Εμφανίζονται 1 - 20 Αποτελέσματα από 28 για την αναζήτηση '"лазерная гипертермия"', χρόνος αναζήτησης: 0,63δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Συνεισφορές: Работа выполнена при финансовой поддержке РФФИ, грант 21–52–12030 ННИО_а.

    Πηγή: Biomedical Photonics; Том 10, № 4 (2021); 44-58 ; 2413-9432 ; 10.24931/2413-9432-2021-10-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pdt-journal.com/jour/article/view/518/361; https://www.pdt-journal.com/jour/article/view/518/376; Xu X., Ho W., Zhang X., Bertrand N. and Farokhzad O. Cancer nanomedicine: from targeted delivery to combination therapy//Trends in Molecular Medicine. – 2015. –Vol. 21 (4). – P. 223–232.; Borlan R., Focsan M., Maniu D. and Astilean S. Interventional NIR Fluorescence Imaging of Cancer: Review on Next Generation of Dye-Loaded Protein-Based Nanoparticles for Real-Time Feedback During Cancer Surgery//IJN 16.– 2021.– P. 2147–2171.; Dash B. S., Das S., Chen J.-P. Photosensitizer-Functionalized Nanocomposites for Light-Activated Cancer Theranostics//IJMS. 2021. – 22 (13). – P. 6658.; Liu G., Yang L., Chen G. et al. A Review on Drug Delivery System for Tumor Therapy//Front. Pharmacol. – 2021.– Vol.12. – P. 735446; Wust P., Hildebrandt B., Sreenivasa G., Rau B. et al. Hyperthermia in combined treatment of cancer//The Lancet Oncology. – 2002. – Vol. 3 (8). – P. 487–497.; Kolosnjaj-Tabi J., Wilhelm C. Magnetic nanoparticles in cancer therapy: how can thermal approaches help?//Nanomedicine.– 2017. – Vol. 12 (6). – P. 573–575.; Сидоров Д.В., Гришин Н.А., Ложкин М.В., Троицкий А.А., Мошуров Р.И., Быкасов С.А., Урлова А.Н., Филоненко Е.В. Интраоперационная фотодинамическая терапия и гипертермическая внутрибрюшная химиотерапия при циторедуктивном хирургическом лечении больных диссеминированной муцинозной карциномой аппендикса//Biomedical Photonics. 20.– Т. 9, № 4. – P. 23–30. https://doi.org/10.24931/2413–9432–2020–9-4–23–30; Каприн А.Д., Мардынский Ю.С., Смирнов В.П., Иванов С.А., Костин А.А., Полихов С.А., Решетов И.В., Фатьянова А.С., Денисенко М.В., Эпатова Т.В., Коренев С.В., Терещенко А.В., Филоненко Е.В., Гафаров М.М., Романко Ю.С. К истории развития лучевой терапии (часть I)//Biomedical Photonics.– 2019.– Т. 8, № 1.– С. 52–62. doi:10.24931/2413–9432–2019–8–1–52–62.; Horsman M.R. Tissue physiology and the response to heat//International Journal of Hyperthermia. – 2006.– Vol. 22 (3). – P. 197–203.; Kolosnjaj-Tabi J., Di Corato R., Lartigue L. et al. HeatGenerating Iron Oxide Nanocubes: Subtle “Destructurators” of the Tumoral Microenvironment//ACS Nano. –2014.– Vol. 8 (5).– P. 4268–4283.; Mohamed F., Marchettini P., Stuart O.A. et al. Thermal Enhancement of New Chemotherapeutic Agents at Moderate Hyperthermia//Ann Surg Oncol. – 2003.– Vol. 10 (4). – P. 463–468.; Issels R. Hyperthermia Combined with Chemotherapy – Biological Rationale, Clinical Application, and Treatment Results//Oncol Res Treat. – 1999. – Vol. 22 (5).– P. 374–381.; Suit H.D. and Gerweck L. E., Potential for hyperthermia and radiation therapy//Cancer Res. – 1979.– Vol. 39 (6 Pt 2). – P. 2290–2298.; Spirou S., Basini M., Lascialfari A. et al. Magnetic Hyperthermia and Radiation Therapy: Radiobiological Principles and Current Practice//Nanomaterials.