-
1Academic Journal
Συγγραφείς: V. V. Poroikov, A. V. Dmitriev, D. S. Druzhilovskiy, S. M. Ivanov, A. A. Lagunin, P. V. Pogodin, A. V. Rudik, P. I. Savosina, O. A. Tarasova, D. A. Filimonov, В. В. Поройков, А. В. Дмитриев, Д. С. Дружиловский, С. М. Иванов, А. А. Лагунин, П. В. Погодин, А. В. Рудик, П. И. Савосина, О. А. Тарасова, Д. А. Филимонов
Συνεισφορές: This study was carried out within the framework of Russian Science Foundation project No. 19-15-00396, https://rscf.ru/project/19-15-00396/., Работа выполнена в рамках гранта Российского научного фонда, проект № 19-15-00396, https://rscf.ru/project/19-15-00396/
Πηγή: Safety and Risk of Pharmacotherapy; Том 11, № 4 (2023); 372-389 ; Безопасность и риск фармакотерапии; Том 11, № 4 (2023); 372-389 ; 2619-1164 ; 2312-7821
Θεματικοί όροι: платформа Way2Drug, safety, in silico studies, structure–activity relationship, SAR, computer-aided drug design, machine learning, Way2Drug, безопасность, исследования in silico, анализ зависимость «структура–активность», компьютерное конструирование лекарственных средств, машинное обучение
Περιγραφή αρχείου: application/pdf
Relation: https://www.risksafety.ru/jour/article/view/397/949; https://www.risksafety.ru/jour/article/view/397/953; https://www.risksafety.ru/jour/article/view/397/954; https://www.risksafety.ru/jour/article/view/397/962; https://www.risksafety.ru/jour/article/view/397/965; https://www.risksafety.ru/jour/article/view/397/966; https://www.risksafety.ru/jour/article/view/397/974; https://www.risksafety.ru/jour/article/downloadSuppFile/397/410; https://www.risksafety.ru/jour/article/downloadSuppFile/397/411; https://www.risksafety.ru/jour/article/downloadSuppFile/397/433; https://www.risksafety.ru/jour/article/downloadSuppFile/397/434; https://www.risksafety.ru/jour/article/downloadSuppFile/397/435; https://www.risksafety.ru/jour/article/downloadSuppFile/397/436; https://www.risksafety.ru/jour/article/downloadSuppFile/397/440; Jorgensen WL. The many roles of computation in drug discovery. Science. 2004;303(5665):1813–8. https://doi.org/10.1126/science.1096361; Беженцев ВМ, Дружиловский ДС, Иванов СМ, Филимонов ДА, Sastry GN, Поройков ВВ. Веб-ресурсы для поиска и разработки новых лекарственных препаратов. Химико-фармацевтический журнал. 2017;51(2):3–11. https://doi.org/10.30906/0023-1134-2017-51-2-3-11; Bajorath J, Overington J, Jenkins JL, Walters P. Drug discovery and development in the era of Big Data. Future Med Chem. 2016;8(15):1807–13. https://doi.org/10.4155/fmc-2014-0081; Fourches D, Muratov E, Tropsha A. Trust, but verify II: a practical guide to chemogenomics data curation. J Chem Inf Model. 2016;56(7):1243–52. https://doi.org/10.1021/acs.jcim.6b00129; Muratov EN, Bajorath J, Sheridan RP, Tetko IV, Filimonov D, Poroikov V, et al. QSAR without borders. Chem Soc Rev. 2020;49(11):3525–64. https://doi.org/10.1039/D0CS00098A; Pun FW, Ozerov IV, Zhavoronkov A. AI-powered therapeutic target discovery. Trends Pharmacol Sci. 2023;44(9):561–72. https://doi.org/10.1016/j.tips.2023.06.010; Bender A, Cortés-Ciriano I. Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 1: Ways to make an impact, and why we are not there yet. Drug Discov Today. 2021;26(2):511–24. https://doi.org/10.1016/j.drudis.2020.12.009; Bender A, Cortes-Ciriano I. Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 2: a discussion of chemical and biological data. Drug Discov Today. 2021;26(4):1040–52. https://doi.org/10.1016/j.drudis.2020.11.037; Hasselgren C, Oprea TI. Artificial intelligence for drug discovery: are we there yet? Annu Rev Pharmacol Toxicol. 2024;64:12023. https://doi.org/10.1146/annurev-pharmtox-040 323-040828; Wadman M. FDA no longer has to require animal testing for new drugs. Science. 