Εμφανίζονται 1 - 20 Αποτελέσματα από 54 για την αναζήτηση '"легкая черепно-мозговая травма"', χρόνος αναζήτησης: 0,71δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
    Academic Journal

    Συνεισφορές: The study did not have sponsorship, Исследование не имело спонсорской поддержки

    Πηγή: Medical Herald of the South of Russia; Том 14, № 2 (2023); 97-105 ; Медицинский вестник Юга России; Том 14, № 2 (2023); 97-105 ; 2618-7876 ; 2219-8075 ; 10.21886/2219-8075-2023-14-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medicalherald.ru/jour/article/view/1710/965; Safinia C., Bershad E. M., Clark H. B., Santa Cruz K., Alakbarova N., et al. Chronic Traumatic Encephalopathy in Athletes Involved with High-impact Sports. J Vasc Interv Neurol. 2016; 9 (2): 34-48. PMID: 27829969; PMCID: PMC5094259.; Tharmaratnam T., Iskandar M. A., Tabobondung T. C., Tobbia I., Gopee-Ramanan P., Tabobondung T. A. Chronic Traumatic Encephalopathy in Professional American Football Players: where Are we Now? Front Neurol. 2018; 9: 445. doi:10.3389/fneur.2018.00445; Carone D. A., Bush S. S., eds. Mild traumatic brain injury: Symptom validity assessment and malingering. Springer Publishing Company; 2013.; Langlois J. A., Rutland-Brown W., Wald M. M. The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil. 2006; 21 (5): 375-8. doi:10.1097/00001199-200609000-00001; Sosin D. M., Sniezek J. E., Thurman D. J. Incidence of mild and moderate brain injury in the United States, 1991. Brain Inj. 1996; 10 (1): 47-54. doi:10.1080/026990596124719; Theadom A., Mahon S., Hume P., Starkey N, Barker-Collo S., et al. Incidence of Sports-Related Traumatic Brain Injury of All Severities: A Systematic Review. Neuroepidemiology. 2020; 54 (2): 192-199. doi:10.1159/000505424; Servadei F., Verlicchi A., Soldano F., Zanotti B., Piffer S. Descriptive epidemiology of head injury in Romagna and Trentino. Comparison between two geographically different Italian regions. Neuroepidemiology. 2002; 21 (6): 297-304. doi:10.1159/000065523; Selassie A. W., Wilson D. A., Pickelsimer E. E., Voronca D. C., Williams N. R., Edwards J. C. Incidence of sport-related traumatic brain injury and risk factors of severity: a population-based epidemiologic study. Ann Epidemiol. 2013; 23 (12): 750-6. doi:10.1016/j.annepidem.2013.07.022; Theadom A. , Starkey N. J., Dowell T., Hume P. A., Kahan M., et al. Sports-related brain injury in the general population: an epidemiological study. J Sci Med Sport. 2014; 17 (6): 591-6. doi:10.1016/j.jsams.2014.02.001; Broglio S. P., Martini D., Kasper L., Eckner J. T., Kutcher J. S. Estimation of head impact exposure in high school football: implications for regulating contact practices. Am J Sports Med. 2013; 41 (12): 2877-84. doi:10.1177/0363546513502458; Mez J., Daneshvar D. H., Kiernan P. T., Abdolmohammadi B., Alvarez V. E., et al. Clinicopathological Evaluation of Chronic Traumatic Encephalopathy in Players of American Football. JAMA. 2017; 318 (4): 360-370. doi:10.1001/jama.2017.8334; Lehman E. J., Hein M. J., Baron S. L., Gersic C. M. Neurodegenerative causes of death among retired National Football League players. Neurology. 2012; 79 (19): 1970-4. doi:10.1212/wNL.0b013e31826daf50; Weir D. R., Jackson J. National Football League Player Care Foundation: Study of Retired NFL Players. Institute for Social Research; 2009.; Casson I. R., Viano D. C., Powell J. W., Pellman E. J. Twelve years of national football league concussion data. Sports Health. 