Showing 1 - 20 results of 210 for search '"конусно-лучевая компьютерная томография"', query time: 0.63s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
    Academic Journal

    Contributors: 1

    Source: Almanac of Clinical Medicine; Vol 51, No 3 (2023); 200-205 ; Альманах клинической медицины; Vol 51, No 3 (2023); 200-205 ; 2587-9294 ; 2072-0505

    File Description: application/pdf

  11. 11
    Academic Journal

    Source: Acta Biomedica Scientifica; Том 8, № 5 (2023); 182-191 ; 2587-9596 ; 2541-9420

    File Description: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/4457/2667; https://www.actabiomedica.ru/jour/article/view/4457/2886; Олейникова Т.А., Пожидаева Д.Н., Орешко А.Ю. Мониторинг заболеваемости патологиями костно-мышечной системы и соединительной ткани в Российской Федерации. Фармакоэкономика. Современная фармакоэкономика и фармакоэпидемиология. 2019; 12(1): 5-13. doi:10.17749/2070-4909.2019.12.1.5-13; Тихонова Г.И., Горчакова Т.Ю. Проблемы здоровья населения трудоспособного возраста и его информационного обеспечения. Вестник Южно-Российского государственного технического университета (НПИ). 2022; 15(4): 228-245. doi:10.17213/2075-2067-2022-4-228-245; Минаев С.В., Филипьева Н.В., Лескин В.В., Загуменнова И.Ю., Ростова Н.П., Шамадаев Э.З. Применение лучевых методов в диагностике острого гематогенного остеомиелита у детей. Доктор.Ру. 2018; 5(149): 32-36. doi:10.31550/1727-2378-2018-149-5-32-36; Шолохова Н.А. Визуализация поражений метафизов и эпифизов костей у новорожденных и детей раннего возраста. Радиология – практика. 2021; 5(89): 82-92. doi:10.52560/2713-0118-2021-5-82-90; Ricci PM, Boldini M, Bonfante E, Sambugaro E, Vecchini E, Schenal G, et al. Cone-beam computed tomography compared to X-ray in diagnosis of extremities bone fractures: A study of 198 cases. Eur J Radiol Open. 2019; 6: 119-121. doi:10.1016/j.ejro.2019.01.009; Шолохова Н.А., Ганиева А.М., Лежнев Д.А. Современное состояние вопроса комплексной лучевой диагностики остеомиелита у детей и подростков. Вестник СурГу. Медицина. 2019; 4(42): 8-13. doi:10.34822/2304-9448-2019-4-8-13; Васильев А.Ю., Блинов Н.Н. (мл.), Егорова Е.А. Конусно-лучевая компьютерная томография – новая технология исследования в травматологии. Медицинская визуализация. 2012; 4: 65-68.; Титов А.Д. Конус-лучевая компьютерная томография (КЛКТ). Центральный научный вестник. 2017; 10(27): 27-28.; Mozzo P, Procacci C, Tacconi A, Martini PT, Andreis IA. A new volumetric CT machine for dental imaging based on the conebeam technique: Preliminary results. Eur Radiol. 1998; 8(9): 1558-1564. doi:10.1007/s003300050586; Кушнир К.В., Макарова Д.В., Лежнев Д.А. Значение конусно-лучевой компьютерной томографии в ревматологической практике. Медицинский вестник МВД. 2017; 1(86): 56-60.; Mys K, Varga P, Stockmans F, Gueorguiev B, Neumann V, Vanovermeire O, et al. High-resolution cone-beam computed tomography is a fast and promising technique to quantify bone microstructure and mechanics of the distal radius. Calcified Tissue Int. 2021; 108(3): 314-323. doi:10.1007/s00223-020-00773-5; Posadzy M, Desimpel J, Vanhoenacker F. Cone beam CT of the musculoskeletal system: Clinical applications. Insights Imaging. 2018; 9(1): 35-45. doi:10.1007/s13244-017-0582-1; Lezhnev DA, Vislobokova EV, Kiselnikova LP, Sholokhova NA, Smyslenova MV, Truten VP. Analysis of mineral density of calcified tissues in children with X-linked hypophosphatemic rickets and hypophosphatasia using cone beam computed tomography data. Int J Biomed. 