Εμφανίζονται 1 - 20 Αποτελέσματα από 130 για την αναζήτηση '"коронарный атеросклероз"', χρόνος αναζήτησης: 1,01δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal
  2. 2
  3. 3
    Academic Journal

    Συνεισφορές: the study was performed in the framework of fundamental research No. 122020300043-1., работа выполнена в рамках фундаментального научного исследования № 122020300043–1.

    Πηγή: Siberian Journal of Clinical and Experimental Medicine; Том 39, № 4 (2024); 84-91 ; Сибирский журнал клинической и экспериментальной медицины; Том 39, № 4 (2024); 84-91 ; 2713-265X ; 2713-2927

    Θέμα γεωγραφικό: Россия, Томск

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/2380/1023; https://www.sibjcem.ru/jour/article/downloadSuppFile/2380/2452; https://www.sibjcem.ru/jour/article/downloadSuppFile/2380/2495; https://www.sibjcem.ru/jour/article/downloadSuppFile/2380/2496; https://www.sibjcem.ru/jour/article/downloadSuppFile/2380/2545; https://www.sibjcem.ru/jour/article/downloadSuppFile/2380/2546; AlZaim I., Hammoud S.H., Al-Koussa H. et al. Adipose Tissue Immunomodulation: A Novel Therapeutic Approach in Cardiovascular and Metabolic Diseases. J. Front. Cardiovasc. Med. 2020;7 17;7:1-40. DOI:10.3389/fcvm.2020.602088.; Napoli G., Pergola V., Basile P., De Feo D., Bertrandino F., Baggiano A. et al. Epicardial and Pericoronary Adipose Tissue, Coronary Inflammation, and Acute Coronary Syndromes. J. Clin. Med. 2023 21;12(23):7212. DOI:10.3390/jcm12237212.; Song Y., Tan Y., Deng M., et al. Epicardial adipose tissue, metabolic disorders, and cardiovascular diseases: recent advances classified by research methodologies. MedComm. 2023;4:e413. DOI:10.1002/mco2.413.; Kologrivova, I.V, Naryzhnaya N.V., Koshelskaya O.A., Suslova T.E., Kravchenko E.S., Kharitonova O.A., Evtushenko V.V., Boshchenko A.A. Association of Epicardial Adipose Tissue Adipocytes Hypertrophy with Biomarkers of Low-Grade Inflammation and Extracellular Matrix Remodeling in Patients with Coronary Artery Disease. Biomedicines. 2023:17;11(2):241. DOI:10.3390/biomedicines11020241.; Sivasami P., Li C. Derivation and Differentiation of Adipose-Tissue Regulatory T Cells: A Stepwise, Multi-Site Process. Front. Immunol. 2020;11:599277. DOI:10.3389/fimmu.2020.599277.; Palatella M., Guillaume S.M., Linterman M.A., Huehn J. The dark side of Tregs during aging. Front Immunol. 2022;13:940705. DOI:10.3389/fimmu.2022.940705; Yu Y., Bai H., Wu F., Chen J., Li B., Li Y. Tissue adaptation of regulatory T cells in adipose tissue. Eur J Immunol. 2022;52(12):1898-1908. DOI:10.1002/eji.202149527.; Magg T., Mannert J., Ellwart J.W., Schmid I., Albert M.H. Subcellular localization of FOXP3 in human regulatory and nonregulatory T cells. Eur J Immunol. 2012;42(6):1627-38. DOI:10.1002/eji.201141838.; Lemarquis A.L.L., Kousa A., Argyropoulos K.V., Jahn L., Gipson B., Serrano-Marin L., Andrlova H., Tsai J., Dudakov J.A., DeWolf S., Brink M.; Recirculating Regulatory T Cells Mediate Thymic Regeneration in a ZFP36L1 and Amphiregulin Dependent Manner. Blood 2023; 142 (Supplement 1): 457. DOI:10.1182/blood-2023-183036.; Кологривова И.В., Суслова Т.Е., Кошельская О.А., Харитонова О.А., Трубачева О.А., Кравченко Е.С. Циркулирующие FoxP3+ Т-лимфоциты при хронической ишемической болезни сердца: взаимосвязь с тяжестью атеросклероза и состоянием обмена липидов. Сибирский журнал клинической и экспериментальной медицины. 2021;36(2):45-51.; Kologrivova I.V., Suslova T.E., Koshelskaya O.A., Kharitonova O.A., Trubacheva O.A., Kravchenko E.S. Circulating FoxP3+ T-lymphocytes in chronic coronary artery disease: Associations with the severity of atherosclerosis and lipid metabolism. The Siberian Journal of Clinical and Experimental Medicine. 2021;36(2):45–51. DOI:10.29001/2073-8552-2021-36- 2-45-51.; Charaix J., Borelli A., Santamaria J.C., Chasson L., Giraud M., Sergé A., Irla M. Recirculating Foxp3+ regulatory T cells are restimulated in the thymus under Aire control. Cell Mol Life Sci. 2022;79(7):355. DOI:10.1007/s00018-022-04328-9.; Dooley J., Liston A. Molecular control over thymic involution: from cytokines and microRNA to aging and adipose tissue. Eur J Immunol. 2012;42(5):1073-9. DOI:10.1002/eji.201142305.; Козлов В.А. Определяющая роль тимуса в иммунопатогенезе аутоиммунных, онкологических и инфекционных заболеваний. Медицинская иммунология. 2023;25(1):39-58.; Dai X., Zhang D., Wang C. et al. The Pivotal Role of Thymus in Atherosclerosis Mediated by Immune and Inflammatory Response. Int J Med Sci. 2018 20;15(13):1555-1563. DOI:10.7150/ijms.27238.; Palatella M., Guillaume S.M., Linterman M.A. et al The dark side of Tregs during aging. Front. Immunol. 2022;13:940705. DOI:10.3389/fimmu.2022.940705; Thiault N., Darrigues J., Adoue V., Gros M., Binet B., Perals C., Leobon B., Fazilleau N., Joffre O.P., Robey E.A., van Meerwijk J.P.M., Romagnoli P. Peripheral regulatory T lymphocytes recirculating to the thymus suppress the development of their precursors. Nat. Immunol. 2015;16(6):628-34. DOI:10.1038/ni.3150.; Rueda C.M., Rodríguez-Perea A.L., Moreno-Fernandez M., Jackson C.M., Melchior J.T., Davidson W.S., Chougnet C.A. High density lipoproteins selectively promote the survival of human regulatory T cells. J Lipid Res. 2017;58(8):1514-1523. DOI:10.1194/jlr.M072835.; Atehortua L., Davidson W.S., Chougnet C.A. Interactions Between HDL and CD4+ T Cells: A Novel Understanding of HDL Anti-Inflammatory Properties. Arterioscler Thromb Vasc Biol. 2024;44(6):1191-1201. DOI:10.1161/ATVBAHA.124.320851.; Saravia J., Zeng H., Dhungana Y., Bastardo Blanco D., Nguyen T.M., Chapman N.M., Wang Y., Kanneganti A., Liu S., Raynor J.L., Vogel P., Neale G., Carmeliet P., Chi H. Homeostasis and transitional activation of regulatory T cells require c-Myc. Sci Adv. 2020;6(1):eaaw6443. DOI:10.1126/sciadv.aaw6443.; https://www.sibjcem.ru/jour/article/view/2380

  4. 4
  5. 5
    Academic Journal

    Συνεισφορές: The study did not have sponsorship, Исследование не имело спонсорской поддержки.

    Πηγή: Medical Herald of the South of Russia; Том 14, № 1 (2023); 125-134 ; Медицинский вестник Юга России; Том 14, № 1 (2023); 125-134 ; 2618-7876 ; 2219-8075 ; 10.21886/2219-8075-2023-14-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medicalherald.ru/jour/article/view/1712/953; Mahmood SS, Levy D, Vasan RS, Wang TJ. The Framingham Heart Study and the epidemiology of cardiovascular disease: a historical perspective. Lancet. 2014;383(9921):999-1008. https://doi.org/10.1016/S0140-6736(13)61752-3; Nichols M, Townsend N, Scarborough P, Rayner M. Cardiovascular disease in Europe 2014: epidemiological update. Eur Heart J. 2014;35(42):2950-9. Erratum in: Eur Heart J. 2015;36(13):794. PMID: 25139896. https://doi.org/10.1093/eurheartj/ehu299; Andersson J, Libby P, Hansson GK. Adaptive immunity and atherosclerosis. Clin Immunol. 2010;134(1):33-46. https://doi.org/10.1016/j.clim.2009.07.002; Ammirati E, Cianflone D, Vecchio V, Banfi M, Vermi AC, et al. Effector Memory T cells Are Associated With Atherosclerosis in Humans and Animal Models. J Am Heart Assoc. 2012;1(1):27-41. https://doi.org/10.1161/JAHA.111.000125; Lahoute C, Herbin O, Mallat Z, Tedgui A. Adaptive immunity in atherosclerosis: mechanisms and future therapeutic targets. Nat Rev Cardiol. 2011;8(6):348-58. https://doi.org/10.1038/nrcardio.2011.62; Гольдерова, А.С., Николаева И.Н., Романова А.Н., Козлов В.А. Фенотипическая характеристика лимфоцитов периферической крови при коронарном и мультифокальном атеросклерозе. Бюллетень СО РАМН. 2011;31(3):27-32. eLibrary ID:17752578; Запорожец Т.С., Майстровский К.В., Раповка В.Г., Гажа А.К, Смолина Т.П., Звягинцева Т.Н. Роль T-клеточной дисфункции в развитии атеросклероза сосудов нижних конечностей и возможности ее коррекции. Тихоокеанский медицинский журнал. 2009;(3):110-115. eLIBRARY ID: 13008313; Pasqui AL, Di Renzo M, Bova G, Bruni F, Puccetti L, Pompella G, Auteri A. T cell activation and enhanced apoptosis in non-ST elevation myocardial infarction. Clin Exp Med. 2003;3(1):37-44. https://doi.org/10.1007/s102380300014; Пигаревский П.В. Морфометрическое исследование клеток иммунорегуляторного и эффекторного звеньев иммунитета в аорте и парааортальных лимфатических узлах при атерогенезе у человека. Цитокины и воспаление. 2002;1(4):21-26. eLibrary ID:9124341; Czyz A, Kołacz E, Angerer D, Zawilska K. Expression of activation antigens on lymphocyte surface and circulating platelet-leukocyte aggregates in ischaemic heart disease. Kardiol Pol. 2005;62(3):189-200; discussion 201. PMID: 15830013.; Козлов В.А. Иммунная парадигма и иммуносупрессорная доминанта в патогенезе основных заболеваний современного человека. Бюллетень сибирской медицины. 2019;18(1):7-17. https://doi.org/10.20538/1682-0363-2019-1-7-17; Maganto-García E, Tarrio ML, Grabie N, Bu DX, Lichtman AH. Dynamic changes in regulatory T cells are linked to levels of diet-induced hypercholesterolemia. Circulation. 2011;124(2):185-95. https://doi.org/10.1161/CIRCULATIONAHA.110.006411; Mor A, Philips MR, Pillinger MH. The role of Ras signaling in lupus T lymphocytes: biology and pathogenesis. Clin Immunol. 2007;125(3):215-23. https://doi.org/10.1016/j.clim.2007.08.008; Wang J, van Dongen H, Scherer HU, Huizinga TW, Toes RE. Suppressor activity among CD4+,CD25++ T cells is discriminated by membrane-bound tumor necrosis factor alpha. Arthritis Rheum. 2008;58(6):1609-18. https://doi.org/10.1002/art.23460; Ammirati E, Cianflone D, Banfi M, Vecchio V, Palini A, et al. Circulating CD4+CD25hiCD127lo regulatory T-Cell levels do not reflect the extent or severity of carotid and coronary atherosclerosis. Arterioscler Thromb Vasc Biol. 2010;30(9):1832-41. https://doi.org/10.1161/ATVBAHA.110.206813; Ji QW, Guo M, Zheng JS, Mao XB, Peng YD, et al. Downregulation of T helper cell type 3 in patients with acute coronary syndrome. Arch Med Res. 2009;40(4):285-93. https://doi.org/10.1016/j.arcmed.2009.04.002; Сепиашвили Р.И., Шубич М.Г., Колесникова Н.В., Славянская Т.А., Ломтатидзе Л.В. Апоптоз в иммунологических процессах. Аллергология и иммунология. 2015;16(1):101-107. eLibrary ID:23561301; Virtue A, Mai J, Wang H, Yang X. Lymphocytes and Atherosclerosis. Atherosclerosis: Cellular, Molecular & Biochemical Mechanism and Novel Therapy. John Wiley & Sons, Inc.; 2015.; Rouwet E, Lutgens E. 2016 Jeffrey M. Hoeg Award Lecture. Arterioscler Thromb Vasc Biol. 2018;38(8):1678-1688. https://doi.org/10.1161/ATVBAHA.118.307742; Шевченко О.П., Природова О.Ф., Шевченко А.О. Клиническое значение растворимого CD40 лиганда у больных ишемической болезнью сердца. Кардиоваскулярная терапия и профилактика. 2006;5(7):101-111. eLibrary ID:9954744; https://www.medicalherald.ru/jour/article/view/1712