– 2018. –Vol. 8 (6). – P. 401.; Dahl O. Status of Clinical Hyperthermia//Acta Oncologica. – 1999. – Vol. 38 (7). – P. 863–873.; Hynynen K., Shimm D., Anhalt D. et al. Temperature distributions during clinical scanned, focused ultrasound hyperthermia treatments//International Journal of Hyperthermia. – 1990. – Vol. 6 (5). – P. 891–908.; Горшкова А.С., Шилов И.П., Иванов А.В., Румянцева В.Д. Cинтез и исследование наночастиц для магнитно-люминесцентеной тераностики опухолей на основе Yb-комплекса ДМЭ протопорфирина IX и оксида железа//Материалы IX Международного конгресса «Фотодинамическая терапия и фотодиагностика» Москва 23–24 октября 2020 г. Biomedical Photonics. 20. – Т. 9, № 4s. – P. 5–6.; Mulens-Arias V., Rojas J.M. and Barber D. F. The Use of Iron Oxide Nanoparticles to Reprogram Macrophage Responses and the Immunological Tumor Microenvironment//Front. Immunol.– 2021.– Vol. 12.– Р. 693709.; Zanganeh S., Hutter G., Spitler R. et al. Iron oxide nanoparticles inhibit tumour growth by inducing proinflammatory macrophage polarization in tumour tissues//Nature Nanotech. – 2016.– Vol. 11 (11). – P. 986–994.; Gaharwar U.S. Meena R., and Rajamani P., Iron oxide nanoparticles induced cytotoxicity, oxidative stress and DNA damage in lymphocytes: Iron oxide nanoparticles toxicity in lymphocytes//J. Appl. Toxicol.– 2017.– Vol. 37 (10).– P. 1232–1244.; Malvindi M.A., Matteis V. De, A Galeone. et al. Toxicity Assessment of Silica Coated Iron Oxide Nanoparticles and Biocompatibility Improvement by Surface Engineering//PLoS ONE. – 2014.– Vol. 9 (1).– P. e85835.; Arias L., Pessan J., Vieira A. et al. Iron Oxide Nanoparticles for Biomedical Applications: A Perspective on Synthesis, Drugs, Antimicrobial Activity, and Toxicity//Antibiotics. – 2018.– Vol. 7 (2). – P. 46.; Sun R., Chen H., Sutrisno L., Kawazoe N., and Chen G., Nanomaterials and their composite scaffolds for photothermal therapy and tissue engineering applications//Science and Technology of Advanced Materials.– 2021.– Vol. 22 (1).– P. 404–428.; Liu Q., Liu L., Mo C., Zhou X. et al. Polyethylene glycol-coated ultrasmall superparamagnetic iron oxide nanoparticles-coupled sialyl Lewis X nanotheranostic platform for nasopharyngeal carcinoma imaging and photothermal therapy//J Nanobiotechnol.– 2021. – Vol. 19 (1).– P. 171.; Ovejero J.G., Armenia I., Serantes D. et al. Selective Magnetic Nanoheating: Combining Iron Oxide Nanoparticles for MultiHot-Spot Induction and Sequential Regulation//Nano Lett. – 2021.– Vol. 21 (17). – P. 7213–7220.; Shi D., Sadat M. E., Dunn A.W., and Mast D.B., Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications//Nanoscale. – 2015.– Vol. 7 (18).– P. 8209–8232.; Vallejo-Fernandez G., Whear O., Roca A.G. et al. Mechanisms of hyperthermia in magnetic nanoparticles//J. Phys. D: Appl. Phys.– 2013. – Vol. 46 (31). – P. 312001.; Espinosa A., Kolosnjaj-Tabi J., Abou-Hassan A. et al. Magnetic (Hyper)Thermia or Photothermia? Progressive Comparison of Iron Oxide and Gold Nanoparticles Heating in Water, in Cells, and In Vivo//Adv. Funct. Mater.– 2018.– Vol. 28 (37).– P. 1803660.; Johannsen M., Gneveckow U., Thiesen B. et al. Thermotherapy of Prostate Cancer Using Magnetic Nanoparticles: Feasibility, Imaging, and Three-Dimensional Temperature Distribution//European Urology. – 2007. – Vol. 52 (6).– P. 1653– 1662.; Guardia P., R. Corato Di, Lartigue L. et al., Water-Soluble Iron Oxide Nanocubes with High Values of Specific Absorption Rate for Cancer Cell Hyperthermia Treatment//ACS Nano.