Showing 1 - 20 results of 113 for search '"кортикостерон"', query time: 0.84s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
    Academic Journal

    Source: Medical Immunology (Russia); Том 22, № 4 (2020); 647-656 ; Медицинская иммунология; Том 22, № 4 (2020); 647-656 ; 2313-741X ; 1563-0625

    File Description: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/1973/1283; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1973/5910; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1973/5911; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1973/5912; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1973/5913; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1973/5914; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1973/5915; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1973/5916; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1973/5985; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1973/5986; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1973/5987; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1973/5988; Бабичев В.Н. Нейроэндокринный эффект половых гормонов // Успехи физиологических наук, 2005. Т. 36, № 1. С. 54-67.; Белошицкий В.В. Современные принципы моделирования черепно-мозговой травмы в эксперименте // Український нейрохірургічний журнал, 2008. № 4. С. 9-15.; Гончаров Н.П., Кация Г.В., Нижник А.И. Дегидроэпиандростерон и функции мозга // Вестник РАМН, 2006. № 6. С. 45-50.; Кубасов Р.В. Гормональные изменения в ответ на экстремальные факторы внешней среды // Вестник РАМН, 2014. № 9-10. С. 102-110.; Острова И.В., Аврущенко М.Ш. Экспрессия мозгового нейротрофического фактора (BDNF) повышает устойчивость нейронов к гибели в постреанимационном периоде // Общая реаниматология, 2015. Т. 11, № 3. С. 45-53.; Рыбакина Е.Г., Шанин С.Н., Фомичева Е.Е., Филатенкова Т.А., Дмитриенко Е.В. Клеточно-молекулярные механизмы изменения защитных функций организма при черепно-мозговой травме и попытка лечения // Медицинский академический журнал, 2014. Т. 14, № 4. С. 55-62.; Серебряная Н.Б., Липатова Л.В., Сивакова Н.А., Василенко А.В. Рекомбинантный интерлейкин IL-2 человека как агент антиэпилептической терапии // Российский иммунологический журнал, 2014. Т. 8, № 3. С. 723-726.; Серебряная Н.Б., Шанин С.Н., Фомичева Е.Е., Якуцени П.П. Тромбоциты и нейровоспаление. Часть 1: Тромбоциты как регуляторы нейровоспаления и нейрорепарации // Цитокины и воспаление, 2017. Т. 16, № 4. С. 5-12.; Шанин С.Н., Фомичева Е.Е., Филатенкова Т.А., Серебряная Н.Б. Коррекция нарушений нейроиммунных взаимодействий при экспериментальной черепно-мозговой травме препаратом рекомбинантного IL-2 // Медицинская иммунология, 2018. Т. 20, № 2. С. 171-178. doi:10.15789/1563-0625-2018-2-171-178.; Abbas A.K., Trotta E., Simeonov D., Marson A., Bluestone J.A. Revisiting IL-2: Biology and therapeutic prospects. Sci. Immunol., 2018; Vol. 3, Iss. 25, pii: eaat1482. doi:10.1126/sciimmunol.aat1482.; Alexander N., Osinsky R., Schmitz A., Mueller E., Kuepper Y., Hennig J. The BDNF Val66Met polymorphism affects HPA-axis reactivity to acute stress. Psychoneuroendocrinology, 2010, Vol. 35, Iss. 6, pp. 949-953.; Chacón-Fernández P., Säuberli K., Colzani M., Moreau T., Ghevaert C., Barde Y.