  6. 6
    Academic Journal

    Συνεισφορές: The study was carried out within the budgetary topic of the state assignment No.1220317000945 and within the grant of the Russian Science Foundation No. 21-15-00022, Работа выполнена в рамках бюджетной темы по Государственному заданию № 122031700094-5 и в рамках гранта РНФ №. 21-15-00022

    Πηγή: Bulletin of Siberian Medicine; Том 21, № 4 (2022); 121-129 ; Бюллетень сибирской медицины; Том 21, № 4 (2022); 121-129 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2022-21-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://bulletin.ssmu.ru/jour/article/view/5032/3310; https://bulletin.ssmu.ru/jour/article/view/5032/3335; Bos D., Arshi B., van den Bouwhuijsen Q.J.A., Ikram M.K., Selwaness M., Vernooij M.W. et al. Atherosclerotic carotid plaque composition and Incident stroke and coronary events. J. Am. Coll. Cardiol. 2021;77(11):1426–1435. DOI:10.1016/j.jacc.2021.01.038; Yuan S., Burgess S., Laffan M., Mason A.M., Dichgans M., Gill D. et al. Genetically roxied Inhibition of Coagulation Factors and Risk of Cardiovascular Disease: A Mendelian Randomization Study. J. Am. Heart Assoc. 2021;10(8):e019644. DOI:10.1161/JAHA.120.019644.; Stakhneva E.M., Meshcheryakova I.A., Demidov E.A., Starostin K.V., Sadovski E.V., Peltek S.E. et al. A Proteomic Study of Atherosclerotic Plaques in Men with Coronary Atherosclerosis. Diagnostics. 2019;9(4):E177. DOI:10.3390/diagnostics9040177.; Badimon L., Vilahur G. Thrombosis formation on atherosclerotic lesions and plaque rupture. J. Intern. Med. 2014;276(6):618– 632. DOI:10.1111/joim.12296.; Luo M., Ji Y., Luo Y., Li R., Fay W.P., Wu J. Plasminogen activator inhibitor-1 regulates the vascular expression of vitronectin. J. Thromb. Haemost. 2017;15(12):2451–2460. DOI:10.1111/jth.13869.; Ekmekçi H., Güngör Öztürk Z., Ekmekçi O.B., Işler Bütün I., Beşirli K., Gode S. et al. Significance of vitronectin and PAI-1 activity levels in carotid artery disease: comparison of symptomatic and asymptomatic patients. Minerva Med. 2013;104(2):215–223.; Ekmekci H., Sonmez H., Ekmekci O.B., Ozturk Z., Domanic N., Kokoglu E. Plasma vitronectin levels in patients with coronary atherosclerosis are increased and correlate with extent of disease. J. Thromb. Thrombolysis. 2002;14(3):221–225. DOI:10.1023/a:1025000810466.; Yamagishi K., Aleksic N., Hannan P.J., Folsom A.R.; ARIC Study Inverstigators. Coagulation factors II, V, IX, X, XI, and XII, plasminogen, and alpha-2 antiplasmin and risk of coronary heart disease. J. Atheroscler. Thromb. 2010;17(4):402–409. DOI:10.5551/jat.3673.; Ragino Y.I., Striukova E.V., Murashov I.S., Polonskaya Y.V., Volkov A.M., Kurguzov A.V. et al. Association of some hemostasis and endothelial dysfunction factors with probability of presence of vulnerable atherosclerotic plaques in patients with coronary atherosclerosis. BMC Res. Notes. 2019;12(1):336. DOI:10.1186/s13104-019-4360-7.; Lu J., Niu D., Zheng D., Zhang Q., Li W. Predictive value of combining the level of lipoprotein-associated phospholipase A2 and antithrombin III for acute coronary syndrome risk. Biomed. Rep. 2018;9(6):517–522. DOI:10.3892/br.2018.1162.; Elmissbah T.E., Iderous M.E., Al-Qahtani F.M., Elaskary A., Dahlawi H. Assessment of antithrombin III and protein C in Saudi myocardial infarction patients. Clin. Lab. 2021;67(10). DOI:10.7754/Clin.Lab.2021.201206.; Sridharan V., Tripathi P., Sharma S.K., Moros E.G., Corry P.M., Lieblong B.J. et al. Cardiac inflammation after local irradiation is influenced by the kallikrein-kinin system. Cancer Res. 2012;72(19):4984–4992. DOI:10.1158/0008-5472.CAN-121831; Koch M., Bonaventura K., Spillmann F., Dendorfer A., Schultheiss H.P., Tschöpe C. Attenuation of left ventricular dysfunction by an ACE inhibitor after myocardial infarction in a kininogen-deficient rat model. Biol. Chem. 2008;389(6):719– 723. DOI:10.1515/BC.2008.083.; Lubbers R., van Essen M.F., van Kooten C., Trouw L.A. Production of complement components by cells of the immune system. Clin. Exp. Immunol. 2017;188(2):183–194. DOI:10.1111/cei.12952.; Martin-Ventura J.L., Martinez-Lopez D., Roldan-Montero R., Gomez-Guerrero C., Blanco-Colio L.M. Role of complement system in pathological remodeling of the vascular wall. Mol. Immunol. 2019;114:207–215. DOI:10.1016/j.molimm.2019.06.016.; Vlaicu S.I., Tatomir A., Rus V., Mekala A.P., Mircea P.A., Niculescu F. et al. The role of complement activation in atherogenesis: the first 40 years. Immunol. Res. 2016;64(1):1–13. DOI:10.1007/s12026-015-8669-6.; Ge X., Xu C., Liu Y., Zhu K., Zeng H., Su J. et al. Complement activation in the arteries of patients with severe atherosclerosis. Int. J. Clin. Exp. Pathol. 2018;11(1):1–9.; Rawish E., Sauter M., Sauter R., Nording H., Langer H.F. Complement, inflammation and thrombosis. Br. J. Pharmacol. 2021;178(14):2892–2904. DOI:10.1111/bph.15476.; Speth C., Rambach G., Würzner R., Lass-Flörl C., Kozarcanin H., Hamad O.A. et al. Complement and platelets: Mutual interference in the immune network. Mol. Immunol. 2015;67(1):108– 118. DOI:10.1016/j.molimm.2015.03.244.; Amara U., Rittirsch D., Flierl M., Bruckner U., Klos A., Gebhard F. et al. Interaction between the coagulation and complement system. Adv. Exp. Med. Biol. 2008;632:71–79. DOI:10.1007/978-0-387-78952-1_6.; Tulamo R., Frösen J., Paetau A., Seitsonen S., Hernesniemi J., Niemelä M. et al. Lack of complement inhibitors in the outer intracranial artery aneurysm wall associates with complement terminal pathway activation. Am. J. Pathol. 2010;177(6):3224–3232. DOI:10.2353/ajpath.2010.091172.; Wezel A., de Vries M.R., Lagraauw H.M., Foks A.C., Kuiper J., Quax P.H. et al. Complement factor C5a induces atherosclerotic plaque disruptions. J. Cell Mol. Med. 2014;18(10):2020– 2030. DOI:10.1111/jcmm.12357.; Wu G., Hu W., Shahsafaei A., Song W., Dobarro M., Sukhova G.K. et al. Complement regulator CD59 protects against atherosclerosis by restricting the formation of complement membrane attack complex. Circ. Res. 2009;104(4):550558. DOI:10.1161/CIRCRESAHA.108.191361.; https://bulletin.ssmu.ru/jour/article/view/5032

  7. 7
    Academic Journal

    Πηγή: Diagnostic radiology and radiotherapy; Том 11, № 4 (2020); 60-67 ; Лучевая диагностика и терапия; Том 11, № 4 (2020); 60-67 ; 2079-5343

    Περιγραφή αρχείου: application/pdf

    Relation: https://radiag.bmoc-spb.ru/jour/article/view/567/445; Vlachopoulos C., Xaplanteris P., Aboyans V. et al. The role of vascular biomarkers for primary and secondary prevention. A position paper from the European Society of Cardiology Working Group on peripheral circulation: Endorsed by the Association for Research into Arterial Structure and Physiology (ARTERY) Society // Atherosclerosis. 2015. Vol. 241. Р. 507-532.; Lee J.G., Joo S.J. Arterial stiffness and cardiovascular risk // Korean J. Int. Med. 2019. Vol. 34, No. 3. Р. 504-506. doi:10.3904/kjim.2019.110.; Mikael L.R., Paiva A.M.G., Gomes M.M. et al. Vascular Aging and Arterial Stiffness // Arq. Bras. Cardiol. 2017. Vol. 109, No. 3. Р. 253-258. doi:10.5935/abc.20170091.; Отто К. Клиническая эхокардиография: практическое руководство / пер. с англ.; под ред. М.М.Галагудзы, Т.М.Домницкой, М.М.Зеленикина, Т.Б.Кулагиной, В.С.Никифорова, В.А.Сандрикова. М.: Логосфера. 2019. 1352 с.; O'Rourke M.F., Staessen J.A., Vlachopoulos C., Duprez D., Plante G.E. Clinical applications of arterial stiffness; definitions and reference values // Amer. J. Hypertens. 2002. Vol. 15. Р. 426-444. doi:10.1016/S0895-7061(01)02319-6.; Fukuda D., Yoshiyama M., Shimada K. et al. Relation between aortic stiffness and coronary flow reserve in patients with coronary artery disease // Heart. 2006. Vol. 92, No. 6. Р 759-762. doi:10.1136/hrt.2005.067934.; Chung C.M., Yang T.Y., Lin Y.S., Chang S.T., Hsiao J.F., Pan K.L. Relation of arterial stiffness assessed by brachial-ankle pulse wave velocity to complexity of coronary artery disease // Amer. J. Med. Sci. 2014. Vol. 348, No. 4. Р. 294-299.; Chung C.M., Tseng Y.H., Lin Y.S., Hsu J.T., Wang P.C. Association of brachial-ankle pulse wave velocity with atherosclerosis and presence of coronary artery disease in older patients // Clin. Int. Aging. 2015. Vol. 10. Р. 1369-1375.; Duman O.O., Goldeli O., Gursul E., Baris N., Ozpelit E., Simsek M.A. The value of aortic pulse wave velocity in predicting coronary artery disease diagnosis and severity // Acta Cardiol. 2015. Vol. 70, No. 3. Р. 315-322. doi:10.1080/ac.70.3.3080636; Eryol N.K., Topsakal R., Cicek Y., Abaci A., Oguzhan A., Basar E. et al. Color Doppler tissue imaging in assessing the elastic properties of the aorta and in predicting coronary artery disease // Jpn Heart j. 2002. Vol. 43. Р. 219-230.; Güngör B., Yılmaz H., Ekmekçi A., Özcan K.S., Tijani M., Osmonov D. Aortic stiffness is increased in patients with premature coronary artery disease: a tissue Doppler imaging study // J. Cardiol. 2014. Vol. 63, No. 3. Р 223-229.

  8. 8
    Academic Journal

    Συνεισφορές: The study was carried out in the framework of the fundamental research No. AAAA-A15-115123110026-3, Тема фундаментальных научных исследований по государственному заданию АААА-А15-115123110026-3

    Πηγή: Siberian Journal of Clinical and Experimental Medicine; Том 36, № 3 (2021); 59-67 ; Сибирский журнал клинической и экспериментальной медицины; Том 36, № 3 (2021); 59-67 ; 2713-265X ; 2713-2927