2010; 2 (6): 471-83. doi:10.1177/1941738110383963; Lucke-Wold B. P., Turner R. C., Logsdon A. F., Bailes J. E., Huber J. D., Rosen C. L. Linking traumatic brain injury to chronic traumatic encephalopathy: identification of potential mechanisms leading to neurofibrillary tangle development. J Neurotrauma. 2014; 31 (13): 1129-38. doi:10.1089/neu.2013.3303; Iqbal K., Gong C. X., Liu F. Hyperphosphorylation-induced tau oligomers. Front Neurol. 2013; 4: 112. doi:10.3389/fneur.2013.00112; Mannix R, Meehan W. P., Mandeville J., Grant P. E., Gray T., et al. Clinical correlates in an experimental model of repetitive mild brain injury. Ann Neurol. 2013; 74 (1): 65-75. doi:10.1002/ana.23858; Walker K. R., Tesco G. Molecular mechanisms of cognitive dysfunction following traumatic brain injury. Front Aging Neurosci. 2013; 5: 29. doi:10.3389/fnagi.2013.00029; Greenberg M. S. Handbook of neurosurgery. Ninth edition. New York: Thieme; 2020.; Harmon K. G., Clugston J. R., Dec K., Hainline B., Herring S. A., et al. American Medical Society for Sports Medicine Position Statement on Concussion in Sport. Clin J Sport Med. 2019; 29 (2): 87-100. Erratum in: Clin J Sport Med. 2019; 29 (3): 256. PMID: 30730386. doi:10.1097/JSM.0000000000000720; McCrory P., Meeuwisse W. H., Aubry M., Cantu B., Dvorák J., et al. Consensus statement on concussion in sport: the 4 th International Conference on Concussion in Sport held in Zurich, November 2012. Br J Sports Med. 2013; 47 (5): 250-8. doi:10.1136/bjsports-2013-092313; Giza C. C., Hovda D. A. The new neurometabolic cascade of concussion. Neurosurgery. 2014; 75 Suppl 4 (0 4): S24-33. doi:10.1227/NEU.0000000000000505; Slobounov S. Concussion Classification: Historical Perspectives and Current Trends. In: Injuries in Athletics: Causes and Consequences. Springer, Boston, MA; 2008. doi:10.1007/978-0-387-72577-2_18; Robbins C. A., Daneshvar D. H., Picano J. D., Gavett B. E., Baugh C. M., et al. Self-reported concussion history: impact of providing a definition of concussion. Open Access J Sports Med. 2014; 5: 99-103. doi:10.2147/OAJSM.S58005; Cantu R. C. Guidelines for Return to Contact Sports After a Cerebral Concussion. Phys Sportsmed. 1986; 14 (10): 75-83. doi:10.1080/00913847.1986.11709197; American Academy of Neurology 40 th annual meeting. Boston, Massachusetts, April 12-19, 1997. Abstracts. Neurology. 1997; 48 (3 Suppl 2): A17-543. PMID: 9074350.; Bailes J. E., Hudson V. Classification of Sport-Related Head Trauma: A Spectrum of Mild to Severe Injury. J Athl Train. 2001; 36 (3): 236-243. PMID: 12937490; PMCID: PMC155412.; Ommaya A. K., Gennarelli T. A. Cerebral concussion and traumatic unconsciousness. Correlation of experimental and clinical observations of blunt head injuries. Brain. 1974; 97 (4): 633-54. doi:10.1093/brain/97.1.633; Stern R. A., Daneshvar D. H., Baugh C. M., Seichepine D. R., Montenigro P. H., et al. Clinical presentation of chronic traumatic encephalopathy. Neurology. 2013; 81 (13): 1122-9. doi:10.1212/wNL.0b013e3182a55f7f; Koliatsos V. E., Xu L. The Problem of Neurodegeneration in Cumulative Sports Concussions: Emphasis on Neurofibrillary Tangle Formation. In: Kobeissy F. H., ed. Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects. Boca Raton (FL): CRC Press/Taylor & Francis; 2015. Chapter 47. Accessed on April 12, 2023. https://www.ncbi.nlm.nih.gov/books/NBK299181/; Montenigro P. H., Baugh C. M., Daneshvar D. H., Mez J., Budson A. E., et al. Clinical subtypes of chronic traumatic encephalopathy: literature review and proposed research diagnostic criteria for traumatic encephalopathy syndrome. Alzheimers Res Ther. 2014; 6 (5): 68. doi:10.1186/s13195-014-0068-z; Lesman-Segev O. H., La Joie R., Stephens M. L., Sonni I., Tsai R., et al. Tau PET and multimodal brain imaging in patients at risk for chronic traumatic encephalopathy. Neuroimage Clin. 2019; 24: 102025. doi:10.1016/j.nicl.2019.102025; Little D. M., Geary E. K., Moynihan M., Alexander A., Pennington M., et al. Imaging chronic traumatic brain injury as a risk factor for neurodegeneration. Alzheimers Dement. 2014; 10 (3 Suppl): S188-95. doi:10.1016/j.jalz.2014.04.002; Orrison W. W., Hanson E. H., Alamo T., Watson D., Sharma M., et al. Traumatic brain injury: a review and high-field MRI findings in 100 unarmed combatants using a literature-based checklist approach. J Neurotrauma. 2009; 26 (5): 689-701. doi:10.1089/neu.2008.0636; Gardner R. C., Hess C. P., Brus-Ramer M., Possin K. L., Cohn-Sheehy B. I., et al. Cavum Septum Pellucidum in Retired American Pro-Football Players. J Neurotrauma. 2016; 33 (1): 157-61. doi:10.1089/neu.2014.3805; Koerte I. K., Lin A. P., Willems A., Muehlmann M., Hufschmidt J., et al. A review of neuroimaging findings in repetitive brain trauma. Brain Pathol. 2015; 25 (3): 318-49. doi:10.1111/bpa.12249; Gardner R. C., Yaffe K. Epidemiology of mild traumatic brain injury and neurodegenerative disease. Mol Cell Neurosci. 2015; 66 (Pt B): 75-80. doi:10.1016/j.mcn.2015.03.001; Bang S. A., Song Y. S., Moon B. S., Lee B. C., Lee H. Y., et al. Neuropsychological, Metabolic, and GABAA Receptor Studies in Subjects with Repetitive Traumatic Brain Injury. J Neurotrauma. 2016; 33 (11): 1005-14. doi:10.1089/neu.2015.4051; Provenzano F. A., Jordan B., Tikofsky R. S., Saxena C., Van Heertum R. L., Ichise M. F-18 FDG PET imaging of chronic traumatic brain injury in boxers: a statistical parametric analysis. Nucl Med Commun. 2010; 31 (11): 952-7. doi:10.1097/MNM.0b013e32833e37c4; Peskind E. R., Petrie E. C., Cross D. J., Pagulayan K., McCraw K., et al. Cerebrocerebellar hypometabolism associated with repetitive blast exposure mild traumatic brain injury in 12 Iraq war Veterans with persistent post-concussive symptoms. Neuroimage. 2011; 54 Suppl 1 (Suppl 1): S76-82. doi:10.1016/j.neuroimage.2010.04.008; Stern R. A., Adler C. H., Chen K., Navitsky M., Luo J., et al. Tau Positron-Emission Tomography in Former National Football League Players. N Engl J Med. 2019; 380 (18): 1716-1725. doi:10.1056/NEJMoa1900757; Barrio J. R., Small G. W., Wong K. P., Huang S. C., Liu J., et al. In vivo characterization of chronic traumatic encephalopathy using [F-18]FDDNP PET brain imaging. Proc Natl Acad Sci U S A. 2015; 112 (16): E2039-47. Erratum in: Proc Natl Acad Sci U S A. 2015; 112 (22): E2981. PMID: 25848027; PMCID: PMC4413350. doi:10.1073/pnas.1409952112; McKee A. C., Stern R. A., Nowinski C. J., Stein T. D., Alvarez V. E., et al. The spectrum of disease in chronic traumatic encephalopathy. Brain. 2013; 136 (Pt 1): 43-64. Erratum in: Brain. 