Εμφανίζονται 1 - 20 Αποτελέσματα από 599 για την αναζήτηση '"легочная гипертензия"', χρόνος αναζήτησης: 1,09δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: Патология кровообращения и кардиохирургия, Vol 29, Iss 3 (2025)

    Περιγραφή αρχείου: electronic resource

    Σύνδεσμος πρόσβασης: https://doaj.org/article/deaa2d82fd0641a9bc912640bcec3f80

  2. 2
    Academic Journal

    Πηγή: Eurasian Journal of Medical and Natural Sciences; Vol. 5 No. 11 Part 2 (2025): Eurasian Journal of Medical and Natural Sciences; 164-171 ; Евразийский журнал медицинских и естественных наук; Том 5 № 11 Part 2 (2025): Евразийский журнал медицинских и естественных наук; 164-171 ; Yevrosiyo tibbiyot va tabiiy fanlar jurnali; Jild 5 Nomeri 11 Part 2 (2025): Евразийский журнал медицинских и естественных наук; 164-171 ; 2181-287X

    Περιγραφή αρχείου: application/pdf

  3. 3
    Academic Journal

    Πηγή: Siberian Journal of Clinical and Experimental Medicine; Том 40, № 1 (2025); 85-94 ; Сибирский журнал клинической и экспериментальной медицины; Том 40, № 1 (2025); 85-94 ; 2713-265X ; 2713-2927

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/2636/1051; Simonneau G., Torbicki A., Dorfmüller P., Kim N. The pathophysiology of chronic thromboembolic pulmonary hypertension. Eur. Respir. Rev. 2017;26(143):160112. https://doi.org/10.1183/16000617.0112-2016; Васильцева О.Я., Едемский А.Г., Гранкин Д.С., Кливер Е.Н., Чернявский А.М. Путь от тромбоэмболии легочной артерии к хронической тромбоэмболической легочной гипертензии: факторы риска. Патология кровообращения и кардиохирургия. 2021;25(3):11–19. https://doi.org/10.21688/1681-3472-2021-3-11-19; Ruaro B., Baratella E., Caforio G., Confalonieri P., Wade B., Marrocchio C. et al. Chronic thromboembolic pulmonary hypertension: an update. Diagnostics. 2022;12(2):235. https://doi.org/10.3390/diagnostics12020235; Cannon J.E., Su L., Kiely D.G., Page K., Toshner M., Swietlik E. et al. Dynamic risk stratification of patient long-term outcome after pulmonary endarterectomy: results from the United Kingdom National Cohort. Circulation. 2016;133(18):1761–1771. https://doi.org/10.1161/circulationaha.115.019470; Madani M.M. Pulmonary endarterectomy for chronic thromboembolic pulmonary hypertension: state-of-the-art. Pulmonary Circulation. 2021;11(2):1–6. https://doi.org/10.1177/20458940211007372; Чернявский А.М., Едемский А.Г., Новикова Н.В. и др.; под общ. ред. Чернявского А.М. Хирургическое лечение хронической тромбоэмболической легочной гипертензии; ФГБУ «НМИЦ им. ак. Е.Н. Мешалкина» Минздрава России. Новосибирск: Изд-во СО РАН. 2019:169–173.; Kim N.H., Delcroix M., Jais X., Madani M.M., Matsubara H., Mayer E. et al. Chronic thromboembolic pulmonary hypertension. Eur. Respir. J. 2019;53(1):1801915. https://doi.org/10.1183/13993003.01915-2018; Papamatheakis D.G., Poch D.S., Fernandes T.M., Kerr K.M., Kim N.H., Fedullo P.F. Chronic thromboembolic pulmonary hypertension: JACC focus seminar. J. Am. Coll. Cardiol. 2020;(76):2155–2169. https://doi.org/10.1016/j.jacc.2020.08.074; Hsieh W.C., Jansa P., Huang W.C., Nižnanský M., Omara M., Lindner J. Residual pulmonary hypertension after pulmonary endarterectomy: A meta-analysis. J. Thorac. Cardiovasc. Surg. 2018;156(3):1275– 1287. https://doi.org/10.1016/j.jtcvs.2018.04.110; Hobohm L., Below M., Farmakis I.T., Barco S., Munzel T., Konstantinides S. et al. Incidence of chronic thromboembolic pulmonary Hypertension after acute pulmonary embolism in real-world practice. Eur. Heart J. 2023;44(Suppl_2):ehad655-2010. https://doi.org/10.1093/eurheartj/ehad655.2010; Pang W., Zhang Z., Wang Z., Zhen K., Zhang M., Zhang Y. et al. Higher incidence of chronic thromboembolic pulmonary hypertension after acute pulmonary embolism in Asians than in Europeans: a meta-analysis. Front. Med. (Lausanne). 2021;8:721294. https://doi.org/10.3389%2Ffmed.2021.721294; Bhakta N.R., McGowan A., Ramsey K.A., Borg B., Kivastik J., Knight S.L. European Respiratory Society. American Thoracic Society technical statement: standardisation of the measurement of lung volumes, 2023 update. Eur. Respir. J. 2023;62(4):15–23. https://doi.org/10.1183/13993003.01519-2022; Duan A., Li X., Jin Q., Zhang Y., Zhao Z., Zhao Q. et al. Prognostic implication of noninvasive right ventricle-to-pulmonary artery coupling in chronic thromboembolic pulmonary hypertension. Ther. Adv. Chronic Dis. 2022;13: 20406223221102803. https://doi.org/10.1177/20406223221102803; Ishida K., Kohno H., Matsuura K., Sugiura T., Sanada T. J., Naito A. et al. Impact of residual pulmonary hypertension on long‐term outcomes after pulmonary endarterectomy in the modern era. Pulm. Circ. 2023;13(2):e12215. https://doi.org/10.1002/pul2.12215; Jujo T., Sakao S., Ishibashi-Ueda H., Ishida K., Naito A., Sugiura T. et al. Evaluation of the microcirculation in chronic thromboembolic pulmonary hypertension patients: the impact of pulmonary arterial remodeling on postoperative and follow-up pulmonary arterial pressure and vascular resistance. PLoS One. 2015;10(8):e0133167. https://doi.org/10.1371/journal.pone.0133167; D’Armini A.M., Morsolini M., Mattiucci G., Grazioli V., Pin M., Sciortino A. et al. Chronic thromboembolic pulmonary hypertension: from transplantation to distal pulmonary endarterectomy. J. Heart Lung Transplant. 2016;35(6):827–831. https://doi.org/10.1016/j.healun.2015.12.029; Delcroix M., Torbicki A., Gopalan D., Sitbon O., Klok F.A., Lang I. et al. ERS statement on chronic thromboembolic pulmonary hypertension. Eur. Respir. J. 2021;57(6):2002828. https://doi.org/10.1183/13993003.02828-2020; https://www.sibjcem.ru/jour/article/view/2636

  4. 4
  5. 5
  6. 6
    Academic Journal

    Συνεισφορές: The study was carried out on the basis of the Federal State Budgetary Institution "Research Institute of Complex Issues of Cardiovascular Diseases", within the framework of the fundamental topic No. 0419-2022-0002 "Development of innovative models for managing the risk of developing diseases of the circulatory system, taking into account comorbidity, based on the study of fundamental, clinical, epidemiological mechanisms and organizational technologies of medical care in the industrial region of Siberia".

    Πηγή: Complex Issues of Cardiovascular Diseases; Том 14, № 5 (2025); 16-26 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 14, № 5 (2025); 16-26 ; 2587-9537 ; 2306-1278