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/1245/640; Furukawa S., Fujita T., Shimabukuro M., Iwaki M., Yamada Y., Naka jima Y. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest. 2004;114(12):1752–1761. DOI:10.1172/JCI21625.; Wonisch W., Falk A., Sundl I., Winklhofer-Roob B.M., Lindschinger M. Oxidative stress increases continuously with BMI and age with unfavourable profiles in males. Aging Male. 2012;15(3):159–165. DOI:10.3109/13685538.2012.66943.; Hatami M., Saidijam M., Yadegarzari R. Peroxisome proliferator-activated receptor-γgene expression and its association with oxida tive stress in patients with metabolic syndrome. Chonnam Med. J. 2016;52(3):201−206. DOI:10.4068/cmj.2016.52.3.201.; Prokudina E.S., Maslov L.N., Ivanov V.V., Bespalova I.D., Pismennyi D.S., Voronkov N.S. The role of reactive oxygen species in the pathogenesis of adipocyte dysfunction in metabolic syndrome. Prospects of pharmacological correction. Annals of the Russian Academy of Medical Sciences. 2017;72(1):11–16. DOI:10.15690/vramn798.; Maslov L.N., Naryzhnaya N.V., Boshchenko A.A., Popov S.V., Ivanov V.V., Oeltgen P.R. Is oxidative stress of adipocytes a cause or a consequence of the metabolic syndrome? J. Clin. Transl. Endocrinol. 2019;15:1–5. DOI:10.1016/j.jcte.2018.11.001.; Talior I., Yarkoni M., Bashan N., Eldar-Finkelman H. Increased glucose uptake promotes oxidative stress and PKC-δ activation in adipocytes of obese, insulin-resistant mice. Am. J. Physiol. Endocrinol. Metab. 2003;285(2):E295−E302. DOI:10.1152/ajpendo.00044.2003.; Консенсус российских экспертов по проблеме метаболического синдрома в Российской Федерации: определение, диагностические критерии, первичная профилактика и лечение. Профилактическая медицина. 2010;13(5):27−32.; Thalmann S., Juge-Aubry C.E., Meier C.A. Explant cultures of white adipose tissue. In: adipose tissue protocols. Methods Mol. Biol. 2008;456:195−199. DOI:10.1007/978-1-59745-245-8_14.; Suga H., Matsumoto D., Inoue K., Shigeura T., Eto H., Aoi N. et al. Numerical measurement of viable and nonviable adipocytes and oth er cellular components in aspirated fat tissue. Plast. Reconstr. Surg. 2008;122(1):103–114. DOI:10.1097/PRS.0b013e31817742ed.; Jacobellis G., Assael F., Ribaudo M.C. Epicardial fat from echocardiography: a new method for visceral adipose tissue prediction. Obes. Res. 2003;11(2):304−310. DOI:10.1038/oby.2003.45.; Sies H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol. 2017;11:613– 619. DOI:10.1016/j.redox.2016.12.035.; Lee H., Lee Y.J., Choi H., Ko E.H., Kim J. W. Reactive oxygen spe cies facilitate adipocyte differentiation by accelerating mitotic clonal expansion. J. Biol. Chem. 2009;284(16):10601−10609. DOI:10.1074/jbc.M808742200.; Kono T., Robinson F.W., Blevins T.L., Ezaki O. Evidence that translocation of the glucose transport activity is the major mechanism of insulin action on glucose transport in fat cells. J. Biol. Chem. 1982;257(18):10942−10947. DOI:10.1016/S0021-9258(18)33914-0.; May J.M., de Haen C. Insulin-stimulated intracellular hydrogen peroxide production in rat epididymal fat cells. J. Biol. Chem. 1979;254(7):2214−2220. DOI:10.1016/S0021-9258(17)30209-0.; Little S.A., de Haen C. Effects of hydrogen peroxide on basal and hormonestimulated lipolysis in perifused rat fat cells in relation to the mechanism of action of insulin. J. Biol. Chem. 1980;255(22):10888−10895. DOI:10.1016/S0021-9258(19)70390-1.; Loh K., Deng H., Fukushima A., Cai X., Boivin B., Galic S. et al. Reactive oxygen species enhance insulin sensitivity. Cell Metab. 2009;10(4):260−272. DOI:10.1016/j.cmet.2009.08.009.; Salgado-Somoza A., Teijera-Fernández E., Luis Fernández Á., Ramón González-Juanatey J., Eiras S. Proteomic analysis of epicardial and subcutaneous adipose tissue reveals differences in proteins involved in oxidative stress. Am. J. Physiol. Heart Circ. Physiol. 2010;299(1):H202– H209. DOI:10.1152/ajpheart.00120.2010.; Dozio E., Vianello E., Briganti S., Fink B., Malavazos A.E., Scognamiglio E.T. et al. Increased reactive oxygen species production in epicardial adipose tissues from coronary artery disease patients is associated with brown-to-white adipocyte trans-differentiation. Int. J. Cardiol. 2014;174(2):413–414. DOI:10.1016/j.ijcard.2014.04.045.; Volpe C.M.O., Villar-Delfino P.H., dos Anjos P.M.F. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis. 2018;9(2):119. DOI:10.1038/s41419-0170135-z.; Han C.Y. Roles of reactive oxygen species on insulin resistance in adipose tissue. Diabetes Metab. J. 2016;40(4):272−279. DOI:10.4093/ dmj.2016.40.4.272.; Monickaraj F., Aravind S., Nandhini P. Accelerated fat cell aging links oxidative stress and insulin resistance in adipocytes. J. Biosci. 2013;38(1):113−122. DOI:10.1007/s12038-012-9289-0.; Houstis N., Rosen E.D., Lander E.S. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature. 2006;440(7086):944−948. DOI:10.1038/nature04634.; https://www.sibjcem.ru/jour/article/view/1245

  9. 9
  10. 10
    Academic Journal
  11. 11
    Academic Journal

    Πηγή: Medical Herald of the South of Russia; Том 11, № 1 (2020); 46-54 ; Медицинский вестник Юга России; Том 11, № 1 (2020); 46-54 ; 2618-7876 ; 2219-8075 ; 10.21886/2219-8075-2020-11-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medicalherald.ru/jour/article/view/1044/556; Weintraub W.S., Jones E.L., Craver J.M., Guyton R.A. Frequency of repeat coronary bypass or coronary angiogplasty after coronary artery bypass surgery using saphenous venous grafts. // AM J Cardiol. – 1994. – V.73(2). – P.103–12. https:// doi.org/10.1016/0002-9149(94)90198-8; Graham M.M., Chambers R.J., Davies R.F. Angiographic quantification of diffuse coronary artery disease: reliability and prognostic value for bypass operations. // J Thorac Cardiovasc Surg. – 1999. – V.118(4). – P.618–627. https://doi. org/10.1016/S0022-5223(99)70006-1; Osswald B, Blackstone E, Tochtermann U, Schweiger P, Thomas G, et al. Does the completeness of revascularization affect early survival after coronary artery bypass grafting in elderly patients? // Euro J Cardiothorac Surg. – 2001. – V.20(1). – P.120–6. https://doi.org/10.1016/S1010-7940(01)00743-6; Lawrie G.M., Morris G.C., Silvers A., Wagner W.F., Baron A.E. et al. The influence of residual disease after coronary bypass on the 5-year survival rate of 1274 men with coronary artery disease. // Circulation. – 1982. – V.66(4). – P.717–23. https://doi.org/10.1161/01.cir.66.4.717; Schaff H, Gersh B, Pluth J, Danielson GK, Orszulak TA, et al. Survival and functional status after coronary artery bypass grafting: results 10 to 12 years after surgery in 500 patients. // Circulation. – 1983. – V.68(3). – P.200–4. PMID: 6603285; Bell MR, Gersh BJ, Schaff HV, Holmes Jr DR, Fisher LD, et al. Effect of completeness of revascularization on long-term outcomes of patients with three-vessel disease undergoing coronary artery bypass surgery. // Circulation. – 1992. – V.86(2). – P.446–57. https://doi.org/10.1161/01.cir.86.2.446; Horvath KA, Mannting F, Cummings N, Shernan SK, Cohn LH. Transmyocardial laser revascularization: operative techniques and clinical results at two years. // J Thorac Cardiovasc Surg. – 1996. – V.111(5). – P.1047–53. https://doi. org/10.1016/s0022-5223(96)70381-1; Cooley D.A., Frazier O.H., Kadipasaoglu K.A., Lindenmeir M.H., Pehlivanoglu S., et al. Transmyocardial laser revascularization: clinical experience with twelve-month follow-up. // J Thorac Cardiovasc Surg. – 1996. – V.111(4). – P.791–7. https://doi.org/10.1016/s0022-5223(96)70339-2; Horvath K.A., Cohn L.C., Cooley D.A., Crew J.R., Frazier O.H., et al. Transmyocardial laser revasculari zation: results of a multi-center trial using TLR as sole therapy for end stage coronary artery disease. // J Thorac Cardiovasc Surg. – 1997. – V.113(4). – P.645–54. https://doi.org/10.1016/S00225223(97)70221-6; Krabatsch T., Tambeur L., Lieback E., Shaper F., Hetzer R. Transmyocardial laser revascularization in the treatment of end-stage coronary artery disease. // Ann Thorac Cardiovasc Surg. – 1998. – V.4(2). – P.64–71. PMID: 9577000; Hattler B.G., Griffith B.P., Zenati M.A., Crew J.R., Mirhoseini M., et al. Transmyocardial laser revascularization in the patient with unmanageable unstable angina. // Ann Thor Surg. – 1999. – V.68(4). – P.1203–9. https://doi.org/10.1016/ s0003-4975(99)00972-8; Milano A., Pratali S., Tartarini G., Mariotti R., De Carlo M., et al. Early results of transmyocardial revascularization with a holmium laser. // Ann Thorac Surg. – 1998. – V.65(3). – P.700– 4. https://doi.org/10.1016/s0003-4975(97)01380-5; Dowling R.D., Petracek M.R., Selinger S.L., Allen K.B. Transmyocardial revascularization in patients with refractory, unstable angina. // Circulation. – 1998. – V.98(19, Supp II). – P.II73–5. PMID: 9852884; Allen K.B., Dowling R.D., Fudge T.L., Schoettle G.P., Selinger S.L, et al. Comparison of transmyocardial revascularization with medical therapy in patients with refractory angina. // N Engl J Med. – 1999. – V.341(14). – P.1029–36. https://doi. org/10.1056/NEJM199909303411403; Burkhoff D., Schmidt S., Schulman S.P., Myers J., Resar J., et al. Transmyocardial laser revascularization compared with continued medical therapy for treatment of refractory angina pectoris: a prospective randomized trial. // Lancet. – 1999. – V.354(9182). – P.885–90. https://doi.org/10.1016/s01406736(99)08113-1; Jones J.W., Schmidt S.E., Richman B.W., Miller 3rd C.C., Sapire K.J., et al. Holmium: YAG laser transmyocardial revascularization relieves angina and improves functional status. // Ann Thorac Surg. – 1999. – V.67(6). – P.1596–602. https://doi.org/10.1016/s0003-4975(99)00368-9; Frazier O.H., March R.J., Horvath K.A. Transmyocardial revascularization with a carbon dioxide laser in patients with end-stage coronary artery disease. // N Engl J Med. – 1999. – V.341(14). – P.1021–8. https://doi.org/10.1056/ NEJM199909303411402; Schofield P.M., Sharples L.D., Caine N., Burns S., Tait S., et al. Transmyocardial laser revascularization in patients with refractory angina: a randomized controlled trial. // Lancet. – 1999. – V.353(9152). – P.519–24. https://doi.org/10.1016/ s0140-6736(98)11478-2; Aaberge L., Nordstrand K., Dragsund M., Saatvedt K., Endresen K., et al. Transmyocardial revascularization with CO2 laser in patients with refractory angina pectoris. Clinical results from the Norwegian randomized trial. // J Am Coll Cardiol. – 2000. – V.35(5). – P.1170–7. https://doi. org/10.1016/s0735-1097(00)00519-2; Agarwal R., Ajit M., Kurian V.M., Rajan S., Arumugam S.B., Cherian K.M. Transmyocardial laser revascularization: early results and 1-year follow-up. // Ann Thor Surg. – 2000. – V.67(2). – P.432-6. https://doi.org/10.1016/s00034975(98)01156-4; Trehan J., Mishra M., Bapna R., Mishra A., Maheshwari P., Karlekar A. Transmyocardial laser revascularization combined with coronary artery bypass grafting without cardiopulmonary bypass. // Euro J Cardiothorac Surg. – 1997. – V.12(2). – P.276–84. https://doi.org/10.1016/s10107940(97)00098-5; Stamou S.C., Boyce S.W., Cooke R.H., Carlos B.D., Sweet L.C., Corso P.J. One –year outcome after combined coronary artery bypass grafting and Transmyocardial laser revascularization for refractory angina pectoris. // J Am Coll Cardiol. – 2002. – V.89(12). – P.1365–8. https://doi.org/10.1016/s00029149(02)02348-2; Wehberg K.E., Julian J.S., Todd J.C., Ogburn N., Klopp E., Buchness M. Improved patient outcomes when Transmyocardial revascularization is used as adjunctive revascularization. // Heart Surg Forum. – 2003. – V.6(5). – P.1–3. PMID: 14721803; Allen K.B., Dowling R., DelRossi A., Realyvasques F., Lefrak E.A., et al. Transmyocardial revascularization combined with coronary artery bypass grafting: a multicenter, blinded, prospective, randomized, controlled trial. // J Thorac Cardiovasc Surg. – 2000. – V.119(3). – P.540–9. https://doi. org/10.1016/s0022-5223(00)70134-6; Бокерия л.А., Беришвили И.И., Вахромеева М.Н., хвичия л.Э., Игнатьева Ю.В., Гусев П.В. Сравнительная оценка результатов хирургического лечения больных ишемической болезнью сердца с помощью аортокоронарного шунтирования в сочетании с трансмиокардиальной лазерной реваскуляризацией и без нее. Проспективное контролируемое нерандомизированное исследование // Анналы хирургии. - 2012. - №: 4. - С. 34-40. eLIBRARY ID: 18726778; Чернявский A.M., ларионов П.М., Терехов И.Н., Федоренко А.Н., Бондарь В.Ю., и др. Клиническая эффективность трансмиокардиальной лазерной реваскуляризации в сочетании с аортокоронарным шунтированием. // Патология кровообращения и кардиохирургия. - 2007. - №1. - С 15-17. eLIBRARY ID: 11137120; https://www.medicalherald.ru/jour/article/view/1044

