Showing 1 - 20 results of 723 for search '"комплексообразование"', query time: 0.80s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
    Academic Journal

    Source: Chemistry; Том 17, № 2 (2025): Вестник Южно-Уральского государственного университета. Серия: Химия; 116–168 ; Химия; Том 17, № 2 (2025): Вестник Южно-Уральского государственного университета. Серия: Химия; 116–168 ; 2412-0413 ; 2076-0493

    File Description: application/pdf

  7. 7
    Academic Journal

    Source: Fine Chemical Technologies; Vol 20, No 1 (2025); 47-54 ; Тонкие химические технологии; Vol 20, No 1 (2025); 47-54 ; 2686-7575 ; 2410-6593

    File Description: application/pdf

    Relation: https://www.finechem-mirea.ru/jour/article/view/2218/2097; https://www.finechem-mirea.ru/jour/article/view/2218/2105; https://www.finechem-mirea.ru/jour/article/downloadSuppFile/2218/1597; Golcu A., Tumer M., Demirelli H., Wheatley R.A. Cd(II) and Cu(II) complexes of polydentate Schiff base ligands: synthesis, characterization, properties and biological activity. Inorg. Chim. Acta. 2005;358(6):1785–1797. https://doi.org/10.1016/j.ica.2004.11.026; Sinha D., Tiwari A.K., Singh S., Shukla G., Mishra P., Chandra H., Mishra A.K. Synthesis, characterization and biological activity of Schiff base analogues of indole-3-carboxaldehyde. Eur. J. Med. Chem. 2008;43(1): 160–165. https://doi.org/10.1016/j.ejmech.2007.03.022; Abbasova G.D., Pashajanov A.M., Ganbarova M.I., Gasanova S.M., Mammadova Z.A., Nasibova A.M. Synthesis and characterization of new metal complexes with tridentate hydrazone ligand. Azerbaijan Chemical Journal. 2023;4: 84–90. https://doi.org/10.32737/0005-2531-2023-4-84-90; Mohamed G.G. Synthesis, characterization and biological activity of bis(phenylimine) Schiff base ligands and their metal complexes. Spectrochim. Acta A. 2006;64(1):188–195. https://doi.org/10.1016/j.saa.2005.05.044; Tofazzal M., Tarafder H., Ali M.A., Saravanan N., Weng W.Y., Kumar S., Tsafe N.U., Crouse K.A. Coordination chemistry and biological activity of two tridentate ONS and NNS Schiff bases derived from S-benzyldithiocarbazate. Trans. Met. Chem. 2000;25:295–298. https://doi.org/10.1023/A:1007044910814; Chandra S., Jain D., Sharma A.K., Sharma P. Coordination Modes of a Schiff Base Pentadentate Derivative of 4-Aminoantipyrine with Cobalt(II), Nickel(II) and Copper(II) Metal Ions: Synthesis, Spectroscopic and Antimicrobial Studies. Molecules. 2009;14(1):174–190. https://doi.org/10.3390/molecules14010174; Karmakar M., Chattopadhyay S. A comprehensive overview of the orientation of tetradentate N2O2 donor Schiff base ligands in octahedral complexes of trivalent 3d metals. J. Molec. Struct. 2019;1186:155–186. https://doi.org/10.1016/j.molstruc.2019.02.091; Abu-Dief A.M., Mohamed I.M.A. A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni-Suef Univ. J. Basic Appl. Sci. 2015;4(2):119–133. https://doi.org/10.1016/j.bjbas.2015.05.004; More M.S., Joshi P.G., Mishra Y.K., Khanna P.K. Metal complexes driven from Schiff bases and semicarbazones for biomedical and allied applications: a review. Mater. Today. Chem. 2019;14:100195. https://doi.org/10.1016/j.mtchem.2019.100195; Khalil M.M.H., Ismail E.H., Mohamed G.G., Zayed E.M., Badr A. Synthesis and characterization of a novel Schiff base metal complexes and their application in determination of iron in different types of natural water. Open J. Inorg. Chem. 2012;2(2):13–21. http://dx.doi.org/10.4236/ojic.2012.22003; Kajal A., Bala S., Kamboj S., Sharma N., Saini V. Schiff Bases: A Versatile Pharmacophore. J. Catalysts. 