2023;379(6628):127–8. https://doi.org/10.1126/science.adg6276; Luo M, Wang XS, Tropsha A. Comparative analysis of QSAR-based vs. chemical similarity based predictors of GPCRs binding affinity. Mol Inform. 2016;35(1):36–41. https://doi.org/10.1002/minf.201500038; Murtazalieva KA, Druzhilovskiy DS, Goel RK, Sastry GN, Poroikov VV. How good are publicly available web services that predict bioactivity profiles for drug repurposing? SAR QSAR Environ Res. 2017;28(10):843–62. https://doi.org/10.1080/1062936X.2017.1399448; Forouzesh A, Samadi Foroushani S, Forouzesh F, Zand E. Reliable target prediction of bioactive molecules based on chemical similarity without employing statistical methods. Front Pharmacol. 2019;10:835. https://doi.org/10.3389/fphar.2019.00835; Ji KY, Liu C, Liu ZQ, Deng YF, Hou TJ, Cao DS. Comprehensive assessment of nine target prediction web services: which should we choose for target fishing? Brief Bioinform. 2023;24(2):bbad014. https://doi.org/10.1093/bib/bbad014; Буров ЮВ, Корольченко ЛВ, Поройков ВВ. Государственная система регистрации и биологических испытаний химических соединений: возможности для изыскания новых лекарственных препаратов. Бюллетень Всесоюзного научного центра по безопасности биологически активных веществ. 1990;(1):4–25.; Lagunin A, Stepanchikova A, Filimonov D, Poroikov V. PASS: prediction of activity spectra for biologically active substances. Bioinformatics. 2000;16(8):747–8. https://doi.org/10.1093/bioinformatics/16.8.747; Филимонов ДА, Дружиловский ДС, Лагунин АА, Глориозова ТА, Рудик АВ, Дмитриев АВ и др. Компьютерное прогнозирование спектров биологической активности химических соединений: возможности и ограничения. Biomedical Chemistry: Research and Methods. 2018;1(1):e00004. https://doi.org/10.18097/bmcrm00004; Filimonov DA, Zakharov AV, Lagunin AA, Poroikov VV. QNA based “Star Track” QSAR approach. SAR QSAR Environ Res. 2009;20(7–8):679–709. https://doi.org/10.1080/10629360903438370; Lagunin A, Zakharov A, Filimonov D, Poroikov V. QSAR modelling of rat acute toxicity on the basis of PASS prediction. Mol Inform. 2011;30 (2–3);241–50. https://doi.org/10.1002/minf.201000151; Stolbov LA, Filimonov DA, Poroikov VV. SAR based on self-consistent classifier. SAR QSAR Environ Res. 2022;33(10):793–804. https://doi.org/10.1080/1062936X.2022.2139751; Sakamuru S, Huang R, Xia M. Use of Tox21 screening data to evaluate the COVID-19 drug candidates for their potential toxic effects and related pathways. Front Pharmacol. 2022;13:935399. https://doi.org/10.3389/fphar.2022.935399; Pogodin PV, Lagunin AA, Filimonov DA, Poroikov VV. PASS Targets: ligand-based multi-target computational system based on public data and Naïve Bayes approach. SAR QSAR Environ Res. 2015;26(10):783–93. https://doi.org/10.1080/1062936X.2015.1078407; Lagunin AA, Rudik AV, Pogodin PV, Savosina PI, Tarasova OA, Dmitriev AV, et al. CLC-Pred 2.0: a freely available web application for in silico prediction of human cell line cytotoxicity and molecular mechanisms of action for druglike compounds. Int J Mol Sci. 2023;24(2):1689. https://doi.org/10.3390/ijms24021689; Lagunin A, Ivanov S, Rudik A, Filimonov D, Poroikov V. DIGEP-Pred: web-service for in silico prediction of drug-induced expression profiles based on structural formula. Bioinformatics. 2013;29(16):2062–63. https://doi.org/10.1093/bioinformatics/btt322; Ivanov SM, Lagunin AA, Rudik AV, Filimonov DA, Poroikov VV. ADVERPred — web service for prediction of adverse effects of drugs. J Chem Inf Model. 