Induced Diseases: Prevention, Detection, and Management. 3rd ed. Bethesda, Md.: American Society of Health-System Pharmacists; 2018.; Daly AK. Pharmacogenomics of adverse drug reactions. Genome Med. 2013;5(1):5. https://doi.org/10.1186/gm409; Uetrecht J, Naisbitt DJ. Idiosyncratic adverse drug reactions: current concepts. Pharmacol Rev. 2013;65(2):779–808. https://doi.org/10.1124/pr.113.007450; Ma Q, Lu AY. Pharmacogenetics, pharmacogenomics, and individualized medicine. Pharmacol Rev. 2011;63(2):437–59. https://doi.org/10.1124/pr.110.003533; Belle DJ, Singh H. Genetic factors in drug metabolism. Am Fam Physician. 2008; 77(11):1553–60. PMID: 18581835; Sim SC, Kacevska M, Ingelman-Sundberg M. Pharmacogenomics of drug-metabolizing enzymes: a recent update on clinical implications and endogenous effects. Pharmacogenomics J. 2013;13(1):1–11. https://doi.org/10.1038/tpj.2012.45; Кукес ВГ, ред. Клиническая фармакогенетика. М.: ГЭОТАР-Медиа; 2007.; Johnson JA, Caudle KE, Gong L, Whirl-Carrillo M, Stein CM, Scott SA, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for pharmacogenetics – guided warfarin dosing: 2017 update. Clin Pharmacol Ther. 2017;102(3):397–404. https://doi.org/10.1002/cpt.668; Theken KN, Lee CR, Gong L, Caudle KE, Formea CM, Gaedigk A, et al. Clinical Pharmacogenetics Implementation Consortium Guideline (CPIC) for CYP2C9 and nonsteroidal anti-inflammatory drugs. Clin Pharmacol Ther. 2020;108(2):191–200. https://doi.org/10.1002/cpt.1830; Desta Z, Gammal RS, Gong L, Whirl-Carrillo M, Gaur AH, Sukasem C, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2B6 and efavirenz-containing antiretroviral therapy. Clin Pharmacol Ther. 2019;106(4):726–33. https://doi.org/10.1002/cpt.1477; Sibbing D, Koch W, Gebhard D, Schuster T, Braun S, Stegherr J, et al. Cytochrome 2C19*17 allelic variant, platelet aggregation, bleeding events, and stent thrombosis in clopidogrel-treated patients with coronary stent placement. Circulation. 2010;121(4):512–8. https://doi.org/10.1161/CIRCULATIONAHA.109.885194; Scott SA, Sangkuhl K, Stein CM, Hulot JS, Mega JL, Roden DM, et al. Clinical Pharmacogenetics Implementation Consortium. Clinical Pharmacogenetics Implementation Consortium guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clin Pharmacol Ther. 2013;94(3):317–23. https://doi.org/10.1038/clpt.2013.105; Lima JJ, Thomas CD, Barbarino J, Desta Z, Van Driest SL, Rouby NE, et al. Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2C19 and proton pump inhibitor dosing. Clin Pharmacol Ther. 2021;109(6):1417–23. https://doi.org/10.1002/cpt.2015; Moriyama B, Obeng AO, Barbarino J, Penzak SR, Henning SA, Scott SA, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for CYP2C19 and voriconazole therapy. Clin Pharmacol Ther. 2017;102(1):45–51. https://doi.org/10.1002/cpt.583; Hicks JK, Bishop JR, Sangkuhl K, Müller DJ, Ji Y, Leckband SG, et al. Clinical Pharmacogenetics Implementation Consortium. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6 and CYP2C19 genotypes and dosing of selective serotonin reuptake inhibitors. Clin Pharmacol Ther. 2015;98(2):127–34. https://doi.org/10.1002/cpt.147; Hicks JK, Sangkuhl K, Swen J, Ellingrod VL, Müller DJ, Shimoda K, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin Pharmacol Ther. 2017;102(1):37–44. https://doi.org/10.1002/cpt.597; Crews KR, Monte AA, Huddart R, Caudle KE, Kharasch ED, Gaedigk A, et al. Clinical Pharmacogenetics Implementation Consortium guideline for CYP2D6, OPRM1, and COMT genotypes and select opioid therapy. Clin Pharmacol Ther. 2021;110(4):888–96. https://doi.org/10.1002/cpt.2149; Amstutz U, Henricks LM, Offer SM, Barbarino J, Schellens JHM, Swen JJ, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing: 2017 update. Clin Pharmacol Ther. 2018;103(2):210–16. https://doi.org/10.1002/cpt.911; Relling MV, Schwab M, Whirl-Carrillo M, Suarez-Kurtz G, Pui CH, Stein CM, et al. Clinical Pharmacogenetics Implementation Consortium guideline for thiopurine dosing based on TPMT and NUDT15 genotypes: 2018 update. Clin Pharmacol Ther. 2019;105(5):1095–105. https://doi.org/10.1002/cpt.1304; Gammal RS, Court MH, Haidar CE, Iwuchukwu OF, Gaur AH, Alvarellos M, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for UGT1A1 and atazanavir prescribing. Clin Pharmacol Ther. 2016;99(4):363–9. https://doi.org/10.1002/cpt.269; Ramsey LB, Johnson SG, Caudle KE, Haidar CE, Voora D, Wilke RA, et al. The clinical pharmacogenetics implementation consortium guideline for SLCO1B1 and simvastatin-induced myopathy: 2014 update. Clin Pharmacol Ther. 2014;96(4):423–8. https://doi.org/10.1038/clpt.2014.125; Martin MA, Hoffman JM, Freimuth RR, Klein TE, Dong BJ, Pirmohamed M, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for HLA-B genotype and abacavir dosing: 2014 update. Clin Pharmacol Ther. 2014;95(5):499–500. https://doi.org/10.1038/clpt.2014.38; Karnes JH, Rettie AE, Somogyi AA, Huddart R, Fohner AE, Formea CM, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2C9 and HLA-B genotypes and phenytoin dosing: 2020 update. Clin Pharmacol Ther. 2021;109(2):302–9. https://doi.org/10.1002/cpt.2008; Phillips EJ, Sukasem C, Whirl-Carrillo M, Müller DJ, Dunnenberger HM, Chantratita W, et al. Clinical Pharmacogenetics Implementation Consortium guideline for HLA genotype and use of carbamazepine and oxcarbazepine: 2017 update. Clin Pharmacol Ther. 2018;103(4):574–81. https://doi.org/10.1002/cpt.1004; Saito Y, Stamp LK, Caudle KE, Hershfield MS, McDonagh EM, Callaghan JT, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for human leukocyte antigen B (HLA-B) genotype and allopurinol dosing: 2015 update. Clin Pharmacol Ther. 2016;99(1):36–7. https://doi.org/10.1002/cpt.161; McDermott JH, Wolf J, Hoshitsuki K, Huddart R, Caudle KE, Whirl-Carrillo M, et al. Clinical Pharmacogenetics Implementation Consortium guideline for the use of aminoglycosides based on MT-RNR1 genotype. Clin Pharmacol Ther. 2022;111(2):366–72. https://doi.org/10.1002/cpt.2309; Gonsalves SG, Dirksen RT, Sangkuhl K, Pulk R, Alvarellos M, Vo T, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for the use of potent volatile anesthetic agents and succinylcholine in the context of RYR1 or CACNA1S genotypes. Clin Pharmacol Ther. 2019;105(6):1338–44. https://doi.org/10.1002/cpt.1319; Aquilante CL, Langaee TY, Lopez LM, Yarandi HN, Tromberg JS, Mohuczy D, et al. Influence of coagulation factor, vitamin К epoxide reductase complex subunit 1, and cytochrome P450 2C9 gene polymorphisms on warfarin dose requirements. Clin Pharmacol Ther. 2006;79(4):291–302. https://doi.org/10.1016/j.clpt.2005.11.011; Higashi MK, Veenstra DL, Kondo LM, Wittkowsky AK, Srinouanprachanh SL, Farin FM, et al. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA. 2002;287(13):1690–8. https://doi.org/10.1001/jama.287.13.1690; Takano M, Sugiyama T. UGT1A1 polymorphisms in cancer: impact on irinotecan treatment. Pharmgenomics Pers Med. 2017;10:61–8. https://doi.org/10.2147/PGPM.S108656; Booth RA, Ansari MT, Loit E, Tricco AC, Weeks L, Doucette S, et al. Assessment of thiopurine S-methyltransferase activity in patients prescribed thiopurines: a systematic review. Ann Intern Med. 2011;154(12):814–23. https://doi.org/10.7326/0003-4819-154-12-201106210-00009; Lennard L, Van Loon JA, Weinshilboum RM. Pharmacogenetics of acute azathioprine toxicity: relationship to thiopurine methyltransferase genetic polymorphism. Clin Pharmacol Ther. 1989;46(2):149–54. https://doi.org/10.1038/clpt.1989.119; Azzato EM, Chen RA, Wacholder S, Chanock SJ, Klebanoff MA, Caporaso NE. Maternal EPHX1 polymorphisms and risk of phenytoin-induced congenital malformations. Pharmacogenet Genomics. 