2013;2013:893512. https://doi.org/10.1155/2013/893512; Alsaygh A., Al-Humaidi J., Al-Najjar I. Synthesis of Some New Pyridine-2-yl-Benzylidene-Imines. Int. J. Org. Chem. 2014;4(2). http://doi.org/10.4236/ijoc.2014.42013; Utreja D., Vibha B.S.P., Singh S., Kaur M. Schiff Bases and their Metal Complexes as Anti-Cancer Agents: A Review. Current Bioactive Compounds. 2015;11(4):215–230. http://doi.org/10.2174/1573407212666151214221219; Chaudhary N.K. Synthesis and medicinal use of Metal complexes of Schiff Bases. Bibechana. 2013;9:75–80. https://doi.org/10.3126/bibechana.v9i0.7178; Sheikhshoaie I., Ebrahimipour S.Y., Sheikhshoaie M., Rudbari H.A., Khaleghi M., Bruno G. Combined experimental and theoretical studies on the X-ray crystal structure, FT-IR, 1HNMR, 13CNMR, UV–Vis spectra, NLO behavior andantimicrobial activity of 2-hydroxyacetophenone benzoylhydrazone. Spectrochim. Acta A. 2014;124:548–555. https://doi.org/10.1016/j.saa.2014.01.043; Krishnamoorthy P., Sathyadevi P., Butorac R.R.,.Cowley A.H, Bhuvanesh N.S., Dharmaraj N. Copper(I) and nickel(II) complexes with 1 : 1 vs. 1 : 2 coordination of ferrocenyl hydrazone ligands: Do the geometry and composition of complexes affect DNA binding/cleavage, protein binding, antioxidant and cytotoxic activities? Dalton Trans. 2012;41:4423–4436. https://doi.org/10.1039/C2DT11938B; Sharma M., Chauhan K., Srivastava R.K., Singh S.V., Srivastava K., Saxena J.K., Puri S.K., Chauhan P. Design and Synthesis of a New Class of 4-Aminoquinolinyl- and 9-Anilinoacridinyl Schiff Base Hydrazones as Potent Antimalarial Agents. Chem. Biol. Drug Des. 2014;84(2): 175–181. https://doi.org/10.1111/cbdd.12289; Vyas K.M., Jadeja R., Patel D., Devkar R., Gupta V.K. A new pyrazolone based ternary Cu(II) complex: Synthesis, characterization, crystal structure, DNA binding, protein binding and anti-cancer activity towards A549 human lung carcinoma cells with a minimum cytotoxicity to non-cancerous cells. Polyhedron. 2013;65:262–274. https://doi.org/10.1016/j.poly.2013.08.051; Kratz F., Beyer U., Roth T., Tarasova N., Collery P., Lechenault F., Cazabat A., Schumcher P., Unger C., Falken U. Transferrin Conjugates of Doxorubicin: Synthesis, Characterization, Cellular Uptake, and in Vitro Efficacy. J. Pharm. Sci. 1998;87(3): 338–346. https://doi.org/10.1021/js970246a; Jaividhya P., Dhivya R., Akbarsha M.A., Palaniandavar M. Efficient DNA cleavage mediated by mononuclear mixed ligand copper(II) phenolate complexes: The role of co-ligand planarity on DNA binding and cleavage and anticancer activity. J. Inorg. Biochem. 2012;114:94–105. https://doi.org/10.1016/j.jinorgbio.2012.04.018; Apelgot S., Coppey J., Fromentin A., Guille E., Poupon M., Roussel A. Altered distribution of copper (64Cu) in tumorbearing mice and rats. Anticancer Res. 1986;6(2):159–164. https://europepmc.org/article/med/3707051#impact; Hasinoff B.B., Yadav A.A., Patel D., Wu X. The cytotoxicity of the anticancer drug elesclomol is due to oxidative stress indirectly mediated through its complex with Cu(II). J. Inorg. Biochem. 