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1573/1087; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1573/1854; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1573/1855; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1573/1856; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1573/1857; Barbarash O.L., Odarenko Yu.N., Kondyukova N.V. Quality of life indicators in evaluating the efficiency of surgical treatment in patients with acquired heart diseases undergoing bioprosthetic and mechanical heart valve replacement. Creative Cardiology. 2019;13(1):28‒39. doi:10.24022/1997-3187-2019-13-1-28-39. (in Russian); IPDAS 2005: Criteria for judging the quality of patient decision aids. International Patient Decision Aids Standards (IPDAS) Collaboration. http://ipdas.ohri.ca/ipdas_checklist.pdf (accessed 07 November 2024); Bermudez T, Bierbauer W, Scholz U, Hermann M. Depression and anxiety in cardiac rehabilitation: differential associations with changes in exercise capacity and quality of life. Anxiety Stress Coping. 2022 Mar;35(2):204-218. doi:10.1080/10615806.2021.1952191; Goruleva M. V., Ganenko O. S., Коvaltcova R. S., Kutuzova A., Petrova N. N., Demchemnko E. A., Nedoshivin A. O. Quality of life and psycho-cognitive condition in patients after coronary artery bypass graft surgery. Russian Journal of Cardiology. 2014;9(113):68‒71. https://doi.org/10.15829/1560-4071-2014-9-68-71 (in Russian); Bubnova M.G. Relevant problems of participation and education of patients in cardiac rehabilitation and secondary prevention programs. Cardiovascular Therapy and Prevention. 2020;19(6):2649. doi:10.15829/1728-8800-2020-2649. (in Russian); Zheleznev S.I., Demidov D.P., Afanasiev A.V., Nazarov V.M., Demin I.I., Bogachev-Prokofiev A.V., Astapov D.A., Karaskov A.M. Radiofrequency denervation of pulmonary artery in surgery of dysplastic mitral valve defects with severe pulmonary hypertension. Russian Journal of Cardiology. 2016;11(139):70‒72. doi:10.15829/1560-4071-2016-11-70-72. (in Russian); Avdeev S.N., Barbarash O.L., Valieva Z.S., Volkov A.V., Veselova T.N., Galyavich A.S., Goncharova N.S., Gorbachevsky S.V., Gramovich V.V., Danilov N.M., Klimenko A.A., Martynyuk T.V., Moiseeva O.M., Ryzhkova D.V., Simakova M.A., Sinitsyn V. E., Stukalova O. V., Chazova I. E., Chernogrivov I. E., Shmalts A. A., Tsareva N.A. 2024 Clinical practice guidelines for Pulmonary hypertension, including chronic thromboembolic pulmonary hypertension. Russian Journal of Cardiology. 2024;29(11):6161. doi:10.15829/1560-4071-2024-6161.; Thomson Mangnall L.J., Gallagher R.D., Sibbritt D.W., Fry M.M. Health-related quality of life of patients after mechanical valve replacement surgery: an integrative review. Eur. J. Cardiovasc. Nurs. 2015 Feb;14(1):16‒25. doi:10.1177/1474515114528126.; Bazylev V.V., Nemchenko E.V., Abramova G.N., Kanaeva T.V., Karnakhin V.A. Quality of life after surgical treatment of mitral heart disease. Cardiosomatics. 2020;11(4):30‒35. doi:10.26442/22217185.2020.4.200553. (in Russian); Muthukrishnan A, Tayyib N.A, Alsolami F.J, Ramaiah P, Lathamangeswaric C. Anxiety and quality of life outcomes after coronary artery bypass graft surgery - a prospective cohort study. Curr. Probl. Cardiol. 2023;48(2):101474. doi:10.1016/j.cpcardiol.2022.101474.; Guzelhan Y, Conkbayir C, Ugurlucan M, Yildiz C.E, Alpagut U, Bozbuga N. Gender differences in patients with anxiety after coronary artery bypass surgery. Heart Surg. Forum. 2018;21(3):E165-E169. doi:10.1532/hsf.1451.; Shostak N.A., Klimenko A.N., Shemenkova V.S., Svet A.V. Use of the SF-36 questionnaire in assessment of quality of life in patients with chronic thromboembolic pulmonary hypertension. The Clinician. 2017;11(3-4):44‒49. doi:10.17650/1818-8338-2017-11-3-4-44-49. (in Russian); Sale A, Yu J. Quality of life instruments in atrial fibrillation: a systematic review of measurement properties. Health Qual Life Outcomes. 2022;20(1):143. doi:10.1186/s12955-022-02057-y.; Bockeria O.L., Yurkulieva G.A. Effectiveness and impact of modern af-treatment methods on quality of life in patients with different forms of atrial fibrillation. Annals of Arrhythmology. 2017;14(4):211‒220. doi:10.15275/annaritmol.2017.4.4. (in Russian); Goldsmith I.R., Lip G.Y., Patel R.L. A prospective study of changes in the quality of life of patients following mitral valve repair and replacement. Eur. J. Cardiothorac. Surg. 2001;20(5):949–955. doi:10.1016/S1010-7940(01)00952-6.; Ay Y, Kara I, Aydin C, Ay N.K., Inan B, Basel H, Zeybek R. Comparison of the health related quality of life of patients following mitral valve surgicalprocedures in the 6- months follow-up: a prospective study. Ann. Thorac. Cardiovasc. Surg. 2013;19(2):113–119. doi:10.5761/atcs.oa.12.02234.; Sedrakyan A., Vaccarino V., Elefteriades J.A., et al. Health related quality of life after mitral valve repairs and replacements. Qual. Life Res. 2006;15(7):1153–1160. doi:10.1007/s11136-006-0055-3.; Immer F.E., Donati O., Wyss T., et al. Quality of life after mitral valve surgery: differences between reconstruction and replacement. J. Heart Valve Dis. 2003;12(2):162–168.; Balasubramanian A, Larive AB, Horn EM, DuBrock HM, Mehra R, Jacob MS, Hemnes AR, Leopold JA, Radeva MK, Hill NS, Erzurum SC, Rosenzweig EB, Frantz RP, Rischard FP, Beck GJ, Hassoun PM, Mathai SC; PVDOMICS Study Group. Health-Related Quality of Life Across the Spectrum of Pulmonary Hypertension. Chest. 2024 ;165(6):1493-1504. doi:10.1016/j.chest.2024.02.009.; Gorbunova E.V., Rozhnev V.V., Lyapina I.N., Barbarash O.L. Dynamics of adherence to treatment and quality of life in patients with prosthetic heart valves who participated in the educational programs (10-year follow-up). Complex Issues of Cardiovascular Diseases. 2022;11(1):69-77. (In Russian) https://doi.org/10.17802/2306-1278-2022-11-1-69-77

  7. 7
    Academic Journal

    Πηγή: International Journal of Scientific Pediatrics; Vol. 4 No. 5 (2025): September-October; 1110-1114 ; Международный журнал научной педиатрии; Том 4 № 5 (2025): Сентябрь-Октябрь; 1110-1114 ; Xalqaro ilmiy pediatriya jurnali; Nashr soni. 4 No. 5 (2025): Sentabr-Oktabr; 1110-1114 ; 2181-2926

    Περιγραφή αρχείου: application/pdf

  8. 8
    Academic Journal
  9. 9
    Academic Journal

    Συνεισφορές: Работа поддержана грантом РНФ 23-15-00318 «Изучение вазореактивного резерва сосудов малого круга кровообращения с целью разработки алгоритма рациональной терапии легочной артериальной гипертензии», рук. О.М. Моисеева.

    Πηγή: Complex Issues of Cardiovascular Diseases; Том 14, № 4 (2025); 58-66 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 14, № 4 (2025); 58-66 ; 2587-9537 ; 2306-1278