2010;20(1):58–63. https://doi.org/10.1097/FPC.0b013e328334b6a3; Tao J, Li N, Liu Z, Deng Y, Li X, Chen M, et al. The effect on congenital heart diseases of maternal EPHX1 polymorphisms modified by polycyclic aromatic hydrocarbons exposure. Medicine (Baltimore). 2019;98(30):e16556. https://doi.org/10.1097/MD.0000000000016556; Hoffmeyer S, Burk O, von Richter O, Arnold HP, Brockmöller J, Johne A, et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation ot one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci USA. 2000;97(7):3473–8. https://doi.org/10.1073/pnas.050585397; Filipski KK, Mathijssen RH, Mikkelsen TS, Schinkel AH, Sparreboom A. Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity. Clin Pharmacol Ther. 2009;86(4):396–402. https://doi.org/10.1038/clpt.2009.139; Rieder MJ, Reiner AP, Gage BF, Nickerson DA, Eby CS, McLeod HL, et al. Effect of VKORCl haplo-types on transcriptional regulation and warfarin dose. N Engl J Med. 2005;352(22):2285–93. https://doi.org/10.1056/NEJMoa044503; Остроумова ОД, Голобородова ИВ. Лекарственно-индуцированное удлинение интервала QT: распространенность, факторы риска, лечение и профилактика. Consilium Medicum. 2019;21(5):62–7.; Stephens C, Lucena MI, Andrade RJ. Genetic variations in drug-induced liver injury (DILI): resolving the puzzle. Front Genet. 2012;3:253. https://doi.org/10.3389/fgene.2012.00253; Svensson CK, Cowen EW, Gaspari AA. Cutaneous drug reactions. Pharmacol Rev. 2001;53(3):357–79. PMID: 11546834; Chung WH, Hung SI, Hong HS, Hsih MS, Yang LC, Ho HC, et al. Medical genetics: a marker for Stevens–Johnson syndrome. Nature. 2004;428(6982):486. https://doi.org/10.1038/428486a; McCormack M, Alfirevic A, Bourgeois S, Farrell JJ, Kasperavičiūtė D, Carrington M, et al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N Engl J Med. 2011;364(12):1134–43. doi:10.1056/NEJMoa1013297; Mallal S, Nolan D, Witt C, Masel G, Martin AM, Moore С, et al. Association between presence of HLA-B’5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet. 2002;359(9308):727–32. https://doi.org/10.1016/s0140-6736(02)07873-x; Mallal S, Phillips E, Carosi G, Molina JM, Workman C, Tomazic J, et al. HLA-B*5701 screening for hypersensitivity to abacavir. N Engl J Med. 2008;358(6):568–79. https://doi.org/10.1056/NEJMoa0706135; Relling MV, McDonagh EM, Chang T, Caudle KE, McLeod HL, Haidar CE, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for rasburicase therapy in the context of G6PD deficiency genotype. Clin Pharmacol Ther. 2014;96(2):169–74. https://doi.org/10.1038/clpt.2014.97; Clancy JP, Johnson SG, Yee SW, McDonagh EM, Caudle KE, Klein TE, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for ivacaftor therapy in the context of CFTR genotype. Clin Pharmacol Ther. 2014;95(6):592–7. https://doi.org/10.1038/clpt.2014.54; Brown JT, Bishop JR, Sangkuhl K, Nurmi EL, Mueller DJ, Dinh JC, et al. Clinical Pharmacogenetics Implementation Consortium guideline for cytochrome P450 (CYP)2D6 genotype and atomoxetine therapy. Clin Pharmacol Ther. 2019;106(1):94–102. https://doi.org/10.1002/cpt.1409; Bell GC, Caudle KE, Whirl-Carrillo M, Gordon RJ, Hikino K, Prows CA, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6 genotype and use of ondansetron and tropisetron. Clin Pharmacol Ther. 2017;102(2):213–8. https://doi.org/10.1002/cpt.598; Goetz MP, Sangkuhl K, Guchelaar HJ, Schwab M, Province M, Whirl-Carrillo M, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6 and tamoxifen therapy. Clin Pharmacol Ther. 2018;103(5):770–7. https://doi.org/10.1002/cpt.1007; Birdwell KA, Decker B, Barbarino JM, Peterson JF, Stein CM, Sadee W, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for CYP3A5 genotype and tacrolimus dosing. Clin Pharmacol Ther. 2015;98(1):19–24. https://doi.org/10.1002/cpt.113; Muir AJ, Gong L, Johnson SG, Lee MTM, Williams MS, Klein TE, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for IFNL3 (IL28B) genotype and PEG interferon-α-based regimens. Clin Pharmacol Ther. 2014;95(2):141–6. https://doi.org/10.1038/clpt.2013.203; https://www.risksafety.ru/jour/article/view/245

  9. 9
    Academic Journal

    Συνεισφορές: The study was performed without external funding.

    Πηγή: Safety and Risk of Pharmacotherapy; Том 9, № 2 (2021); 85-94 ; Безопасность и риск фармакотерапии; Том 9, № 2 (2021); 85-94 ; 2619-1164 ; 2312-7821 ; 10.30895/2312-7821-2021-9-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.risksafety.ru/jour/article/view/211/348; https://www.risksafety.ru/jour/article/downloadSuppFile/211/153; Zhang N, Sundquist J, Sundquist K, Ji J. An increasing trend in the prevalence of polypharmacy in Sweden: a nationwide register-based study. Front Pharmacol. 2020;11:326. https://doi.org/10.3389/fphar.2020.00326; Tisdale JE, Miller DA. Drug Induced Diseases: Prevention, Detection, and Management. 3rd ed. Bethesda, Md.: American Society of Health-System Pharmacists; 2018.; de Vries ST, Denig P, Ekhart C, Burgers JS, Kleefstra N, Mol PGM, van Puijenbroek EP. Sex differences in adverse drug reactions reported to the National Pharmacovigilance Centre in the Netherlands: an explorative observational study. Br J Clin Pharmacol. 2019;85(7):1507–15. https://doi.org/10.1111/bcp.13923; Yu Y, Chen J, Li D, Wang L, Wang W, Liu H. Systematic analysis of adverse event reports for sex differences in adverse drug events. Sci Rep. 2016;6:24955. https://doi.org/10.1038/srep24955; Yeon HR, Kang SO, Min KH, Choi Y, Hwang B, Kim HJ, Lee KE. Sex differences in adverse drug reactions using the Korea institute of drug safety and risk management database. Yakhak Hoeji. 2020;64(1 ):79–86 (In Korean). https://doi.org/10.17480/psk.2020.64.1.79; Zopf Y, Rabe C, Neubert A, Janson C, Brune K, Hahn EG, Dormann H. Gender-based differences in drug prescription: relation to adverse drug reactions. Pharmacology. 2009;84(6):333–9. https://doi.org/10.1159/000248311; Zopf Y, Rabe C, Neubert A, Gassmann KG, Rascher W, Hahn EG, et al. Women encounter ADRs more often than do men. Eur J Clin Pharmacol. 2008;64(10):999–1004. https://doi.org/10.1007/s00228-008-0494-6; Joung KI, Jung GW, Park HH, Lee H, Park SH, Shin JY. Gender differences in adverse event reports associated with antidiabetic drugs. Sci Rep. 2020;10:17545. https://doi.org/10.1038/s41598-020-74000-4; Kando JC, Yonkers KA, Cole JO. Gender as a risk factor for adverse events to medications. Drugs. 1995;50(1):1–6. https://doi.org/10.2165/00003495-199550010-00001; Soldin OP, Chung SH, Mattison DR. Sex differences in drug disposition. J Biomed Biotechnol. 