2018;58(1):8–11. https://doi.org/10.1021/acs.jcim.7b00568; Lagunin A, Rudik A, Filimonov D, Druzhilovskiy D, Poroikov V. ROSC-Pred: web-service for rodent organ-specific carcinogenicity prediction. Bioinformatics. 2018;34(4):710–12. https://doi.org/10.1093/bioinformatics/btx678; Lagunin A, Zakharov A, Filimonov D, Poroikov V. QSAR modelling of rat acute toxicity on the basis of PASS prediction. Mol Inform. 2011;30 (2–3):241–50. https://doi.org/10.1002/minf.201000151; Zakharov AV, Lagunin AA, Filimonov DA, Poroikov VV. Quantitative prediction of antitarget interaction profiles for chemical compounds. Chem Res Toxicol. 2012;25(11):2378–85. https://doi.org/10.1021/tx300247r; Dmitriev AV, Filimonov DA, Rudik AV, Pogodin PV, Karasev DA, Lagunin AA, Poroikov VV. Drug-drug interaction prediction using PASS. SAR QSAR Environ Res. 2019;30(9):655–64. https://doi.org/10.1080/1062936X.2019.1653966; Короткевич ЕИ, Рудик АВ, Дмитриев АВ, Лагунин АА, Филимонов ДА. Прогноз метаболической стабильности ксенобиотиков программами PASS и GUSAR. Биомедицинская химия. 2021;67(3):295–9. https://doi.org/10.18097/PBMC20216703295; Rudik A, Dmitriev A, Lagunin A, Filimonov D, Poroikov V. SOMP: web-service for in silico prediction of sites of metabolism for drug-like compounds. Bioinformatics. 2015;31(12):2046–8. https://doi.org/10.1093/bioinformatics/btv087; Rudik AV, Dmitriev AV, Lagunin AA, Filimonov DA, Poroikov VV. Prediction of reacting atoms for the major biotransformation reactions of organic xenobiotics. J Cheminform. 2016;8:68. https://doi.org/10.1186/s13321-016-0183-x; Rudik AV, Dmitriev AV, Lagunin AA, Filimonov DA, Poroikov VV. Metabolism sites prediction based on xenobiotics structural formulae and PASS prediction algorithm. J Chem Inf Model. 2014;54(2):498–507. https://doi.org/10.1021/ci400472j; Rudik AV, Bezhentsev VM, Dmitriev AV, Druzhilovskiy DS, Lagunin AA, Filimonov DA, Poroikov VV. MetaTox: web application for predicting structure and toxicity of xenobiotics’ metabolites. J Chem Inf Model. 2017;57(4):638–42. https://doi.org/10.1021/acs.jcim.6b00662; Rudik A, Bezhentsev V, Dmitriev A, Lagunin A, Filimonov D, Poroikov V. MetaTox — web application for generation of metabolic pathways and toxicity estimation. J Bioinform Comput Biol. 2019;17(1):1940001. https://doi.org/10.1142/S0219720019400018; Rudik A, Dmitriev A, Lagunin A, Filimonov D, Poroikov V. MetaPASS: a web application for analyzing the biological activity spectrum of organic compounds taking into account their biotransformation. Mol Inform. 2021;40(4):2000231. https://doi.org/10.1002/minf.202000231; Раевский ОА, Солодова СЛ, Лагунин АА, Поройков ВВ. Компьютерное моделирование проницаемости физиологически активных веществ через гематоэнцефалический барьер. Биомедицинская химия. 2014;60(2):161–81. https://doi.org/10.18097/PBMC20146002161; Ivanov SM, Lagunin AA, Poroikov VV. In silico assessment of adverse drug reactions and associated mechanisms. Drug Discov Today. 2016;21(1):58–71. https://doi.org/10.1016/j.drudis.2015.07.018; Ivanov SM, Lagunin AA, Pogodin PV, Filimonov DA, Poroikov VV. Identification of drug targets related to the induction of ventricular tachyarrhythmia through systems chemical biology approach. Toxicol Sci. 2015;145(2):321–36. https://doi.org/10.1093/toxsci/kfv054; Koborova ON, Filimonov DA, Zakharov AV, Lagunin AA, Ivanov SM, Kel A, Poroikov VV. In silico method for identification of promising anticancer drug targets. SAR QSAR Environ Res. 2009;20 (7–8):755–66. https://doi.org/10.1080/10629360903438628; Ivanov SM, Lagunin AA, Pogodin PV, Filimonov DA, Poroikov VV. Identification of drug-induced myocardial infarction-related protein targets through the prediction of drug–target interactions and analysis of biological processes. Chem Res Toxicol. 