– 2012.– Vol. 6 (4).– P. 3080–3091.; Martinez-Boubeta C., Simeonidis K., Makridis A. et al., Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications//Sci Rep. – 2013. – Vol. 3 (1). – P. 1652.; Espinosa A., R. Corato Di, Kolosnjaj-Tabi J. et al., Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment//ACS Nano. –2016. – Vol. 10 (2). – P. 2436–2446.; Yan H., Shang W., X. Sun, L. Zhao et al., “All-in-One” Nanoparticles for Trimodality Imaging-Guided Intracellular Photo-magnetic Hyperthermia Therapy under Intravenous Administration//Adv. Funct. Mater.– 2018.– Vol. 28 (9).– P. 1705710.; Lin S.-Y., Huang R.-Y., Liao W.-C. et al. Multifunctional PEGylated Albumin/IR780/Iron Oxide Nanocomplexes for CancerPhotothermal Therapy and MR Imaging//Nanotheranostics. – 2018.– Vol. 2 (2). – P. 106–116.; Cabana S., Curcio A., Michel A., Wilhelm C., and AbouHassan A. Iron Oxide Mediated Photothermal Therapy in the Second Biological Window: A Comparative Study between Magnetite/Maghemite Nanospheres and Nanoflowers//Nanomaterials.– 2020.– Vol.10 (8). – P.1548.; Shi J., Yu X., Wang L., Liu Y. et al. PEGylated fullerene/iron oxide nanocomposites for photodynamic therapy, targeted drug delivery and MR imaging//Biomaterials. – 2013.– Vol. 34 (37). – P. 9666–9677.; Penon O., Marín M.J., Amabilino D.B., Russell D.A. and PérezGarcía L. Iron oxide nanoparticles functionalized with novel hydrophobic and hydrophilic porphyrins as potential agents for photodynamic therapy//Journal of Colloid and Interface Science. – 2016. – Vol. 462. – P. 154–165.; Климов В.В., Наноплазмоника//2nd ed. Физматлит. – 2010.; Bashevoy M.V., Fedotov V.A., and Zheludev N. I. Optical whirlpool on an absorbing metallic nanoparticle//Opt. Express.– 2005.– Vol. 13 (21). – P. 8372.; Sharma S.K., Shrivastava N., Rossi F. et al. Nanoparticlesbased magnetic and photo induced hyperthermia for cancer treatment//Nano Today.– 2019.– Vol. 29. – P. 100795.; Lozano-Pedraza C., Plaza-Mayoral E., Espinosa A., Sot B., et al. Assessing the parameters modulating optical losses of iron oxide nanoparticles under near infrared irradiation//Nanoscale Adv.– 2021. – Vol. 3 (22).– P. 6490–6502.; Jeong Y., Kook Y.-M., Lee K., and Koh W.-G. Metal enhanced fluorescence (MEF) for biosensors: General approaches and a review of recent developments//Biosensors and Bioelectronics.– 2018.– Vol. 111. – P. 102–116.; M.M. Sigalas, D.A. Fattal, R. S. Williams, et al., Electric field enhancement between two Si microdisks//Opt. Express. – 2007.– Vol. 15 (22). – P. 14711.; S. Toroghi and P.G. Kik, Photothermal response enhancement in heterogeneous plasmon-resonant nanoparticle trimmers//Phys. Rev. B. – 2014. – Vol. 90 (20). – P. 205414.; N.G. Khlebtsov, T-matrix method in plasmonics: An overview//Journal of Quantitative Spectroscopy and Radiative Transfer. – 2013. – Vol. 123. – P. 184–217.; D.W. Mackowski and M. I. Mishchenko, A multiple sphere T-matrix Fortran code for use on parallel computer clusters//Journal of Quantitative Spectroscopy and Radiative Transfer. – 2011. – Vol. 112 (13). – P. 2182–2192.; A.D. Rakić, A.B. Djurišić, J.M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices//Appl. Opt. – 1998.– Vol. 37 (22). – P. 5271.; M.R. Querry, Optical Constants//MISSOURI UNIV-KANSAS CITY. – 1985.; S. Farooq and R. E. de Araujo, Engineering a Localized Surface Plasmon Resonance Platform for Molecular Biosensing//OJAppS.