Εμφανίζονται 1 - 13 Αποτελέσματα από 13 για την αναζήτηση '"колониестимулирующие факторы"', χρόνος αναζήτησης: 0,52δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Πηγή: Meditsinskiy sovet = Medical Council; № 22 (2022); 112-118 ; Медицинский Совет; № 22 (2022); 112-118 ; 2658-5790 ; 2079-701X

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/7239/6482; Ranuhardy D. The Role of Febrile Neutropenia Guideline's Implementation on Mortality Rate in Dharmais Hospital-National Cancer Center. Indones J Cancer. 2019;12(3):71. https://doi.org/10.33371/ijoc.v12i3.612.; Sereeaphinan C., Kanchanasuwan S., Julamanee J. Mortality-associated clinical risk factors in patients with febrile neutropenia: A retrospective study. IJID Reg. 2021;1:5-11. https://doi.org/10.1016/j.ijregi.2021.09.002.; Aagaard T., Reekie J., J0rgensen M., Roen A., Daugaard G., Specht L. et al. Mortality and admission to intensive care units after febrile neutropenia in patients with cancer. Cancer Med. 2020;9(9):3033-3042. https://doi.org/10.1002/cam4.2955.; Clark O.A.C., Lyman G.H., Castro A.A., Clark L.G.O., Djulbegovic B. ColonyStimulating Factors for Chemotherapy-Induced Febrile Neutropenia: A Meta-Analysis of Randomized Controlled Trials. J Clin Oncol. 2005;23(18):4198-4214. https://doi.org/10.1200/JCO.2005.05.645.; Hussaini S., Gupta A., Anderson K.E., Ballreich J.M., Nicholas L.H., Alexander C. Biosimilar uptake of filgrastim and impact on spending in Medicare Part D from 2015 to 2019. J Clin Oncol. 2021;39(28 Suppl.):67-67. https://doi.org/10.1200/JCO.2020.39.28_suppl.67.; Sternberg C.N., de Mulder P.H.M., Schornagel J.H., Theodore C., Fossa S.D., van Oosterom A.T. et al. Randomized Phase III Trial of High-Dose-Intensity Methotrexate, Vinblastine, Doxorubicin, and Cisplatin (MVAC) Chemotherapy and Recombinant Human Granulocyte Colony-Stimulating Factor Versus Classic MVAC in Advanced Urothelial Tract Tumors: European Organization for Research and Treatment of Cancer Protocol No. 30924. J Clin Oncol. 2001;19(10):2638-2646. https://doi.org/10.1200/JCO.2001.19.10.2638.; Pfister C., Gravis G., Flechon A., Soulie M., Guy L., Laguerre B. et al. Randomized Phase III Trial of Dose-dense Methotrexate, Vinblastine, Doxorubicin, and Cisplatin, or Gemcitabine and Cisplatin as Perioperative Chemotherapy for Patients with Muscle-invasive Bladder Cancer. Analysis of the GETUG/AFU V05 VESPER Trial Secondary Endpoints: Chemotherapy Toxicity and Pathological Responses. Eur Urol. 2021;79(2):214-221. https://doi.org/10.1016/j.eururo.2020.08.024.; Lewis I.J., Nooij M.A., Whelan J., Sydes M.R., Grimer R., Hogendoorn P.C.W. et al. Improvement in Histologic Response But Not Survival in Osteosarcoma Patients Treated With Intensified Chemotherapy: A Randomized Phase III Trial of the European Osteosarcoma Intergroup. JNCI J Natl Cancer Inst. 2007;99(2):112-128. https://doi.org/10.1093/jnci/djk015.; Grier H.E., Krailo M.D., Tarbell N.J., Link M.P., Fryer C.J.H., Pritchard D.J. et al. Addition of Ifosfamide and Etoposide to Standard Chemotherapy for Ewing's Sarcoma and Primitive Neuroectodermal Tumor of Bone. N Engl J Med. 2003;348(8):694-701. https://doi.org/10.1056/NEJMoa020890.; Womer R.B., West D.C., Krailo M.D., Dickman P.S., Pawel B.R., Grier H.E. et al. Randomized Controlled Trial of Interval-Compressed Chemotherapy for the Treatment of Localized Ewing Sarcoma: A Report From the Children's Oncology Group. J Clin Oncol. 2012;30(33):4148-4154. https://doi.org/10.1200/JCO.2011.41.5703.; Citron M.L., Berry D.A., Cirrincione C., Hudis C., Winer E.P., Gradishar W.J. et al. Randomized Trial of Dose-Dense Versus Conventionally Scheduled and Sequential Versus Concurrent Combination Chemotherapy as Postoperative Adjuvant Treatment of Node-Positive Primary Breast Cancer: First Report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741. J Clin Oncol. 