-A. Brain-derived neurotrophic factor in megakaryocytes. J. Biol. Chem., 2016, Vol. 291, no. 19, pp. 9872-9881.; de Assis G.G., Gasanov E.V. BDNF and Cortisol integrative system – plasticity vs. degeneration: implications of the Val66Met polymorphism. Front. Neuroendocrinol., 2019, 55, 100784. doi:10.1016/j.yfrne.2019.100784.; Failla M.D., Conley Y.P., Wagner A.K. Brain-derived neurotrophic factor (BDNF) in traumatic brain injuryrelated mortality: interrelationships between genetics and acute systemic and central nervous system BDNF profiles. Neurorehabil. Neural. Repair, 2016, Vol. 30, no. 1, pp. 83-93.; Gray M., Bingham B., Viau V. A comparison of two repeated restraint stress paradigms оn hypothalamicpituitary-adrenal axis habituation, gonadal status and central neuropeptide expression in adult male rats. J. Neuroendocrinol., 2010, Vol. 22, Iss. 2, pp. 92-101.; Hermandez-Ontiveros D.G., Tajiri N., Acosta S., Giunta B., Tan J., Borlongan C.V. Microglia activation as a biomarker for traumatic brain injury. Front. Neurol., 2013, Vol. 4, no. 30, pp. 1-9.; Himmerich H., Fischer J., Bauer K., Kirkby K.C., Sack U., Krügel U. Stress-induced cytokine changes in rats. Eur. Cytokine Netw., 2013, Vol. 24, no. 2, pp. 97-103.; Kalish H., Phillips T.M. Analysis of neurotrophins in human serum by immunoaffinity capillary electrophoresis (ICE) following traumatic head injury. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2010, Vol. 878, Iss. 2, pp. 194-200.; Kamamure E., Numakawa T., Adachi N., Kunugi H. Clucocorticoid suppresses BDNFstimulated MAPK/ ERK pathway via inhibiting interaction of Shp2 with TrκB. FEBS Letters, 2011, Vol. 585, Iss. 20, pp. 3224-3228.; Liesz A., Suri-Payer E., Veltkamp C., Doerr H., Sommer C., Rivest S. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat. Med., 2009, Vol. 15, pp. 192-199.; Loane D.J., Byrnes K.R. Role of microglia in neurotrauma. Neurotherapeutics, 2010, Vol. 7, no. 4, pp. 366-377.; Morganti-Kossmann M.C., Yan E., Bye N. Animal models of traumatic brain injury: is there an optimal model to reproduce human brain injury in the laboratory? Injury, 2010, Vol. 41, Suppl. 1, pp. S10-S13.; Munoz M.J., Kumar R.G., Oh B.M., Conley Y.P., Wang Z., Failla M.D., Wagner A.K. Сerebrospinal fluid cortisol mediates brain-derived neurotrophic factor relationships to mortality after severe TBI: a prospective cohort study. Front. Mol. Neurosci., 2017, Vol. 10, 44. doi:10.3389/fnmol.2017.00044.; Numakawa T. Possible protective action of neurotrophic factors and natural compaunds against common neurodegenerative diseases. Neural Regen. Res., 2014, Vol. 9, Iss. 16, pp. 1506-1508.; Pearson-Murphy B.E. Glucocorticoids, Overview. Encyclopedia of Stress (Second Edition). Ed. Fink G., Academic Press, 2007, pp. 198-210.; Pillai A. Decreased BDNF Levels in CSF of drug-naive first-episode psychotic subjects: correlation with plasma BDNF and psychopathology. Int. J. Neuropsychopharmacol., 2010, Vol. 13, Iss. 4, pp. 535-539.; Rothman S.M., Mattson M.P. Activity dependent stress-responsive BDNF signaling and the quest for optimal brain health and resilience throughout the lifespan. Neuroscience, 2013, Vol. 239, no. 3, pp. 228-240.; Saleem Basha N., Kewani Ghirmay, Melles Kahase. In silico comparison of interleukin-2 of Homo sapiens with different species. Pharma Focus: The journal of Eritrean Pharmaceutical Association (ERIPA), 2011, Vol. 14, no. 10, pp. 32-37.; Schober M.E., Block B., Requena D.F., Hale M.A., Lane R.H. Developmental traumatic brain injury decreased brain derived neurotrophic factor expression late after injury. Metab. Brain Dis., 2012, Vol. 27, no. 2, pp. 167-173.; Simon D., Nascimento R.I., Filho E.M., Bencke J., Regner A. Plasma brain-derived neurotrophic factor levels after severe traumatic brain injury. Brain Inj., 2016, Vol. 30, Iss. 1, pp. 23-28.; Tahvildari M., Dana R. Low-dose IL-2 therapy in transplantation, autoimmunity, and inflammatory diseases. J. Immunol., 2019, Vol. 203, Iss. 11, pp. 2749-2755.; Turnbull A.V., Rivier C.L. Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: actions and mechanisms of action. Physiol. Rev., 1999, Vol. 79, no. 1, pp. 1-71.; https://www.mimmun.ru/mimmun/article/view/1973

  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
    Academic Journal

    Source: Medical Immunology (Russia); Том 20, № 2 (2018); 171-178 ; Медицинская иммунология; Том 20, № 2 (2018); 171-178 ; 2313-741X ; 1563-0625 ; 10.15789/1563-0625-2018-2

    File Description: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/1488/1024; Исаева Р.Х., Антонюк И.А., Гридякина А.В., Евстафьева А.Е. Иммунологические изменения при черепно-мозговой травме // Международный журнал прикладных и фундаментальных исследований, 2014. № 8-2. С. 41-47. [Isaeva R.Ch., Antoniuk I.A., Gridyakina A.V., Evstafieva A.E. Immunologic changes in traumatic brain injury. Mezhdunarodnyy zhurnal prikladnykh i fundamental`nykh issledovaniy = International Journal of Applied and Fundamental Research, 2014, no. 8-2, pp. 41-47. (In Russ.)]; Кетлинский С.А., Симбирцев А.С. Цитокины. СПб.: Фолиант, 2008. 550 с. [Ketlinsky S.A., Simbirtsev A.S. Cytokines]. St. Petersburg: Foliant, 2008. 550 p.; Коновалов А.Н., Лихтерман Л.Б., Потапов А.А. Клиническое руководство по черепно-мозговой травме. Т. 1. М.: Антидор, 1998. 553 с. [Konovalov A.N., Likhterman L.B., Potapov A.A. Clinical manual of head injury. Vol. 1]. Moscow: Antidor, 1998. 553 p.; Леонов А.В. Мозговой кровоток при тяжелых черепно-мозговых травмах // Общая реаниматология, 2008. Т. 4, № 2. С. 9-13. [Leonov A.V. Cerebral blood flow in severe brain injuries. Obshchaya reanimatologiya = General Reanimatology, 2008, Vol. 4, no. 2, pp. 9-13. (In Russ.); Леонов А.В., Иванов Г.К. Апоптоз при тяжелой черепно-мозговой травме и его изменение при иммуномодуляции ронколейкином // Иммунология, 2006. Т. 27, № 4. С. 246-248. [Leonov A.V., Ivanov G.K. Apoptosis and its changes at skull-brain injury after roncoleukin immunomodulation. Immunologiya = Immunology, 2006, Vol. 27, no. 4, pp. 246-248. (In Russ.)]; Мамытова Э.М. Динамика иммунологического ответа у пациентов c черепно-мозговой травмой в раннем посттравматическом периоде // Медицинская наука и образование Урала, 2014. Т. 15, № 3. С. 96-99. [Mamytova E.M. Dynamics of the immunological response in patients with traumatic brain injury in the acute posttraumatic period. Meditsinskaya nauka i obrazovanie Urala = Medical Science and Education of Ural, 2014, Vol. 15, no. 3, pp. 96-99. (In Russ.)]; Рыбакина Е.Г., Шанин С.Н., Фомичева Е.Е., Козинец И.А., Корнева Е.А. Активность защитных функций организма при стрессe и их коррекция препаратом деринат // Медицинская иммунология, 2008. Т. 10, № 4-5. С. 431-438. [Rybakina E.G., Shanin S.N., Fomicheva E.E., Kozinec I.A., Korneva E.A. Activity of host defense functions in stress conditions by the Derinat drug. Meditsinskaya immunologiya = Medical Immunology (Russia), 2008, Vol. 10, no. 4-5, pp. 431-438. (In Russ.) doi:10.15789/1563-0625-2008-4-5-431-438.; Рыбакина Е.Г., Шанин С.