– 2018. – Vol. 08 (03). – P. 126–139.; Kholodtsova M.N., Grachev P.V., W. Blondel C. et al., Аpplication of devices for space-resolved spectroscopy on the example of twolayer phantoms containing metallic nanoparticles//Biomedical Photonics.– 2018. – Vol. 7 (2). – P. 4–12.; Baffou G., Quidant R., and García de Abajo F.J. Nanoscale Control of Optical Heating in Complex Plasmonic Systems//ACS Nano. – 2010.– Vol. 4 (2). – P. 709–716.; Cazares-Cortes E., Cabana S., Boitard C. et al., Recent insights in magnetic hyperthermia: From the “hot-spot” effect for local delivery to combined magneto-photo-thermia using magnetoplasmonic hybrids//Advanced Drug Delivery Reviews.– 2019.– Vol. 138. – P. 233–246.; Dong J. and Zink J. I. Taking the Temperature of the Interiors of Magnetically Heated Nanoparticles//ACS Nano. – 2014.– Vol. 8 (5). – P. 5199–5207.; Gareau D., Desrosiers A., and Vallée-Bélisle A. Programmable Quantitative DNA Nanothermometers//Nano Lett. – 2016. – Vol. 16 (7).– P. 3976–3981.; Riedinger A., Guardia P., Curcio A. et al., Subnanometer Local Temperature Probing and Remotely Controlled Drug Release Based on Azo-Functionalized Iron Oxide Nanoparticles//Nano Lett.– 2013. – Vol. 13 (6).– P. 2399–2406.; Joyce C., Fothergill S.M., Xie F. Recent advances in goldbased metal enhanced fluorescence platforms for diagnosis and imaging in the near-infrared//Materials Today Advances. – 2020.– Vol. 7.– P. 100073.; Ángela I. López-Lorente, Recent developments on gold nanostructures for surface enhanced Raman spectroscopy: Particle shape, substrates and analytical applications//A review, Analytica Chimica Acta. – 2021.– Vol. 1168.– Р. 338474.; Sajid Farooq, Renato E. de Araujo, dentifying high performance gold nanoshells for singlet oxygen generation enhancement//Photodiagnosis and Photodynamic Therapy.– 2021.– Vol. 35.– Р. 102466.; Seyfollah Toroghi and Pieter G. Kik Cascaded plasmon resonant field enhancement in nanoparticle dimers in the point dipole limit Appl//Phys. Lett. – 2013.– Vol. 100.– Р. 183105.; Y.R. Davletshin, J.C. Kumaradas, J. Beilstein Nanotechnol.– 2016. – Vol. 7. – Р. 869–880. doi:10.3762/bjnano.7.79

  3. 3
    Academic Journal

    Πηγή: Biomedical Photonics; Том 11, № 2 (2022); 12-22 ; 2413-9432 ; 10.24931/2413-9432-2022-11-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pdt-journal.com/jour/article/view/539/388; https://www.pdt-journal.com/jour/article/view/539/385; Mohammadi A., Bianchi L., Asadi S., Saccomandi P. Measurement of Ex Vivo Liver, Brain and Pancreas Thermal Properties as Function of Temperature // Sensors (Basel). – 2021. – Vol. 21(12). – P. 4236. doi:10.3390/s21124236; Ahmed M., Brace C.L., Fred T Lee Jr. F.T., Goldberg S.N. Principles of and advances in percutaneous ablation // Radiology. – 2011. – Vol. 258(2). – P. 351-69. doi:10.1148/radiol.10081634; Franzini A., Moosa S., Servello D., Small I., DiMeco F., Xu Z., Elias W.J., Franzini A., Prada F. Ablative brain surgery: an overview // Int. J. Hyperth. – 2019. – Vol. 36. – P. 64–80. doi:10.1080/02656736.2019.1616833; Geoghegan R., Ter Haar G., Nightingale K., Marks L., Natarajan S. Methods of monitoring thermal ablation of soft tissue tumors - A comprehensive review // Med. Phys. – 2022. – Vol. 