  12. 12
    Academic Journal

    Πηγή: Complex Issues of Cardiovascular Diseases; Том 9, № 1 (2020); 15-24 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 9, № 1 (2020); 15-24 ; 2587-9537 ; 2306-1278 ; 10.17802/2306-1278-2020-9-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/669/479; Диагностика и коррекция нарушений липидного обмена с целью профилактики и лечения атеросклероза (Российские рекомендации). Кардиоваскулярная терапия и профилактика. 2004; 2-2: 3-36; Шальнова С. А., Дсев А. Д., Оганов Р. Г. Факторы, влияющие на смертность от ССЗ в российской популяции. Кардиоваскулярная терапия и профилактика. 2005; Т. 4(1): 4-9; Thom T., Haase N., Rosamond W., Howard V.J., Rumsfeld J., Manolio T. et al. Heart disease and stroke statistics--2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2006; 113 (6): e85-el51. doi:10.1161/CIRCULATIONAHA.105.171600.; Кардиоваскулярная профилактика 2017. Российские национальные рекомендации. Российский кардиологический журнал. 2018;(6):7-122. https://doi.org/10.15829/15604071-2018-6-7-122; Малай Л. Н. Статины в лечении и профилактике сердечно-сосудистых заболеваний: повторение пройденного и оптимизм на будущее. Рациональная фармакотерапия в кардиологии. 2014; 10 (5): 513-524. doi:10.20996/1819-6446-2014-10-5-513-524.; Погосова Н. В., Оганов Р. Г., Суворов С. В. Почему в Москве смертность от сердечно-сосудистых заболеваний ниже, чем в других регионах российской федерации? Кардиоваскулярная терапия и профилактика. 2015; 14 (2): 4–12. doi.org/10.15829/1728-8800-2015-2-4-12.; Моисеев В.С., Мартынов А.И., Мухин Н.А. Внутренние болезни. Т.1. 3-е изд. М: ГЭОТАР-Медиа; 2015; Bäck M. Omega-3 fatty acids in atherosclerosis and coronary artery disease. Future Sci OA. 2017; 3 (4): FSO236. doi:10.4155/fsoa-2017-0067.; Chen X., Liu L., Palacios G., Gao J., Zhang N., Li G., Lu J., Song T., Zhang Y., Lv H. Plasma metabolomics reveals biomarkers of the atherosclerosis. J Sep Sci. 2010; 33 (17-18): 2776-2783. doi:10.1002/jssc.201000395.; Hamazaki K., Iso H., Eshak E.S., Ikehara S., Ikeda A., Iwasaki M., Hamazaki T., Tsugane S., JPHC Study Group. Plasma levels of n-3 fatty acids and risk of coronary heart disease among Japanese: The Japan Public Health Center-based (JPHC). Atherosclerosis. 2018; 272: 226-232. doi:10.1016/j.atherosclerosis.2017.12.004.; Kleber M.E., Delgado G.E., Dawczynski C., Lorkowski S., März W., von Schacky C. Saturated fatty acids and mortality in patients ref?erred for coronary angiography-The Ludwigshafen Risk and Cardiovascular Health study. J Clin Lipidol. 2018; 12 (2) :455-463.e3. doi:10.1016/j.jacl.2018.01.007.; Zehr K.R., Walker M.K. Omega-3 polyunsaturated fatty acids improve endothelial function in humans at risk for atherosclerosis: A review. Prostaglandins Other Lipid Mediat. 2018; 134: 131-140. doi:10.1016/j.prostaglandins.2017.07.005.; Calder P.C., Deckelbaum R.J. Harmful, harmless or helpful? The n-6 fatty acid debate goes on. Curr Opin Clin Nutr Metab Care. 2011; 14 (2): 113-114. doi:10.1097/MCO.0b013e328343d895.; Ткачева Н.И., Морозов С.В., Стахнёва Е.М., Шрамко Б.С., Рагино Ю.И. Хроматографическое определение содержания жирных кислот в различных биологических средах при атеросклеротических повреждениях. Атеросклероз и дислипидемии. 2017; 1 (26): 17-28; Waksman R., Seruys P.W. Handbook of the Vulnerable Plaque. London; 2004.; Cury R.C., Abbara S., Achenbach S., Agatston A., Berman D.S., Budoff M.J., et al. Coronary Artery Disease - Reporting and Data System (CAD-RADS): An Expert Consensus Document of SCCT, ACR and NASCI: Endorsed by the ACC. JACC Cardiovasc Imaging. 2016; 9 (9): 1099-1113. doi:10.1016/j.jcmg.2016.05.005.; Рекомендации ESC по диагностике и лечению острой и хронической сердечной недостаточности 2016. Рабочая группа Европейское Общество кардиологов (ESC). При участии: Ассоциации Сердечной Недостаточности (АСН) в составе ESC. Российский кардиологический журнал 2017; 1 (141): 7–81. doi:10.15829/1560-4071-2017-1-7-81.; Аронов Д.М., Лупанов В.П Некоторые аспекты патогенеза атеросклероза. Атеросклероз и дислипидемии. 2011; 1 (2): 48-56.; Falk E., Nakano M., Bentzon J. F., Finn A.V., Virmani R. Update on acute coronary syndromes: the pathologists' view. European Heart Journal. 2013; 34 (10): 719–728. doi:10.1093/ eurheartj/ehs411.; Кочергин Н.А., Кочергина А.М., Ганюков В.И., Барбараш О.Л. Нестабильные атеросклеротические бляшки коронарных артерий у пациентов со стабильной ишемической болезнью сердца. Комплексные проблемы сердечно-сосудистых заболеваний. 2018; 7 (3): 65-71. doi:10.17802/23061278-2018-7-3-65-71.; Титов В.Н., Сажина Н.Н., Ариповский А.В., Евтеева Н.М., Тибилова О.А., Кухарчук В.В.Оценка ненасыщенности липидов крови методами физической химии и клинической биохимии. регуляция инсулином метаболизма жирных кислот, числа двойных связей и поглощения клетками глюкозы. Клиническая лабораторная диагностика. 2016; 61(4): 196-204. doi:10.18821/0869-2084-2016-61-4-196-209.; Listenberger L.L., Schaffer J.E. Mechanisms of lipoapoptosis: implications for human heart disease. Trends Cardiovasc Med. 2002; 12 (3): 134-138. doi:10.1016/S10501738(02)00152-4.; Harvey K.A., Walker C.L., Pavlina T.M., , Xu Z., Zaloga G.P., Siddiqui R.A. Long-chain saturated fatty acids induce proinflammatory responses and impact endothelial cell growth. Clin Nutr. 2010; 29 (4): 492–500. doi:10.1016/j.clnu.2009.10.008.; Kritchevsky D., Tepper S.A., Czarnecki S.K., Sundram K. Red palm oil in experimental atherosclerosis. Asia Pac J Clin Nutr. 2002; 11 Suppl. 7: S433-7. doi:10.1046/j.1440-6047.11.s.7.5.x.; Duarte M.K., de Araújo J.N., Duarte V.H., de Oliveira K.M., de Oliveira J.M., Ferreira Carioca A.A., et al. The relationship of the oleic acid level and ECHDC3 mRNA expression with the extent of coronary lesion. Lipids Health Dis. 2016; 1 (15): 144. DOI:10.1186/s12944-016-0312-6.

  13. 13
    Academic Journal

    Πηγή: Complex Issues of Cardiovascular Diseases; Том 9, № 1 (2020); 6-14 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 9, № 1 (2020); 6-14 ; 2587-9537 ; 2306-1278 ; 10.17802/2306-1278-2020-9-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/668/478; Aono J., Ikeda S., Katsumata Y., Higashi H., Ohshima K., Ishibashi K., Matsuoka H., Watanabe K., Hamada M. Correlation between plaque vulnerability of aorta and coronary artery: an evaluation of plaque activity by direct visualization with angioscopy. Int J Cardiovasc Imaging. 2015; 31(6): 11071114. doi:10.1007/s10554-015-0669-z.; Tao H., Wang Y., Zhou X., Zhong W., Zhou H., Li K., Zhao B. Angiographic correlation and synergistic effect of coronary artery stenosis and cerebral artery stenosis: a retrospec-tive study. Med Sci Monit. 2014; 20:1902-1907. doi:10.12659/MSM.892271.; Emmert M.Y., Grünenfelder J., Scherman J., Cocchieri R., van Boven W.J., Falk V., Salzberg S.P. HEARTSTRING enabled no-touch proximal anastomosis for off-pump coronary artery bypass grafting: current evidence and technique. Interact Cardiovasc Thorac Surg. 2013; 17(3): 538-41. doi:10.1093/icvts/ivt237.; Pawliszak W, Kowalewski M, Raffa GM, Malvindi PG, Kowalkowska ME, Szwed KA, Borkowska A, Kowalewski J, Anisimowicz L. Cerebrovascular events after no-touch offpump coronary artery bypass grafting, conventional side-clamp off-pump coronary artery bypass, and proximal anastomotic devices: a meta-analysis. J Am Heart Assoc. 2016; 5(2). pii: e002802. doi:10.1161/JAHA.115.002802.; Yadav M. Palmerini T., Caixeta A., Madhavan M.V., Sanidas E., Kirtane A.J., Stone G.W., Genereux P. Prediction of coronary risk by SYNTAX and derived scores: synergy between percutaneous coronary intervention with taxus and cardiac surgery. J Am Coll Cardiol. 2013;62(14):1219-1230. doi:10.1016/j.jacc.2013.06.047; Tarasova I.V., Tarasov R.S., Trubnikova O.A., Barbarash O.L., Barbarash L.S. SYNTAX score effect on electroencephalography power dynamics in patients undergoing on-pump coronary artery bypass grafting. BMC Neurosci. 2013; 14: 95. doi:10.1186/1471-2202-14-95.; Тарасова И.В., Кухарева И.Н., Барбараш О.Л. Электроэнцефалографические маркеры нарушений когнитивного статуса у пациентов с ишемической болезнью сердца. Неврология, нейропсихиатрия, психосоматика. 2016; 8(3): 43-47. doi:10.14412/2074-2711-2016-3-43-47; Başar E. Brain oscillations in neuropsychiatric disease. Dialogues Clin Neurosci. 2013; 15(3): 291-300. 9. Sutter R., Kaplan P.W., Cervenka M.C., Thakur K.T., Asemota A.O., Venkatesan A., Geocadin R.G. Electroencephalography for diagnosis and prognosis of acute encephalitis. Clin Neurophysiol. 2015; 126(8): 1524-1531. doi:10.1016/j.clinph.2014.; Тарасова И.В., Малева О.В., Чернобай А.Г., Барбараш О.Л., Барбараш Л.С. Влияние умеренного когнитивного расстройства на изменения биоэлектрической активности мозга пациентов, перенесших коронарное шунтирование с искусственным кровообращением. Неврологический журнал. 2015; 20(5): 20-25.; Wabulya A., Lesser R.P., Llinas R., Kaplan P.W. Electroencephalography and brain MRI patterns in encephalopathy. Clin EEG Neurosci. 2016; 47(2): 150-156. doi:10.1177/1550059415590058.; Reineke D., Winkler B., König T., Meszaros K., Sodeck G., Schönhoff F., Erdoes G., Czerny M., Carrel T. Minimized extracorporeal circulation does not impair cognitive brain function after coronary artery bypass grafting. Interact Cardiovasc Thorac Surg. 2015; 20(1):68-73. doi:10.1093/icvts/ivu341.; Tarasova I.V., Maleva O.V., Tarasov R.S., Barbarash O.L., Barbarash L.S. The effect of mild cognitive impairment on EEG topographic changes after on-pump coronary artery bypass grafting. Комплексные проблемы сердечно-сосудистых заболеваний. 2017; 1: 37-43.; Трубникова О.А., Тарасова И.В., Малева О.В., Каган Е.С., Барбараш О.Л., Барбараш Л.С. Факторы развития стойкой послеоперационной когнитивной дисфункции у пациентов, перенесших коронарное шунтирование в условиях искусственного кровообращения. Терапевтический архив. 2017; 89(9): 41-47. doi:10.17116/terarkh201789941-47; Volf N.V., Tarasova I.V., Razumnikova O.M. Genderrelated differences in changes in the coherence of cortical biopotentials during image-based creative thought: relationship with action efficacy. Neurosci Behav Physiol. 2010; 40(7): 793799. doi:10.1007/s11055-010-9328-y.; Голухова Е.З., Полунина А.Г., Лефтерова Н.П., Морелли О.Д., Бегачёв А.В. Электроэнцефалография как инструмент диагностики ишемических изменений головного мозга после аортокоронарного шунтирования. Креативная кардиология. 2012; 1: 107-122.; Тарасова И.В., Вольф Н.В., Сырова И.Д., Барбараш О.Л., Барбараш Л.С. Умеренные когнитивные расстройства у пациентов с ишемической болезнью сердца: клинико-демографические и ЭЭГ- корреляты. Журнал неврологии и психиатрии им. C.C. Корсакова. 2014; 114(12): 89-93. doi:10.17116/jnevro201411412189-93; Goto T., Maekawa K. Cerebral dysfunction after coronary artery bypass surgery. J Anesth. 2014; 28(2): 242-248. doi:10.1007/s00540-013-1699-0.; Halkos M.E., Anderson A., Binongo J.N.G., Stringer A., Lasanajak Y., Thourani V.H., Lattouf O.M., Guyton R.A., Baio K.T., Sarin E., Keeling W.B., Cook N.R., Carssow K., Neill A., Glas K.E., Puskas J.D. Operative strategies to reduce cerebral embolic events during on- and off-pump coronary artery bypass surgery: A stratified, prospective ran-domized trial. J Thorac Cardiovasc Surg. 2017 Jun 16. pii: S0022-5223(17)31226-6. doi:10.1016/j.jtcvs.2017.04.089.; Martínez-Comendador J., Alvarez J.R., Sierra J., Teijeira E., Adrio B. Preoperative statin therapy in cardiac surgery is more effective in patients who display preoperative activa-tion of the inflammatory system. Tex Heart Inst J. 2013; 40(1): 42-49.; Miyazaki S., Yoshitani K., Miura N., Irie T., Inatomi Y., Ohnishi Y., Kobayashi J. Risk factors of stroke and delirium after offpump coronary artery bypass surgery. Interact Cardiovasc Thorac Surg. 2011; 12(3): 379-383. doi:10.1510/icvts.2010.248872.; Kovacevic P., Redzek A., Kovacevic-Ivanovic S., Velicki L., Ivanovic V., Kieffer E. Coronary and carotid artery occlusive disease: single center experience. Eur Rev Med Pharmacol Sci 2012; 16(4): 483-490.; Tang T.Y., Howarth S.P., Miller S.R., Graves M.J., U-KingIm J.M., Li Z.Y., Walsh S.R., Hayes P.D., Varty K., Gillard J.H. Comparison of the inflammatory burden of truly asymptomatic carotid atheroma with atherosclerotic plaques in patients with asymptomat-ic carotid stenosis undergoing coronary artery bypass grafting: an ultrasmall superpara-magnetic iron oxide enhanced magnetic resonance study. Eur J Vasc Endovasc Surg. 2008; 35(4): 392-398. doi:10.1016/j.ejvs.2007.10.019.; Masabni K., Sabik J.F., Raza S., Carnes T., Koduri H., Idrees J.J., Beach J., Riaz H., Shishehbor M.H., Gornik H.L., Blackstone E.H. Nonselective carotid artery ultrasound screening in patients undergoing coronary artery bypass grafting: Is it necessary? J Thorac Cardiovasc Surg. 2016; 151(2): 402-408. doi:10.1016/j.jtcvs.2015.09.108.