2014;137:22–30. https://doi.org/10.1016/j.jinorgbio.2014.04.004; Ebrahimipour S.Y., Sheikhshoaie I., Crochet A., Khaleghi M., Fromm K.M. A new mixed-ligand copper(II) complex of (E)-N′-(2-hydroxybenzylidene) acetohydrazide: Synthesis, characterization, NLO behavior, DFT calculation and biological activities. J. Mol. Struct. 2014;1072:267–276. https://doi.org/10.1016/j.molstruc.2014.05.024; Marzano C., Pellei M., Tisato F., Santini C. Copper complexes as anticancer agents. Anticancer Agents Med. Chem. 2009;9(2): 185–211. https://doi.org/10.2174/187152009787313837; Garbutcheon-Singh K.B., Grant M.P., Harper B.W., Krause-Heuer A.M., Manohar M., Orkey N., AldrichWright J.R. Transition Metal Based Anticancer Drugs. Curr. Top. Med. Chem. 2011;11(5):521–542. https://doi.org/10.2174/156802611794785226; Vogel H.G. (Ed.). Drug Discovery and Evaluation: Pharmacological Assays. Berlin: Springer; 2008. 2068 p. http://dx.doi.org/10.1007/978-3-540-70995-4; Ebrahimipour S.Y., Sheikhshoaie I., Castro J., Haase W., Mohamadi M., Foro S., Sheikhshoaie M., Mahani S.E. A novel cationic copper(II) Schiff base complex: Synthesis, characterization, crystal structure, electrochemical evaluation, anti-cancer activity, and preparation of its metal oxide nanoparticles. Inorganica Chimica Acta. 2015;430:245–252. https://doi.org/10.1016/j.ica.2015.03.016; Sheikhshoaie I., Ebrahimipour S.Y., Sheikhshoaie M., Mohamadi M., Abbasnejad M., Rudbari H.A., Bruno G. Synthesis, characterization, X-ray crystal structure, electrochemical evaluation and anti-cancer studies of a mixed ligand Cu(II) complex of (E)-N′-((2-hydroxynaphthalen-1yl)methylene)acetohydrazide J. Chem. Sci. 2015;127(12): 2193–2200. https://doi.org/10.1007/s12039-015-0978-8; Guliyeva E.A., Fatullayeva P.A., Hagverdiyeva T.M. Synthesis and studies of Cu(II), Ni(II), Co(II) complexes with bis(saliciliden)hydrazon. Azerbaijan Chemical Journal. 2023;2:116–122. https://doi.org/10.32737/0005-2531-2023-2-116-122; Abbasova G., Medjidov A. One-pot Synthesis of a New Hydroxamic Acid and its Complexes with Metals. Letters in Organic Chemistry. 2022;19(10):837–841. http://doi.org/10.2174/1570178619666220111121743; Sarwar A., Shamsuddin M.B., Lingtang H. Synthesis, Characterization and Luminescence Studies of Metal-Diimine Complexes. Mod. Chem. Appl. 2018;6(3):1000262. http://doi.org/10.4172/2329-6798.1000262; Naemi H., Moradian M. Synthesis and characterization of nitro-Schiff bases derived from 5-nitro-salicylaldehyde and various diamines and their complexes of Co(II). J. Coord. Chem. 2010;63(1):156–162. http://doi.org/10.1080/00958970903225866; Nakamoto K. Infrared and Raman spectra of Inorganic and Coordination Compounds. Wiley; 1991. 410 p.; Calinescu M., Manea L., Pavelescu G. Synthesys and spectroscopic properties of new complex compounds of europium(III) and terbium(III) with 2-hydroxy-1naphthaldehyde acetylhydrazone and heterocyclic bases. Rev. Roum.Chim. 2011;56(3):231–237. http://web.icf.ro/rrch/; Tarasevich B.N. IK spektry osnovnykh klassov organicheskikh soedinenii (IR Spectra of the Main Classes of Organic Compounds). Moscow; MSU; 2012. 54 p. (in Russ.).