2011;2011:187103. https://doi.org/10.1155/2011/187103; Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol. 2016;16(10):626–38. https://doi.org/10.1038/nri.2016.90; Blair ML. Sex-based differences in physiology: what should we teach in the medical curriculum? Adv Physiol Educ. 2007;31(1):23–5. https://doi.org/10.1152/advan.00118.2006; Karlstadt RG, Hogan DL, Foxx-Orenstein A. Normal physiology of the gastrointestinal tract and gender differences. In: Legato MJ, ed. Principles of Gender-Specific Medicine. San Diego: Elsevier Academic Press; 2004. P. 377–96. https://doi.org/10.1016/b978-012440905-7/50304-2; Yanguas-Casás N. Physiological sex differences in microglia and their relevance in neurological disorders. Neuroimmunol Neuroinflammation. 2020;7:13–22. https://doi.org/10.20517/2347-8659.2019.31; Layton AT, Sullivan JC. Recent advances in sex differences in kidney function. Am J Physiol Renal Physiol. 2019;316(2):F328– F331. https://doi.org/10.1152/ajprenal.00584.2018; Mennecozzi M, Landesmann B, Palosaari T, Harris G, Whelan M. Sex differences in liver toxicity—do female and male human primary hepatocytes react differently to toxicants in vitro? PLoS ONE. 2015;10(4):e0122786. https://doi.org/10.1371/journal.pone.0122786; Pampori NA, Shapiro BH. Gender differences in the responsiveness of the sex-dependent isoforms of hepatic P450 to the feminine plasma growth hormone profile. Endocrinology. 1999;140(3):1245–54. https://doi.org/10.1210/endo.140.3.6545; Kwo PY, Ramchandani VA, O’Connor S, Amann D, Carr LG, Sandrasegaran K, et al. Gender differences in alcohol metabolism: relationship to liver volume and effect of adjusting for body mass. Gastroenterology. 1998;115(6):1552–7. https://doi.org/10.1016/s0016-5085(98)70035-6; Chu T. Gender differences in pharmacokinetics. US Pharm. 2014;39(9):40–3. https://www.uspharmacist.com/article/gender-differences-in-pharmacokinetics; Tannenbaum C, Day D, Matera Alliance. Age and sex in drug development and testing for adults. Pharmacol Res. 2017;121:83–93. https://doi.org/10.1016/j.phrs.2017.04.027; Moyer AM, Matey ET, Miller VM. Individualized medicine: sex, hormones, genetics, and adverse drug reactions. Pharmacol Res Perspect. 2019;7(6):e00541. https://doi.org/10.1002/prp2.541; Waxman DJ, Holloway MG. Sex differences in the expression of hepatic drug metabolizing enzymes. Mol Pharmacol. 2009;76(2):215–28. https://doi.org/10.1124/mol.109.056705; Kobayashi K, Abe C, Endo M, Kazuki Y, Oshimura M, Chiba K. Gender difference of hepatic and intestinal CYP3A4 in CYP3A-humanized mice generated by a human chromosome-engineering technique. Drug Metab Lett. 2017;11(1):60–7. https://doi.org/10.2174/1872312811666170404153804; Rasmussen MK, Zamaratskaia G, Ekstrand B. Gender-related differences in cytochrome P450 in porcine liver—implication for activity, expression and inhibition by testicular steroids. Reprod Domest Anim. 2011;46(4):616–23. https://doi.org/10.1111/j.1439-0531.2010.1714.x; Franconi F, Campesi I. Pharmacogenomics, pharmacokinetics and pharmacodynamics: interaction with biological differences between men and women. Br J Pharmacol. 2014;171(3):580–94. https://doi.org/10.1111/bph.12362; van Assema DM, Lubberink M, Rizzu P, van Swieten JC, Schuit RC, Eriksson J, et al. Blood-brain barrier P-glycoprotein function in healthy subjects and Alzheimer’s disease patients: effect of polymorphisms in the ABCB1 gene. EJNMMI Res. 2012;2(1):57. https://doi.org/10.1186/2191-219X-2-57; Davison JM, Dunlop W. Renal hemodynamics and tubular function normal human pregnancy. Kidney Int. 1980;18(2):152–61. https://doi.org/10.1038/ki.1980.124; Whitley H, Lindsey W. Sex-based differences in drug activity. Am Fam Physician. 2009;80(11):1254–8.; Baca E, Garcia-Garcia M, Porras-Chavarino A. Gender differences in treatment response to sertraline versus imipramine in patients with nonmelancholic depressive disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2004;28(1):57–65. https://doi.org/10.1016/S0278-5846(03)00177-5; Kornstein SG, Schatzberg AF, Thase ME, Yonkers KA, McCullough JP, Keitner GI, et al. Gender differences in treatment response to sertraline versus imipramine in chronic depression. Am J Psychiatry. 2000;157(9):1445–52. https://doi.org/10.1176/appi.ajp.157.9.1445; Bano S, Akhter S, Afridi MI. Gender based response to fluoxetine hydrochloride medication in endogenous depression. J Coll Physicians Surg Pak. 2004;14(3):161–5.; Seeman MV. Gender differences in the prescribing of antipsychotic drugs. Am J Psychiatry. 2004;161(8):1324–33. https://doi.org/10.1176/appi.ajp.161.8.1324; Melkersson KI, Hulting AL, Rane AJ. Dose requirement and prolactin elevation of antipsychotics in male and female patients with schizophrenia or related psychoses. Br J Clin Pharmacol. 2001;51(4):317–24. https://doi.org/10.1046/j.1365-2125.2001.01352.x; Berkley KJ. Sex differences in pain. Behav Brain Sci. 1997;20(3):371–80; discussion 435–513. https://doi.org/10.1017/s0140525x97221485; Pleym H, Spigset O, Kharasch ED, Dale O. Gender differences in drug effects: implications for anesthesiologists. Acta Anaesthesiol Scand. 2003;47(3):241–59. https://doi.org/10.1034/j.1399-6576.2003.00036.x; Craft RM. Sex differences in drug- and non-drug-induced analgesia. Life Sci. 2003;72(24):2675–88. https://doi.org/10.1016/s0024-3205(03)00178-4; Luzier AB, Killian A, Wilton JH, Wilson MF, Forrest A, Kazierad DJ. Gender-related effects on metoprolol pharmacokinetics and pharmacodynamics in healthy volunteers. Clin Pharmacol Ther. 1999;66(6):594–601. https://doi.org/10.1053/cp.1999.v66.103400001; Berger JS, Roncaglioni MC, Avanzini F, Pangrazzi I, Tognoni G, Brown DL. Aspirin for the primary prevention of cardiovascular events in women and men: a sex-specific meta-analysis of randomized controlled trials. JAMA. 2006;295(3):306–13. https://doi.org/10.1001/jama.295.3.306; Cavallari LH, Helgason CM, Brace LD, Viana MA, Nutescu EA. Sex difference in the antiplatelet effect of aspirin in patients with stroke. Ann Pharmacother. 2006;40(5):812–7. https://doi.org/10.1345/aph.1G569; Beierle I, Meibohm B, Derendorf H. Gender differences in pharmacokinetics and pharmacodynamics. Int J Clin Pharmacol Ther. 1999;37(11):529–47. PMID: 10584975; Eugene AR, Masiak J. A pharmacodynamic modelling and simulation study identifying gender differences of daily olanzapine dose and dopamine D2-receptor occupancy. Nord J Psychiatry. 2017;71(6):417–24. https://doi.org/10.1080/08039488.2017.1314011; Hubacek JA, Dlouha D, Adámkova V, Lanska V, Ceska R, Vrablik M. Possible gene-gender interaction between the SLCO1B1 polymorphism and statin treatment efficacy. Neuro Endocrinol Lett. 2012;33 Suppl 2:22–5. PMID: 23183505; Zhou Q, Chen QX, Ruan ZR, Yuan H, Xu HM, Zeng S. CYP2C9*3(1075A>C), ABCB1 and SLCO1B1 genetic polymorphisms and gender are determinants of inter-subject variability in pitavastatin pharmacokinetics. Pharmazie. 2013;68(3):187–94. PMID: 23556337; Schuetz EG, Furuya KN, Schuetz JD. Interindividual variation in expression of P-glycoprotein in normal human liver and secondary hepatic neoplasms. J Pharmacol Exp Ther. 1995;275(2):1011–8. PMID: 7473127; Sabers A. Pharmacokinetic interactions between contraceptives and antiepileptic drugs. Seizure. 2008;17(2):141–4. https://doi.org/10.1016/j.seizure.2007.11.012; https://www.risksafety.ru/jour/article/view/211

  10. 10
    Academic Journal

    Συνεισφορές: The study was performed without external funding., Работа выполнена без спонсорской поддержки.

