Εμφανίζονται 1 - 2 Αποτελέσματα από 2 για την αναζήτηση '"комплексная диэлектрическая и магнитная проницаемость"', χρόνος αναζήτησης: 0,43δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 26, № 2 (2023); 110-121 ; Известия высших учебных заведений. Материалы электронной техники; Том 26, № 2 (2023); 110-121 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2023-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://met.misis.ru/jour/article/view/520/421; Lu A.-H., Salabas Е.L., Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie International Edition. 2007; 46(8): 1222—1244. https://doi.org/10.1002/anie.200602866; Gubin S.P., Spichkin Y.I., Yurkov G.Yu., Tishin A.M. Nanomaterial for high-density magnetic data storage. Russian Journal of Inorganic Chemistry. 2002; 47(1): S32—S67.; Xu Y.H., Bai J., Wang J.-P. High-magnetic-moment multifunctional nanoparticles for nanomedicine applications. Journal of Magnetism and Magnetic Materials. 2007; 311(1): 131—134. https://doi.org/10.1016/j.jmmm.2006.11.174; Khadzhiev S.N., Kulikova M.V., Ivantsov M.I., Zemtsov L.M., Karpacheva G.P., Muratov D.G., Bondarenko G.N., Oknina N.V. Fischer-Tropsch synthesis in the presence of nanosized iron-polymer catalysts in a fixed-bed reactor. Petroleum Chemistry. 2016; 56: 522—528. https://doi.org/10.1134/S0965544116060049; Qiu F., Dai Y., Li Li, Xu Ch., Huang Y., Chen Ch., Wang Y., Jiao L., Yuan H. Synthesis of Cu@FeCo core-shellnanoparticles for the catalytic hydrolysis of ammonia borane. International Jornal of Hydrogen Energy. 2014; 39(1): 436—441.; Xu M.H., Zhong W., Qi X.S., Au C.T., Deng Y., Du Y.W. Highly stable Fe-Ni alloy nanoparticles encapsulated in carbon nanotubes: Synthesis, structure and magnetic properties. Journal of Alloys and Compounds. 2010; 495(1): 200—204. https://doi.org/10.1016/j.jallcom.2010.01.121; Bahgat M., Paek M.-K., Pak J.-J. Comparative synthesize of nanocrystalline Fe-Ni and Fe-Ni-Co alloys during hydrogen reduction of NixCo1-xFe2O4. Journal of Alloys and Compounds. 2008; 466(1-2): 59—66. https://doi.org/10.1016/j.jallcom.2008.01.147; Azizi A., Yoozbashizadeh H., Sadrnezhaad S.K. Effect of hydrogen reduction on microstructure and magnetic properties of mechanochemically synthesized Fe-16.5Ni-16.5Co nano-powder. Journal of Magnetism and Magnetic Materials. 2009; 321(18): 2729—2732. https://doi.org/10.1016/j.jmmm.2009.03.085; Li X., Takahashi S. Synthesis and magnetic properties of Fe-Co-Ni nanoparticles by hydrogen plasma-metal reaction. Journal of Magnetism and Magnetic Materials. 2000; 214(3): 195—203. https://doi.org/10.1016/S0304-8853(00)00081-0; Dalavi S.B., Theerthagiri J., Raja M.M., Panda R.N. Synthesis, characterization and magnetic properties of nanocrystalline FexNi80-xCo20 ternary alloys. Journal of Magnetism and Magnetic Materials. 2013; 344: 30—34. https://doi.org/10.1016/j.jmmm.2013.05.026; Prasad N.Kr., Kumar V. Microstructure and magnetic properties of equiatomic FeNiCo alloy synthesized by mechanical alloying. Journal of Materials Science: Materials in Electronics. 2015; 26(12): 10109—10118. https://doi.org/10.1007/s10854-015-3695-7; Zehani K., Bez R., Boutahar A., Hlil E.K., Lassri H., Moscovici J., Mliki N., Bessais L. Structural, magnetic, and electronic properties of high moment FeCo nanoparticlesJ. Journal of Alloys and Compounds. 