49(2). – P. 769-791. doi:10.1002/mp.15439; Chen C., Lee I., Tatsui C., Elder T., Sloan A.E. Laser interstitial thermotherapy (LITT) for the treatment of tumors of the brain and spine: a brief review // J. of Neuro-Oncology. – 2021. – Vol. 151. – P. 429–442. doi:10.1007/s11060-020-03652-z; Lagman C., Chung L.K., Pelargos P.E., Ung N., Bui T.T., Lee S.J., Voth B.L., Yang I. Laser neurosurgery: A systematic analysis of magnetic resonance-guided laser interstitial thermal therapies // J. Clin. Neurosci. – 2017. – Vol. 36. – P. 20-26. doi:10.1016/j.jocn.2016.10.019; Острейко О.В., Можаев С.В. Способ лечения глиальных опухолей головного мозга супратенториальной локализации // Патент РФ на изобретение №2533032 от 16.09.2014.; Eranki A., Mikhaila A.S., Negussiea A.H., Prateek S.K., Wooda B.J., Partanen A. Tissue-mimicking thermochromic phantom for characterization of HIFU devices and applications // International Journal of Hyperthermia. – 2019. – Vol. 36(1). – P. 518-529. doi:10.1080/02656736.2019.1605458; Negussie A.H., Partanen A., Mikhail A.S., Xu S., Abi-Jaoudeh N., Maruvada S., Wood B.J. Thermochromic tissue-mimicking phantom for optimisation of thermal tumour ablation // Int. J. Hyperthermia. – 2016. – Vol. 32(3). – P. 239-43. doi:10.3109/02656736.2016.1145745; Dabbagh A., Jeet Abdullah B.J., Abu Kasim N.H., Ramasindarum C. Reusable heat-sensitive phantom for precise estimation of thermal profile in hyperthermia application // Int. J. Hyperthermia. – 2014. – Vol. 30(1). – P. 66-74. doi:10.3109/02656736.2013.854930; Bazrafshan B., Hubner F., Farshid P., Larson M.C., Vogel V., Mantele W., Vogl T.J. A liver-mimicking MRI phantom for thermal ablation experiments // Med. Phys. – 2011. – Vol. 38. – P. 2674–84. doi:10.1118/1.3570577; Davidson S.R.H., Sherar M.D. Measurement of the thermal conductivity of polyacrylamide tissue-equivalent material // Int. J. Hyperthermia. – 2003. – Vol. 19(5). – P. 551-62. doi:10.1080/02656730310001607995; Ningrum E.O., Purwanto A., Rosita G.C., Bagus A. The Properties of Thermosensitive Zwitterionic Sulfobetaine NIPAM-co-DMAAPS Polymer and the Hydrogels: The Effects of Monomer Concentration on the Transition Temperature and Its Correlation with the Adsorption Behavior // Indones. J. Chem. – 2020. – Vol. 20 (2). – P. 324-335. doi:10.22146/ijc.41499; Vogel A., Venugopoplan V. Mechanisms of Pulsed Laser Ablation of Biological Tissues // Chem. Rev. – 2003. – Vol. 103. – P. 577−644. doi:10.1021/cr030683b; Minton J.A., Iravani A., Yousefi A. Improving the homogeneity of tissue-mimicking cryogel phantoms for medical imaging // Med. Phys. – 2012. – Vol. 39(11). – P. 6796-807. doi:10.1118/1.4757617; Guntur S.R., Choi M.J. An improved tissue-mimicking polyacrylamide hydrogel phantom for visualizing thermal lesions with high-intensity focused ultrasound // Ultrasound in med. and biol. – 2014. – Vol. 40(11). – P. 2680-2691. doi:10.1016/j.ultrasmedbio.2014.06.010; Welch A.J., Gemert M.J.C. Optical-thermal response of laser- irradiation tissue. // Springer. – 2011. – 947 p. doi:10.1007/978-90-481-8831-4; Kang U.K., Папаян Г.В., Березин И.Б., Jin Bae-Soo, Ким С.В., Петрищев Н.