    Πηγή: Safety and Risk of Pharmacotherapy; Том 9, № 1 (2021); 15-24 ; Безопасность и риск фармакотерапии; Том 9, № 1 (2021); 15-24 ; 2619-1164 ; 2312-7821 ; 10.30895/2312-7821-2021-9-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.risksafety.ru/jour/article/view/209/329; https://www.risksafety.ru/jour/article/downloadSuppFile/209/145; Астахова АВ, Лепахин ВК. Лекарства. Неблагоприятные побочные реакции и контроль безопасности. 2-е изд. М.: Эксмо, 2008.; Сычев ДА, Остроумова ОД, Кочетков АИ, Переверзев АП, Остроумова ТМ, Клепикова МВ и др. Лекарственно-индуцированные заболевания: эпидемиология и актуальность проблемы. Фарматека. 2020;27(5):77–84. https://dx.doi.org/10.18565/pharmateca.2020.5.77-84; Angamo MT, Chalmers L, Curtain CM, Bereznicki LR. Adverse-drug-reaction-related hospitalisations in developed and developing countries: a review of prevalence and contributing factors. Drug Saf. 2016;39(9):847–57. https://doi.org/10.1007/s40264-016-0444-7; Hakkarainen KM, Gyllensten H, Jönsson AK, Andersson Sundell K, Petzold M, Hägg S. Prevalence, nature and potential preventability of adverse drug events — a population-based medical record study of 4970 adults. Br J Clin Pharmacol. 2014;78(1):170– 83. https://doi.org/10.1111/bcp.12314; Tisdale JE, Miller DA. Drug-induced diseases: prevention, detection, and management. 3rd ed. Bethesda, Md.: American Society of Health-System Pharmacists; 2018.; Tandon VR, Khajuria V, Mahajan V, Sharma A, Gillani Z, Mahajan A. Drug-induced diseases (DIDs): An experience of a tertiary care teaching hospital from India. Indian J Med Res. 2015;142(1):33–9. https://doi.org/10.4103/0971-5916.162093 Erratum in: Indian J Med Res. 2016;143(1):123.; Vuppalanchi R, Chalasani N. Risk factors for drug-induced liver disease. In: Kaplowitz N, DeLeve LD, eds. Drug-Induced Liver Disease. 3rd ed. Academic Press; 2013. P. 265–74. https://doi.org/10.1016/b978-0-12-387817-5.00016-9; Alhawassi TM, Krass I, Bajorek BV, Pont LG. A systematic review of the prevalence and risk factors for adverse drug reactions in the elderly in the acute care setting. Clin Interv Aging. 2014;9:2079–86. https://doi.org/10.2147/CIA.S71178; Ткачева ОН, Переверзев АП, Рунихина НК, Котовская ЮВ. К вопросу о безопасности вакцинации против гриппа пациентов пожилого и старческого возраста. Безопасность и риск фармакотерапии. 2018;6(4):155–61. https://doi.org/10.30895/2312-7821-2018-6-4-155-161; de Almeida AJPO, de Almeida Rezende MS, Dantas SH, deLima Silva S, de Oliveira JCPL, de Lourdes Assunção Araújo de Azevedo F, et al. Unveiling the role of inflammation and oxidative stress on age-related cardiovascular diseases. Oxid Med Cell Longev. 2020;2020:1954398. https://doi.org/10.1155/2020/1954398; Chinta SJ, Woods G, Rane A, Demaria M, Campisi J, Andersen JK. Cellular senescence and the aging brain. Exp Gerontol. 2015;68:3–7. https://doi.org/10.1016/j.exger.2014.09.018; Herrera MD, Mingorance C, Rodríguez-Rodríguez R, Alvarez de Sotomayor M. Endothelial dysfunction and aging: an update. Ageing Res Rev. 2010;9(2):142–52. https://doi.org/10.1016/j.arr.2009.07.002; Tesauro M, Mauriello A, Rovella V, Annicchiarico-Petruzzelli M, Cardillo C, Melino G, Di Daniele N. Arterial ageing: from endothelial dysfunction to vascular calcification. J Intern Med. 2017;281(5):471–82. https://doi.org/10.1111/joim.12605; Trindade M, Oigman W, Fritsch Neves M. Potential role of endothelin in early vascular aging. Curr Hypertens Rev. 2017;13(1):33– 40. https://doi.org/10.2174/1573402113666170414165735; Neves MF, Cunha AR, Cunha MR, Gismondi RA, Oigman W. The role of renin-angiotensin-aldosterone system and its new components in arterial stiffness and vascular aging. High Blood Press Cardiovasc Prev. 2018;25(2):137–45. https://doi.org/10.1007/s40292-018-0252-5; Nusbaum NJ. Aging and sensory senescence. South Med J. 1999;92(3):267–75. https://doi.org/10.1097/00007611-199903000-00002; Loh KY, Ogle J. Age related visual impairment in the elderly. Med J Malaysia. 2004;59(4):562–8, quiz 569.; Hughes SG. Prescribing for the elderly patient: why do we need to exercise caution? Br J Clin Pharmacol. 1998;46(6):531–3. https://doi.org/10.1046/j.1365-2125.1998.00842.x; Mangoni AA, Jackson SH. Age-related changes in pharmacokinetics and pharmacodynamics: basic principles and practical applications. Br J Clin Pharmacol. 2004;57(1):6–14. https://doi.org/10.1046/j.1365-2125.2003.02007.x; Klotz U. Pharmacokinetics and drug metabolism in the elderly. Drug Metab Rev. 2009;41(2):67–76. https://doi.org/10.1080/03602530902722679; Turnheim K. When drug therapy gets old: pharmacokinetics and pharmacodynamics in the elderly. Exp Gerontol. 2003;38(8):843– 53. https://doi.org/10.1016/s0531-5565(03)00133-5; Bowie MW, Slattum PW. Pharmacodynamics in older adults: a review. Am J Geriatr Pharmacother. 2007;5(3):263–303. https://doi.org/10.1016/j.amjopharm.2007.10.001; Halter JB, Ouslander JG, Tinetti ME, Studenski S, High KP, Asthana S, eds. Hazzard’s geriatric medicine and gerontology. 6 ed. New York: McGraw Hill; 2009.; Trifirò G, Spina E. Age-related changes in pharmacodynamics: focus on drugs acting on central nervous and cardiovascular systems. Curr Drug Metab. 2011;12(7):611–20. https://doi.org/10.2174/138920011796504473; Cusack BJ, Vestal RE. Clinical pharmacology: Special considerations in the elderly. In: Calkins E, Davis PJ, Ford AB, eds. Practice of geriatric medicine. Philadelphia: W.B. Saunders Co.; 1986. P. 115–36.; O’Mahony D, O’Sullivan D, Byrne S, O’Connor MN, Ryan C, Gallagher P. STOPP/START criteria for potentially inappropriate prescribing in older people: version 2. Age Ageing. 2015;44(2):213–8. https://doi.org/10.1093/ageing/afu145; By the 2019 American Geriatrics Society Beers Criteria® Update Expert Panel. American Geriatrics Society 2019 Updated AGS Beers Criteria® for potentially inappropriate medication use in older adults. J Am Geriatr Soc. 2019;67(4):674–94. https://doi.org/10.1111/jgs.15767; Pazan F, Weiss C, Wehling M; FORTA. The EURO-FORTA (Fit fOR The Aged) List: International Consensus Validation of a Clinical Tool for Improved Drug Treatment in Older People. Drugs Aging. 2018;35(1):61–71. https://doi.org/10.1007/s40266-017-0514-2. Erratum in: Drugs Aging. 2018;35(7):677.; Hanlon JT, Schmader KE. The medication appropriateness index at 20: where it started, where it has been, and where it may be going. Drugs Aging. 2013;30(11):893–900. https://doi.org/10.1007/s40266-013-0118-4; https://www.risksafety.ru/jour/article/view/209

  11. 11
    Academic Journal

    Πηγή: Meditsinskiy sovet = Medical Council; № 9 (2021); 114-121 ; Медицинский Совет; № 9 (2021); 114-121 ; 2658-5790 ; 2079-701X