2003;21(8):1431-1439. https://doi.org/10.1200/JCO.2003.09.081.; Kosaka Y., Rai Y., Masuda N., Takano T., Saeki T., Nakamura S. et al. Phase III placebo-controlled, double-blind, randomized trial of pegfilgrastim to reduce the risk of febrile neutropenia in breast cancer patients receiving docetaxel/cyclophosphamide chemotherapy. Support Care Cancer. 2015;23(4):1137-1143. https://doi.org/10.1007/s00520-014-2597-1.; Gilbar P., McPherson I., Sorour N., Sanmugarajah J. High incidence of febrile neutropenia following adjuvant breast chemotherapy with docetaxel, carboplatin and trastuzumab. Breast Cancer Manag. 2014;3(4):327-333. https://doi.org/10.2217/bmt.14.22.; Kondagunta G.V., Bacik J., Donadio A., Bajorin D., Marion S., Sheinfeld J. et al. Combination of Paclitaxel, Ifosfamide, and Cisplatin Is an Effective Second-Line Therapy for Patients With Relapsed Testicular Germ Cell Tumors. J Clin Oncol. 2005;23(27):6549-6555. https://doi.org/10.1200/JCO.2005.19.638.; Daugaard G., Skoneczna I., Aass N., De Wit R., De Santis M., Dumez H. et al. A randomized phase III study comparing standard dose BEP with sequential high-dose cisplatin, etoposide, and ifosfamide (VIP) plus stem-cell support in males with poor-prognosis germ-cell cancer. An intergroup study of EORTC, GTCSG, and Grupo Germinal (EORTC 30974). Ann Oncol. 2011;22(5):1054-1061. https://doi.org/10.1093/annonc/mdq575.; Miller K.D., Loehrer P.J., Gonin R., Einhorn L.H. Salvage chemotherapy with vinblastine, ifosfamide, and cisplatin in recurrent seminoma. J Clin Oncol. 1997;15(4):1427-1431. https://doi.org/10.1200/JCO.1997.15.4.1427.; de Wit R., Skoneczna I., Daugaard G., De Santis M., Garin A., Aass N. et al. Randomized Phase III Study Comparing Paclitaxel-Bleomycin, Etoposide, and Cisplatin (BEP) to Standard BEP in Intermediate-Prognosis Germ-Cell Cancer: Intergroup Study EORTC 30983. J Clin Oncol. 2012;30(8):792-799. https://doi.org/10.1200/JCO.2011.37.0171.; Swisher E.M., Mutch D.G., Rader J.S., Elbendary A., Herzog T.J. Topotecan in Platinum- and Paclitaxel-Resistant Ovarian Cancer. Gynecol Oncol. 1997;66(3):480-486. https://doi.org/10.1006/gyno.1997.4787.; von Pawel J., Schiller J.H., Shepherd F.A., Fields S.Z., Kleisbauer J.P., Chrysson N.G. et al. Topotecan Versus Cyclophosphamide, Doxorubicin, and Vincristine for the Treatment of Recurrent Small-Cell Lung Cancer. J Clin Oncol. 1999;17(2):658-658. https://doi.org/10.1200/JCO.1999.17.2.658.; Seddon B., Strauss S.J., Whelan J., Leahy M., Woll P.J., Cowie F. et al. Gemcitabine and docetaxel versus doxorubicin as first-line treatment in previously untreated advanced unresectable or metastatic soft-tissue sarcomas (GeDDiS): a randomised controlled phase 3 trial. Lancet Oncol. 2017;18(10):1397-1410. https://doi.org/10.1016/S1470-2045(17)30622-8.; Judson I., Verweij J., Gelderblom H., Hartmann J.T., Schoffski P., Blay J.-Y. et al. Doxorubicin alone versus intensified doxorubicin plus ifosfamide for first-line treatment of advanced or metastatic soft-tissue sarcoma: a randomised controlled phase 3 trial. Lancet Oncol. 2014;15(4):415-423. https://doi.org/10.1016/S1470-2045(14)70063-4.; Patel S.R., Vadhan-Raj S., Papadopolous N., Plager C., Burgess M.A., Hays C. et al. High-dose ifosfamide in bone and soft tissue sarcomas: results of phase II and pilot studies--dose-response and schedule dependence. J Clin Oncol. 