2014; 591: 58—64. https://doi.org/10.1016/j.jallcom.2013.11.208; Yang Y., Xu C., Xia Y., Wang T., Li F. Synthesis and microwave absorption properties of FECO nanoplates. Journal of Alloys and Compounds. 2010; 493(1-2): 549—552. https://doi.org/10.1016/j.jallcom.2009.12.153; Liu X.G., Ou Z.Q., Geng D.Y., Han Z., Jiang J.J., Liu W., Zhang Z.D. Influence of a graphite shell on the thermal and electromagnetic characteristics of FeNi nanoparticles. Carbon. 2010; 48(3): 891—897. https://doi.org/10.1016/j.carbon.2009.11.011; Li X., Takahashi S. Synthesis and magnetic properties of Fe-Co-Ni nanoparticles by hydrogen plasma-metal reaction. Journal of Magnetism and Magnetic Materials. 2000; 214(3): 195—203.; Muratov D.G., Kozhitov L.V., Kazaryan T.M., Vasil’ev A.A., Popkova A.V., Korovin E.Yu. Synthesis and electromagnetic properties of FeCoNi/C nanocomposites based on polyvinyl alcohol. Russian Microelectronics. 2021; 50(8): 657—664. https://doi.org/10.1134/S1063739721080072; Muratov D.G., Kozhitov L.V., Korovushkin V.V., Korovin E.Yu., Popkova A.V., Novotortsev V.M. Synthesis, structure and electromagnetic properties of nanocomposites with threecomponent FeCoNi nanoparticles. Russian Physics Journal. 2019; 61(10): 1788—1797. https://doi.org/10.1007/s11182-019-01602-5; Muratov D.G., Kozhitov L.V., Yakushko E.V., Vasilev A.A., Popkova A.V., Tarala V.A., Korovin E.Yu. Synthesis, structure and electromagnetic properties of FeCoAl/C nanocomposites. Modern Electronic Materials. 2021; 7(3): 99—108. https://doi.org/10.3897/j.moem.7.3.77105; Mondal B.N., Basumallick A., Nath D.N., Cnattopaahyuy P.P. Phase evolution and magnetic, behavior of Сu-Ni-Co-Fe quaternary alloys synthesized by ball milling. Material Chemistry and Physics. 2009; 116(2): 358—362. https://doi.org/10.1016/j.matchemphys.2009.03.036; Васильев А.А., Дзидзигури Э.Л., Ефимов М.Н., Муратов Д.Г., Карпачева Г.П. Формирование металл-углеродных нанокомпозитов на основе наночастиц сплава Cu-Fe и карбонизированного полиакрилонитрила. Физика и химия обработки материалов. 2021; (1): 58—66. https://doi.org/10.30791/0015-3214-2021-1-58-66; Ferrari A.C., Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B. 2000; 61(20): 14095—14107. https://doi.org/10.1103/physrevb.61.14095; Ferrari A.C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Communications. 2007; 143(1-2): 47—57. https://doi.org/10.1016/j.ssc.2007.03.052; Afghahi S.S., Shokuhfar A. Two stepsinthesis, electromagnetic and microwave absorbing properties of FeCo@C core-shell nanostructure. Journal of Magnetism and Magnetic Materials. 2014; 370: 37—44. https://doi.org/10.1016/j.jmmm.2014.06.040; Родионов В.В. Механизмы взаимодействия СВЧ-излучения с наноструктурированными углеродсодержащими материалами. Дисс. … канд. физ.-мат. наук. Курск; 2015. 169 с.; https://met.misis.ru/jour/article/view/520

  2. 2
    Academic Journal

    Συνεισφορές: The synthesis of nanocomposites in this study was carried out as part of a State Program of Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences., В части синтеза нанокомпозитов работа выполнена в рамках Государственного задания Института нефтехимического синтеза имени А.В. Топчиева.