2021; 11(1): 53-57. doi:10.21103/Article11(1)_OA11; Aurell Y, Andersson M, Forslind K. Cone-beam computed tomography, a new low-dose three-dimensional imaging technique for assessment of bone erosions in rheumatoid arthritis: Reliability assessment and comparison with conventional radiography – A BARFOT study. Scand J Rheumatol. 2018; 47(3): 173-177. doi:10.1080/03009742.2017.1381988; Deland JT. Adult-acquired flatfoot deformity. J Am Acad Orthop Surg. 2008; 16(7): 399-406. doi:10.5435/00124635-200807000-00005; Henry JK, Shakked R, Ellis SJ. Adult-acquired flatfoot deformity. Foot Ankle Orthop. 2019; 4(1): 2473011418820847. doi:10.1177/2473011418820847; de Cesar Netto C, Schon LC, Thawait GK, da Fonseca LF, Chinanuvathana A, Zbijewski WB, et al. Flexible adult acquired flatfoot deformity: comparison between weight-bearing and nonweight-bearing measurements using cone-beam computed tomography. J Bone Joint Surg Am. 2017; 99(18): e98. doi:10.2106/JBJS.16.01366; Borel C, Larbi A, Delclaux S, Lapegue F, Chiavassa-Gandois H, Sans N, et al. Diagnostic value of cone beam computed tomography (CBCT) in occult scaphoid and wrist fractures. Eur J Radiol. 2017; 97: 59-64. doi:10.1016/j.ejrad.2017.10.010; Fitzpatrick E, Sharma V, RojoaD, Raheman F, SinghH. The use of cone-beam computed tomography (CBCT) in radiocarpal fractures: A diagnostic test accuracy meta-analysis. Skeletal Radiol. 2022; 51(5): 923-934. doi:10.1007/s00256-021-03883-9; Neubauer J, Benndarf M, Ehritt-Braun C, Reising K, Yilmaz T, Christopher K, et al. Comparison of the diagnostic accuracy of cone beam computed tomography and radiography for scaphoid fractures. Sci Rep. 2018; 8(1): 3906. doi:10.1038/s41598-018-22331-8; Acar K, Aksay E, Oray D, Imamoğlu T, Gunay E. Utility of computed tomography in elbow trauma patients with normal X-ray study and positive elbow extension test. J Emerg Med. 2016; 50(3): 444-448. doi:10.1016/j.jemermed.2015.03.009; Koivisto J, van Eijnatten M, Ludlow J, Kiljunen T, Shi XQ, WolffJ.Comparative dosimetry of radiography device, MSCT device and two CBCT devices in the elbow region. J Appl Clin Med Phys. 2021; 22(5): 128-138. doi:10.1002/acm2.13245; Kunz AS, Schmalzl J, Huflage H, Luetkens KS, Patzer TS, Kuhl PJ, et al. Twin robotic gantry-free cone-beam CT in acute elbow trauma. Radiology. 2023; 306(3): e221200. doi:10.1148/radiol.221200; Farracho LC, Moutinot B, Neroladaki A, Hamard M, Gorican K, Poletti PA, et al. Determining diagnosis of scaphoid healing: Comparison of cone beam CT and X-ray after six weeks of immobilization. Eur J Radiol Open. 2020; 7: 100251. doi:10.1016/j.ejro.2020.100251; Pliefke J, Stengel D, Rademacher G, Mutze S, Ekkernkamp A, Eisenschenk A. Diagnostic accuracy of plain radiographs and cineradiography in diagnosing traumatic scapholunate dissociation. Skeletal Radiol. 2008; 37(2): 139-145. doi:10.1007/s00256-007-0410-7; Dornberger JE, Rademacher G, Stengel D, Hönning A, Dipl-Phys GS, Eisenschenk A, et al. What is the diagnostic accuracy of flat-panel cone-beam CT arthrography for diagnosis of scapholunate ligament tears? Clin Orthop Relat Res. 2021; 479(1): 151-160. doi:10.1097/CORR.0000000000001425; Gibney B, Smith M, Moughty A, Kavanagh EC, Hynes D, MacMahon PJ. Incorporating cone-beam CT into the diagnostic algorithm for suspected radiocarpal fractures: A new standard of care? AJR Am J Roentgenol. 