1997;15(6):2378-2384. https://doi.org/10.1200/JCO.1997.15.6.2378.; McCabe M., Kirton L., Khan M., Fenwick N., Strauss S.J., Valverde C. et al. Phase III assessment of topotecan and cyclophosphamide and high-dose ifosfamide in rEECur: An international randomized controlled trial of chemotherapy for the treatment of recurrent and primary refractory Ewing sarcoma (RR-ES). J Clin Oncol. 2022;40(17 Suppl.):LBA2-LBA2. https://doi.org/10.1200/JCO.2022.40.17_suppl.LBA2.; Oudard S., Fizazi K., Sengel0v L., Daugaard G., Saad F., Hansen S. et al. Cabazitaxel Versus Docetaxel As First-Line Therapy for Patients With Metastatic Castration-Resistant Prostate Cancer: A Randomized Phase III Trial - FIRSTANA. J Clin Oncol. 2017;35(28):3189-3197. https://doi.org/10.1200/JCO.2016.72.1068.; Tannock I.F., Horti J., Oudard S., James N.D., Rosenthal M.A. Docetaxel plus Prednisone or Mitoxantrone plus Prednisone for Advanced Prostate Cancer. N Engl J Med. 2004;351(15):1502-1512. https://doi.org/10.1056/NEJMoa040720.; Sweeney C.J., Chen Y.-H., Carducci M., Liu G., Jarrard D.F., Eisenberger M. et al. Chemohormonal Therapy in Metastatic Hormone-Sensitive Prostate Cancer. N Engl J Med. 2015;373(8):737-746. https://doi.org/10.1056/NEJMoa1503747.; Borghaei H., Paz-Ares L., Horn L., Spigel D.R., Steins M., Ready N.E. et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N Engl J Med. 2015;373(17):1627-1639. https://doi.org/10.1056/NEJMoa1507643.; Hanna N., Shepherd F.A., Fossella F.V., Pereira J.R., De Marinis F., von Pawel J. et al. Randomized Phase III Trial of Pemetrexed Versus Docetaxel in Patients With Non-Small-Cell Lung Cancer Previously Treated With Chemotherapy. J Clin Oncol. 2004;22(9):1589-1597. https://doi.org/10.1200/JCO.2004.08.163.; Rose P.G., Blessing J.A., Ball H.G., Hoffman J., Warshal D., DeGeest K. et al. A phase II study of docetaxel in paclitaxel-resistant ovarian and peritoneal carcinoma: a gynecologic oncology group study. Gynecol Oncol. 2003;88(2):130-135. https://doi.org/10.1016/S0090-8258(02)00091-4.; Iorio G.C., Spieler B.O., Ricardi U., Dal Pra A. The Impact of Pelvic Nodal Radiotherapy on Hematologic Toxicity: A Systematic Review with Focus on Leukopenia, Lymphopenia and Future Perspectives in Prostate Cancer Treatment. Crit Rev Oncol Hematol. 2021;168:103497. https://doi.org/10.1016/j.critrevonc.2021.103497.; Bonadonna G., Brusamolino E., Valagussa P., Rossi A., Brugnatelli L., Brambilla C. et al. Combination Chemotherapy as an Adjuvant Treatment in Operable Breast Cancer. N Engl J Med. 1976;294(8):405-410. https://doi.org/10.1056/NEJM197602192940801.; Bonadonna G., Valagussa P. Dose-Response Effect of Adjuvant Chemotherapy in Breast Cancer. N Engl J Med. 1981;304(1):10-15. https://doi.org/10.1056/NEJM198101013040103.; Loibl S., Skacel T., Nekljudova V., Luck HJ., Schwenkglenks M., Brodowicz T. et al. Evaluating the impact of Relative Total Dose Intensity (RTDI) on patients' short and long-term outcome in taxane- and anthracycline-based chemotherapy of metastatic breast cancer- a pooled analysis. BMC Cancer. 2011;11(1):131. https://doi.org/10.1186/1471-2407-11-131.; Denduluri N., Lyman G.H., Wang Y., Morrow P.K., Barron R., Patt D. et al. Chemotherapy Dose Intensity and Overall Survival Among Patients With Advanced Breast or Ovarian Cancer. Clin Breast Cancer. 2018;18(5):380-386. https://doi.org/10.1016/j.clbc.2018.02.003.; Fedyanin M., Tryakin A., Titov D., Zakharova T., Fainstein I., Figurin K. et al. Importance of maintenance of dose intensity (DI) during induction chemotherapy (iCT) for metastatic nonseminomatous germ cell tumors (NSGCT). J Clin Oncol. 2009;27(15 Suppl.):e16063-e16063. https://doi.org/10.1200/jco.2009.27.15_suppl.e16063.; Crawford J., Denduluri N., Patt D., Jiao X., Morrow P.K., Garcia J. et al. Relative dose intensity of first-line chemotherapy and overall survival in patients with advanced non-small-cell lung cancer. Support Care Cancer. 