Н. Мультиспектральные флуоресцентные орга- носкопы для прижизненных исследований лабораторных животных и их органов // Оптический журнал. –2011. – Vol. 78(9). – P. 82-90.; Korganbayev S., Orrico A., Bianchi L., De Landro M., Wolf A., Dostovalov A., Saccomandi P. Closed-Loop Temperature Control Based on Fiber Bragg Grating Sensors for Laser Ablation of Hepatic Tissue // Sensors 2020. – Vol. 20(22). – P. 6496. doi.org/10.3390/s20226496; Manns F., Milne P.J, Gonzalez-Cirre X., Denham, D.B, Parel J., Robinson D.S. In situ temperature measurements with thermocouple probes during laser Interstitial thermotherapy (LITT): quantification and correction of a measurement artifact // Lasers Surg. Med. – 1998. – Vol. 23(2). – P. 94–103. doi:10.1002/(sici)1096-9101(1998)23:23.0.co;2-q

  4. 4
    Academic Journal

    Συγγραφείς: V. A. Titova, В. А. Титова

    Πηγή: Biomedical Photonics; Том 1, № 1 (2012); 3-5 ; 2413-9432 ; 10.24931/2413-9432-2012-1-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pdt-journal.com/jour/article/view/320/223; Странадко Е.Ф., Титова В.А., Рябов М.В., Петровский В.Ю. Фотодинамическая терапия рака нижней губы: опыт применения в комбинации с традиционными методами профилактики метастазирования // Лазерная медицина. – 2006. – Т. 10, вып. 3. – С. 41–46.; Titova V.A., Сharchenko N.V., Dykhno A.Y. et al/ Photodynamic Therapy and Laser Intense Thermotherapy in Locally Advanced and Recurrent Oro-pharyngeal Cancer Multimodal Threatment // Radiotherapy@Oncology. – 2007. – V. 82, suppl. 1. – P. 571.; Медицинская технология «Фотодинамическая терапия с использованием установки лазерной медицинской Лазон-ФТ в органосохраняющем лечении первичного рака кожи и его рецидивов» (ФС№2010/068 от 03 марта 2010 г.). В кн.: Новые медицинские технологии, разработанные ведущими научными центрами России в области клинической онкологии. – М., 2010. – С. 90–91.; Медицинская технология «Многокомпонентные программы лечения рака шейки матки, вульвы, влагалища и прямой кишки в условиях радиосенсибилизирующего действия локальной лазерной гипертермии» на аппарате ЛАЗОН-ФТ (ФС № 2009/389 от 25.11.2009). В кн.: Новые медицинские технологии, разработанные ведущими научными центрами России в области клинической онкологии. – М., 2010. – С. 89.; Медицинская технология «Комплексная коррекция осложнений многокомпонентного лечения злокачественных опухолей различных локализаций с использованием озонотерапии и низкоинтенсивного лазерного излучения на аппарате ЛАЗОН-ФТ (ФС № 2009/391). В кн.: Новые медицинские технологии, разработанные ведущими научными центрами России в области клинической онкологии. – М., 2010. – С. 89–90.; Странадко Е.Ф., Титова В.А., Рябов М.В., Петровский В.Ю. Фотодинамическая терапия как компонент комбинированного и комплексного лечения злокачественных опухолей головы и шеи // Альманах клинической медицины. – 2006. – Т. XII. – С.37.; Петровский В.Ю., Титова В.А. Многокомпонентные программы химиолучевого лечения рака различной локализации в условиях интенсивной гипертермии и фотодинамической терапии // Сб. науч. тр. «Невский радиологический форум». – СПб., 2007. – С. 685.

  5. 5
    Academic Journal

    Συγγραφείς: Stasevich, S.P., Fedyniak, I.R.

    Πηγή: Scientific Bulletin of UNFU; Том 25 № 1 (2015): Науковий вісник НЛТУ України; 189-197 ; Научный вестник НЛТУ Украины; Том 25 № 1 (2015): Сборник научно-технических трудов; 189-197 ; Scientific Bulletin of UNFU; Vol 25 No 1 (2015): Scientific Bulletin of UNFU; 189-197 ; 2519-2477 ; 1994-7836

  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20