  14. 14
    Academic Journal

    Συνεισφορές: This work was carried out within the framework and with financial support of the RFBR grant No. 19-015-00055, the budget theme for State Assignment No. 0324-2018-0001., Работа выполнена в рамках и при финансовой поддержке гранта РФФИ № 19-015-00055, бюджетной темы по Государственному заданию № 0324-2018-0001.

    Πηγή: Bulletin of Siberian Medicine; Том 19, № 1 (2020); 172-179 ; Бюллетень сибирской медицины; Том 19, № 1 (2020); 172-179 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2020-19-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/2697/1706; https://bulletin.tomsk.ru/jour/article/view/2697/1730; Yahagi K., Davis H.R., Arbustini E., Virmani R. Sex differences in coronary artery disease: pathological observations. Atherosclerosis. 2015; 239 (1): 260–267. DOI:10.1016/j.atherosclerosis.2015.01.017.; Sakaguchi M., Hasegawa T., Ehara S., Matsumoto K., Mizutani K., Iguchi T., Ishii H., Nakagawa M., Shimada K., Yoshiyama M. New insights into spotty calcification and plaque rupture in acute coronary syndrome: an optical coherence tomography study. Heart Vessels. 2016; 31 (12): 1915–1922. DOI:10.1007/s00380-016-0820-3.; Nerlekar N., Ha F.J., Cheshire C., Rashid H., Cameron D., Wong D.T., Seneviratne S., Brown A.J. Computed tomographic coronary angiography-derived plaque characteristics predict major adverse cardiovascular events clinical perspective. Circ. Cardiovasc. Imaging. 2018; 11 (1): e006973. DOI:10.1161/CIRCIMAGING.117.006973.; Criqui M.H., Knox J.B., Denenberg J.O., Forbang N.I., McClelland R.L., Novotny T.E., Sandfort V., Waalen J., Blaha M.J., Allison M.A. Coronary artery calcium volume and density: potential interactions and overall predictive value: the multi-ethnic study of atherosclerosis. JACC Cardiovasc. Imaging. 2017; 10: 845–854. DOI:10.1016/j.jcmg.2017.04.018.; Greenland P., Blaha M.J., Budoff M.J., Erbel R., Watson K.E. Coronary calcium score and cardiovascular risk. J. Am. Coll. Cardiol. 2018; 72 (4): 434–447. DOI:10.1016/j.jacc.2018.05.027.; Xu L., Sun Z. Virtual intravascular endoscopy visualization of calcified coronary plaques: a novel approach of identifying plaque features for more accurate assessment of coronary lumen stenosis. Medicine (Baltimore). 2015; 94 (17): e805. DOI:10.1097/MD.0000000000000805.; Sun Z., Xu L. Coronary CT angiography in the quantitative assessment of coronary plaques. Biomed Res. Int. 2014; 2014: 346380. DOI:10.1155/2014/346380.; Тагиева Н.Р., Шахнович Р.М., Миронов В.М., Ежов М.В., Матчин Ю.Г., Митрошкин М.Г., Сафарова М.С., Шитов В.Н., Руда М.Я. Прогностическое значение характеристик атеросклеротических бляшек в коронарных артериях у больных с острым инфарктом миокарда и хронической ишемической болезнью сердца по данным внутрисосудистого ультразвукового исследования. Атеросклероз и дислипидемия. 2015; 4 (21): 20–29.; Noto T., Kameyama T., Satoh T., Nonomura M., Nozawa T., Inoue H. Association between virtual histology intravascular ultrasound findings and subsequent coronary events in patients with acute coronary syndrome. Int. Heart J. 2015; 56 (2): 157–162. DOI:10.1536/ihj.14-222.; Mintz G. Intravascular imaging of coronary calcification and its clinical implications. JACC Cardiovasc. Imaging. 2015; 8 (4): 461–471. DOI:10.1016/j.jcmg.2015.02.003.; Wang X., Matsumura M., Mintz G., Lee T., Zhang W., Cao Y., Fujino A., Lin Y., Usui E., Kanaji Y., Murai T., Yonetsu T., Kakuta T., Maehara A. In vivo calcium detection by comparing optical coherence tomography, intravascular ultrasound, and angiography. JACC Cardiovasc. Imaging. 2017; 10 (8): 869–879. DOI:10.1016/j.jcmg.2017.05.014.; Демин В.В., Демин Д.В., Сероштанов Е.В., Долгов С.А., Григорьев А.В., Демин А.В., Желудков А.Н., Клочков М.Д., Ломакина Е.В. Клинические аспекты применения оптической когерентной томографии для диагностики коронарных артерий. Международный Журнал интервенционной кардиоангиологии. 2016; 44: 42–58.; Habara M., Otsuka F., Tsuchikane E., Terashima M., Nasu K., Kinoshita Y., Murata A., Suzuki Y., Kawase Y., Okubo M., Matsuo H., Matsubara T., Yasuda S., Ishibashi-Ueda H., Suzuki T. In vivo tissue characterization of human atherosclerotic plaques by optical coherence tomography: A directional coronary atherectomy study with histopathologic confirmation. Int. J. Cardiol. 2018; 268: 1–10. DOI:10.1016/j.ijcard.2018.05.022.; Yahagi K., Joner M., Virmani R. The mystery of spotty calcification: can we solve it by optical coherence tomography? Circ. Cardiovasc. Imaging. 2016; 9 (1): e004252. DOI:10.1161/CIRCIMAGING.115.004252.; Otsuka F., Sakakura K., Yahagi K., Joner M., Virmani R. Has our understanding of calcification in human coronary atherosclerosis progressed? Arterioscler. Thromb. Vasc. Biol. 2014; 34 (4): 724–736. DOI:10.1161/ATVBAHA.113.302642.; Султанова М.Д. Цифровая рентгенография в диагностике коронарных кальцификаций: возможности и перспективы. Казанский медицинский журнал. 2017; 98 (4): 640–644. DOI:10.17750/KMJ2017-640.; Agatston A., Janowitz W., Hildner F., Zusmer N.R., Viamonte M. Jr., Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 1990; 15 (4): 827–832. DOI:10.1016/0735-1097(90)90282-t.; Bhatti K., Zeltser R. Coronary Artery Calcification. Stat-Pearls. Treasure Island (FL): StatPearls Publishing. URL: https://www.statpearls.com/kb/viewarticle/20008/ (Accessed 31 Jan 2019).; Joshi N.V., Vesey A.T., Williams M.C., Shah A.S., Calvert P.A., Craighead F.H., Yeoh S.E., Wallace W., Salter D., Fletcher A.M., van Beek E.J., Flapan A.D., Uren N.G., Behan M.W., Cruden N.L., Mills N.L., Fox K.A., Rudd J.H., Dweck M.R., Newby D.E. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet. 2014; 383 (9918): 705–713. DOI:10.1016/S0140-6736(13)61754-7.; Vesey A.T., Jenkins W.S.A., Irkle A., Moss А., Sng G., Forsythe R.O., Clark T., Roberts G., Fletcher A., Lucatelli C., Rudd J.H.F,. Davenport A.P., Mills N.L., Salman R.Al-S., Dennis M., Whiteley W.N., van Beek E.J.R., Dweck M.R., Newby D.E. 18F-fluoride and18F-fluorodeoxyglucose positron emission tomography after transient ischemic attack or minor ischemic stroke: case-control study. Circ. Cardiovasc. Imaging. 2017; 10 (3): pii: e004976. DOI. 10.1161/CIRCIMAGING.116.004976.; Dweck M.R., Aikawa E., Newby D.E., Tarkin J.M., Rudd J.H., Narula J., Fayad Z.A. Noninvasive molecular imaging of disease activity in atherosclerosis. Circ. Res. 2016; 119 (2): 330–340. DOI:10.1161/CIRCRESAHA.116.307971.; Irkle A., Vesey A., Lewis D., Skepper J.N., Bird J.L., Dweck M.R., Joshi F.R., Gallagher F.A., Warburton E.A., Bennett M.R., Brindle K.M., Newby D.E., Rudd J.H., Davenport A.P. Identifying active vascular microcalcification by (18)F-sodium fluoride positron emission tomography. Nat. Commun. 2015; 6: 7495. DOI:10.1038/ncomms8495.; Moghbel M., Al-Zaghal A., Werner T.J., Constantinescu C.M., Høilund-Carlsen P.F., Alavi A. The role of pet in evaluating atherosclerosis: a critical review. Semin. Nucl. Med. 2018; 48 (6): 488–497. DOI:10.1053/j.semnuclmed.2018.07.001.; Shaw L.J., Giambrone A.E., Blaha M.J., Knapper J.T., Berman D.S., Bellam N., Quyyumi A., Budoff M.J., Callister T.Q., Min J.K. Long-term prognosis after coronary artery calcification testing in asymptomatic patients. A cohort study. Ann. Intern. Med. 2015; 163 (1): 14–21. DOI:10.7326/Ml4-06l2.; Genereux P., Madhavan M.V., Mintz G.S., Maehara A., Palmerini T., Lasalle L., Xu K., McAndrew T., Kirtane A., Lansky A.J., Brener S.J., Mehran R., Stone G.W. Ischemic outcomes after coronary intervention of calcified vessels in acute coronary syndromes pooled analysis from the HORIZONS-AMI (Harmonizing Outcomes With Revascularization and Stents in Acute Myocardial Infarction) and ACUITY (Acute Catheterization and Urgent Intervention Triage Strategy) trials. JACC. 20l4; 63 (18): 1845–1854. DOI:10.1016/j.jacc.2014.01.034.4.; Blaha M.J., Budoff M.J., Tota-Maharaj R., Dardari Z.A., Wong N.D., Kronmal R.A., Eng J., Post W.S., Blumenthal R.S., Nasir K. Improving the CAC score by addition of regional measures of calcium distribution: Multi-Ethnic Study of Atherosclerosis. JACC Cardiovasc. Imaging. 2016; 9 (12): 1407–1416. DOI:10.1016/j.jcmg.2016.03.001.; Carr J.J., Jacobs D.R Jr., Terry J.G., Shay C.M., Sidney S., Liu K., Schreiner P.J., Lewis C.E., Shikany J.M., Reis J.P., Goff D.C. Jr. Association of Coronary Artery Calcium in Adults Aged 32 to 46 Years With Incident Coronary Heart Disease and Death. JAMA Cardiol. 2017; 2 (4): 391–399. DOI:10.1001/jamacardio.2016.5493.; Лутай М.И., Голикова И.П. Кальциноз венечных артерий и аорты у пациентов с хронической ишемической болезнью сердца: возрастные и гендерные особенности, взаимосвязь с факторами риска. Украинский кардиологический журнал. 2017; 1: 25–31. ISSN 1608-635X.; Hoffmann U., Massaro J.M., D’Agostino R.B. Sr., Kathiresan S., Fox C.S., O’Donnell C.J. Cardiovascular Event Prediction and Risk Reclassification by Coronary, Aortic, and Valvular Calcification in the Framingham Heart Study. J. Am. Heart. Assoc. 2016; 5 (2): e003144. DOI:10.1161/JAHA.115.003144.; Lehmann N., Erbel R., Mahabadi A.A., Rauwolf M., Möhlenkamp S., Moebus S., Kälsch H., Budde T., Schmermund A., Stang A., Führer-Sakel D., Weimar C., Roggenbuck U., Dragano N., Jöckel K.H. Value of progression of coronary artery calcification for risk prediction of coronary and cardiovascular events: result of the HNR Study (Heinz Nixdorf Recall). Heinz Nixdorf Recall Study Investigators.Circulation. 2018; 137 (7): 665–679. DOI:10.1161/CIRCULATIONAHA.116.027034.; Paixao A.R., Ayers C.R., El Sabbagh A., Sanghavi M., Berry J.D., Rohatgi A., Kumbhani D.J., McGuire D.K., Das S.R., de Lemos J.A., Khera A. Coronary artery calcium improves risk classification in younger populations. JACC Cardiovasc Imaging. 2015; 8 (11): 1285–1293. DOI:10.1016/j.jcmg.2015.06.015.; Criqui M.H., Knox J.B., Denenberg J.O., Forbang N.I., McClelland R.L., Novotny T.E., Sandfort V., Waalen J., Blaha M.J., Allison M.A. Coronary artery calcium volume and density: potential interactions and overall predictive value: the multi-ethnic study of atherosclerosis. JACC Cardiovasc. Imaging. 2017; 10 (8): 845–854. DOI:10.1016/j.jcmg.2017.04.018.; Forbang N.I., Michos E.D., McClelland R.L., Remigio-Baker R.A., Allison M.A., Sandfort V., Ix J.H., Thomas I., Rifkin D.E., Criqui M.H. Greater volume but not higher density of abdominal aortic calcium is associated with increased cardiovascular disease risk: MESA (Multi-Ethnic Study of Atherosclerosis). Circ. Cardiovasc. Imaging. 2016; 9 (11): e005138. DOI:10.1161/CIRCIMAGING.116.005138.; Puchner S.B., Mayrhofer T., Park J., Lu M.T., Liu T., Maurovich-Horvat P., Ghemigian K., Bittner D.O., Fleg J.L., Udelson J.E., Truong Q.A., Hoffmann U., Ferencik M. Differences in the association of total versus local coronary artery calcium with acute coronary syndrome and culprit lesions in patients with acute chest pain: The coronary calcium paradox. Atherosclerosis. 2018; 274: 251–257. DOI:10.1016/j.atherosclerosis. 2018.04.017.; Inaba M., Ueda M. Vascular calcification – pathological mechanism and clinical application. The significance of arterial calcification in unstable plaques. Clin. Calcium. 2015; 25 (5): 679–686. DOI: CliCa1505679686.; Holzapfel G.A., Mulvihill J.J., Cunnane E.M., Walsh M.T. Computational approaches for analyzing the mechanics of atherosclerotic plaques: a review. J. Biomech. 2014; 47 (4): 859–869. DOI:10.1016/j.jbiomech.2014.01.011.; Kataoka Y., Puri R., Hammadah M., Duggal B., Uno K., Kapadia S.R., Tuzcu E.M., Nissen S.E., Nicholls S.J. Spotty calcification and plaque vulnerability in vivo: frequency-domain optical coherence tomography analysis. Cardiovasc. Diagn. Ther. 2014; 4 (6): 460–469. DOI:10.3978/j.issn.2223-3652.2014.11.06.; https://bulletin.tomsk.ru/jour/article/view/2697