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1544/1065; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1544/1802; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1544/1803; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1544/1805; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1544/1807; Humbert, M., Sitbon, O., Guignabert, C., Savale, L., Boucly, A., Gallant-Dewavrin, M., McLaughlin, V., Hoeper, M. M., & Weatherald, J. (2023). Treatment of pulmonary arterial hypertension: Recent progress and a look to the future. The Lancet. Respiratory Medicine, 11(9), 804–819. https://doi.org/10.1016/S2213-2600(23)00264-3; Ruopp, N. F., & Cockrill, B. A. (2022). Diagnosis and Treatment of Pulmonary Arterial Hypertension: A Review. JAMA, 327(14), 1379–1391. https://doi.org/10.1001/jama.2022.4402; Evans, C. E., Cober, N. D., Dai, Z., Stewart, D. J., & Zhao, Y.-Y. (2021). Endothelial cells in the pathogenesis of pulmonary arterial hypertension. The European Respiratory Journal, 58(3), 2003957. https://doi.org/10.1183/13993003.03957-2020; Awad, K. S., Wang, S., Dougherty, E. J., Keshavarz, A., Demirkale, C. Y., Yu, Z. X., Miller, L., Elinoff, J. M., & Danner, R. L. (2024). BMPR2 Loss Activates AKT by Disrupting DLL4/NOTCH1 and PPARγ Signaling in Pulmonary Arterial Hypertension. International Journal of Molecular Sciences, 25(10), 5403. https://doi.org/10.3390/ijms25105403; Schupp, J. C., Adams, T. S., Cosme, C., Raredon, M. S. B., Yuan, Y., Omote, N., Poli, S., Chioccioli, M., Rose, K.-A., Manning, E. P., Sauler, M., DeIuliis, G., Ahangari, F., Neumark, N., Habermann, A. C., Gutierrez, A. J., Bui, L. T., Lafyatis, R., Pierce, R. W., … Kaminski, N. (2021). Integrated Single-Cell Atlas of Endothelial Cells of the Human Lung. Circulation, 144(4), 286–302. https://doi.org/10.1161/CIRCULATIONAHA.120.052318; Singh, N., Eickhoff, C., Garcia-Agundez, A., Bertone, P., Paudel, S. S., Tambe, D. T., Litzky, L. A., Cox-Flaherty, K., Klinger, J. R., Monaghan, S. F., Mullin, C. J., Pereira, M., Walsh, T., Whittenhall, M., Stevens, T., Harrington, E. O., & Ventetuolo, C. E. (2023). Transcriptional profiles of pulmonary artery endothelial cells in pulmonary hypertension. Scientific Reports, 13(1), 22534. https://doi.org/10.1038/s41598-023-48077-6; Zhou, Y., Tabib, T., Huang, M., Yuan, K., Kim, Y., Morse, C., Sembrat, J., Valenzi, E., & Lafyatis, R. (2024). Molecular Changes Implicate Angiogenesis and Arterial Remodeling in Systemic Sclerosis-Associated and Idiopathic Pulmonary Hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 44(8), e210–e225. https://doi.org/10.1161/ATVBAHA.123.320005; Cober, N. D., VandenBroek, M. M., Ormiston, M. L., & Stewart, D. J. (2022). Evolving Concepts in Endothelial Pathobiology of Pulmonary Arterial Hypertension. Hypertension (Dallas, Tex.: 1979), 79(8), 1580–1590. https://doi.org/10.1161/HYPERTENSIONAHA.122.18261; Guignabert, C., & Dorfmuller, P. (2013). Pathology and pathobiology of pulmonary hypertension. Seminars in Respiratory and Critical Care Medicine, 34(5), 551–559. https://doi.org/10.1055/s-0033-1356496; Piper, B., Bogamuwa, S., Hossain, T., Farkas, D., Rosas, L., Green, A. C., Newcomb, G., Sun, N., Ovando-Ricardez, J. A., Horowitz, J. C., Bhagwani, A. R., Yang, H., Kudryashova, T. V., Rojas, M., Mora, A. L., Yan, P., Mallampalli, R. K., Goncharova, E. A., Eckmann, D. M., & Farkas, L. (2024). RAB7 deficiency impairs pulmonary artery endothelial function and promotes pulmonary hypertension. The Journal of Clinical Investigation, 134(3), e169441. https://doi.org/10.1172/JCI169441; Yu, Q., & Chan, S. Y. (2017). Mitochondrial and Metabolic Drivers of Pulmonary Vascular Endothelial Dysfunction in Pulmonary Hypertension. Advances in Experimental Medicine and Biology, 967, 373–383. https://doi.org/10.1007/978-3-319-63245-2_24; Townsley, M. I. (2012). Structure and composition of pulmonary arteries, capillaries, and veins. Comprehensive Physiology, 2(1), 675–709. https://doi.org/10.1002/cphy.c100081; Duong, H. T., Comhair, S. A., Aldred, M. A., Mavrakis, L., Savasky, B. M., Erzurum, S. C., & Asosingh, K. (2011). Pulmonary artery endothelium resident endothelial colony-forming cells in pulmonary arterial hypertension. Pulmonary Circulation, 1(4), 475–486. https://doi.org/10.4103/2045-8932.93547; King, J., Hamil, T., Creighton, J., Wu, S., Bhat, P., McDonald, F., & Stevens, T. (2004). Structural and functional characteristics of lung macro- and microvascular endothelial cell phenotypes. Microvascular Research, 67(2), 139–151. https://doi.org/10.1016/j.mvr.2003.11.006; Passineau, M. J., Gallo, P. H., Williams, G., Perez, R., & Benza, R. L. (2019). Harvest of Endothelial Cells from the Balloon Tips of Swan-Ganz Catheters after Right Heart Catheterization. Journal of Visualized Experiments, 143, 58353. https://doi.org/10.3791/58353; Ventetuolo, C. E., Aliotta, J. M., Braza, J., Chichger, H., Dooner, M., McGuirl, D., Mullin, C. J., Newton, J., Pereira, M., Princiotto, A., Quesenberry, P. J., Walsh, T., Whittenhall, M., Klinger, J. R., & Harrington, E. O. (2020). Culture of pulmonary artery endothelial cells from pulmonary artery catheter balloon tips: Considerations for use in pulmonary vascular disease. The European Respiratory Journal, 55(3), 1901313. https://doi.org/10.1183/13993003.01313-2019; Jaffe, E. A., Nachman, R. L., Becker, C. G., & Minick, C. R. (1973). Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. The Journal of Clinical Investigation, 52(11), 2745–2756. https://doi.org/10.1172/JCI107470; Bashore, T. M., Balter, S., Barac, A., Byrne, J. G., Cavendish, J. J., Chambers, C. E., Hermiller, J. B., Kinlay, S., Landzberg, J. S., Laskey, W. K., McKay, C. R., Miller, J. M., Moliterno, D. J., Moore, J. W. M., Oliver-McNeil, S. M., Popma, J. J., & Tommaso, C. L. (2012). 2012 American College of Cardiology Foundation/Society for Cardiovascular Angiography and Interventions Expert Consensus Document on Cardiac Catheterization Laboratory Standards Update. Journal of the American College of Cardiology, 59(24), 2221–2305. https://doi.org/10.1016/j.jacc.2012.02.010; Hoeper, M. M., Bogaard, H. J., Condliffe, R., Frantz, R., Khanna, D., Kurzyna, M., Langleben, D., Manes, A., Satoh, T., Torres, F., Wilkins, M. R., & Badesch, D. B. (2013). Definitions and diagnosis of pulmonary hypertension. Journal of the American College of Cardiology, 62(25 Suppl), D42-50. https://doi.org/10.1016/j.jacc.2013.10.032; Maron, B. A. (2023). Revised Definition of Pulmonary Hypertension and Approach to Management: A Clinical Primer. Journal of the American Heart Association, 12(8), e029024. https://doi.org/10.1161/JAHA.122.029024; Sharma, D., Shah, R. J., Sreenivasan, J., Kafle, P., Gupta, R., Levine, A., Lanier, G. M., & Aronow, W. S. (2022). The role of serial right heart catheterization in risk stratification and management of pulmonary arterial hypertension. Expert Review of Cardiovascular Therapy, 20(7), 543–547. https://doi.org/10.1080/14779072.2022.2092095; Vonk Noordegraaf, A., Chin, K. M., Haddad, F., Hassoun, P. M., Hemnes, A. R., Hopkins, S. R., Kawut, S. M., Langleben, D., Lumens, J., & Naeije, R. (2019). Pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension: An update. The European Respiratory Journal, 53(1), 1801900. https://doi.org/10.1183/13993003.01900-2018; Kutikhin, A. G., Tupikin, A. E., Matveeva, V. G., Shishkova, D. K., Antonova, L. V., Kabilov, M. R., & Velikanova, E. A. (2020). Human Peripheral Blood-Derived Endothelial Colony-Forming Cells Are Highly Similar to Mature Vascular Endothelial Cells yet Demonstrate a Transitional Transcriptomic Signature. Cells, 9(4), 876. https://doi.org/10.3390/cells9040876; Matveeva, V., Khanova, M., Sardin, E., Antonova, L., & Barbarash, O. (2018). Endovascular Interventions Permit Isolation of Endothelial Colony-Forming Cells from Peripheral Blood. International Journal of Molecular Sciences, 19(11), 3453. https://doi.org/10.3390/ijms19113453

  10. 10
    Academic Journal

    Συνεισφορές: This work was carried out within the framework of the state assignment of the Ministry of Health of the Russian Federation No. 124022000090-0, Данная работа была выполнена в рамках государственного задания Министерства здравоохранения Российской Федерации № 124022000090-0

    Πηγή: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 14, № 1 (2025); 196-202 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 14, № 1 (2025); 196-202 ; 2541-8017 ; 2223-9022

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.jnmp.ru/jour/article/view/2088/1583; https://www.jnmp.ru/jour/article/view/2088/1699; Чазова И.Е. Хроническая тромбоэмболическая легочная гипертензия: современные возможности диагностики и лечения. Терапевтический архив. 2023;95(12):1017–1021. https://doi.org/10.26442/00403660.2023.12.202495; Каменская О.В., Клинкова А.С., Логинова И.Ю., Поротникова С. С., Волкова И.И., Доронин Д.В. и др. Клинико-функциональный статус и послеоперационные осложнения у больных хронической тромбоэмболической легочной гипертензией в возрастном аспекте. Системные гипертензии. 2023;20(4):31–37. https://doi.org/10.38109/2075-082X-2023-4-31-37; Чернявский А.М., Едемский А.Г., Чернявский М.А., Таркова А.Р., Новикова Н.В., Иванов С.В. Хирургические технологии в лечении больных с хронической постэмболической легочной гипертензией. Кардиология и сердечно-сосудистая хирургия. 2016;(6):38–43. https://doi.org/10.17116/kardio20169638-43; Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al.; American Society of Echocardiography’s Nomenclature and Standards Committee; Task Force on Chamber Quantification; American College of Cardiology Echocardiography Committee; American Heart Association; European Association of Echocardiography, European Society of Cardiology. Recommendations for chamber quantification. Eur J Echocardiogr. 2006;7(2):79–108. PMID: 16458610 https://doi.org/10.1016/j.euje.2005.12.014; Голицын С.П., Кропачева Е.С., Майков Е.Б. Миронов Н.Ю., Панченко Е.П., Соколов С.Ф. и др. Диагностика и лечение нарушений ритма сердца и проводимости. Клинические рекомендации. Часть I. Кардиологический вестник. 2014;9(2):3–52.; Liu Z, Liu X, Lin F, Zheng X, Yang Y, Zhang Y, et al. Duration of regional cerebral oxygen saturation under 40% is a risk factor for neurological injury following pulmonary thromboendarterectomy: A prospective observational study. J Card Surg. 2022;37(9):2610–2617. PMID: 35599016 https://doi.org/10.1111/jocs.16615; Raffa GM, Agnello F, Occhipinti G, Miraglia R, Lo Re V, Marrone G, et al. Neurological complications after cardiac surgery: a retrospective case-control study of risk factors and outcome. J Cardiothorac Surg. 2019;14(1):23. PMID: 30683130 https://doi.org/10.1186/s13019-019-0844-8; Киртбая Л.Н. Эпидемиология и механизм развития фибрилляции предсердий после коронарных вмешательств. Анналы аритмологии. 2021;18(4):247–253. https://doi.org/10.15275/annaritmol.2021.4.7; Чазова И.Е., Мартынюк Т.В. Проблемы диагностики и лечения хронической тромбоэмболической легочной гипертензии. Тихоокеанский медицинский журнал. 2017;4(70):6–16. https://doi.org/10.17238/PmJ1609-1175.2017.4.6-16; https://www.jnmp.ru/jour/article/view/2088