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/6255/5669; Johnston D.H., Cornish A.L. Acute Pancreatitis in Patients Receiving Chlorothiazide. JAMA. 1959;170(17):1054–1056. https://doi.org/10.1001/jama.1959.03010170016003.; Zion M.M, Goldberg B., Suzman M.M. Corticotrophin and Cortisone in the Treatment of scleroderma. Q J Med. 1955;24(95):215–227. Available at: https://pubmed.ncbi.nlm.nih.gov/13266985/.; Lee J.K., Enns R. Review of Idiopathic Pancreatitis. World J Gastroenterol. 2007;13(47):6296–6313. https://doi.org/10.3748/wjg.v13.i47.6296.; Lankisch P.G., Droge M., Gottesleben F. Drug Induced Pancreatitis: Incidence and Severity. Gut. 1995:37(4):565–567. https://doi.org/10.1136/gut.37.4.565.; Остроумова О.Д., Качан В.О. Лекарственно-индуцированный панкреатит. Лечебное дело. 2020;(3):14–25. https://doi.org/10.24412/2071-5315-2020-12251.; Kale-Pradhan P.B., Wilhelm S.M. Chapter 39: Pancreatitis. In: Tisdale J.E., Miller D.A. (eds). Drug-Induced Diseases: Prevention, Detection, and Management. Bethesda: American Society of Health-System Pharmacists; 2018, pp. 877–904.; Mallory A, Kern F Jr. Drug-Induced Pancreatitis: A Critical Review. Gastroenterology. 1980 Apr;78(4):813–820. Available at: https://pubmed.ncbi.nlm.nih.gov/6986321/.; Trivedi C.D., Pitchumoni C.S. Drug-Induced Pancreatitis: An Update. J Clin Gastroenterol. 2005;39(8):709–716. https://doi.org/10.1097/01.mcg.0000173929.60115.b4.; Badalov N., Baradarian R., Iswara K., Li J., Steinberg W., Tenner S. DrugInduced Acute Pancreatitis: An Evidence-Based Review. Clin Gastroenterol Hepatol. 2007;5(6):648–661. https://doi.org/10.1016/j.cgh.2006.11.023.; Naranjo C.A., Busto U., Sellers E.M., Sandor P., Ruiz I., Roberts E.A. et al. A Method for Estimating the Probability of Adverse Drug Reactions. Clin Pharmacol Ther. 1981;30(2):239–245. https://doi.org/10.1038/clpt.1981.154.; Сычев Д.А, Остроумова О.Д., Переверзев А.П., Кочетков А.И., Остроумова Т.М., Клепикова М.В. и др. Лекарственно-индуцированные заболевания: подходы к диагностике, коррекции и профилактике. Фармаконадзор. Фарматека. 2020;(6):113–126. https://doi.org/10.18565/pharmateca.2020.6.113-126.; Hofmann L., Forschner A., Loquai C., Goldinger S., Zimmer L., Ugurel S. et al. Cutaneous, Gastrointestinal, Hepatic, Endocrine, and Renal Side Effects of Anti-PD-1 Therapy. Eur J Cancer. 2016;60:190–209. https://doi.org/10.1016/j.ejca.2016.02.025.; Ibrahim R.A., Berman D.M., DePril V., Humphrey R.W., Chen T., Messina M. et al. Ipilimumab Safety Profile: Summary of Findings From Completed Trials in Advanced Melanoma. J Clin Oncol. 2011;29(15_Suppl):8583. https://doi.org/10.1200/jco.2011.29.15_suppl.8583.; Weber J.S., Kähler K.C., Hauschild A. Management of Immune-Related Adverse Events and Kinetics of Response with Ipilimumab. J Clin Oncol. 2012;30(21):2691–2697. https://doi.org/10.1200/JCO.2012.41.6750.; Schwaiger T., van den Brandt C., Fitzner B., Zaatreh S., Kraatz F., Dummer A. et al. Autoimmune Pancreatitis in MRL/Mp Mice Is a T Cell-Mediated Disease Responsive to Cyclosporine A and Rapamycin Treatment. Gut. 2014;63(3):494–505. https://doi.org/10.1136/gutjnl-2012-303635.; Clamon G., Patel R., Mott S.L. Pancreatitis Associated with Newer Classes of Antineoplastic Therapies. JCSO. 2017;15(3):e135–e141. https://doi.org/10.12788/jcso.0347.; Sumimoto K., Uchida K., Kusuda T., Mitsuyama T., Sakaguchi Y., Fukui T. et al. The Role of CD19+ CD24high CD38high and CD19+ CD24high CD27+ Regulatory B Cells in Patients with Type 1 Autoimmune Pancreatitis. Pancreatology. 2014;14(3):193–200. https://doi.org/10.1016/j.pan.2014.02.004.; Sevin A., Chen A., Atkinson B. Tyrosine Kinase Inhibitor Induced Pancreatitis. J Oncol Pharm Pract. 2013;19(3):257–260. https://doi.org/10.1177/1078155212457968.; Li M., Srinivas S. Acute Pancreatitis Associated with Sorafenib. South Med J. 2007;100(9):909–911. https://doi.org/10.1097/SMJ.0b013e31813c695d.; Pezzilli R., Corinaldesi R., Morselli-Labate A.M. Tyrosine Kinase Inhibitors and Acute Pancreatitis. JOP. 2010;11(3):291–293. Available at: http://www.serena.unina.it/index.php/jop/article/view/3836/4278.; Ghatalia P., Morgan C.J., Choueiri T.K., Rocha P., Naik G., Sonpavde G. Pancreatitis with Vascular Endothelial Growth Factor Receptor Tyrosine Kinase Inhibitors. Crit Rev Oncol Hematol. 2015;94(1):136–145. https://doi.org/10.1016/j.critrevonc.2014.11.008.; Tirumani S.H., Jagannathan J.P., Shinagare A.B., Kim Kw., Krajewski K.M., Ramaiya N.H. Acute Pancreatitis Associated with Molecular Targeted Therapies: A Retrospective Review of the Clinico-Radiological Features, Management and Outcome. Pancreatology. 2013;13(5):461–467. https://doi.org/10.1016/j.pan.2013.08.001.; Russano M., Vincenzi B., Venditti O., D’Onofrio L., Ratta R., Guida F.M. Pazopanib and Pancreatic Toxicity: A Case Report. BMC Res Notes. 2015;8(1):196. https://doi.org/10.1186/s13104-015-1154-4.; Kawakubo K., Hata H., Kawakami H., Kuwatani M., Kawahata S., Kubo K. Pazopanib-Induced Severe Acute Pancreatitis. Case Rep Oncol. 2015;8(2):356–358. https://doi.org/10.1159/000439124.; Péron J., Khenifer S., Potier V., Vitry T., Pasquet F., Rassat R., Pavic M. Axitinib-Induced Acute Pancreatitis: A Case Report. Anticancer Drugs. 2014;25(4):478–479. https://doi.org/10.1097/CAD.0000000000000076.; Engel T., Justo D., Amitai M., Volchek Y., Mayan H. Nilotinib-Associated Acute Pancreatitis. Ann Pharmacother. 2013;47(1):3. https://doi.org/10.1345/aph.1R334.; Blum K.A., Christian B., Flynn J.M., Jaglowski S.M., Jones J.A., Maddocks K., Byrd J.C. A Phase I Trial of the Bruton’s Tyrosine Kinase (BTK) Inhibitor, Ibrutinib (PCI-32765), in Combination with Rituximab (R) and Bendamustine in Patients with Relapsed/Refractory Non-Hodgkin’s Lymphoma (NHL). Blood. 2012;120(21):1643. https://doi.org/10.1182/blood.V120.21.1643.1643.; Muluneh B., Buie L.W., Collichio F. Vemurafenib-Associated Pancreatitis: Case Report. Pharmacotherapy. 2013;33(4):43–44. https://doi.org/10.1002/phar.1208.; Larkin J., Del Vecchio M., Ascierto P.A., Krajsova I., Schachter J., Neyns B. et al. Vemurafenib in Patients with BRAF(V600) Mutated Metastatic Melanoma: An open-Label, Multicentre, Safety Study. Lancet Oncol. 2014;15(4):436–444. https://doi.org/10.1016/S1470-2045(14)70051-8.; Varma M.R., Mathew S., Krishnadas D., Vinayakumar K.R. Imatinib-Induced Pancreatitis. Indian J Pharmacol. 2010;42(1):50–52. https://doi.org/10.4103/0253-7613.62407.; Palandri F., Castagnetti F., Soverini S., Poerio A., Gugliotta G., Luatti S. et al. Pancreatic Enzyme Elevation in Chronic Myeloid Leukemia Patients Treated with Nilotinib after Imatinib Failure. Haematologica. 2009;94(12):1758– 1761. https://doi.org/doi:10.3324/haematol.2009.010496.; Cortes J.E., Kantarjian H., Shah N.P., Bixby D., Mauro M.J., Flinn I. et al. Ponatinib in Refractory Philadelphia Chromosome-Positive Leukemias. N Engl J Med. 2012;367(22):2075–2088. https://doi.org/10.1056/NEJMoa1205127.; Wang H.H., Tsui J., Wang X.Y., Liu S.S., Li J. Bortezomib-Induced Acute Pancreatitis in a Patient with Multiple Myeloma. Leuk Lymphoma. 