  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
    Academic Journal

    Contributors: This study was conducted by the Scientific Centre for Expert Evaluation of Medicinal Products as part of the applied research funded under state assignment No. 056-00026-24-01 (R&D registry No. 124022300127-0), Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00026- 24-01 на проведение прикладных научных исследований (номер государственного учета НИР 124022300127-0)

    Source: Safety and Risk of Pharmacotherapy; Том 12, № 3 (2024); 352-360 ; Безопасность и риск фармакотерапии; Том 12, № 3 (2024); 352-360 ; 2619-1164 ; 2312-7821 ; 10.30895/2312-7821-2024-12-3

    File Description: application/pdf

    Relation: https://www.risksafety.ru/jour/article/view/442/1230; Щукин ВМ, Кузьмина НЕ, Матвеева ОА, Швецова ЮН, Жигилей ЕС. Определение содержания элементных примесей в желатиновых капсулах методом масс-спектрометрии с индуктивно-связанной плазмой. Безопасность и риск фармакотерапии. 2024;12(2):230–40. https://doi.org/10.30895/2312-7821-2024-12-2-230-240; Pan Y, Chen Ch, Jin M, Zhang L. Determination of Pb, Cr, Cd, As and Cu in vacant gelatin capsules by ICP-MS. Chin J Mod. Appl. Pharm. 2014;31(3):339–42. https://doi.org/1007-7693(2014)03-0339-04; Wang F,Wu C. Establishment and application of content determination method for 7 elements in gelatin hollow capsule. China Pharmacy. 2017;28(28):3992–5. https://doi.org/10.6039/j.issn.1001-0408.2017.28.2848; Масленникова АД, Сергеева ИС, Петрова ГП. Влияние ионов тяжелых металлов на молекулярно-динамические характеристики молекул коллагена в водных растворах. Вестник Московского университета. Серия 3. Физика. Астрономия. 2013;68(2):61–5. EDN: PZQXLT https://doi.org/10.3103/S0027134913020094; Садикова Д, Рафиков А, Турсункулов О, Сойибова Д. Синтез и структура координационного комплекса иона меди с коллагеном. Химия и химическая технология. 2021;(1):26–31. https://doi.org/10.51348/GTNI8429; Wang J, Fan X, Liu H, Tang K. Self-assembly and metal ions-assisted one step fabrication of recoverable gelatin hydrogel with high mechanical strength. Polym-Plast Technol Mater. 2020;59(5):1–11. https://doi.org/10.1080/25740881.2020.1773499; Andersen A, Ibsen CJS, Birkedal H. Influence of metal ions on the melting temperature, modulus and gelation time of gelatin gels: specific ion effects on hydrogel properties. J Phys Chem B. 2018;122(43):10062–7. https://doi.org/10.1021/acs.jpcb.8b07658; Анисимов СИ, Попов ИА, Горшкова ЮЕ, Виноградов ИИ, Нечаев АН, Анисимова НС и др. Дегидротермический кросслинкинг материала «Корнеопласт»: возможности управления физическими, структурными и биологическими свойствами. Экспериментальное исследование. The EYE ГЛАЗ. 2023;25(3):215–23. https://doi.org/10.33791/2222-4408-2023-3-215-223; Mikhailov OV. Gelatin matrix as functional biomaterial for immobilization of nanoparticles of metal-containing compounds. J Funct Biomater. 2023;14(2):92. https://doi.org/10.3390/jfb14020092; https://www.risksafety.ru/jour/article/view/442

  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20
    Academic Journal

    Source: Известия Томского политехнического университета
    Bulletin of the Tomsk Polytechnic University

    File Description: application/pdf