  15. 15
    Academic Journal

    Συνεισφορές: Статья подготовлена в рамках темы фундаментальных исследований № АААА-А15-115123110026-3.

    Πηγή: Bulletin of Siberian Medicine; Том 19, № 2 (2020); 63-71 ; Бюллетень сибирской медицины; Том 19, № 2 (2020); 63-71 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2020-19-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/2862/1742; https://bulletin.tomsk.ru/jour/article/view/2862/1767; Sato F., Maeda N., Yamada T., Namazui H., Fukuda S., Natsukawa T., Nagao H., Murai J., Masuda S., Tanaka Y., Obata Y., Fujishima Y., Nishizawa H., Funahashi T., Shimomura I. Association of epicardial, visceral, and subcutaneous fat with cardiometabolic diseases. Circ. J. 2018; 82 (2): 502–508. DOI:10.1253/circj.CJ-17-0820.; Kologrivova I.V., Vinnitskaya I.V., Koshelskaya O.A., Suslova T.E. Visceral obesity and cardiometabolic risk: features of hormonal and immune regulation. Obesity and Metabolism. 2017; 14 (3): 3–10. DOI:10.14341/OMET201733-10.; Maslov L.N., Naryzhnaya N.V., Boshchenko A.A., Popov S.V., Ivanov V.V., Oeltgen P.R. Is oxidative stress of adipocytes a cause or a consequence of the metabolic syndrome? Journal of Clinical and Translational Endocrinology. 2018; 15: 1–5. DOI:10.1016/j.jcte.2018.11.001.; Cavallotti C., D’Andrea V., Tonnarini G., Cavallotti C., Bruzzone P. Age-related changes in the human thymus studied with scanning electron microscopy. Microsc. Res. Tech. 2008; 71 (8): 573–578. DOI:10.1002/jemt.20588.; Safar M.E., Czernichow S., Blacher J. Obesity, arterial stiffness, and cardiovascular risk. J. Am. Soc. Nephrol. 2006; 17: S109–111. DOI:10.1681/ASN.2005121321.; Al-Talabany S., Mordi I., Graeme Houston J., Colhoun H.M., Weir-McCall J.R., Matthew S.Z., Looker H.C., Levin D., Belch J.J.F., Dove F., Khan F., Lang C.C. Epicardial adipose tissue is related to arterial stiffness and inflammation in patients with cardiovascular disease and type 2 diabetes. MC Cardiovasc. Disord. 2018; 18 (1): 31. DOI:10.1186/s12872-018-0770-z.; Akhmedzhanov N.M., Dedov I.I., Zvenigorodskaya L.A. et al. Russian experts’ consensus on metabolic syndrome problem in the Russian Federation: definition, diagnostic criteria, primary prevention, and treatment. Cardiovascular Therapy and Prevention. 2010; 9 (5): 4–11.; Thalmann S., Juge-Aubry C.E., Meier C.A. Explant cultures of white adipose tissue. In: adipose tissue protocols. Methods in Molecular Biology. Humana Press. 2008; 456: 195–199. DOI:10.1007/978-1-59745-245-8_14.; Hiuge-Shimizu A., Kishida K., Funahashi T. et al. Coexistence of visceral fat and multiple risk factor accumulations is strongly associated with coronary artery disease in japanese (The VACATION-J Study). Journal of Atherosclerosis and Thrombosis. 2012; 19 (7): 657–663. DOI:10.5551/jat.13037.; Abazid R., Kattea M., Sayed S. et al. Visceral adipose tissue influences on coronary artery calcification at young and middle-age groups using computed tomography angiography. Avicenna Journal of Medicine. 2015; 5 (3): 83–88. DOI:10.4103/2231-0770.160242.; Tanaka T., Kishi S., Ninomiya K., Tomii D., Koseki K., Sato Y., Okuno T., Sato K., Koike H., Yahagi K., Komiyama K., Aoki J., Tanabe K. Impact of abdominal fat distribution, visceral fat, and subcutaneous fat on coronary plaque scores assessed by 320-row computed tomography coronary angiography. Atherosclerosis. 2019; 287: 155–161. DOI:10.1016/j.atherosclerosis.2019.06.910.; Ronti T., Lupattelli G., Mannarino E. The endocrine function of adipose tissue: an update. Clinical Endocrinology. 2006; 64 (4): 355–365. DOI:10.1111/j.1365-2265.2006.02474.-х.; Ostanko V.L., Kalacheva T.P., Kalyuzhina E.V., Livshits I.K., Shalovay A.A., Chernogoryuk G.E., Bespalova I.D., Yunusov R.S., Lukashova L.V., Pomogaeva A.P., Teplyakov A.T., Kalyuzhin V.V. Biological markers in risk stratification and progression of cardiovascular disease: present and future. Bulletin of Siberian Medicine. 2018; 17 (4): 264–280. DOI:10.20538/1682-0363-2018-4-264–280.; Uchasova E.G., Gruzdeva O.V., Dyleva Y.A., Akbasheva O.E. Epicardial adipose tissue: pathophysiology and role in the development of cardiovascular diseases. Bulletin of Siberian Medicine. 2018; 17 (4): 254–263. DOI:10.20538/1682-0363-2018-4-254–263.; Neeland I.J., Ross R., Després J.P., Matsuzawa Y., Yamashita S., Shai I., Seidell J., Magni P., Santos R.D., Arsenault B., Cuevas A., Hu F.B., Griffin B., Zambon A., Barter P., Fruchart J.C., Eckel R.H. International atherosclerosis society; International chair on cardiometabolic risk working group on visceral obesity. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement. Lancet Diabetes Endocrinol. 2019; 7 (9): 715–725. DOI:10.1016/S2213-8587(19)30084-1.; Gullaksen S., Funck K.L., Laugesen E., Hansen T.K., Dey D., Poulsen P.L. Volumes of coronary plaque disease in relation to body mass index, waist circumference, truncal fat mass and epicardial adipose tissue in patients with type 2 diabetes mellitus and controls. Diab. Vasc. Dis. Res. 2019; 16 (4): 328–336. DOI:10.1177/1479164119825761.; Austys D., Dobrovolskij A., Jablonskienė V., Dobrovolskij V., Valevičienė N., Stukas R. Epicardial adipose tissue accumulation and essential hypertension in non-obese adults. Medicina (Kaunas). 2019; 55 (8): е456. DOI:10.3390/medicina55080456.; Ferrara D., Montecucco F., Dallegri F., Carbone F. Impact of different ectopic fat depots on cardiovascular and metabolic diseases. J. Cell Physiol. 2019; 234 (12): 21630–21641. DOI:10.1002/jcp.28821.; Kohara K., Ochi M., Okada Y., Yamashita T., Ohara M., Kato T., Nagai T., Tabara Y., Igase M., Miki T. Clinical characteristics of high plasma adiponectin and high plasma leptin as risk factors for arterial stiffness and related end-organ damage. Atherosclerosis. 2014; 235 (2): 424–429. DOI:10.1016/j.atherosclerosis.2014.05.940.; Mac Ananey O., McLoughlin B., Leonard A., Maher L., Gaffney P., Boran G., Maher V. Inverse relationship between physical activity, adiposity, and arterial stiffness in healthy middle-aged subjects. J. Phys. Act Health. 2015; 12 (12): 1576–1581. DOI:10.1123/jpah.2014-0395.; Zachariah J.P., Hwang S., Hamburg N.M., Benjamin E.J., Larson M.G., Levy D., Vita J.A., Sullivan L.M., Mitchell G.F., Vasan R.S. Circulating adipokines and vascular function: cross-sectional associations in a community-based cohort. Hypertension. 2016; 67 (2): 294–300. DOI:10.1161/HYPERTENSIONAHA.115.05949.; Aitken-Buck H.M., Babakr A.A., Coffey S., Jones P.P., Tse R.D., Lamberts R.R. Epicardial adipocyte size does not correlate with body mass index. Cardiovasc. Pathol. 2019; 43: 107144. DOI:10.1016/j.carpath.2019.07.003.; Bambace C., Telesca M., Zoico E., Sepe A., Olioso D., Rossi A., Corzato F., Di Francesco V., Mazzucco A., Santini F., Zamboni M. Adiponectin gene expression and adipocyte diameter: a comparison between epicardial and subcutaneous adipose tissue in men. Cardiovasc. Pathol. 2011; 20 (5): e153–156. DOI:10.1016/j.carpath.2010.07.005.; Martínez-Martínez E., Miana M., Jurado-López R., Bartolomé M.V., Souza Neto F.V., Salaices M., López-Andrés N., Cachofeiro V. The potential role of leptin in the vascular remodeling associated with obesity. Int. J. Obes (Lond.). 2014; 38 (12): 1565–1572. DOI:10.1038/ijo.2014.37.; Trovati M., Doronzo G., Barale C., Vaccheris C., Russo I., Cavalot F. Leptin and vascular smooth muscle cells. Curr. Pharm. Des. 2014; 20 (4): 625–634. DOI:10.2174/13816128113199990022.; Sista A.K., O’Connell M.K., Hinohara T., Oommen S.S., Fenster B.E., Glassford A.J., Schwartz E.A., Taylor C.A., Reaven G.M., Tsao P.S. Increased aortic stiffness in the insulin-resistant Zucker fa/fa rat. Am. J. Physiol. Heart Circ. Physiol. 2005; 289 (2): H845–851. DOI:10.1152/ajpheart.00134.2005.; Sun H., Zhong M., Miao Y., Ma X., Gong H.P., Tan H.W., Zhang Y., Zhang W. Impaired elastic properties of the aorta in fat-fed, streptozotocin-treated rats. Vascular remodeling in diabetic arteries. Cardiology. 2009; 114 (2): 107–113. DOI:10.1159/000219211.; Gordin D., Saraheimo M., Tuomikangas J., Soro-Paavonen A., Forsblom C., Paavonen K., Steckel-Hamann B., Harjutsalo V., Nicolaou L., Pavo I., Koivisto V., Groop P.H. Insulin exposure mitigates the increase of arterial stiffness in patients with type 2 diabetes and albuminuria: an exploratory analysis. Acta Diabetol. 2019; 56 (11): 1169–1175. DOI:10.1007/s00592-019-01351-4.; Doronzo G., Russo I., Mattiello L., Riganti C., Anfossi G., Trovati M. Insulin activates hypoxia-inducible factor-1alpha in human and rat vascular smooth muscle cells via phosphatidylinositol-3 kinase and mitogen-activated protein kinase pathways: impairment in insulin resistance owing to defects in insulin signalling. Diabetologia. 2006; 49 (5): 1049–1063. DOI:10.1007/s00125-006-0156-0.; Mahmoud A.M., Ali M.M., Miranda E.R., Mey J.T., Blackburn B.K., Haus J.M., Phillips S.A. Nox2 contributes to hyperinsulinemia-induced redox imbalance and impaired vascular function. Redox Biol. 2017; 13: 288–300. DOI:10.1016/j.redox.2017.06.001.; https://bulletin.tomsk.ru/jour/article/view/2862