2014;55(6):1404–1405. https://doi.org/10.3109/10428194.2013.831850.; Solakoglu T., Akyol P., Guney T., Dilek I., Atalay R., Koseoglu H. et al. Acute Pancreatitis Caused by Bortezomib. Pancreatology. 2013;13(2):189–190. https://doi.org/10.1016/j.pan.2013.01.002.; Elouni B., Ben Salem C., Zamy M., Sakhri J., Bouraoui K., Biour M. Bortezomib-Induced Acute Pancreatitis. JOP. 2010;11(3):275–276.; Solakoglu T., Akar M., Aktan Kosker T., Buyukasik S., Ersoy O. Is Bortezomib a Rare Cause of Acute Pancreatitis? JOP. 2013;14(6):682–683. https://doi.org/10.6092/1590-8577/1927.; Talamo G., Sivik J., Pandey M.K., Mir M.A. Bortezomib-Induced Acute Pancreatitis: Case Report and Review of the Literature. J Oncol Pharm Pract. 2016;22(2):332–334. https://doi.org/10.1177/1078155214563813.; Mihaila R.G. A Possible Rare Complication of Bortezomib Treatment, Acute Pancreatitis. Acta Medica Transilvanica. 2013;2:269–171. Available at http://www.amtsibiu.ro/Arhiva/2013/Nr1-en/Mihaila_pdf.pdf.; Gupta H., Bansal R., Khanna S., Saxena S. An Unusual Complication of Bortezomib Therapy: Acute Pancreatitis. Indian J Nephr. 2014;24(2):135– 136. https://doi.org/10.4103/0971-4065.127928.; Gotoh M., Kitahara T., Sakuta J., Akahane D., Ohyashiki K. Multiple Lipoma with Hyperlipidemia in a Multiple Myeloma Patient Treated with Bortezomib/Dexamethazone. Leuk Res. 2010;34(4):120–121. https://doi.org/10.1016/j.leukres.2009.10.003.; Gozzetti A., Fabbri A., Defina M., Chitarrelli I., Bocchia M. Hyperlipidemia in a myeLoma Patient after Bortezomib Treatment. Leuk Res. 2010;34(9):250. https://doi.org/10.1016/j.leukres.2010.03.025.; Misselwitz B., Goede J.S., Pestalozzi B.C., Schanz U., Seebach J.D. Hyperlipidemic Myeloma: Review of 53 Cases. Ann Hematol. 2010;89(6):569–577. https://doi.org/10.1007/s00277-009-0849-9.; Kortuem K.M., Stewart A.K. Carfilzomib. Blood. 2013;121(6):893–897. https://doi.org/10.1182/blood-2012-10-459883.; Urru S.A., Mariotti E., Carta P., Massidda S., Marcias M., Murru R. et al. Acute Pancreatitis Following Brentuximab Vedotin Therapy for Refractory Hodgkin Lymphoma: A Case Report. Drugs R D. 2014;14(1):9–11. https://doi.org/10.1007/s40268-014-0036-x.; Gandhi M.D., Evens A.M., Fenske T.S., Hamlin P., Coiffier B., Engert A. et al. Pancreatitis in Patients Treated with Brentuximab Vedotin: A Previously Unrecognized Serious Adverse Event. Blood. 2014;123(18):2895–2897. https://doi.org/10.1182/blood-2014-03-561878.; Truven Health Analytics. Micromedex® Clinical Knowledge Suite. Micromedex Solutions. User Guide. 2017. Available at: https://www.periodicos.capes.gov.br/images/documents/Micromedex%20UserGuide.pdf.; Haber C.J., Meltzer S.J., Present D.H., Korelitz B.I. Nature and Course of Pancreatitis Caused by 6-Mercaptopurine in the Treatment of Inflammatory Bowel Disease. Gastroenterology. 1986;91(4):982–986. https://doi.org/10.1016/0016-5085(86)90703-1.; Herskowitz L.J., Olansky S., Lang P.G. Acute Pancreatitis Associated with Long-Term Azathioprine Therapy. Occurrence in a Patient with Systemic Lupus Erythematosus. Arch Dermatol. 1979;115(2):179. http://doi.org/10.1001/archderm.1979.04010020025009.; Sturdevant R.A., Singleton J.W., Deren J.L., Law D.H., McCleery J.L. AzathioprineRelated Pancreatitis in Patients with Crohn’s Disease. Gastroenterology. 1979;77(4/2):883–886. Available at: https://pubmed.ncbi.nlm.nih.gov/38178/; Kawanishi H., Rudolph E., Bull F.E. Azathioprine-Induced Acute Pancreatitis. N Engl J Med. 1973;289(7):357. https://doi.org/10.1056/NEJM197308162890708.; Paloyan D., Levin B., Simonowitz D. Azathioprine-Associated Acute Pancreatitis. Am J Dig Dis. 1977;22(9):839–840. https://doi.org/10.1007/BF01694518.; Niederle B., Bartos V., Hrodek O., Hyniová H. Acute Pancreatitis after Imuran in a Patient with Autoimmune Haemolytic Anaemia. Mater Med Pol. 1978;10(1):60–62. Available at: https://pubmed.ncbi.nlm.nih.gov/642594/.; Simons-Ling N., Schachner L., Penneys N., Gorman H., Zillereulo G., Strauss J. Childhood Systemic Lupus Erythematosus. Association with Pancreatitis, Subcutaneous Fat Necrosis, and Calcinosis Cutis. Arch Dermatol. 1983;119(6):491–494. https://doi.org/10.1001/archderm.119.6.491.; Tragnone A., Bazzocchi G., Aversa G., Pecorelli M.G., Elmi G., Venerato S., Lanfranchi G.A. Acute Pancreatitis after Azathioprine Treatment for Ulcerative Colitis. Ital J Gastroenterol. 1996;28(2):102–104. Available at: https://pubmed.ncbi.nlm.nih.gov/8782004/.; Siwach V., Bansal V., Kumar A., Rao Ch U., Sharma A., Minz M. Post-Renal Transplant Azathioprine-Induced Pancreatitis. Nephrol Dial Transplant. 1999;14(10):2495–2498. https://doi.org/10.1093/ndt/14.10.2495.; Castiglione F., Del Vecchio Blanco G., Rispo A., Mazzacca G. Prevention of Pancreatitis by Weekly Amylase Assay in Patients with Crohn’s Disease Treated with Azathioprine. Am J Gastroenterol. 2000;95(9):2394–2395. https://doi.org/10.1111/j.1572-0241.2000.02347.x.; Toubanakis C., Batziou E., Sipsas N., Galanopoulos G., Tzivras M., Archimandritis A. Acute Pancreatitis after Long-Term Therapy with Mesalazine, and Hyperamylasaemia Associated with Azathioprine in a Patient with Ulcerative Colitis. Eur J Gastroenterol Hepatol. 2003;15(8):933–934. https://doi.org/10.1097/00042737-200308000-00019.; Floyd A., Pedersen L., Nielsen G.L., Thorlacius-Ussing O., Sorensen H.T. Risk of Acute Pancreatitis in Users of Azathioprine: A Population-Based CaseControl Study. Am J Gastroenterol. 2003;98(6):1305–1308. https://doi.org/10.1111/j.1572-0241.2003.07459.x.; Bank L., Wright J.P. 6-Mercaptopurine-Related Pancreatitis in 2 Patients with Inflammatory Bowel Disease. Dig Dis Sci. 1984;29(4):357–359. https://doi.org/10.1007/BF01318523.; Willert J.R., Dahl G.V., Marina N.M. Recurrent Mercaptopurine-Induced Acute Pancreatitis: A Rare Complication of Chemotherapy for Acute Lymphoblastic Leukemia in Children. Med Pediatr Oncol. 2002;38(1):73–74. https://doi.org/10.1002/mpo.1273.; Weersma R.K., Peters F.T., Oostenbrug L.E., van den Berg A.P., van Haastert M., Ploeg R.J. et al. Increased Incidence of Azathioprine-Induced Pancreatitis in Crohn’s Disease Compared with Other Diseases. Aliment Pharmacol Ther. 2004;20(8):843–850. https://doi.org/10.1111/j.1365-2036.2004.02197.x.; Nogueira J.R., Freedman M.A. Acute Pancreatitis as a Complication of Imuran Therapy in Regional Enteritis. Gastroenterology. 1972;62(5):1040– 1041. Available at: https://pubmed.ncbi.nlm.nih.gov/5029069/.; Lai S.W., Wang Y.C., Wang C.H., Huang T.Y. Acute Pancreatitis and Erythema Nodosum Associated with Azathioprine. QJM. 2012;105(4):363–364. https://doi.org/10.1093/qjmed/hcr041.; Halalsheh H., Bazzeh F., Alkayed K., Salami K., Madanat F. 6-MercaptopurineInduced Recurrent Acute Pancreatitis in Children with Acute Lymphoblastic Leukemia/Lymphoma. J Pediatr Hematol Oncol. 