  11. 11
  12. 12
    Academic Journal
  13. 13
  14. 14
  15. 15
    Academic Journal

    Πηγή: PULMONOLOGIYA; Том 34, № 3 (2024); 340-349 ; Пульмонология; Том 34, № 3 (2024); 340-349 ; 2541-9617 ; 0869-0189

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/4557/3657; Абдулатипова И.В., Белкина М.В., Белозеров Ю.М. и др. Легочная гипертензия у детей: руководство. М.: Актелион Фармасьютикалз; 2013.; Министерство здравоохранения Российской Федерации. Клинические рекомендации. Легочная гипертензия у детей. М.; 2017. Доступно на: https://cr.minzdrav.gov.ru/recomend/31_1?ysclid=lwumvccw7r222227221; Ruoss J.L., Rios D.R., Levy P.T. Updates on management for acute and chronic phenotypes of neonatal pulmonary hypertension. Clin. Perinatol. 2020; 47 (3): 593–615. DOI:10.1016/j.clp.2020.05.006.; Буров А.А., Пруткин М.Е., Гребенников В.А. и др. Проект клинического протокола по диагностике и терапии персистируюшей легочной гипертензии новорожденных. Неонатология: новости, мнения, обучение. 2014; (1): 145–160. Доступно на: https://www.neonatology-nmo.ru/ru/jarticles_neonat/82.html; Миклашевич И.М., Школьникова М.А., Горбачевский С.В. и др. Современная стратегия терапии легочной гипертензии у детей. Кардиоваскулярная терапия и профилактика. 2018; 17 (2): 101–124. DOI:10.15829/1728-8800-2018-2-101-124.; Буров А.А. Терапия оксидом азота в неонатологии. Неонатология: новости, мнения, обучение. 2014; (4): 73–86. Доступно на: https://www.neonatology-nmo.ru/ru/jarticles_neonat/123.html?SSr=410134d89315ffffffff27c__07e8051f0f2905-1352; Roberts J.D., Polaner D.M., Lang P., Zapol W.M. Inhaled nitric oxide in persistent pulmonary hypertension of the newborn. Lancet. 1992; 340 (8823): 818–819. DOI:10.1016/0140-6736(92)92686-a.; Kinsella J.P., Neish S.R., Shaffer E., Abman S.H. Low-dose inhalation nitric oxide in persistent pulmonary hypertension of the newborn. Lancet. 1992; 340 (8823): 819–820. DOI:10.1016/0140-6736(92)92687-b.; Neonatal Inhaled Nitric Oxide Study Group. Inhaled nitric oxide in full-term and nearly full-term infants with hypoxic respiratory failure. N. Engl. J. Med. 1997; 336 (9): 597–604. DOI:10.1056/NEJM199702273360901.; Clark R.H., Kueser T.J., Walker M.W. et al. Low-dose nitric oxide therapy for persistent pulmonary hypertension of the newborn. Clinical Inhaled Nitric Oxide Research Group. N. Engl. J. Med. 2000; 342 (7): 469–474. DOI:10.1056/NEJM200002173420704.; Stahlman M. Treatment of cardiovascular disorders of the newborn. Pediatr. Clin. North Am. 1964; 11 (2): 363–400. DOI:10.1016/s0031-3955(16)31554-1.; Rudolph A.M., Drorbaugh J.E., Auld P.A. et al. Studies on the circulation in the neonatal period. The circulation in the respiratory distress syndrome. Pediatrics. 1961; 27: 551–566. DOI:10.1542/peds.27.4.551.; Roberton N.R., Hallidie-Smith K.A., Davis J.A. Severe respiratory distress syndrome mimicking cyanotic heart-disease in term babies. Lancet. 1967; 2 (7526): 1108–1110. DOI:10.1016/s0140-6736(67)90616-2.; Gersony W.M., Duc G.V., Sinclair J.C. "PFC" syndrome (persistence of fetal circulation). Circulation. 1969; 40 (Suppl. 1): 3–87.; Levin D.L., Heymann M.A., Kitterman J.A. et al. Persistent pulmonary hypertension of the newborn infant. J. Pediatr. 1976; 89 (4): 626–630. DOI:10.1016/s0022-3476(76)80405-2.; Harrison M.R., de Lorimier A.A. Congenital diaphragmatic hernia. Surg. Clin. North Am. 1981; 61 (5): 1023–1035. DOI:10.1016/s0039-6109(16)42528-4.; Rudolph A.M. High pulmonary vascular resistance after birth: I. Pathophysiologic considerations and etiologic classification. Clin. Pediatr. (Phila). 1980; 19 (9): 585–590. DOI:10.1177/000992288001900902.; Mous D.S., Buscop-van Kempen M.J., Wijnen R.M.H. et al. Changes in vasoactive pathways in congenital diaphragmatic hernia associated pulmonary hypertension explain unresponsiveness to pharmacotherapy. Respir. Res. 2017; 18 (1): 187. DOI:10.1186/s12931-017-0670-2.; Furchgott R.F., Zawadzki J.V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980; 288 (5789): 373–376. DOI:10.1038/288373a0.; Cornfield D.N., Chatfield B.A., McQueston J.A. et al. Effects of birth-related stimuli on L-arginine-dependent pulmonary vasodilation in ovine fetus. Am. J. Physiol. 1992; 262 (5, Pt 2): H1474–1481. DOI:10.1152/ajpheart.1992.262.5.H1474.; Abman S.H., Chatfield B.A., Hall S.L., McMurtry I.F. Role of endothelium-derived relaxing factor during transition of pulmonary circulation at birth. Am. J. Physiol. 1990; 259 (6, Pt 2): H1921–1927. DOI:10.1152/ajpheart.1990.259.6.H1921.; Abman S.H., Chatfield B.A., Rodman D.M. et al. Maturational changes in endothelium-derived relaxing factor activity of ovine pulmonary arteries in vitro. Am. J. Physiol. 1991; 260 (4, Pt 1): L280–285. DOI:10.1152/ajplung.1991.260.4.L280.; Fineman J.R., Soifer S.J., Heymann M.A. The role of pulmonary vascular endothelium in perinatal pulmonary circulatory regulation. Semin. Perinatol. 1991; 15 (1): 58–62. Available at: https://www.researchgate.net/publication/21093259_The_role_of_pulmonary_vascular_endothelium_in_perinatal_pulmonary_circulatory_regulation; Kinsella J.P., McQueston J.A., Rosenberg A.A., Abman S.H. Hemodynamic effects of exogenous nitric oxide in ovine transitional pulmonary circulation. Am. J. Physiol. 1992; 263 (3, Pt 2): H875–880. DOI:10.1152/ajpheart.1992.263.3.H875.; Kinsella J.P., Ivy D.D., Abman S.H. Ontogeny of NO activity and response to inhaled NO in the developing ovine pulmonary circulation. Am. J. Physiol. 1994; 267 (5, Pt 2): H1955–1961. DOI:10.1152/ajpheart.1994.267.5.H1955.; Shaul P.W., Afshar S., Gibson L.L. et al. Developmental changes in nitric oxide synthase isoform expression and nitric oxide production in fetal baboon lung. Am. J. Physiol. Lung Cell. Mol. Physiol. 2002; 283 (6): L1192–1199. DOI:10.1152/ajplung.00112.2002.; Pepke-Zaba J., Higenbottam T.W., Dinh-Xuan A.T. et al. Inhaled nitric oxide as a cause of selective pulmonary vasodilatation in pulmonary hypertension. Lancet. 1991; 338 (8776): 1173–1174. DOI:10.1016/0140-6736(91)92033-x.; Frostell C., Fratacci M.D., Wain J.C. et al. Inhaled nitric oxide: a selective pulmonary vasodilator reversing hypoxic pulmonary vasoconstriction. Circulation. 1991; 83 (6): 2038–2047. DOI:10.1161/01.cir.83.6.2038.; Roberts J.D. Jr., Chen T.Y., Kawai N. et al. Inhaled nitric oxide reverses pulmonary vasoconstriction in the hypoxic and acidotic newborn lamb. Circ. Res. 1993; 72 (2): 246–254. DOI:10.1161/01.res.72.2.246.; Villamor E., Le Cras T.D., Horan M.P. et al. Chronic intrauterine pulmonary hypertension impairs endothelial nitric oxide synthase in the ovine fetus. Am. J. Physiol. 1997; 272 (5, Pt 1): L1013–1020. DOI:10.1152/ajplung.1997.272.5.L1013.; Zayek M., Cleveland D., Morin F.C. 3rd. Treatment of persistent pulmonary hypertension in the newborn lamb by inhaled nitric oxide. J. Pediatr. 1993; 122 (5, Pt 1): 743–750. DOI:10.1016/s0022-3476(06)80020-x.; Kinsella J.P., Parker T.A., Galan H. et al. Independent and combined effects of inhaled nitric oxide, liquid perfluorochemical, and high-frequency oscillatory ventilation in premature lambs with respiratory distress syndrome. Chest. 1999; 116 (1, Suppl.): 15–16S. DOI:10.1378/chest.116.suppl_1.15s.; Rossaint R., Falke K.J., López F. et al. Inhaled nitric oxide for the adult respiratory distress syndrome. N. Engl. J. Med. 1993; 328 (6): 399–405. DOI:10.1056/NEJM199302113280605.; Tworetzky W., Bristow J., Moore P. et al. Inhaled nitric oxide in neonates with persistent pulmonary hypertension. Lancet. 2001; 357 (9250): 118–120. DOI:10.1016/S0140-6736(00)03548-0.; Davidson D., Barefield E.S., Kattwinkel J. et al. Inhaled nitric oxide for the early treatment of persistent pulmonary hypertension of the term newborn: a randomized, double-masked, placebo-controlled, dose-response, multicenter study. The I-NO/PPHN Study Group. Pediatrics. 1998; 101 (3, Pt 1): 325–334. DOI:10.1542/peds.101.3.325.; Sokol G.M., Fineberg N.S., Wright L.L., Ehrenkranz R.A. Changes in arterial oxygen tension when weaning neonates from inhaled nitric oxide. Pediatr. Pulmonol. 2001; 32 (1): 14–19. DOI:10.1002/ppul.1083.; Black S.M., Heidersbach R.S., McMullan D.M. et al. Inhaled nitric oxide inhibits NOS activity in lambs: potential mechanism for rebound pulmonary hypertension. Am. J. Physiol. 1999; 277 (5): H1849–1856. DOI:10.1152/ajpheart.1999.277.5.H1849.; Rawat M., Lakshminrusimha S., Vento M. Pulmonary hypertension and oxidative stress: where is the link? Semin. Fetal Neonatal Med. 2022; 27 (4): 101347. DOI:10.1016/j.siny.2022.101347.; Roberts J.D. Jr, Fineman J.R., Morin F.C. 3rd et al. Inhaled nitric oxide and persistent pulmonary hypertension of the newborn. The Inhaled Nitric Oxide Study Group. N. Engl. J. Med. 1997; 336 (9): 605–610. DOI:10.1056/NEJM199702273360902.; Kinsella J.P., Truog W.E., Walsh W.F. et al. Randomized, multicenter trial of inhaled nitric oxide and high-frequency oscillatory ventilation in severe, persistent pulmonary hypertension of the newborn. J. Pediatr. 