2013; 136 (Pt 10): e255. PMID: 23208308; PMCID: PMC3624697. doi:10.1093/brain/aws307; Meysami S., Raji C. A., Merrill D. A., Porter V. R., Mendez M. F. MRI Volumetric Quantification in Persons with a History of Traumatic Brain Injury and Cognitive Impairment. J Alzheimers Dis. 2019; 72 (1): 293-300. doi:10.3233/JAD-190708; Misquitta K., Dadar M., Tarazi A., Hussain M. W., Alatwi M. K., et al. The relationship between brain atrophy and cognitive-behavioural symptoms in retired Canadian football players with multiple concussions. Neuroimage Clin. 2018; 19: 551-558. doi:10.1016/j.nicl.2018.05.014; Shetty T., Raince A., Manning E., Tsiouris A. J. Imaging in Chronic Traumatic Encephalopathy and Traumatic Brain Injury. Sports Health. 2016; 8 (1): 26-36. doi:10.1177/1941738115588745; Breen P. W., Krishnan V. Recent Preclinical Insights Into the Treatment of Chronic Traumatic Encephalopathy. Front Neurosci. 2020; 14: 616. doi:10.3389/fnins.2020.00616.; Воронков А. В., Мирошниченко К. А., Поздняков Д. И., Потапова А. А., Кодониди И. П., Аненко Д. С. Производные пиримидина – перспективные корректоры метаболических и функциональных нарушений головного мозга в условиях хронической травматической энцефалопатии. Вестник Cмоленской государственной медицинской академии. 2019; (3): 18–24.; Zhang J., Teng Z., Song Y., Hu M., Chen C. Inhibition of monoacylglycerol lipase prevents chronic traumatic encephalopathy-like neuropathology in a mouse model of repetitive mild closed head injury. J Cereb Blood Flow Metab. 2015; 35 (3): 443-53. Erratum in: J Cereb Blood Flow Metab. 2015; 35 (4): 706. PMID: 25492114; PMCID: PMC4348384. doi:10.1038/jcbfm.2014.216; Amtul Z., Uhrig M., Wang L., Rozmahel R. F., Beyreuther K. Detrimental effects of arachidonic acid and its metabolites in cellular and mouse models of Alzheimer's disease: structural insight. Neurobiol Aging. 2012; 33 (4): 831.e21-31. Erratum in: Neurobiol Aging. 2018; 62: 247. PMID: 21920632. doi:10.1016/j.neurobiolaging.2011.07.014; https://www.medicalherald.ru/jour/article/view/1710

  4. 4
    Academic Journal
  5. 5
    Academic Journal

    Πηγή: POLYTRAUMA; № 4 (2022): декабрь; 46-55 ; ПОЛИТРАВМА / POLYTRAUMA; № 4 (2022): декабрь; 46-55 ; 2541-867X ; 1819-1495

    Περιγραφή αρχείου: application/pdf; text/html

  6. 6
    Academic Journal

    Πηγή: Medical Visualization; Том 24, № 2 (2020); 131-137 ; Медицинская визуализация; Том 24, № 2 (2020); 131-137 ; 2408-9516 ; 1607-0763

    Περιγραφή αρχείου: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/919/605; Stein S.C., Spettell C. The Head Injury Severity Scale (HISS): a practical classification of closed-head injury. Brain Injury. 1995; 9 (5): 437–444. https://doi.org/10.3109/02699059509008203; Levin H.S., Diaz-Arrastia R.R. Diagnosis, prognosis, and clinical management of mild traumatic brain injury. The Lancet Neurology. 2015; 14 (5): 506–517. https://doi.org/10.1016/s1474-4422(15)00002-2; Hunter J.V., Wilde E.A., Tong K.A., Holshouser B.A. Emerging Imaging Tools for Use with Traumatic Brain Injury Research. J. Neurotrauma. 2012; 29 (4): 654–671. https://doi.org/10.1089/neu.2011.1906; Shenton M.E., Hamoda H.M., Schneiderman J.S., Bouix S., Pasternak O., Rathi Y., Vu M.-A., Purohit M.P., Helmer K., Koerte I., Lin A.P., Westin C.-F., Kikinis R., Kubicki M., Stern R.A., ZafonteR. A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging Behav. 