  16. 16
    Academic Journal

    Πηγή: The Russian Archives of Internal Medicine; Том 10, № 2 (2020); 155-160 ; Архивъ внутренней медицины; Том 10, № 2 (2020); 155-160 ; 2411-6564 ; 2226-6704 ; 10.20514/2226-6704-2020-0-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medarhive.ru/jour/article/view/1027/895; https://www.medarhive.ru/jour/article/view/1027/904; Галушко Е.А., Насонов Е.Л. Распространенность ревматических заболеваний в России. Альманах клинической медицины. 2018, 46(1): 32–39. doi:10.18786/2072-0505-201846-1-32-39; Алексенко Е.Ю., Цвингер С.М. Уровень провоспалительных цитокинов и состояние эндотелиальной функции у больных остеоартрозом в зависимости от интенсивности боли. Медицинская иммунология. 2017, 19(3): 307-312. DOI:10.15789/1563-0625-2017-3-307-312; Панина С.Б. Полиморфизмы генов как фактор риска развития остеоартроза. Медицинский вестник Юга России. 2014;(2):1320. https://doi.org/10.21886/2219-8075-2014-2-13-20; Кох Н.В., Лифшиц Г.И., Воронина Е.Н. Возможности анализа полиморфизма генов липидного обмена для выявления факторов риска развития атеросклероза. Российский кардиологический журнал 2014, 10 (114): 53–57. https://doi.org/10.15829/1560-4071-2014-10-53-057; Цвингер С.М., Говорин А.В., Портянникова О.О., Романова Е.Н. Патогенетические взаимосвязи остеоартроза и атеросклероза. ЭНИ Забайкальский медицинский вестник. 2017; (4): 164-173.; Кадурина Т.И., Горбунова В.Н. Дисплазия соединительной ткани. Руководство для врачей. Россия: ЭЛБИ — СПб. 2009; 704 с.; Тепляков А.Т., Березикова Е.Н., Шилов С.Н. и др. Оценка роли полиморфизма гена матриксной металлопротеиназы — 3 в развитии хронической сердечной недостаточности. Тер. Архив. 2015. 87(4): 8-12. doi:10.17116/terarkh20158748-12.; Mittаl B., Mishrа А., Srivаstаvа А., Kumаr S., Gаrg N. Mаtriх mеtаllоprоtеinаsеs in cоrоnаry аrtеry disеаsе. Аdv Clin Chеm 2014; 64: 1—72; Arden N., Blanco F.J., Bruyere O. et al. Atlas of osteoarthritis. Second edition. European Society for clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). ISBN 978-1-910315-68-2 (Print), 2018; 19-21.; Джазаева М.Б., Гладких Н.Н., Решетников В.А., Ягода А.В. Матриксные металлопротеиназы: значение в ремоделировании сердца у пациентов с дисплазией соединительной ткани. Медицинский вестник Северного Кавказа. 2018; 13(4): 576-580. https://doi.org/10.14300/mnnc.2018.13108.; https://www.medarhive.ru/jour/article/view/1027

  17. 17
    Academic Journal

    Πηγή: Siberian Journal of Clinical and Experimental Medicine; Том 35, № 1 (2020); 28-37 ; Сибирский журнал клинической и экспериментальной медицины; Том 35, № 1 (2020); 28-37 ; 2713-265X ; 2713-2927 ; 10.29001/2073-8552-2020-35-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/910/507; MacMahon S., Peto R., Cutler J., Collins R., Sorlie P., Neaton J. et al. Blood pressure, stroke, and coronary heart disease. Part 1, Prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet. 1990;335(8692):765–774.; Virdis A., Dell’Agnello U., Taddei S. Impact of inflammation on vascular disease in hypertension. Maturitas. 2014;78(3):179–183. DOI:10.1016/j.maturitas.2014.04.012.; Василец Л.М., Григориади Н.Е., Гордийчук Р.Н., Карпунина Н.С., Щербенев В.М. Прогностическая значимость факторов системного воспаления у больных с ишемической болезнью сердца. Сибирский медицинский журнал (Иркутск). 2013;116(1):50–52.; Зюбанова И.В., Мордовин В.Ф., Фальковская А.Ю., Пекарский С.Е. Изменения показателей суточного мониторирования артериального давления под влиянием ренальной денервации в течение 12-месячного наблюдения. Сибирский медицинский журнал. 2015;30(3):41–44. DOI:10.29001/2073-8552-2015-30-3-41-44.; Рипп Т.М., Мордовин В.Ф., Пекарский С.Е., Рябова Т.Р., Злобина М.В., Семке Г.В. и др. Кардиопротективные возможности денервации почек при лечении резистентной гипертонии, поиск предикторов эффективности. Артериальная гипертензия. 2014;20(6):559–567. DOI:10.18705/1607-419X-2014-20-6-559-567.; Фальковская А.Ю., Мордовин В.Ф., Пекарский С.Е., Баев А.Е., Семке Г.В., Рипп Т.М. и др. Дополнительные благоприятные эффекты симпатической денервации почек при лечении резистентной артериальной гипертензии у больных сахарным диабетом 2-го типа. Артериальная гипертензия. 2014;20(2):107–112. DOI:10.18705/1607-419X-2014-20-2-107-112.; Mahfoud F., Böhm M., Schmieder R., Narkiewicz K., Ewen S., Ruilope L. et al. Effects of renal denervation on kidney function and long-term outcomes: 3-year follow-up from the Global SYMPLICITY Registry. European Heart Journal. 2019;21:ehz118. DOI:10.1093/eurheartj/ehz118.; Atti V., Turagam M.K., Garg J., Lakkireddy D. Renal sympathetic denervation improves clinical outcomes in patients undergoing catheter ablation for atrial fibrillation and history of hypertension: A meta-analysis. J. Cardiovasc. Electrophysiol. 2019;30(5):702–708. DOI:10.1111/jce.13868.; Gao J.Q., Yang W., Liu Z. Percutaneous renal artery denervation in patients with chronic systolic heart failure: a randomized controlled trial. Cardiol. J. 2018;3. DOI:10.5603/CJ.a2018.0028.; Dörr O., Liebetrau C., Möllmann H., Mahfoud F., Ewen S., Gaede L. et al. Beneficial effects of renal sympathetic denervation on cardiovascular inflammation and remodeling in essential hypertension. Clin. Res. Cardiol. 2015;104(2):175–184. DOI:10.1007/s00392-014-0773-4.; Kablak-Ziembicka A., Przewlocki T., Sokołowski A., Tracz W., Podolec P. Carotid intima-media thickness, hs-CRP and TNF-α are independently associated with cardiovascular event risk in patients with atherosclerotic occlusive disease. Atherosclerosis. 2011;214(1):185–190. DOI:10.1016/j.atherosclerosis.2010.10.017.; Kotchen T.A. Hypertensive vascular diseases. In: Kasper D., Fauci A., Hauser S., Longo D., Jameson J., Loscalzo J., editors. Harrison’s principles of internal medicine. New York: McGraw-Hill; 2015:1611–1626.; Völz S., Svedlund S., Andersson B., Li-Ming G., Rundqvist B. Coronary flow reserve in patients with resistant hypertension. Clin. Res. Cardiol. 2017;106(2):151–157. DOI:10.1007/s00392-016-1043-4.; Gonçalves I., Edsfeldt A., Colhoun H.M. , Shore A.C., Palombo C., Natali A. et al. SUMMIT consortium. Association between renin and atherosclerotic burden in subjects with and without type 2 diabetes. BMC Cardiovasc. Disord. 2016;171. DOI:10.1186/s12872-016-0346-8.; Zhu M., Lin J., Wang C., Yang M., Lv H., Yang M. et al. The relationship among angiotensinogen genes polymorphisms and hs-CRP and coronary artery disease. J. Clin. Lab. Anal. 2019;33(5):e22881. DOI:10.1002/jcla.22881.; Ross R. Atherosclerosis-an inflammatory disease. N. Engl. J. Med. 1999;340(2):115–126.; Yu X., Yang Z., Yu M. Correlation of tumor necrosis factor alpha and interleukin 6 with hypertensive renal damage. Ren. Fail. 2010;32(4):475–479. DOI:10.3109/08860221003664280.; Fon Tacer K., Kuzman D., Seliskar M., Pompon D., Rozman D. TNF-alpha interferes with lipid homeostasis and activates acute and proatherogenic processes. Physiol. Genomics. 2007;31(2):216–227. DOI:10.1152/physiolgenomics.00264.2006.; Tajfard M., Tavakoly Sany S.B., Avan A., Latiff L.A., Rahimi H.R., Moohebati M. et al. Relationship between serum high sensitivity C-reactive protein with angiographic severity of coronary artery disease and traditional cardiovascular risk factors. J. Cell Physiol. 2019;234(7):10289–10299. DOI:10.1002/jcp.27945.; Tan Z., Li L., Ma Y., Geng X. Clinical significance of cys-C and hs-CRP in coronary heart disease patients undergoing percutaneous coronary intervention. Braz. J. Cardiovasc. Surg. 2019;34(1):17–21. DOI:10.21470/1678-9741-2018-0171.; Yao W., Wang N., Qian J., Bai L., Zheng X., Hou G. et al. Renal sympathetic denervation improves myocardial apoptosis in rats with isoproterenol-induced heart failure by downregulation of tumor necrosis factor-α and nuclear factor-κB. Exp. Ther. Med. 2017;14(5):4104–4110. DOI:10.3892/etm.2017.5066.; Liu Q., Zhang Q., Wang K., Wang S., Lu D., Li Z. et al. Renal denervation findings on cardiac and renal fibrosis in rats with isoproterenol induced cardiomyopathy. Sci. Rep. 2015;5:18582. DOI:10.1038/srep18582.; Фальковская А.Ю., Мордовин В.Ф., Пекарский С.Е., Баев А.Е., Семке Г.В., Рипп Т.М. и др. Динамика состояния углеводного обмена после ренальной денервации у больных резистентной артериальной гипертонией в сочетании с сахарным диабетом 2-го типа. Бюллетень сибирской медицины. 2015;14(5):82–90. DOI:10.20538/1682-0363-2015-5-82-90.; Barcelos A.L.V., de Oliveira E.A., Haute G.V., Costa B.P., Pedrazza L., Donadio M.V.F. et al. Association of IL-10 to coronary disease severity in patients with metabolic syndrome. Clin. Chim. Acta. 2019;495:394–398. DOI:10.1016/j.cca.2019.05.006.; https://www.sibjcem.ru/jour/article/view/910