1997; 131 (1, Pt 1): 55–62. DOI:10.1016/s0022-3476(97)70124-0.; Goldman A.P., Tasker R.C., Haworth S.G. et al. Four patterns of response to inhaled nitric oxide for persistent pulmonary hypertension of the newborn. Pediatrics. 1996; 98 (4, Pt 1): 706–713. DOI:10.1542/peds.98.4.706.; Foubert L., Fleming B., Latimer R. et al. Safety guidelines for use of nitric oxide. Lancet. 1992; 339 (8809): 1615–1616. DOI:10.1016/0140-6736(92)91886-d.; Frostell C.G., Zapol W.M. Inhaled nitric oxide, clinical rationale and applications. Adv. Pharmacol. 1995; 34: 439–456. DOI:10.1016/s1054-3589(08)61102-3.; Van Meurs K.P., Wright L.L., Ehrenkranz R.A. et al. Inhaled nitric oxide for premature infants with severe respiratory failure. N. Engl. J. Med. 2005; 353 (1): 13–22. DOI:10.1056/NEJMoa043927.; Van Meurs K.P., Rhine W.D., Asselin J.M., Durand D.J. Response of premature infants with severe respiratory failure to inhaled nitric oxide. Preemie NO Collaborative Group. Pediatr. Pulmonol. 1997; 24 (5): 319–323. DOI:10.1002/(sici)1099-0496(199711)24:53.0.co;2-d.; Högman M., Frostell C., Arnberg H., Hedenstierna G. Bleeding time prolongation and NO inhalation. Lancet. 1993; 341 (8861): 1664–1665. DOI:10.1016/0140-6736(93)90802-n.; Bassenge E. Antiplatelet effects of endothelium-derived relaxing factor and nitric oxide donors. Eur. Heart. J. 1991; 12 (Suppl. E): 12–15. DOI:10.1093/eurheartj/12.suppl_e.12.; George T.N., Johnson K.J., Bates J.N., Segar J.L. The effect of inhaled nitric oxide therapy on bleeding time and platelet aggregation in neonates. J. Pediatr. 1998; 132 (4): 731–734. DOI:10.1016/s0022-3476(98)70370-1.; Ward J., Motwani J., Baker N. et al. Congenital methemoglobinemia identified by pulse oximetry screening. Pediatrics. 2019; 143 (3): e20182814. DOI:10.1542/peds.2018-2814.; Bischoff A.R., Habib S., McNamara P.J., Giesinger R.E. Hemodynamic response to milrinone for refractory hypoxemia during therapeutic hypothermia for neonatal hypoxic ischemic encephalopathy. J. Perinatol. 2021; 41 (9): 2345–2354. DOI:10.1038/s41372-021-01049-y.; James A.T., Corcoran J.D., McNamara P.J. et al. The effect of milrinone on right and left ventricular function when used as a rescue therapy for term infants with pulmonary hypertension. Cardiol. Young. 2016; 26 (1): 90–99. DOI:10.1017/S1047951114002698.; Kinsella J.P., Steinhorn R.H., Mullen M.P. et al. The left ventricle in congenital diaphragmatic hernia: Implications for the management of pulmonary hypertension. J. Pediatr. 2018; 197: 17–22. DOI:10.1016/j.jpeds.2018.02.040.; Cookson M.W., Abman S.H., Kinsella J.P., Mandell E.W. Pulmonary vasodilator strategies in neonates with acute hypoxemic respiratory failure and pulmonary hypertension. Semin. Fetal Neonatal Med. 2022; 27 (4): 101367. DOI:10.1016/j.siny.2022.101367.; Kinsella J.P., Abman S.H. Clinical approach to inhaled nitric oxide therapy in the newborn with hypoxemia. J. Pediatr. 2000; 136 (6): 717–726. DOI:10.1016/S0022-3476(00)10660-2.; Clark R.H., Yoder B.A., Sell M.S. Prospective, randomized comparison of high-frequency oscillation and conventional ventilation in candidates for extracorporeal membrane oxygenation. J. Pediatr. 1994; 124 (3): 447–454. DOI:10.1016/s0022-3476(94)70374-4.; Kuluz M.A., Smith P.B., Mears S.P. et al. Preliminary observations of the use of high-frequency jet ventilation as rescue therapy in infants with congenital diaphragmatic hernia. J. Pediatr. Surg. 2010; 45 (4): 698–702. DOI:10.1016/j.jpedsurg.2009.07.025.; Lotze A., Mitchell B.R., Bulas D.I. et al. Multicenter study of surfactant (beractant) use in the treatment of term infants with severe respiratory failure. Survanta in term infants study group. J. Pediatr. 1998; 132 (1): 40–47. DOI:10.1016/s0022-3476(98)70482-2.; González A., Bancalari A., Osorio W. et al. Early use of combined exogenous surfactant and inhaled nitric oxide reduces treatment failure in persistent pulmonary hypertension of the newborn: a randomized controlled trial. J. Perinatol. 2021; 41 (1): 32–38. DOI:10.1038/s41372-020-00777-x.; Cornfield D.N., Reeve H.L., Tolarova S. et al. Oxygen causes fetal pulmonary vasodilation through activation of a calcium-dependent potassium channel. Proc. Natl. Acad. Sci. USA. 1996; 93 (15): 8089–8094. DOI:10.1073/pnas.93.15.8089.; Cornfield D.N. Developmental regulation of oxygen sensing and ion channels in the pulmonary vasculature. Adv. Exp. Med. Biol. 2010; 661: 201–220. DOI:10.1007/978-1-60761-500-2_13.; Farrow K.N., Groh B.S., Schumacker P.T. et al. Hyperoxia increases phosphodiesterase 5 expression and activity in ovine fetal pulmonary artery smooth muscle cells. Circ. Res. 2008; 102 (2): 226–233. DOI:10.1161/CIRCRESAHA.107.161463.; Giesinger R.E., McNamara P.J. Hemodynamic instability in the critically ill neonate: an approach to cardiovascular support based on disease pathophysiology. Semin. Perinatol. 2016; 40 (3): 174–188. DOI:10.1053/j.semperi.2015.12.005.; Nakanishi H., Suenaga H., Uchiyama A. et al. Persistent pulmonary hypertension of the newborn in extremely preterm infants: a Japanese cohort study. Arch. Dis. Child. Fetal Neonatal Ed. 2018; 103 (6): F554–561. DOI:10.1136/archdischild-2017-313778.; Nelin L., Kinsella J.P., Courtney S.E. et al. Use of inhaled nitric oxide in preterm vs term/near-term neonates with pulmonary hypertension: results of the PaTTerN registry study. J. Perinatol. 2022; 42 (1): 14–18. DOI:10.1038/s41372-021-01252-x.; Peliowski A., Finer N.N., Etches P.C. et al. Inhaled nitric oxide for premature infants after prolonged rupture of the membranes. J. Pediatr. 1995; 126 (3): 450–453. DOI:10.1016/s0022-3476(95)70467-1.; Abman S.H., Hansmann G., Archer S.L. et al. Pediatric pulmonary hypertension: guidelines from the American Heart Association and American Thoracic Society. Circulation. 2015; 132 (21): 2037–2099. DOI:10.1161/CIR.0000000000000329.; Kinsella J.P., Steinhorn R.H., Krishnan U.S. et al. Recommendations for the use of inhaled nitric oxide therapy in premature newborns with severe pulmonary hypertension. J. Pediatr. 2016; 170: 312–314. DOI:10.1016/j.jpeds.2015.11.050.; Chock V.Y., Van Meurs K.P., Hintz S.R. et al. Inhaled nitric oxide for preterm premature rupture of membranes, oligohydramnios, and pulmonary hypoplasia. Am. J. Perinatol. 2009; 26 (4): 317–322. DOI:10.1055/s-0028-1104743.; Kinsella J.P., Cutter G.R., Walsh W.F. et al. Early inhaled nitric oxide therapy in premature newborns with respiratory failure. N. Engl. J. Med. 2006; 355 (4): 354–364. DOI:10.1056/NEJMoa060442.; Ballard R.A., Truog W.E., Cnaan A. et al. Inhaled nitric oxide in preterm infants undergoing mechanical ventilation. N. Engl. J. Med. 2006; 355 (4): 343–353. DOI:10.1056/NEJMoa061088.; Kinsella J.P., Walsh W.F., Bose C.L. et al. Inhaled nitric oxide in premature neonates with severe hypoxaemic respiratory failure: a randomised controlled trial. Lancet. 1999; 354 (9184): 1061–1065. DOI:10.1016/s0140-6736(99)03558-8.; Balasubramaniam V., Maxey A.M., Morgan D.B. et al. Inhaled NO restores lung structure in eNOS-deficient mice recovering from neonatal hypoxia. Am. J. Physiol. Lung Cell. Mol. Physiol. 2006; 291 (1): L119–127. DOI:10.1152/ajplung.00395.2005.; Tourneux P., Markham N., Seedorf G. et al. Inhaled nitric oxide improves lung structure and pulmonary hypertension in a model of bleomycin-induced bronchopulmonary dysplasia in neonatal rats. Am. J. Physiol. Lung Cell Mol. Physiol. 2009; 297 (6): L1103–1111. DOI:10.1152/ajplung.00293.2009.; Kinsella J.P., Parker T.A., Galan H. et al. Effects of inhaled nitric oxide on pulmonary edema and lung neutrophil accumulation in severe experimental hyaline membrane disease. Pediatr. Res. 1997; 41 (4, Pt 1): 457–463. DOI:10.1203/00006450-199704000-00002.; Kumar P.; Committee on Fetus and Newborn; American Academy of Pediatrics. Use of inhaled nitric oxide in preterm infants. Pediatrics. 2014; 133 (1): 164–170. DOI:10.1542/peds.2013-3444.; Giesinger R.E., Rios D.R., Chatmethakul T. et al. Impact of early hemodynamic screening on extremely preterm outcomes in a high-performance center. Am. J. Respir. Crit. Care Med. 2023; 208 (3): 290–300. DOI:10.1164/rccm.202212-2291OC.; Kinsella J.P., Parker T.A., Ivy D.D., Abman S.H. Noninvasive delivery of inhaled nitric oxide therapy for late pulmonary hypertension in newborn infants with congenital diaphragmatic hernia. J. Pediatr. 2003; 142 (4): 397–401. DOI:10.1067/mpd.2003.140.; Буранов С.Н., Карелин В.И., Селемир В.Д., Ширшин А.С. Аппарат для ингаляционной NO-терапии. Приборы и техника эксперимента. 2019; (5): 158–159. DOI:10.1134/S0032816219040037.; Володин Н.Н., Дегтярев Д.Н., ред. Неонатология: национальное руководство. 2-е изд. М.: ГЭОТАР-Медиа; 2023; Т. 1. DOI:10.33029/9704-7828-8-NNG-2023-1-752.; Володин Н.Н., Дегтярев Д.Н., ред. Неонатология: национальное руководство. 2-е изд. М.: ГЭОТАР-Медиа; 2023; Т. 2. DOI:10.33029/9704-7829-5-NNG-2023-1-768.; https://journal.pulmonology.ru/pulm/article/view/4557