    Πηγή: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 23, № 4 (2020); 260-269 ; Известия высших учебных заведений. Материалы электронной техники; Том 23, № 4 (2020); 260-269 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2020-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://met.misis.ru/jour/article/view/433/429; Xu Y. H., Bai J., Wang J. P. High-magnetic-moment multifunctional nanoparticles for nanomedicine applications // Journal of Magnetism and Magnetic Materials. 2007. V. 311, Iss. 1. P. 131—134. https://doi.org/10.1016/j.jmmm.2006.11.174; Khadzhiev S. N., Kulikova M. V., Ivantsov M. I., Zemtsov L. M., Karpacheva G. P., Muratov D. G., Bondarenko G. N., Oknina N. V. Fischer–Tropsch synthesis in the presence of nanosized iron-polymer catalysts in a fixed-bed reactor // Petroleum Chemistry. 2016. V. 56. P. 522—528. DOI:10.1134/S0965544116060049; Efimov M. N., Mironova E. Yu., Pavlov A. A., Vasilev A. A., Muratov D. G., Dzidziguri E. L., Yaroslavtsev A. B., Karpacheva G. P. Novel polyacrylonitrile-based C/Co-Ru metal-carbon nanocomposites as effective catalysts for ethanol steam reforming // International Journal of Nanoscience. 2020. V. 19, N 04, P. 1950031. DOI:10.1142/S0219581X19500315; Gubin S. P., Spichkin Y. I., Yurkov G. Yu., Tishin A. M. Nanomaterial for high-density magnetic data storage // Russian Journal of Inorganic Chemistry. 2002. V. 47. P. S32—S67.; Lu An-H., Salabas E. L., Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application // Angewandte Chemie International Edition. 2007. V. 46, N 8. P. 1222—1244. DOI:10.1002/anie.200602866; Afghahi S. S., Shokuhfar. A. S. Two step synthesis, electromagnetic and microwave absorbing properties of FeCo@C core-hell nanostructure // Journal of Magnetism and Magnetic Materials. 2014. V. 370. P. 37—44. DOI:10.1016/J.JMMM.2014.06.040; Liu X. G., Ou Z. Q., Geng D. Y., Han Z., Jiang J. J., Liu W., Zhang Z. D. Influence of a graphite shell on the thermal and electromagnetic characteristics of FeNi nanoparticles // Carbon. 2010. V. 48, Iss. 3. P. 891—897. DOI:10.1016/j.carbon.2009.11.011; Liu Q., Cao B., Feng C., Zhang W., Zhu S., Zhang D. High permittivity and microwave absorption of porous graphitic carbons encapsulating Fe nanoparticles // Composites Science and Technology. 2012. V. 72, Iss. 13. P. 1632—1636. DOI:10.1016/J.COMPSCITECH.2012.06.022; Xie Z., Geng D., Liu X., Ma S., Zhang Z. Magnetic and microwave-absorption properties of graphite-coated (Fe,Ni) nanocapsules // Journal of Materials Science and Technology. 2011. V. 27, Iss. 7. P. 607—614. DOI:10.1016/S1005-0302(11)60115-1; Ibrahim E. M. M., Hampel S., Wolter A. U. B., Kath M., El-Gendy A. A., Klingeler R., Täschner C., Khavrus V. O., Gemming T., Leonhardt A., Büchner B. Superparamagnetic FeCo and FeNi nanocomposites dispersed in submicrometer-sized C spheres // The Journal of Physical Chemistry C. 2012. V. 116, N 42. P. 22509—22517. DOI:10.1021/JP304236X; Yang Y., Qi S., Wang J. Preparation and microwave absorbing properties of nickel-coated graphite nanosheet with pyrrole via in situ polymerization // Journal of Alloys and Compound. 