-
1Academic Journal
Authors: A. V. Bildyukevich, T. V. Plisko, A. S. Liubimova, A. V. Penkova, M. E. Dmitrenko, А. В. Бильдюкевич, Т. В. Плиско, Е. С. Любимова, А. В. Пенькова, М. Е. Дмитренко
Source: Doklady of the National Academy of Sciences of Belarus; Том 62, № 2 (2018); 185-192 ; Доклады Национальной академии наук Беларуси; Том 62, № 2 (2018); 185-192 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2018-62-2
Subject Terms: засорение мембран, thin film nanocomposite membrane, fullerenol, interfacial polymerization, fouling, тонкопленочная композиционная мембрана, фуллеренол, межфазная поликонденсация
File Description: application/pdf
Relation: https://doklady.belnauka.by/jour/article/view/507/510; Xu G.-R., Wang J.-N., Li C.-J. Strategies for improving the performance of the polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes: Surface modifications and nanoparticles incorporations. Desalination, 2013, vol. 328, pp. 83–100. DOI:10.1016/j.desal.2013.08.022; Fathizadeh M., Aroujalian A., Raisi A. Effect of added NaX nano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process. Journal of Membrane Science, 2011, vol. 375, no. 1–2, pp. 88–95. DOI:10.1016/j.memsci.2011.03.017; Ong C. S., Goh P. S., Lau W. J., Misdan N., Ismail A. F. Nanomaterials for biofouling and scaling mitigation of thin film composite membrane: A review. Desalination, 2016, vol. 393, pp. 2–15. DOI:10.1016/j.desal.2016.01.007; Lee S. Y., Kim H. J., Patel R., Im S. J., Kim J. H., Min B. R. Silver nanoparticles immobilized on thin film composite polyamide membrane: characterization, nanofiltration, antifouling properties. Polymers for Advanced Technologies, 2007, vol. 18, no. 7, pp. 562–568. DOI:10.1002/pat.918; Tiraferri A., Kang Y., Giannelis E. P., Elimelech M. Highly Hydrophilic Thin-Film Composite Forward Osmosis Membranes Functionalized with Surface-Tailored Nanoparticles. ACS Applied Materials & Interfaces, 2012, vol. 4, no. 9, pp. 5044–5053. DOI:10.1021/am301532g; Daer S., Kharraz J., Giwa A., Hasan S. W. Recent applications of nanomaterials in water desalination: A critical review and future opportunities. Desalination, 2015, vol. 367, pp. 37–48. DOI:10.1016/j.desal.2015.03.030; Goh P. S., Ismail A. F., Hilal N. Nano-enabled membranes technology: Sustainable and revolutionary solutions for membrane desalination. Desalination, 2016, vol. 380, pp. 100–104. DOI:10.1016/j.desal.2015.06.002; Misdan N., Ismail A. F., Hilal N. Recent advances in the development of (bio)fouling resistant thin film composite membranes for desalination. Desalination, 2016, vol. 380, pp. 105–111. DOI:10.1016/j.desal.2015.06.001; Isawi H., El-Sayed M. H., Feng X., Shawky H., Mottaleb Abdel M. S. Surface nanostructuring of thin film composite membranes via grafting polymerization and incorporation of ZnO nanoparticles. Applied Surface Science, 2016, vol. 385, pp. 268–281. DOI:10.1016/j.apsusc.2016.05.141; Ghanbari M., Emadzadeh D., Lau W. J., Lai S. O., Matsuura T., Ismail A. F. Synthesis and characterization of novel thin film nanocomposite (TFN) membranes embedded with halloysite nanotubes (HNTs) for water desalination. Desalination, 2015, vol. 358, pp. 33–41. DOI:10.1016/j.desal.2014.11.035; Zhao H., Qiu S., Wu L., Zhang L., Chen H., Gao C. Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes. Journal of Membrane Science, 2014, vol. 450, pp. 249– 256. DOI:10.1016/j.memsci.2013.09.014; Bildyukevich A. V., Plisko T. V., Liubimova A. S., Volkov V. V., Usosky V. V. Hydrophilization of polysulfone hollow fiber membranes via addition of polyvinylpyrrolidone to the bore fluid. Journal of Membrane Science, 2017, vol. 524, pp. 537–549. DOI:10.1016/j.memsci.2016.11.042; Liubimova A. S., Bildyukevich A. V., Melnikova G. B., Volkov V. V. Modification of hollow fiber ultrafiltration membranes by interfacial polycondensation: Monomer ratio effect. Petroleum Chemistry, 2015, vol. 55, no. 10, pp. 795–802. DOI:10.1134/s0965544115100138; Semenov K. N., Charykov N. A., Postnov V. N., Sharoyko V. V., Vorotyntsev I. V., Galagudza M. M., Murin I. V. Fullerenols: Physicochemical properties and applications. Progress in Solid State Chemistry, 2016, vol. 44, no. 2, pp. 59–74. DOI:10.1016/j.progsolidstchem.2016.04.002; https://doklady.belnauka.by/jour/article/view/507
-
2Academic Journal
Authors: ЛАЗАРЕВ СЕРГЕЙ ИВАНОВИЧ, ГОЛОВИН ЮРИЙ МИХАЙЛОВИЧ, ЛАЗАРЕВ ДМИТРИЙ СЕРГЕЕВИЧ, КАЗАКОВ ВАДИМ ГЕННАДЬЕВИЧ, ХОРОХОРИНА ИРИНА ВЛАДИМИРОВНА
File Description: text/html
-
3Academic Journal
Authors: ЛАЗАРЕВ СЕРГЕЙ ИВАНОВИЧ, ГОЛОВИН ЮРИЙ МИХАЙЛОВИЧ, ТЯЛИН ЮРИЙ ИЛЬИЧ, КОВАЛЕВА ОЛЬГА АЛЕКСАНДРОВНА, ПОЛИКАРПОВ ВАЛЕРИЙ МИХАЙЛОВИЧ, КОЗЛОВ АЛЕКСАНДР АНДРЕЕВИЧ
File Description: text/html
-
4Academic Journal
Source: Вестник Тамбовского государственного технического университета.
File Description: text/html
-
5Academic Journal
Source: Вестник Тамбовского университета. Серия: Естественные и технические науки.
Subject Terms: МЕМБРАНА,ПОЛУПРОНИЦАЕМЫЕ ОБЛАСТИ,КОМПОЗИЦИОННАЯ МЕМБРАНА,ФУНКЦИЯ РАДИАЛЬНОГО РАСПРЕДЕЛЕНИЯ,РЕНТГЕНОСТРУКТУРНЫЙ АНАЛИЗ,MEMBRANE,SEMI-PERMEABLE REGION,COMPOSITE MEMBRANE,RADIAL DISTRIBUTION FUNCTION,X-RAY ANALYSIS, 0101 mathematics, 01 natural sciences
File Description: text/html
-
6Dissertation/ Thesis
Contributors: Суберляк, Олег Володимирович, Національний університет 'Львівська політехніка', Вакулюк, Поліна Василівна, Баштаник, Петро Іванович
Subject Terms: 2-гідроксіетилметакрилат, polycaproamide, гидрогель, polyvinylpyrrolidone, гідрогель, полівінілпіролідон, композиционная мембрана, полікапроамід, поликапроамид, поливинилпирролидон, 2-hydroxyethyl methacrylate, composite membrane, 544.773.432-025(043.5)67 [678.743.2], hydrogel, композиційна мембрана, 2-гидроксиэтилметакрилат
File Description: application/pdf
Access URL: https://ena.lpnu.ua/handle/ntb/56156