  16. 16
  17. 17
    Academic Journal
  18. 18
  19. 19
    Academic Journal

    Συγγραφείς: I. A. Kozlov, И. А. Козлов

    Πηγή: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 21, № 6 (2024); 17-23 ; Вестник анестезиологии и реаниматологии; Том 21, № 6 (2024); 17-23 ; 2541-8653 ; 2078-5658

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.vair-journal.com/jour/article/view/1102/758; Баутин А. Е., Селемир В. Д., Нургалиева А. И. и др. Ингаляционная терапия оксидом азота, полученным методом синтеза из атмосферного воздуха, в послеоперационном периоде кардиохирургических вмешательств у детей: одноцентровое ретроспективное когортное исследование // Вестник интенсивной терапии им. А. И. Салтанова. – 2021. – № 3. – С. 98–107. https://doi.org/10.21320/1818-474X-2021-3-98-107.; Баутин А. Е., Селемир В. Д., Шафикова А. И. и др. Оценка клинической эффективности и безопасности терапии оксидом азота, синтезированным из атмосферного воздуха, в послеоперационном периоде кардиохирургических вмешательств // Трансляционная медицина. – 2021. – Т. 8, № 1. – С. 38–50. https://doi.org/10.18705/2311-4495-2021-8-1-38-50.; Калашникова Т. П., Арсеньева Ю. А., Каменщиков Н. О. и др. Антибактериальное действие оксида азота на возбудители госпитальной пневмонии (экспериментальное исследование) // Общая реаниматология. – 2024. – Т. 20, № 3. – С. 32–41. https://doi.org/10.15360/1813-9779-2024-3-2424.; Козлов И. А., Попцов В. Н. Клиническое использование ингаляционной окиси азота. Обзор литературы и первые клинические наблюдения // Анест. и реаниматол. – 1997. – № 5. – С. 80–88. PMID: 9432900.; Козлов И. А., Попцов В. H. Ингаляционная окись азота пpи тpансплантации сеpдца // Анест. и pеаниматол. – 1999. – № 5. – С. 9–12. PMID: 10560143.; Козлов И. А., Попцов В. Н. Сочетанная терапия оксидом азота и сурфактантом-BL при остром респираторном дистресс-синдроме после операций с искусственным кровообращением // Общая реаниматология. – 2005. – Т. 1, № 6. – С. 15–20. https://doi.org/10.15360/1813-9779-2005-6-15-20.; Мандель И. А., Яворовский А. Г., Выжигина М. А. и др. Системная органопротекция ингаляционным оксидом азота (обзор литературы) // Вестник анестезиологии и реаниматологии. – 2024. – Т. 21, № 4. – С. 104–114. https://doi.org/10.24884/2078-5658-2024-21-4-104-114.; Нгуен Х. К., Позднякова Д. Д., Баранова И. А., Чучалин А. Г. Применение ингаляций оксида азота при COVID-19 // Пульмонология. – 2024. – Т. 34, № 3. – С. 454–463. https://doi.org/10.18093/0869-0189-2024-4305.; Пичугин В. В., Баутин А. Е., Домнин С. Е. и др. Доставка газообразного оксида азота в экстракорпоральный контур циркуляции: экспериментальные и клинические данные: обзор литературы // Вестник интенсивной терапии им. А.И. Салтанова. – 2021. – № 3. – С. 108–116. https://doi.org/10.21320/1818-474X-2021-3-108-116.; Пичугин В. В., Дерюгина А. В., Домнин С. Е. и др. Первый опыт комбинированного применения оксида азота и молекулярного водорода в обеспечении операций на сердце у пациентов высокого риска // Пульмонология. – 2024. – Т. 34, № 1. – С. 32–41. https://doi.org/10.18093/0869-0189-2024-34-1-32-41.; Пичугин В. В., Домнин С. Е., Сандалкин Е. В. и др. Подмешивание оксида азота в ЭКМО для лечения критической ОСН // СТМ. – 2021. – Т. 13, № 4. – С. 57–63. https://doi.org/10.17691/stm2021.13.4.06.; Подоксенов Ю. К., Каменщиков Н. О., Мандель И. А. Применение оксида азота для защиты миокарда при ишемической болезни сердца // Анестезиология и реаниматология. – 2019. – № 2. – С. 34–47. https://doi.org/10.17116/anaesthesiology201902134.; Попцов В. Н. Гемодинамика и газообменные эффекты ингаляционного оксида азота при ОРДС у кардиохирургических больных // Общая реаниматология. – 2006. – Т. 2, № 2. – С. 14–19. https://doi.org/10.15360/1813-9779-2006-2-14-19.; Те М. А., Каменщиков Н. О., Подоксенов Ю. К. и др. Влияние доставки оксида азота на процессы апоптоза, некроптоза и пироптоза в почечной паренхиме при моделировании искусственного кровообращения: экспериментальное исследование // Вестник анестезиологии и реаниматологии. – 2024. – Т. 21, № 3. – С. 26–33. https://doi.org/10.24884/2078-5658-2024-21-3-26-33; Чурилина Е. А., Подоксенов Ю. К., Каменщиков Н. О. и др. Влияние оксида азота на степень повреждения ткани кишечника и структурной организации мембран эритроцитов при моделировании искусственного кровообращения и циркуляторного ареста: экспериментальное рандомизированное исследование // Вестник интенсивной терапии им. А. И. Салтанова. – 2024. – № 3. – С. 48–60. https://doi.org/10.21320/1818-474X-2024-3‑48-60.; Шень Н. П., Витик А. А., Артемчук А. В. и др. Опыт применения оксида азота у пациента с острым инфарктом миокарда, осложненным кардиогенным шоком и отеком легких (клинический случай) // Вестник анестезиологии и реаниматологии. – 2024. – Т. 21, № 3. – С. 109–116. https://doi.org/10.24884/2078-5658-2024-21-3-109-116.; Штабницкий В. А., Чучалин А. Г. Ингаляционный оксид азота: возможности улучшения оксигенации при остром респираторном дистресс-синдроме // Пульмонология. – 2015. – Т. 25, № 2. – С. 180–186. https://doi.org/10.18093/0869-0189-2015-25-2-180-186.; Abouzid M., Roshdy Y., Daniel J. M. et al. The beneficial use of nitric oxide during cardiopulmonary bypass on postoperative outcomes in children and adult patients: a systematic review and meta-analysis of 2897 patients // Eur J Clin Pharmacol. – 2023. – Vol. 79, № 11. – P. 1425–1442. https://doi.org/10.1007/s00228-023-03554-9.; Al Sulaiman K., Korayem G. B., Altebainawi A. F. et al. Evaluation of inhaled nitric oxide (iNO) treatment for moderate-to-severe ARDS in critically ill patients with COVID-19: a multicenter cohort study // Crit Care. – 2022. – Vol. 26, № 1. – P. 304. https://doi.org/10.1186/s13054-022-04158-y.; Cookson M. W., Kinsella J. P. Inhaled nitric oxide in neonatal pulmonary hypertension // Clin Perinatol. – 2024. – Vol. 51, № 1. – P. 95–111. https://doi.org/10.1016/j.clp.2023.11.001.; Chang Y. T., Liu J. R., Chen W. M. et al. First-year outcomes of very low birth weight preterm singleton infants with hypoxemic respiratory failure treated with milrinone and inhaled nitric oxide (iNO) compared to iNO alone: A nationwide retrospective study // PLoS One. – 2024. – Vol. 19, № 5. – e0297137. https://doi.org/10.1371/journal.pone.0297137.; Duggal A., Rezoagli E., Pham T. et al. Patterns of use of adjunctive therapies in patients with early moderate to severe ARDS: Insights from the Lung Safe Study // Chest. – 2020. – Vol. 157, № 6. – P. 1497–1505. https://doi.org/10.1016/j.chest.2020.01.041.; Fan E., Del Sorbo L., Goligher E. C. et al. An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: mechanical ventilation in adult patients with acute respiratory distress syndrome // Am J Respir Crit Care Med. – 2017. – Vol. 195, № 9. – P. 1253–1263. https://doi.org/10.1164/rccm.201703-0548ST.; Ferreira L. O., Vasconcelos V. W., Lima J. S. et al. Biochemical changes in cardiopulmonary bypass in cardiac surgery: new insights // J Pers Med. – 2023. – Vol. 13, № 10. – P. 1506. https://doi.org/10.3390/jpm13101506.; Frostell C., Fratacci M. D., Wain J. C. et al. Inhaled nitric oxide. A selective pulmonary vasodilator reversing hypoxic pulmonary vasoconstriction // Circulation. – 1991. – Vol. 83, № 6. – P. 2038–2047. https://doi.org/10.1161/01.cir.83.6.2038.; Gebistorf F., Karam O., Wetterslev J. et al. Inhaled nitric oxide for acute respiratory distress syndrome (ARDS) in children and adults // Cochrane Database Syst Rev. – 2016. – Vol. 6. – CD002787. https://doi.org/10.1002/14651858.CD002787.pub3.; Grasselli G., Calfee C. S., Camporota L. et al. European society of intensive care medicine taskforce on ARDS. ESICM guidelines on acute respiratory distress syndrome: definition, phenotyping and respiratory support strategies // Intensive Care Med. – 2023. – Vol. 49, № 7. – P. 727–759. https://doi.org/10.1007/s00134-023-07050-7.; Griffiths M. J. D., McAuley D. F., Perkins G. D. et al. Guidelines on the management of acute respiratory distress syndrome // BMJ Open Respir Res. – 2019. – Vol. 6, № 1. – e000420. https://doi.org/10.1136/bmjresp-2019-000420.; Hubble C. L., Cheifetz I. M., Craig D. M. et al. Inhaled nitric oxide results in deteriorating hemodynamics when administered during cardiopulmonary bypass in neonatal swine // Pediatr Crit Care Med. – 2004. – Vol. 5, № 2. – P. 157–162. https://doi.org/10.1097/01.pcc.0000112377.90107.97.; Ignarro L. J., Buga G. M., Wood K. S. et al. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide // Proc Natl Acad Sci USA. – 1987. – Vol. 84, № 24. – P. 9265–9269. https://doi.org/10.1073/pnas.84.24.9265.; Janssens S. P., Bogaert J., Zalewski J. et al. Nitric oxide for inhalation in ST-elevation myocardial infarction (NOMI): a multicentre, double-blind, randomized controlled trial // Eur Heart J. – 2018. – Vol. 39, № 29. – P. 2717–2725. https://doi.org/10.1093/eurheartj/ehy232.; Kamenshchikov N. O., Duong N., Berra L. Nitric Oxide in cardiac surgery: a review article // Biomedicines. – 2023. – Vol. 11, № 4. – P. 1085. https://doi.org/10.3390/biomedicines11041085.; Monsalve-Naharro J. Á., Domingo-Chiva E., García Castillo S. et al. Inhaled nitric oxide in adult patients with acute respiratory distress syndrome // Farm Hosp. – 2017. – Vol. 41, № 2. – P. 292–312. https://doi.org/10.7399/fh.2017.41.2.10533.; Muenster S., Zarragoikoetxea I., Moscatelli A. et al. Inhaled NO at a crossroads in cardiac surgery: current need to improve mechanistic understanding, clinical trial design and scientific evidence // Front Cardiovasc Med. – 2024. – Vol. 11. – 1374635. https://doi.org/10.3389/fcvm.2024.1374635.; Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor // Nature. – 1987. – Vol. 327, № 6122. – P. 524–526. https://doi.org/10.1038/327524a0. PMID: 3495737.; Qadir N., Sahetya S., Munshi L. et al. An Update on management of adult patients with acute respiratory distress syndrome: an Official American Thoracic Society Clinical Practice Guideline // Am J Respir Crit Care Med. – 2024. – Vol. 209, № 1. – P. 24–36. https://doi.org/10.1164/rccm.202311-2011ST.; Redaelli S., Magliocca A., Malhotra R. et al. Nitric oxide: Clinical applications in critically ill patients // Nitric Oxide. – 2022. – Vol. 121. – P. 20–33. https://doi.org/10.1016/j.niox.2022.01.007.; Redaelli S., Pozzi M., Giani M. et al. Inhaled nitric oxide in acute respiratory distress syndrome subsets: rationale and clinical applications // J Aerosol Med Pulm Drug Deliv. – 2023. – Vol. 36, № 3. – P. 112–126. https://doi.org/10.1089/jamp.2022.0058.; Sardo S., Osawa E. A., Finco G. et al. Nitric oxide in cardiac surgery: a meta-analysis of randomized controlled trials // J Cardiothorac Vasc Anesth. – 2018. – Vol. 32, № 6. – P. 2512–2519. https://doi.org/10.1053/j.jvca.2018.02.003.; Schlapbach L. J., Gibbons K. S., Horton S. B. et al. Effect of nitric oxide via cardiopulmonary bypass on ventilator-free days in young children undergoing congenital heart disease surgery: the NITRIC randomized clinical trial // JAMA. – 2022. – Vol. 328, № 1. – P. 38–47. https://doi.org/10.1001/jama.2022.9376.; Shei R. J., Baranauskas M. N. More questions than answers for the use of inhaled nitric oxide in COVID-19 // Nitric Oxide. – 2022. – Vol. 124. – P. 39–48. https://doi.org/10.1016/j.niox.2022.05.001.; Sherlock L. G., Wright C. J., Kinsella J. P. et al. Inhaled nitric oxide use in neonates: Balancing what is evidence-based and what is physiologically sound // Nitric Oxide. – 2020. – Vol. 95. – P. 12–16. https://doi.org/10.1016/j.niox.2019.12.001.; Tasaka S., Ohshimo S., Takeuchi M. et al. ARDS Clinical Practice Guideline 2021 // J Intensive Care. – 2022. – Vol. 10, № 1. – P. 32. https://doi.org/10.1186/s40560-022-00615-6.; Wong J., Loomba R. S., Evey L. et al. Postoperative inhaled nitric oxide does not decrease length of stay in pediatric cardiac surgery admissions // Pediatr Cardiol. – 2019. – Vol. 40, № 8. – P. 1559–1568. https://doi.org/10.1007/s00246-019-02187-z.; Xu F., Li W. Delivery exogenous nitric oxide via cardiopulmonary bypass in pediatric cardiac surgery reduces the duration of postoperative mechanical ventilation – a meta-analysis of randomized controlled trials // Heliyon. – 2023. – Vol. 9, № 8. – e19007. https://doi.org/10.1016/j.heliyon.2023.e19007.; Yan Y., Kamenshchikov N., Zheng Z. et al. Inhaled nitric oxide and postoperative outcomes in cardiac surgery with cardiopulmonary bypass: A systematic review and meta-analysis // Nitric Oxide. – 2024. – Vol. 146. – P. 64–74. https://doi.org/10.1016/j.niox.2024.03.004.; Yang X., Zhu L., Pan H., Yang Y. Cardiopulmonary bypass associated acute kidney injury: better understanding and better prevention // Ren Fail. – 2024. – Vol. 46, № 1. – P. 2331062. https://doi.org/10.1080/0886022X.2024.2331062.; Yu B., Ichinose F., Bloch D. B. et al. Inhaled nitric oxide // Br J Pharmacol. – 2019. – Vol. 176, № 2. – P. 246–255. https://doi.org/10.1111/bph.14512.; Zhao Y., Li C., Zhang S. et al. Inhaled nitric oxide: can it serve as a savior for COVID-19 and related respiratory and cardiovascular diseases? // Front Microbiol. – 2023. – Vol. 14. – 1277552. https://doi.org/10.3389/fmicb.2023.1277552.; Zhao M., Zhang Q., Lin Y. et al. Impact of nitric oxide via cardiopulmonary bypass on pediatric heart surgery: a meta-analysis of randomized controlled trials // J Cardiothorac Surg. – 2024. – Vol. 19, № 1. – P. 461. https://doi.org/10.1186/s13019-024-02953-y