2013;35(6):470–472. https://doi.org/10.1097/MPH.0b013e318271c92f.; Chaparro M., Ordas I., Cabre E., Garcia-Sanchez V., Bastida G., Penalva M. et al. Safety of Thiopurine Therapy in Inflammatory Bowel Disease: Longterm Follow-up Study of 3931 Patients. IBD. 2013;19(7):1404–1410. https://doi.org/10.1097/MIB.0b013e318281f28f.; Weetman R.M., Baehner R.L. Latent Onset of Clinical Pancreatitis in Children Receiving L-Asparaginase Therapy. Cancer. 1974;34(3):780–785. https://doi.org/10.1002/1097-0142(197409)34:33.0.co;2-u.; Haskell C.M., Canellos G.P., Leventhal B.G., Carbone P.P., Block J.B., Serpick A.A., Selawry O.S. L-Asparaginase: Therapeutic and Toxic Effects in Patients with Neoplastic Disease. N Engl J Med. 1969;281(19):1028– 1034. https://doi.org/10.1056/NEJM196911062811902.; Land V.J., Sutow W.W., Fernbach D.J., Lane D.M., Williams T.E. Toxicity of L-Asparginase in Children with Advanced Leukemia. Cancer. 1972;30(2):339–347. https://doi.org/10.1002/1097-0142(197208)30:23.0.co;2-p.; Raja R.A., Schmiegelow K., Albertsen B.K., Prunsild K., Zeller B., Vaitkeviciene G. et al. Asparaginase-Associated Pancreatitis in Children with Acute Lymphoblastic Leukaemia in the NOPHO ALL2008 Protocol. Br J Haematol. 2014;165(1):126–133. https://doi.org/10.1111/bjh.12733.; Greenstein R., Nogeire C., Ohnuma T., Greenstein A. Management of Asparaginase Induced Hemorrhagic Pancreatitis Complicated by Pseudocyst. Cancer. 1979;43(2):718–722. https://doi.org/10.1002/1097-0142(197902)43:23.0.co;2-r.; Holland J.F., Bast R.C. Jr, Morton D.L., Frei E. III, Kufe D.W., Weichselbaum R.R. (eds). Cancer Medicine. 4th ed. Baltimore: Williams & Wilkins, 1997. Vol. I, 1800 pp., Vol. II, 1800 pp.; Pratt C.B., Simone J.V., Zee P., Aur R.J., Johnson W.W. Comparison of Daily versus Weekly L-Asparaginase for the Treatment of Childhood Acute Leukemia. J Pediatr. 1970;77(3):474–483. https://doi.org/10.1016/s0022-3476(70)80023-3.; Shaw M.T., Barnes C.C., Madden F.J., Bagshawe K.D. L-Asparaginase and Pancreatitis. Lancet. 1970;2(7675):721. https://doi.org/10.1016/s0140-6736(70)91990-2.; Tan C.L., Chiang S.P., Wee K.P. Acute Haemorrhagic Pancreatitis Following L-Asparaginase Therapy in Acute Lymphoblastic Leukaemia – A Case Report. Singapore Med J. 1974;15(4):278–282. Available at: https://pubmed.ncbi.nlm.nih.gov/4533158/.; Koniver G.A., Scott J.E. Pancreatitis with Pseudocyst: A Complication of L-Asparaqinase Therapy for Leukemia. Del Med J. 1978;50(6):330–332. Available at: https://pubmed.ncbi.nlm.nih.gov/668953/.; Jain R., Ramanan S.V. Iatrogenic Pancreatitis. A Fatal Complication in the Induction Therapy for Acute Lymphocytic Leukemia. Arch Intern Med. 1978;138(11):1726. https://doi.org/10.1001/archinte.138.11.1726.; Yang C.M., Hsieh Y.L., Hwang B. Acute Pancreatitis in Association with L-Asparaginase Therapy: Report of One Case. Zhonghua Yi Xue Za Zhi (Taipei). 1993;51(1):74–77. Available at: https://pubmed.ncbi.nlm.nih.gov/8384060/.; Sadoff J., Hwang S., Rosenfeld D., Ettinger L., Spigland N. Surgical Pancreatic Complications Induced by L-Asparaginase. J Pediatr Surg. 1997;32(6):860–863. https://doi.org/10.1016/s0022-3468(97)90636-9.; Cheung Y.F., Lee C.W., Chan C.F., Chan K.L., Lau Y.L., Yeung C.Y. Somatostatin Therapy in L-Asparaginase-Induced Pancreatitis. Med Pediatr Oncol. 1994;22(6):421–424. https://doi.org/10.1002/mpo.2950220614.; Sahu S., Saika S., Pai S.K., Advani S.H. L-Asparaginase (Leunase) Induced Pancreatitis in Childhood Acute Lymphoblastic Leukemia. Pediatr Hematol Oncol. 1998;15(6):533–538. https://doi.org/10.3109/08880019809018315.; Garrington T., Bensard D., Ingram J.D., Silliman C.C. Successful Management with Octreotide of a Child with L-Asparaginase Induced Hemorrhagic Pancreatitis. Med Pediatr Oncol. 1998;30(2):106–109. https://doi.org/10.1002/(sici)1096-911x(199802)30:23.0.co;2-m.; Hsu Y.J., Chen Y.C., Ho C.L., Kao W.Y., Chao T.Y. Diabetic Ketoacidosis and Persistent Hyperglycemia as Long-Term Complications of L-AsparaginaseInduced Pancreatitis. Zhonghua Yi Xue Za Zhi (Taipei). 2002;65(9):441–445. Available at: https://pubmed.ncbi.nlm.nih.gov/12433031/.; Iatrogenic pancreatitis. Br Med J. 1977;2(6094):1043. https://doi.org/10.1136/bmj.2.6094.1043.; Jaffe N., Traggis D., Das L., Kim B.S., Won H., Hann L. et al. Comparison of Daily and Twice-Weekly Schedule of L-Asparaginase in Childhood Leukemia. Pediatrics. 1972;49(4):590–595. Available at: https://pediatrics.aappublications.org/content/49/4/590.long.; Larsen C.C., Laursen C.B., Dalby K., Graumann O. Splenic Artery Pseudoaneurysm Due to Acute Pancreatitis in a 6-Year-Old boy with Acute Lymphoblastic Leukaemia Treated with L-Aspariginase. BMJ Case Rep. 2014;bcr2013202298. https://doi.org/10.1136/bcr-2013-202298.; Treepongkaruna S., Thongpak N., Pakakasama S., Pienvichit P., Sirachainan N., Hongeng S. Acute Pancreatitis in Children with Acute Lymphoblastic Leukemia after Chemotherapy. J Pediatr Hematol Oncol. 2009;31(11):812–815. https://doi.org/10.1097/MPH.0b013e3181b87035.; Flores-Calderón J., Exiga-Gonzaléz E., Morán-Villota S., Martín-Trejo J., Yamamoto-Nagano A. Acute Pancreatitis in Children with Acute Lymphoblastic Leukemia Treated with L-Asparaginase. J Pediatr Hematol Oncol. 2009;31(10):790–793. https://doi.org/10.1097/MPH.0b013e3181b794e8.; Kearney S.L., Dahlberg S.E., Levy D.E., Voss S.D., Sallan S.E., Silverman L.B. Clinical Course and Outcome in Children with Acute Lymphoblastic Leukemia and Asparaginase-Associated Pancreatitis. Pediatr Blood Cancer. 2009;53(2):162–167. https://doi.org/10.1002/pbc.22076.; Oettgen H.F., Stephenson P.A., Schwartz M.K., Leeper R.D., Tallai L., Tan C.C. et al. Toxicity of E. coli L-Asparaginase in Man. Cancer. 1970;25(2):253–278. https://doi.org/10.1002/1097-0142(197002)25:23.0.co;2-u.; Zubrod C.G. The Clinical Toxicities of L-Asparaginase in Treatment of Leukemia and Lymphoma. Pediatrics. 1970;45(4):555–559. Available at: https://pediatrics.aappublications.org/content/45/4/555.long.; Whitecar J.P. Jr, Bodey G.P., Harris J.E, Freireich E.J. L-Asparaginase. N Engl J Med. 1970;282(13):732–734. https://doi.org/10.1056/NEJM197003262821307.; Dolowy W.C., Henson D., Cornet J., Sellin H. Toxic and Antineoplastic Effects of L-Asparaginase. Study of Mice with Lymphoma and Normal Monkeys and Report on a Child with Leukemia. Cancer. 1966;19(12):1813–1819. https://doi.org/10.1002/1097-0142(196612)19:123.0.co;2-e.; Earl M. Incidence and Management of Asparaginase-Associated Adverse Events in Patients with Acute Lymphoblastic Leukemia. Clin Adv Hematol Oncol. 