2012; 6: 137–192. https://doi.org/10.1007/s11682-012-9156-5; Rutland-Brown W., Langlois J.A., Thomas K.E., Xi Y.L. Incidence of traumatic brain injury in the United States, 2003. J. Head Trauma Rehabil. 2006; 21 (6): 544–548.; Zhou Y., Milham M.P., Lui Y.W., Miles L., Reaume J., Sodick son D.K., Grossman R.I., Ge Y. Default-mode network disruption in mild traumatic brain injury. Radiology. 2012; 265 (3): 882–892. https://doi.org/10.1148/radiol.12120748; Cordes D., Haughton V.M., Arfanakis K., Carew J.D., Turski P.A., Moritz C.H., Quigley M.A., Meyerand M. E. Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. Am. J. Neuroradiol. 2001; 22 (7): 1326–1333.; Gusnard D.A., Raichle M.E. Searching for a baseline: functional imaging and the resting human brain. Nat. Rev. Neurosci. 2001; 2 (10): 685. https://doi.org/10.1038/35094500; Raichle M.E., Snyder A.Z. A default mode of brain function: a brief history of an evolving idea. Neuroimage. 2007; 37 (4): 1083–1090. https://doi.org/10.1016/j.neuroimage.2007.02.041; Gilbert D.T., Wilson T.D. Prospection: Experiencing the future. Science. 2007; 317 (5843): 1351–1354. https://doi.org/10.1126/science.1144161; Buckner R.L., Andrews Hanna J.R., Schacter D.L. The brain's default network. Ann. N.Y. Acad. Sci. 2008; 1124 (1): 1–38. https://doi.org/10.1196/annals.1440.011; Sharp D.J., Beckmann C.F., Greenwood R., Kinnunen K.M., Bonnelle V., De Boissezon X., Powell J.H., Counsell S.J., Patel M.C., Leech R. Default mode network functional and structural connectivity after traumatic brain injury. Brain. 2011; 134 (8): 2233–2247. https://doi.org/10.1093/brain/awr175; Fife T.D. Persistent vertigo and dizziness after mild traumatic brain injury. Ann. N.Y. Acad. Sci. 2015; 1343: 97–105. https://doi.org/10.1111/nyas.12678; Park E., Ai J., Baker A.J. Cerebellar injury: clinical relevance and potential in traumatic brain injury research. Prog. Brain Res. 2007; 161: 327–338. https://doi.org/10.1016/s0079-6123(06)61023-6; Potts M.B., Adwanikar H., Noble-Haeusslein L.J. Models of traumatic cerebellar injury. Cerebellum. 2009; 8 (3): 211–221. https://doi.org/10.1007/s12311-009-0114-8; Spanos G.K., Wilde E.A., Bigler E.D., Cleavinger H.B., Fearing M.A., Levin H.S., Li X., Hunter J.V. Cerebellar atrophy after moderate-to-severe pediatric traumatic brain injury. Am. J. Neuroradiol. 2007; 28 (3): 537–542.; Mayer A.R., Mannell M.V., Ling J., Elgie R., Gasparovic C., Phillips J.P., Doezema D., aYeo R.A. Auditory orienting and inhibition of return in mild traumatic brain injury: A FMRI study. Hum. Brain Mapp. 2009; 30: 4152–4166. https://doi.org/10.1002/hbm.20836; Yang Z., Yeo R., Pena A., Ling J., Klimaj S., Campbell R., Doezema D., Mayer A. A fMRI Study of Auditory Orienting and Inhibition of Return in Pediatric Mild Traumatic Brain Injury. J. Neurotrauma. 2012; 26: 2124–2136. https://doi.org/10.1089/neu.2012.2395.; Mayer A.R., Yang Z., Yeo R.A., Pena A., Ling J.M., Mannell M.V., Stippler M.,Mojtahed K. A functional MRI study of multimodal selective attention following mild traumatic brain injury. Brain Imaging Behav. 2012; 6: 343–354. https://doi.org/10.1007/s11682-012-9178-z; ShumskayaE., AndriessenT.M., Norris D.G., VosP.E. Abnormal whole-brain functional networks in homo geneous acute mild traumatic brain injury. Neurology. 