Н., Фомичева Е.Е., Филатенкова Т.А., Дмитриенко Е.В. Клеточно-молекулярные механизмы изменения защитных функций организма при черепно-мозговой травме и попытка лечения // Медицинский академический журнал, 2014. Т. 14, №4. С. 55-62. [Rybakina E.G., Shanin S.N., Fomicheva E.E., Filatenkova T.A., Dmitrienko E.V. Cell-molecular mechanisms of protective function’s changes under traumatyic brain injury and ways for it’s medication. Meditsinskiy akademicheskiy zhurnal = Medical Academic Journal, 2014, Vol. 14, no. 4, pp. 55-62. (In Russ.)]; Серебряная Н.Б., Липатова Л.В., Сивакова Н.А., Василенко А.В. Рекомбинантный интерлейкин IL-2 человека как агент антиэпилептической терапии // Российский иммунологический журнал, 2014. Т. 8, № 3. С. 723-726. [Serebryanya N.B., Lipatova L.V., Sivakova N.A., Vasilenko A.V. The recombinant human interleukin-2 (IL-2) as the agent of antiepileptic therapies. Rossiyskiy immunologicheskiy zhurnal = Russsian Journal of Immunology, 2014, Vol. 8, no. 3, pp. 723-726. (In Russ.)]; Чирков А.М., Кация Г.В., Чиркова С.К., Гончаров Н.П. Влияние иммобилизационного стресса на гонадотропную функцию гипофиза самцов павианов гамадрилов // Бюллетень экспериментальной биологии и медицины, 1989. Т. 107, № 2. С. 231-234. [Chirkov A.M., Katsiya G.V., Chirkova S.K., Goncharov N.P. Effect of immobilization stress on pituitary gonadotropin of baboon (Papio hamadryas). Byulleten eksperimentalnoy biologii i meditsiny = Bulletin of Experimental Biology and Medicine, 1989, Vol. 107, no. 2, pp. 231-234. (In Russ.)]; Hermandez-Ontiveros D.G., Tajiri N., Acosta S., Giunta B., Tan J., Borlongan C.V. Microglia activation as a biomarker for traumatic brain injury. Front. Neurol., 2013, Vol. 4, no. 30, pp. 1-9.; Huang Z., Meola D., Petitto J.M. Loss of CNS IL-2 gene expression modifies brain T lymphocyte trafficking: response of normal versus autoreactive Treg-deficient T cells. Neurosci Lett., 2011, Vol. 499, no. 3, pp. 213-218.; Huang Z., Dauer D.J., Ha G.K., Lewis M.H., Petitto J.M. Interleukin-2 deficiency-induced T cell autoimmunity in the mouse brain. Neurosci. Lett., 2009, Vol. 463, no. 3, pp. 44-48.; Loane D.J., Byrnes K.R. Role of microglia in neurotrauma. Neurotherapeutics, 2010, Vol. 7, no. 4, pp. 366-377.; Menon D.K., Risdall J.E. Traumatic brain injury. Philosophical Transactions of the Royal Society B. Biological Sciences, 2011, Vol. 366, no. 1562, pp. 241-250.; Ousman S.S., Kubes P. Immune surveillance in the central nervous system. Nat. Neurosci., 2012, Vol. 15, no. 8, pp. 1096-1101.; Saleem Basha N., Kewani Ghirmay, Melles Kahase. In silico comparison of interleukin-2 of Homo sapiens with different species. Pharma Focus: The journal of Eritrean Pharmaceutical Association (ERIPA), 2011, Vol. 14, no. 10, pp. 32-37.; Sternberg E.M. Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nature Reviews Immunology, 2006, Vol. 6, pp. 318-328.; Tobin R.P, Mukherjee S., Kain J.M., Rogers S.K., Henderson S.K., Motal H.L., Rogers M., Newell K., Shapiro L.A. Traumatic brain injury causes selective, CD74-dependent peripheral lymphocyte activation that exacerbates neurodegeneration. Acta Neuropathologica Communications, 2014, Vol. 2, p. 143.; Walker K.R., Tesco G. Molecular mechanisms of cognitive dysfunction following traumatic brain injury. Front Aging Neurosci., 2013, Vol. 5, pp. 29-40.; https://www.mimmun.ru/mimmun/article/view/1488

  18. 18
    Academic Journal
  19. 19
  20. 20