2009;7(9):600–606. Available at: https://pubmed.ncbi.nlm.nih.gov/20020672/.; McBride C.E., Yavorski R.T., Moses F.M., Robson M.E., Solimando D.A. Jr., Byrd J.C. Acute Pancreatitis Associated with Continuous Infusion Cytarabine Therapy: A Case Report. Cancer. 1996;77(12):2588–2591. https://doi.org/10.1002/(SICI)1097-0142(19960615)77:123.0.CO;2-N.; Izraeli S., Adamson P.C., Blaney S.M., Balis F.M. Acute Pancreatitis after Ifosfamide Therapy. Cancer. 1994;74(5):1627–1628. https://doi.org/10.1002/1097-0142(19940901)74:53.0.co;2-u.; Puckett J.B., Butler W.M., McFarland J.A. Pancreatitis and Cancer Chemotherapy. Ann Intern Med. 1982;97(3):453. https://doi.org/10.7326/0003-4819-97-3-453_1.; Altman A.J., Dinndorf P., Quinn J.J. Acute Pancreatitis in Association with Cytosine Arabinoside Therapy. Cancer. 1982;49(7):1384–1386. https://doi.org/10.1002/1097-0142(19820401)49:73.0.co;2-6.; Newman C.E, Ellis D.J. Pancreatitis during Combination Chemotherapy. Clin Oncol. 1979;5(1):83–84. Available at: https://pubmed.ncbi.nlm.nih.gov/421389/; Siemers R.F., Friedenberg W.R., Norfleet R.G. High-Dose Cytosine Arabinoside-Associated Pancreatitis. Cancer. 1985;56(8):1940–1942. https://doi.org/10.1002/1097-0142(19851015)56:83.0.co;2-n.; McGrail L.H., Sehn L.H., Weiss R.B., Robson M.R., Antin J.H., Byrd J.C. Pancreatitis during Therapy of Acute Myeloid Leukemia: Cytarabine Related? Ann Oncol. 1999;10(11):1373–1376. https://doi.org/10.1023/a:1008342320532.; Calvo D.B. 3rd, Patt Y.Z., Wallace S., Chuang V.P., Benjamin R.S., Pritchard J.D. et al. Phase I-II Trial of Percutaneous Intra-Arterial Cis-Diamminedichloro Platinum (II) for Regionally Confined Malignancy. Cancer. 1980;45(6):1278– 1283. https://doi.org/10.1002/1097-0142(19800315)45:63.0.co;2-i.; Bunin N., Meyer W.H., Christensen M., Pratt C.B. Pancreatitis Following Cisplatin: A Case Report. Cancer Treat Rep. 1985;69(2):236–237. Available at: https://pubmed.ncbi.nlm.nih.gov/3855700/.; Stewart D.J., Feun L.G., Maor M., Leavens M., Burgess M.A., Benjamin R.S., Bodey G.P. Sr. Weekly Cisplatin during Cranial Irradiation for Malignant Melanoma Metastatic to Brain. J Neurooncol. 1983;1(1):49–51. https://doi.org/10.1007/BF00153641.; Socinski M.A., Garnick M.B. Acute Pancreatitis Associated with Chemotherapy for Germ Cell Tumors in Two Patients. Ann Intern Med. 1988;108(4):567–568. https://doi.org/10.7326/0003-4819-108-4-567.; Yeung K.Y., Haidak D.J., Brown J.A., Anderson D. Metastasis-Induced Acute Pancreatitis in Small Cell Bronchogenic Carcinoma. Arch Intern Med. 1979;139(5):552–554. http://doi.org/10.1001/archinte.1979.03630420042014.; Spiegel R.J., Magrath I.T. Tumor Lysis Pancreatitis. Med Pediatr Oncol. 1979;7(2):169–172. https://doi.org/10.1002/mpo.2950070210.; Nevalainen T.J. Cytotoxicity of Vinblastine and Vincristine to Pancreatic Acinar Cells. Virchows Arch B Cell Pathol. 1975;18(2):119–127. https://doi.org/10.1007/BF02889240.; Ben Kridis W., Khanfir A., Frikha M. Acute Pancreatitis Induced by Anticancer Chemotherapy. Acta Clin Belg. 2013;68(4):309–310. https://doi.org/10.2143/ACB.3351.; Garg R., Agarwala S., Bhatnagar V. Acute Pancreatitis Induced by Ifosfamide Therapy. J Pediatr Surg. 2010;45(10):2071–2073. https://doi.org/10.1016/j.jpedsurg.2010.07.028.; Kumar D.M., Sundar S., Vasanthan S. A Case of Paclitaxel-Induced Pancreatitis. Clin Oncol (R Coll Radiol). 2003;15(1):35. https://doi.org/10.1053/clon.2002.0170.; Hoff P.M., Valero V., Holmes F.A., Whealin H., Hudis C., Hortobagyi G.N. Paclitaxel-Induced Pancreatitis: A Case Report. J Natl Cancer Inst. 1997;89(1):91–93. https://doi.org/10.1093/jnci/89.1.91.; Hudis C., Riccio L., Holmes F., Seidman A., Baselga J., Currie V. et al. Phase II Study of Semisynthetic Paclitaxel in Metastatic Breast Cancer. Eur J Cancer. 1997;33(13):2198–2202. https://doi.org/10.1016/s0959-8049(97)00254-2.; Butt W., Saadati H., Saif M.W. Oxaliplatin-Induced Pancreatitis: A Case Series. Anticancer Res. 2010;30(12):5113–5115. Available at: https://ar.iiarjournals.org/content/30/12/5113.long.; Chan H.Y., Ng C.M., Tiu S.C., Chan A.O., Shek C.C. Hypertriglyceridaemia-Induced Pancreatitis: A Contributory Role of Capecitabine? Hong Kong Med J. 2012;18(6): 526–529. Available at: https://www.hkmj.org/system/files/hkm1212p526.pdf.; Yucel H., Warmerdam L.V. Capecitabine-Induced Pancreatitis. J Oncol Pharm Pract. 2010;16(2):133–134. https://doi.org/10.1177/1078155209344650.; Jones K.L., Valero V. Capecitabine-Induced Pancreatitis. Pharmacotherapy. 2003;23(8):1076–1078. https://doi.org/10.1592/phco.23.8.1076.32870.; Gurzu S., Jung I., Comsulea M., Kadar Z., Azamfirei L., Molnar C. Lethal Cardiotoxicity, Steatohepatitis, Chronic Pancreatitis, and Acute Enteritis Induced by Capecitabine and Oxaliplatin in a 36-Year-Old Woman. Diagn Pathol. 2013;8:150. https://doi.org/10.1186/1746-1596-8-150.; Singh V., Devata S., Cheng Y.C. Carboplatin and Docetaxel-Induced Acute Pancreatitis: Brief Report. Int J Clin Oncol. 2010;15(6):642–644. https://doi.org/10.1007/s10147-010-0105-2.; Sakhri J., Ben Salem C., Harbi H., Fathallah N., Ltaief R. Severe Acute Pancreatitis due to Tamoxifen-Induced Hypertriglyceridemia with Positive Rechallenge. JOP. 20105;11(4):382–384. Available at: http://www.serena.unina.it/index.php/jop/article/view/3626/3965.; Alagozlu H., Cindoruk M., Unal S. Tamoxifen-Induced Severe Hypertriglyceridaemia and Acute Pancreatitis. Clin Drug Investig. 2006;26(5):297–302. https://doi.org/10.2165/00044011-200626050-00007.; Lin H.H., Hsu C.H., Chao Y.C. Tamoxifen-Induced Severe Acute Pancreatitis: A Case Report. Dig Dis Sci. 2004;49(6):997–999. https://doi.org/10.1023/b:ddas.0000034561.37401.f2.; Athyros V.G., Giouleme O.I., Nikolaidis N.L., Vasiliadis T.V., Bouloukos V.I., Kontopoulos A.G., Eugenidis N.P. Long-Term Follow-Up of Patients with Acute Hypertriglyceridemia-Induced Pancreatitis. J Clin Gastroenterol. 2002;34(4):472–475. https://doi.org/10.1097/00004836-200204000-00020.; Artac M., Sari R., Altunbas H., Karayalcin U. Asymptomatic Acute Pancreatitis due to Tamoxifen-Induced Severe Hypertriglyceridemia in a Patient with Diabetes Mellitus and Breast Cancer. J Chemother. 2002;14(3):309–311. https://doi.org/10.1179/joc.2002.14.3.309.; Elisaf M.S., Nakou K., Liamis G., Pavlidis N.A. Tamoxifen-Induced Severe Hypertriglyceridemia and Pancreatitis. Ann Oncol. 2000;11(8):1067–1069. https://doi.org/10.1023/a:1008309613082.; Colls B.M., George P.M. Severe Hypertriglyceridaemia and Hypercholesterol aemia Associated with Tamoxifen Use. Clin Oncol (R Coll Radiol). 1998;10(4):270–271. https://doi.org/10.1016/s0936-6555(98)80019-8.; Noguchi M., Taniya T., Tajiri K., Miwa K., Miyazaki I., Koshino H. et al. Fatal Hyperlipaemia in a Case of Metastatic Breast Cancer Treated by Tamoxifen. Br J Surg. 1987;74(7):586–587. https://doi.org/10.1002/bjs.1800740714.