2012; 79 (2): 175–182. https://doi.org/10.1212/wnl.0b013e31825f04fb; Bonnelle V., Leech R., Kinnunen K.M., Ham T.E., Beckmann C.F., Boissezon X., Greenwood R.J., Sharp D.J. Default mode network connectivity predicts sustained attention deficits after traumatic brain injury. J. Neurosci. 2011; 31 (38): 13442–13451. https://doi.org/10.1523/jneurosci.1163-11.2011; Arenivas A., Diaz-Arrastia R., Spence J., Cullum C.M., Krishnan K., Bosworth C., Culver C., Kennard B., Marquez de la Plata C. Three approaches to investigating functional compromise to the default mode network after traumatic axonal injury. Brain Imaging Behav. 2014; 8 (3): 407–419. https://doi.org/10.1007/s11682-012-9191-2; Horak F.B., Diener H.C. Cerebellar control of postural scaling and central set in stance. J. Neurophysiol. 1994; 72 (2): 479–493. https://doi.org/10.1152/jn.1994.72.2.479; Eierud C., Craddock R.C., Fletcher S., Aulakh M., King-Casas B., Kuehl D., LaConte S.M. Neuroimaging after mild traumatic brain injury: review and meta-analysis. NeuroImage: Clinical. 2014; 4: 283–294. https://doi.org/10.1016/j.nicl.2013.12.009; Guskiewicz K. M., Mihalik J.P., Shankar V., Marshall S.W., Crowell D.H., Oliaro S.M., Ciocca M.F., Hooker D.N. Measurement of head impacts in collegiate football players: relationship between head impact biomechanics and acute clinical outcome after concussion. Neurosurgery. 2007; 61 (6): 1244–1253. https://doi.org/10.1097/scs.0b013e31816a2e83; McCrea M., Guskiewicz K.M., Marshall S.W., Barr W., Randolph C., Cantu R.C., Onate J.A., Yang J., Kelly J.P. Acute effects and recovery time following concussion in collegiate football players: the NCAA Concussion Study. JAMA. 2003; 290 (19): 2556–2563. https://doi.org/10.1001/jama.290.19.2556.; Tsai F.Y., Teal J.S., Itabashi H.H., Huprich J.E., Hieshima G.B., Segall H.D. Computed tomography of posterior fossa trauma. J. Comput. Assist. Tomogr. 1980; 4 (3): 291–305.; Soto-Ares G., Vinchon M., Delmaire C., Abecidan E., Dhelle mes P., Pruvo J.P. Cerebellar atrophy after severe traumatic head injury in children. Childs Nerv. Syst. 2001; 17 (4–5): 263–269. https://doi.org/10.1007/s003810000411; Fiez J.A., Petersen S.E., Cheney M.K., Raichle M.E. Impaired non-motor learning and error detection associated with cerebellar damage. A single case study. Brain. 1992; 115 (Pt 1): 155–178. https://doi.org/10.1093/brain/115.1.155; Middleton F.A., Strick P.L. Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science. 1994; 266 (5184): 458–461. https://doi.org/10.1126/science.7939688; Riga D., Matos M.R., Glas A., Smit A.B., Spijker S., Van den Oever M.C. Optogenetic dissection of medial prefrontal cortex circuitry. Frontiers Syst. Neurosci. 2014; 8: 230. https://doi.org/10.3389/fnsys.2014.00230; Van den Oever M.C., Spijker S., Smit A.B., De Vries T.J. Prefrontal cortex plasticity mechanisms in drug seeking and relapse. Neurosci. Biobehav. Rev. 2010; 35: 276–228. https://doi.org/10.1016/j.neubiorev.2009.11.016; Ito M. Cerebellar Control of the Vestibulo-Ocular Reflex-Around the Flocculus Hypothesis. Annual Rev. Neurosci. 1982; 5: 275–296. https://doi.org/10.1146/annurev.ne.05.030182.001423; Lisberger S. The neural basis for learning of simple motor skills. Science. 1988; 242 (4879): 728–735. https://doi.org/10.1126/science.3055293; https://medvis.vidar.ru/jour/article/view/919

  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20