2014;27(7):1263–81. https://doi.org/10.1021/tx500147d; Поройков ВВ, Филимонов ДА, Глориозова ТА, Лагунин АА, Дружиловский ДС, Рудик АВ и др. Компьютерный прогноз спектров биологической активности органических соединений: возможности и ограничения. Известия Академии наук. Серия химическая. 2019;(12):2143–54. EDN: YQLMTT https://doi.org/10.1007/s11172-019-2683-0; Ivanov S, Lagunin A, Filimonov D, Poroikov V. Assessment of the cardiovascular adverse effects of drug–drug interactions through a combined analysis of spontaneous reports and predicted drug–target interactions. PLoS Comput Biol. 2019;15(7):e1006851. https://doi.org/10.1371/journal.pcbi.1006851; Ivanov S, Lagunin A, Filimonov D, Poroikov V. Relationships between the structure and severe drug-induced liver injury for low, medium and high doses of drugs. Chem Res Toxicol. 2022;35(3):402–11. https://doi.org/0.1021/acs.chemrestox.1c00307; Сухачёв ВС, Иванов СМ, Дмитриев АВ, Прогнозирование неблагоприятных эффектов межлекарственных взаимодействий на сердечно-сосудистую систему на основе анализа связей «структура–активность». Биохимия. 2023;88(5):773–84. https://doi.org/10.31857/S0320972523050068; Irurzun-Arana I, Rackauckas C, McDonald TO, Trocóniz IF. Beyond deterministic models in drug discovery and development. Trends Pharmacol Sci. 2020;41(11):882–95. https://doi.org/10.1016/j.tips.2020.09.005; Blanco MJ, Gardinier KM, Namchuk MN. Advancing new chemical modalities into clinical studies. ACS Med Chem Lett. 2022;13(11):1691–8. https://doi.org/10.1021/acsmedchemlett.2c00375; Bonner S, Barrett IP, Ye C, Swiers R, Engkvist O, Bender A, Hoyt CT, Hamilton WL. A review of bio medical datasets relating to drug discovery: a knowledge graph perspective. Brief Bioinform. 2022;23(6):bbac404. https://doi.org/10.1093/bib/bbac404; Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008;4(11): 682–90. https://doi.org/10.1038/nchembio.118; Loscalzo J, Kohane I, Barabasi AL. Human disease classification in the postgenomic era: a complex systems approach to human pathobiology. Mol Syst Biol. 2007;3:124. https://doi.org/10.1038/msb4100163; Tarasova OA, Urusova AF, Filimonov DA, Nicklaus MC, Zakharov AV, Poroikov VV. QSAR modeling using large-scale databases: case study for HIV-1 reverse transcriptase inhibitors. J Chem Inf Model. 2015;55(7):1388–99. https://doi.org/10.1021/acs.jcim.5b00019; Alharbi E, Gadiya Y, Henderson D, Zaliani A, Delfin-Rossaro A, Cambon-Thomsen A, et al. Selection of data sets for FAIRification in drug discovery and development: which, why, and how? Drug Discov Today. 2022;27(8):2080–5. https://doi.org/10.1016/j.drudis.2022.05.010; Перфилова ВН. Возможности и перспективы доклинической оценки лекарственной безопасности с использованием альтернативных методов: опыт реализации программы «Токсикология в XXI веке» в США. Безопасность и риск фармакотерапии. 2023. https://doi.org/10.30895/2312-7821-2023-379; Tarasova OA, Biziukova NYu, Filimonov DA, Poroikov VV, Nicklaus MC. Data mining approach for extraction of useful information about biologically active compounds from publications. Journal of Chemical Information and Modeling. 2019;59(9):3635–44. https://doi.org/10.1021/acs.jcim.9b00164; Tarasova OA, Biziukova NYu, Rudik AV, Dmitriev AV, Filimonov DA, Poroikov VV. Extraction of data on parent compounds and their metabolites from texts of scientific abstracts. J Chem Inf Model. 2021;61(4):1683–90. https://doi.org/10.1021/acs.jcim.0c01054; Tarasova OA, Rudik AV, Biziukova NYu, Filimonov DA, Poroikov VV. Cheminform. 2022;14:55. https://doi.org/10.1186/s13321-022-00633-4; https://www.risksafety.ru/jour/article/view/397