2012. V. 520. P. 114—121. DOI:10.1016/j.jallcom.2011.12.136; Lu B., Dong X. L., Huang H., Zhang X. F., Zhu X. G., Lei J. P., Sun J. P. Microwave absorption properties of the core/shell-type iron and nickel nanoparticles // Journal of Magnetism and Magnetic Materials. 2008. V. 320, Iss. 6. P. 1106—1111. DOI:10.1016/J.JMMM.2007.10.030; Wang B., Zhang J., Wang T., Qiao L., Li F. Synthesis and enhanced microwave absorption properties of Ni@Ni2O3 core-shell particles // Journal of Alloys and Compounds. 2013. V. 567. P. 21—25. DOI:10.1016/J.JALLCOM.2013.03.028; Fan Y., Yang H., Liu X., Zhu H., Zou G. Preparation and study on radar absorbing materials of nickel-coated carbon fiber and flake graphite // Journal of Alloys and Compounds. 2008. V. 461, Iss. 1–2. P. 490—494. DOI:10.1016/J.JALLCOM.2007.07.034; Zhang T., Huang D., Yang Y., Kang F., Gu J. Fe3O4/carbon composite nanofiber absorber with enhanced microwave absorption performance // Journal of Materials Science and Engineering: B. 2013. V. 178, Iss. 1. P. 1—9. DOI:10.1016/j.mseb.2012.06.005; Муратов Д. Г., Кожитов Л. В., Коровушкин В. В., Коровин Е. Ю., Попкова А. В., Новоторцев В. М. Синтез, структура и электромагнитные свойства нанокомпозитов с трехкомпонентными наночастицами Fe, Co, Ni // Известия вузов. Физика. 2018. Т. 61, № 10. С. 40—49.; Муратов Д. Г., Кожитов Л. В., Карпенков Д. Ю., Якушко Е. В., Коровин Е.Ю., Васильев А. В., Попкова А. В., Казарян Т. М., Шадринов А. В. Синтез и магнитные свойства нанокомпозитов Fe-Co-Ni/С // Известия вузов. Физика. 2017. Т. 60, № 11. С. 67—73.; Кожитов Л. В., Муратов Д. Г., Костишин В. Г., Сусляев В. И., Коровин Е. Ю., Попкова А. В. Синтез, магнитные и электромагнитные свойства нанокомпозитов FeCo/C // Журнал неорганической химии. 2017. Т. 62, № 11. С. 1507—1514. DOI:10.7868/S0044457X17110137; Vasilev A. A., Efimov M. N., Bondarenko G. N., Muratov D. G., Dzidziguri E. L., Ivantsov M. I., Kulikova M. V., Karpacheva G. P. Fe—Co alloy nanoparticles supported on IR pyrolyzed chitosan as catalyst for Fischer-Tropsch synthesis // Chemical Physics Letters. 2019. V. 730. P. 8—13. https://doi.org/10.1016/j.cplett.2019.05.034; Муратов Д. Г., Васильев А. А., Ефимов М. Н., Карпачева Г. П., Дзидзигури Э. Л., Чернавский П. А. Металл-углеродные нанокомпозиты FeNi/C: получение, фазовый состав, магнитные свойства // Физика и химия обработки материалов. 2018. № 6. С. 26—34. DOI:10.30791/0015-3214-2018-6-26-34; Vasilev A. A., Dzidziguri E. L., Muratov D. G., Zhilyaeva N. A., Efimov M. N., Karpacheva G. P. Morphology and dispersion of FeCo alloy nanoparticles dispersed in a matrix of IR pyrolized polyvinyl alcohol // IOP Conference Series: Materials Science and Engineering. 2018. V. 347. P. 012011. DOI:10.1088/1757-899X/347/1/012011; Ferrari A. C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects // Solid State Communications. 2007. V. 143, N 1–2. P. 47—57. DOI:10.1016/j.ssc.2007.03.052; Ferrari A. C., Robertson J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon // Physical Review B. 2001. V. 64. N 7. P. 0754141—07541413. DOI:10.1103/PhysRevB.64.075414; https://met.misis.ru/jour/article/view/433