  18. 18
  19. 19
  20. 20
    Academic Journal

    Πηγή: Siberian Journal of Clinical and Experimental Medicine; Том 33, № 4 (2018); 10-18 ; Сибирский журнал клинической и экспериментальной медицины; Том 33, № 4 (2018); 10-18 ; 2713-265X ; 2713-2927 ; 10.29001/2073-8552-2018-33-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/606/395; Causes of death statistics Data extracted in May 2017. Most recent data: Further Eurostat information, Main tables and Database. Planned article update: September 2018. https://ec.europa.eu/eurostat/statistics-explained/index.php? title=Cardiovascular_diseases_statistics&oldid=362634; Townsend N., Wilson L., Bhatnagar P., Wickramasinghe K., Rayner M., Nichols M. Cardiovascular disease in Europe: epidemiological update 2016. Eur. Heart J. 2016; 37(42): 3232–3245. DOI: https://doi.org/10.1093/eurheartj/ehw334; Ibanez B., James S., Agewall S., Antunes M. J., Bucciarelli-Ducci C., Bueno H., Caforio A. L. P., Crea F., Goudevenos J. A., Halvorsen S., Hindricks G., Kastrati A., Lenzen M. J., Prescott E., Roffi M., Valgimigli M., Varenhorst C., Vranckx P., Widimský P.; ESC Scientific Document Group. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with STsegment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2018; 39(2): 119–177. DOI:10.1093/eurheartj/ehx393.; Pais J. L., Izquierdo B., González V., Magana J. G., Caballero R. M., Espinosa Pascual M. J., Galán D., Peredo C. G. M., Awamleh P., Martin J. A. Incidence, clinical profile and prognosis of patients with myocardial infarction with non-obstructive coronary arteries in the real world. J. Am. Coll. Cardiol. 2017; 69(11): 142. DOI:10.1016/S0735-1097(17)33531-3.; Manolis A. S., Manolis A. A., Manolis T. A., Melita H. Acute coronary syndromes in patients with angiographically normal or near normal (non-obstructive) coronary arteries. Trends in Cardiovascular Medicine. 2018; 28: 541–551. DOI:10.1016/j.tcm.2018.05.006.; DeWood M. A., Spores J., Notske R., Mouser L. T., Burroughs R., Golden M. S., Lang H. T. Prevalence of total coronary occlusion during the early hours of transmural myocardial infarction. N. Engl. J. Med. 1980; 303: 897–902.; Lance Gould K., Lipscomb K. Effects of coronary stenoses on coronary flow reserve and resistance K. Am. J. Cardiol. 1974; 34: 48–55. DOI: https://doi.org/10.1016/0002-9149(74)90092-7; Levine G. N., Bates E. R., Blankenship J. C., Bailey S. R., Bittl J. A., Cercek B., Chambers C. E., Ellis S. G., Guyton R. A., Hollenberg S. M., Khot U. N., Lange R. A., Mauri L., Mehran R., Moussa I. D., Mukherjee D., Nallamothu B. K., Ting H. H. 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention. A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. J. Am. Coll. Cardiol. 2011; 58: 44–122. DOI:10.1016/j.jacc.2011.08.006.; Agewall S., Beltrame J. F., Reynolds H. R., Niessner A., Rosano G., Caforio A. L. P., De Caterina R., Zimarino M., Roffi M., Kjeldsen K. ESC working group position paper on myocardial infarction with non-obstructive coronary arteries. Eur. Heart J. 2017; 38(3): 143–153. DOI:10.1093/eurheartj/ehw149.; Thygesen K., Alpert J. S., Jaffe A. S., Simoons M. L., Chaitman B. R., White H. D. and the Writing Group on behalf of the Joint ESC/ACCF/AHA/WHF Task Force for the Universal Definition of Myocardial Infarction. Third Universal Definition of Myocardial; Infarction. Circulation. 2012; 126: 2020–2035. DOI:10.1161/CIR.0b013e31826e1058.; Bugiardini R., Manfrini O., De Ferrari G. M. Unanswered questions for management of acute coronary syndrome: risk stratification of patients with minimal disease or normal findings on coronary angiography. Arch. Intern. Med. 2006; 166: 1391–1395. DOI:10.1001/archinte.166.13.1391.; Gehrie E. R., Reynolds H. R., Chen A. Y., Neelon B. H., Roe M. T., Gibler W. B., Ohman E. M., Newby L. K., Peterson E. D., Hochman J. S. Characterization and outcomes of women and men with non-ST-segment elevation myocardial infarction and nonobstructive coronary artery disease: results from the can rapid risk stratification of unstable angina patients suppress adverse outcomes with early implementation of the ACC/AHA guidelines (CRUSADE) quality improvement initiative. Am. Heart J. 2009; 158: 688–694. DOI:10.1016/j.ahj.2009.08.004.; Bugiardini R., Bairey Merz C. N. Angina with “normal” coronary arteries: a changing philosophy. JAMA. 2005; 293: 477–484. DOI:10.1001/jama.293.4.477.; Pasupathy S., Air T., Dreyer R. P., Tavella R., Beltrame J. F. Systematic review of patients presenting with suspected myocardial infarction and nonobstructive coronary arteries. Circulation. 2015; 131(10): 861–870. DOI:10.1161/CIRCULATIONAHA.; 011201.; Lindahl B., Baron T., Erlinge D., Hadziosmanovic N., Nordenskjöld A., Gard A., Jernberg T. Medical Therapy for Secondary Prevention and Long-Term Outcome in Patients with Myocardial Infarction with Nonobstructive Coronary Artery Disease. Circulation. 2017; 135: 1481–1489. DOI:10.1161/CIRCULATIONAHA.116.026336.; Рябов В. В., Сыркина А. Г., Белокопытова Н. В., Марков В. А., Эрлих А. Д. Острый коронарный синдром с подъемом сегмента ST у пациентов с необструктивным поражением коронарного русла: данные регистра РЕКОРД-3. Российский кардиологический журнал. 2017; 11(151): 15–21. DOI: http://dx.doi.org/10.15829/1560-4071-2017-11-15-21; Safdar B., Spatz E.S., Dreyer R. P., Beltrame J. F., Lichtman J. H., Spertus J. A., Reynolds H. R., Geda M., Bueno H., Dziura J. D., Krumholz H. M., D’Onofrio G. Presentation, Clinical Profile, and Prognosis of Young Patients with Myocardial Infarction with Nonobstructive Coronary Arteries (MINOCA): Results from the VIRGO Study. J. Am. Heart Assoc. 2018; 7: 009174. DOI:10.1161/JAHA.118.009174.; Рябов В. В., Гомбоева С. Б., Шелковникова Т. А., Баев А. Е., Ребенкова М. С., Роговская Ю. В., Усов В. Ю. Магнитно-резонансная томография сердца в дифференциальной диагностике острого коронарного синдрома у больных необструктивным коронарным атеросклерозом. Российский кардиологический журнал. 2017; (12): 47–54. DOI: https://doi.org/10.15829/1560-4071-2017-12-47-54; Scalone G., Niccoli G., Crea F. Pathophysiology, diagnosis and management of MINOCA: an update. Eur. Heart J.: Acute Cardiovasc. Care. 2018; 1–9. DOI: https://doi.org/10.1177/2048872618782414; Ouldzein H., Elbaz M., Roncalli J., Cagnac R., Carrié D., Puel J., Alibelli-Chemarin M. J. Plaque rupture and morphological characteristics of the culprit lesion in acute coronary syndromes without significant angiographic lesion: analysis by intravascular ultrasound. Ann. Cardiol. Angeiol. (Paris). 2012; 61(1): 20–26. DOI:10.1016/j.ancard.2011.07.011.; Jia H., Abtahian F., Aguirre A. D. In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography. J. Am. Coll. Cardiol. 2013; 62: 1748–1758.; Thygesen K., Alpert J. S., Jaffe A. S., Chaitman B. R., Bax J. J., Morrow D. A., White H. D.; ESC Scientific Document Group. Fourth universal definition of myocardial infarction (2018). Eur. Heart J. 2018; 00, 1–33. DOI:10.1093/eurheartj/ehy462.; Da Costa A., Isaaz K., Faure E., Mourot S., Cerisier A., Lamaud M. Clinical characteristics, aetiological factors and long-term prognosis of myocardial infarction with an absolutely normal coronary angiogram; a 3-year follow-up study of 91 patients. Eur. Heart J. 2001; 22(16): 1459–1465.; Mark D. B., Califf R. M., Morris K. G., Harrell Jr. F. E., Pryor D. B., Hlatky M. A. Clinical characteristics and long-term survival of patients with variant angina. Circulation. 1984; 69: 880–888.; Montone R. A., Niccoli G., Fracassi F., Russo M., Gurgoglione F., Camma` G., Lanza G. A., Crea F. Patients with acute myocardial infarction and non-obstructive coronary arteries: safety and prognostic relevance of invasive coronary provocative tests. Eur. Heart J. 2017; 0: 1–9. DOI:10.1093/eurheartj/ehx667.; Shibata T., Kawakami S., Noguchi T., Tanaka T., Asaumi Y., Kanaya T., Nagai T., Nakao K., Fujino M., Nagatsuka K., Ishibashi-Ueda H., Nishimura K., Miyamoto Y., Kusano K., Anzai T., Goto Y., Ogawa H., Yasuda S. Prevalence, Clinical Features, and Prognosis of Acute Myocardial Infarction Due to Coronary Artery Embolism. Circulation. 2015; 132(4): 241–250. http://circ.ahajournals.org/content/early/2015/06/25/CIRCULATIONAHA.114.015134. DOI:10.1161/CIRCULATIONAHA.114.015134.; Rajiah P., Desai M. Y., Kwon D., Flamm S. D. MR Imaging of Myocardial Infarction. Radiographics. 2013; 33(5): 1383–1412. DOI:10.1148/rg.335125722.; Стукалова О. В., Гупало Е. М., Миронова Н. А., Егиазарян Л. Г., Уцумуева М. Д. Роль МРТ сердца с контрастированием в диагностике миокардита с различным клиническим течением. Сердце: журнал для практикующих врачей. 2016; 15(2): 133–140. DOI:10.18087/rhj.2016.2.2171.; Herzog B., Greenwood J., Plein S. CMR Pocket Guide, 2013. https://www.escardio.org/static_file/Escardio/Subspecialty/EACVI/CMR-guide-2013.pdf; Mahrholdt H., Wagner A., Judd R. M., Sechtem U., Kim R. J. Delayed enhancement cardiovascular magnetic resonance assessment of non-ischaemic cardiomyopathies. Eur. Heart J. 2005 Aug; 26(15): 1461–1474.; Kawecki D., Morawiec B., Monney P., Pellaton C., Wojciechowska C., Jojko J., Basiak M., Przywara-Chowaniec B., Fournier S., Nowalany-Kozielska E., Schwitter J., Muller O. Diagnostic Contribution of Cardiac Magnetic Resonance in Patients with Acute Coronary Syndrome and Culprit-Free Angiograms. Med. Sci. Monit. 2015; 21: 171–180.; Poku N., Noble S. Myocardial Infarction with non obstructive coronary arteries (MINOCA): a whole new ball game. Exp. Rev. Cardiovasc. Therapy. 2017; 1: 7–14. DOI:10.1080/14779072.2017.1266256.; Lurz P., Eitel I., Adam J., Steiner J., Grothoff M., Desch S., Fuernau G., de Waha S., Sareban M., Luecke C., Klingel K., Kandolf R., Schuler G., Gutberlet M., Thiele H. Diagnostic performance of CMR imaging compared with EMB in patients with suspected myocarditis. Cardiovasc. Imaging. 2012, 5: 513–524. DOI:10.1016/j.jcmg.2011.11.022.; Pasupathy S., Tavella R., Beltrame J. F. The What, When, Who, Why, How and Where of Myocardial Infarction with Non-Obstructive Coronary Arteries (MINOCA). Circ. J. 2016; 80: 11–16. DOI:10.1253/circj.CJ-15-1096.; Мухина П. Н., Воробьева Н. А., Белякова И. В. Генетические полиморфизмы метилентетрагидрофолатредуктазы и их влияние на уровень гомоцистеина плазмы крови и на отдаленные результаты течения острого инфаркта миокарда. Экология человека. 2012; 10: 54–60.; Hen L., Liu L., Hong K., Cheng X. Three Genetic Polymorphisms of Homocysteine-Metabolizing Enzymes and Risk of Coronary Heart Disease: A Meta-Analysis Based on 23 Case — Control Studies. DNA and Cell Biology. 2012; 31(2): 238–249. DOI:10.1089/dna.2011.1281.; Лебедева А. Ю., Михайлова К. В. Гипергомоцистеинемия: современный взгляд на проблему. Российский кардиологический журнал. 2006; 8: 149–157. DOI:10.15829/1560-4071-2006-0-149-157.; Eggers K. M., Hadziosmanovic N., Baron T., Hambraeus K., Jernberg T., Nordenskjöld A., Tornvall P., Lindahl B. Myocardial Infarction with Non-Obstructive Coronary Arteries — the Importance of Achieving Secondary Prevention Targets. Am. J. Med. 2018 May; 131(5): 524–531.e6. DOI:10.1016/j.amjmed.2017.12.008.; De Ferrari G. M., Fox K. A., White J. A., Giugliano R. P., Tricoci P., Reynolds H. R., Hochman J. S., Gibson C. M., Théroux P., Harrington R. A., Van de Werf F., White H. D., Califf R. M., Newby L. K. Outcomes among non-ST-segment elevation acute coronary syndromes patients with no angiographically obstructive coronary artery disease: observations from 37,101 patients. Eur. Heart J. Acute Cardiovasc. Care. 2014; 3(1): 37–45. DOI:10.1177/2048872613489315.; Planer D., Mehran R., Magnus Ohman E., Harvey D. White, Newman J. D., Ke Xu, Gregg W. Stone, Prognosis of Patients with Non-ST-Segment — Elevation Myocardial Infarction and Nonobstructive Coronary Artery Disease Propensity-Matched Analysis From the Acute Catheterization and Urgent Intervention Triage Strategy Trial. Circ. Cardiovasc. Interv. 2014; 7(3): 285–293. DOI:10.1161/CIRCINTERVENTIONS.113.000606.; Gehrie E. R., Reynolds H. R., Chen A. Y., Neelon B. H., Roe M. T., Gibler W. B., Magnus Ohman E., Newby L. K., Peterson E. D., Hochman J. S. Characterization and outcomes of women and men with non-ST-segment elevation myocardial infarction and nonobstructive coronary artery disease: results from the Can Rapid Risk Stratification of Unstable Angina Patients Suppress Adverse Outcomes with Early Implementation of the ACC/AHA Guidelines (CRUSADE) quality improvement initiative. Am. Heart J. 2009; 158: 688–694. DOI:10.1016/j.ahj.2009.08.004.; Larsen A. I., Dennis W. T., Nilsen J. Yu., Mehran R., Nikolsky E., Lansky A. J., Caixeta A., Parise H., Fahy M., Cristea E., Witzenbichler B., Guagliumi G., Peruga Jan Z., Brodie B. R., Dudek D., Stone G. W. Long-Term Prognosis of Patients Presenting with ST-Segment Elevation Myocardial Infarction with No Significant Coronary Artery Disease (from The HORIZONS-AMI Trial). Am. J. Cardiol. 2013; 111: 643–648. DOI:10.1016/j.amjcard.2012.11.011.; Nordenskjöld A. M., Baron T., Eggers K. M., Jernberg T., Lindahl B. Predictors of adverse outcome in patients with myocardial infarction with non-obstructive coronary artery (MINOCA) disease. Int. J. Cardiol. 2018 Jun 15; 261: 18–23. DOI:10.1016/j.ijcard.2018.03.056.; https://www.sibjcem.ru/jour/article/view/606