  20. 20
    Academic Journal

    Πηγή: Transplantologiya. The Russian Journal of Transplantation; Том 16, № 3 (2024); 291-302 ; Трансплантология; Том 16, № 3 (2024); 291-302 ; 2542-0909 ; 2074-0506

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.jtransplantologiya.ru/jour/article/view/911/880; https://www.jtransplantologiya.ru/jour/article/view/911/898; Poggio ED, Augustine JJ, Arrigain S, Brennan DC, Schold JD. Long-term kidney transplant graft survival-making progress when most needed. Am J Transplant. 2021;21(8):2824–2832. PMID: 33346917 https://doi.org/10.1111/ajt.16463; Vanholder R, Massy Z, Argiles A, Spasovski G, Verbeke F, Lameire N. Chronic kidney disease as cause of cardiovascular morbidity and mortality. Nephrol Dial Transplant. 2005;20(6):1048–1056. PMID: 15814534 https://doi.org/10.1093/ndt/gfh813; Tonelli M, Wiebe N, Culleton B, House A, Rabbat C, Fok M, et al. Chronic kidney disease and mortality risk: a systematic review. J Am Soc Nephrol. 2006;17(7):2034–2047. PMID: 16738019 https://doi.org/10.1681/ASN.2005101085; Goyal VK, Solanki SL, Baj B. Pulmonary hypertension and post-operative outcome in renal transplant: a retrospective analysis of 170 patients. Indian J Anaesth. 2018;62(2):131–135. PMID: 29491519 https://doi.org/10.4103/ija.IJA_529_17; Frost AE, Moore LW, Valdivia E, Alvarado M, Obi C, Graviss EA, et al. The echocardiographic course of pretransplant pulmonary hypertension following kidney transplantation and associated outcomes. Pulm Circ. 2022;12(1):e12030. PMID: 35506107 https://doi.org/10.1002/pul2.12030; Travers A, Farber HW, Sarnak MJ. Pulmonary hypertension in chronic kidney disease. Cardiol Clin. 2021;39(3):427– 434. PMID: 34247755 https://doi.org/10.1016/j.ccl.2021.04.004; Сабиров И.С., Муркамилов И.Т., Фомин В.В., Сабирова А.И., Мамытова А.Б. Легочная гипертензия на додиализных стадиях хронической болезни почек: распространенность и факторы риска. The Scientific Heritage. 2021;66– 2(66):28–38. https://doi.org/10.24412/9215-0365-2021-66-2-28-38; Brinza C, Covic A, Stefan AE, Floria M, Popa IV, Scripcariu DV, et al. Pulmonary arterial hypertension and adverse outcomes after kidney transplantation: a systematic review and meta-analysis. J Clin Med. 2022;11(7):1944. PMID: 35407552 https://doi.org/10.3390/jcm11071944; Руденко Т.Е., Васильева М.П., Бобкова И.Н. Легочная гипертензия у больных хронической болезнью почек: распространенность, механизмы развития, перспективы лечения. Consilium Medicum. 2018;20(12):55–60. https://doi.org/10.26442/20751753.2018.12.000034; Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16(3):233-270. PMID: 25712077 https://doi.org/10.1093/ehjci/jev014; Humbert M, Kovacs G, Hoeper MM, Badagliacca R, Berger RMF, Brida M, et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J. 2023;61(1):2200879. PMID: 36028254 https://doi.org/10.1183/13993003.00879-2022; Chadban SJ, Ahn C, Axelrod DA, Foster BJ, Kasiske BL, Kher V, et al. Summary of the Kidney Disease: Improving Global Outcomes (KDIGO) clinical practice guideline on the evaluation and management of candidates for kidney transplantation. Transplantation. 2020;104(4):708–714. PMID: 32224812 https://doi.org/10.1097/TP.0000000000003137; Хубутия М.Ш., Шувалова Е.В., Хамидова Л.Т., Иванников А.А., Балкаров А.Г., Дмитриев И.В. и др. Эхокардиографическая оценка деформации миокарда левого желудочка как неинвазивный метод диагностики легочной гипертензии у пациентов с терминальной стадией хронической болезни почек. Трансплантология. 2023;15(4):439–449. https://doi.org/10.23873/2074-0506-2023-15-4-439-449; Lentine KL, Lam NN, Caliskan Y, Xiao H, Axelrod DA, Costa SP, et al. Incidence, clinical correlates, and outcomes of pulmonary hypertension after kidney transplantation: analysis of linked US Registry and Medicare billing claims. Transplantation. 2022;106(3):666– 675. PMID: 33859148 https://doi.org/10.1097/TP.0000000000003783; https://www.jtransplantologiya.ru/jour/article/view/911