2019; 213(5): 1117-1123. doi:10.2214/AJR.19.21478; JacquesT, Morel V, Dartus J, Badr S, Demondion X, Cotton A. Impact of introducing extremity cone-beam CT in an emergency radiology department: A population-based study. Orthop Traumatol Surg Res. 2021; 107(2): 102834. doi:10.1016/j.otsr.2021.102834; Трушин П.В., Разин М.П. Хронический остеомиелит трубчатых костей: современный взгляд на проблему. Вятский медицинский вестник. 2023; 1(77): 114-119. doi:10.24412/2220-7880-2023-1-114-119; Шолохова Н.А., Жарков Д.К. Конусно-лучевая компьютерная томография в диагностике остеомиелита конечностей у детей и подростков (обзор литературы с клиническими наблюдениями). Радиология – практика. 2023; 2(98): 11-23. doi:10.52560/2713-0118-2023-2-11-23; Ludlow JB, Johnson BK, Ivanovic M. Estimation of effective doses from MDCT and CBCT imaging of extremities. J Radiol Prot. 2018; 38(4): 1371-1383. doi:10.1088/1361-6498/aae44b; Katlapa A, Kaartinen SM, Henrik Koivisto J, Matikka H. Radiation exposure to fetus from extremity CBCT examinations. Eur J Radiol. 2022; 156: 110548. doi:10.1016/j.ejrad.2022.110548; Osgood GM, Thawait GK, Hafezi-Nejad N, Shakoor D, Shaner A, Yorkston J, et al. Image quality of cone beam computed tomography for evaluation of extremity fractures in the presence of metal hardware: Visual grading characteristics analysis. Br J Radiol. 2017; 90(1073): 20160539. doi:10.1259/bjr.20160539; Patzer TS, Grunz JP, Huflage H, Conrads N, Veldhoen S, Schmalzl J, et al. Combining gantry-free cone-beam computed tomography with iterative metal artefact reduction for surgical follow-up imaging of the appendicular skeleton. Eur J Radiol. 2022; 155: 110465. doi:10.1016/j.ejrad.2022.110465; Dartus J, Jacques T, Martinot P, Pasquier G, Cotten A, Migaud H, et al. The advantages of cone-beam computerised tomography (CT) in pain management following total knee arthroplasty, in comparison with conventional multi-detector CT. Orthop Traumatol Surg Res. 2021; 107(3): 102874. doi:10.1016/j.otsr.2021.102874; Carrafiello G, Fontana F, Mangini M, Ierardi AM, Cotta E, Floridi C, et al. Initial experience with percutaneous biopsies of bone lesions using XperGuide cone-beam CT (CBCT): Technical note. Radiol Med. 2012; 117(8): 1386-1397. doi:10.1007/s11547-012-0788-1; Liu JF, Jiao DC, Ren JZ, Zhang WG, Han XW. Percutaneous bone biopsy using a flat-panel cone beam computed tomography virtual navigation system. Saudi Med J. 2018; 39(5): 519-523. doi:10.15537/smj.2018.5.21872; Sisniega A, Thawait GK, Shakoor D, Siewerdsen JH, Demehri S, Zbijewski W. Motion compensation in extremity conebeam computed tomography. Skeletal Radiol. 2019; 48(12): 1999-2007. doi:10.1007/s00256-019-03241-w; Chen GH, Tang J, Leng S. Prior image constrained compressed sensing (PICCS): A method to accurately reconstruct dynamic CT images from highly undersampled projection data sets. Med Phys. 2008; 35(2): 660-663. doi:10.1118/1.2836423; Hatamikia S, Biguri A, Kronreif G, Russ T, Kettenbach J, Birkfellner W. Source-detector trajectory optimization for CBCT metal artifact reduction based on PICCS reconstruction. Z Med Phys. 2023; S0939-3889(23)00009-0. doi:10.1016/j.zemedi.2023.02.001; https://www.actabiomedica.ru/jour/article/view/4457

  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20