2020;28(2):925-932. https://doi.org/10.1007/s00520-019-04875-1.; Lee J., Kim J.W., Ahn S., Kim H.W., Lee J., Kim Y.H. et al. Optimal dose reduction of FOLFIRINOX for preserving tumour response in advanced pancreatic cancer: Using cumulative relative dose intensity. Eur J Cancer. 2017;76:125-133. https://doi.org/10.1016/j.ejca.2017.02.010.; Kobayashi S., Ueno M., Omae K., Kuramochi H., Terao M., Mizuno N. et al. Influence of initial dose intensity on efficacy of FOLFIRINOX in patients with advanced pancreatic cancer. Oncotarget. 2019;10(19):1775-1784. https://doi.org/10.18632/oncotarget.26633.; Gray R., Bradley R., Braybrooke J., Liu Z., Peto R., Davies L. et al. Increasing the dose intensity of chemotherapy by more frequent administration or sequential scheduling: a patient-level meta-analysis of 37 298 women with early breast cancer in 26 randomised trials. Lancet. 2019;393(10179):1440-1452. https://doi.org/10.1016/S0140-6736(18)33137-4.; Ding Y., Ding K., Yang H., He X., Mo W., Ding X. Does dose-dense neoadjuvant chemotherapy have clinically significant prognostic value in breast cancer?: A meta-analysis of 3,724 patients. PLoS ONE. 2020;15(5):e0234058. https://doi.org/10.1371/journal.pone.0234058.; Cash T., Krailo M.D., Buxton A., Pawel B., Healey J.H., Binitie O. et al. Long-term outcomes in patients with localized Ewing sarcoma treated with interval-compressed chemotherapy: A long-term follow-up report from Children's Oncology Group study AEWS0031. J Clin Oncol. 2022;40(16 Suppl.):11505-11505. https://doi.org/10.1200/JCO.2022.40.16_suppl.11505.; Zhou M., Thompson T.D., Lin H.-Y., Chen V.W., Karlitz J.J., Fontham E.T.H. et al. Impact of Relative Dose Intensity of FOLFOX Adjuvant Chemotherapy on Risk of Death Among Stage III Colon Cancer Patients. Clin Colorectal Cancer. 2022;21(2):e62-e75. https://doi.org/10.1016/j.clcc.2021.09.008.; Lakkunarajah S., Breadner D.A., Zhang H., Yamanaka E., Warner A., Welch S. The Influence of Adjuvant Chemotherapy Dose Intensity on Five-Year Outcomes in Resected Colon Cancer: A Single Centre Retrospective Analysis. Curr Oncol. 2021;28(5):4031-4041. https://doi.org/10.3390/curroncol28050342.; Lyman G.H., Dale D.C., Wolff D.A., Culakova E., Poniewierski M.S., Kuderer N.M. et al. Acute Myeloid Leukemia or Myelodysplastic Syndrome in Randomized Controlled Clinical Trials of Cancer Chemotherapy With Granulocyte Colony-Stimulating Factor: A Systematic Review. J Clin Oncol. 2010;28(17):2914-2924. https://doi.org/10.1200/JCO.2009.25.8723.; Nielson C.M., Bylsma L.C., Fryzek J.P., Saad H.A., Crawford J. Relative Dose Intensity of Chemotherapy and Survival in Patients with Advanced Stage Solid Tumor Cancer: A Systematic Review and Meta-Analysis. Oncologist. 2021;26(9):e1609-e1618. https://doi.org/10.1002/onco.13822.; Dale D.C. The discovery, development and clinical applications of granulocyte colony- stimulating factor. Trans Am Clin Climatol Assoc. 1998;109:27-36. Available at: https://pubmed.ncbi.nlm.nih.gov/9601125.; Сакаева Д.Д., Борисов К.Е., Булавина И.С., Когония Л.М., Курмуков И.А., Орлова Р.В. и др. Практические рекомендации по диагностике и лечению фебрильной нейтропении. Злокачественные опухоли. 2021;11(2):55-63. https://doi.org/10.18027/2224-5057-2021-11-3s2-39.; Трякин А.А., Бесова Н.С., Волков Н.М., Гладков О.А., Карасева В.В., Сакаева Д.Д. и др. Практические рекомендации по общим принципам проведения противоопухолевой лекарственной терапии. Злокачественные опухоли. 2021;11(1):23-35. https://doi.org/10.18027/2224-5057-2021-11-3s2-01.; Clemons M., Fergusson D., Simos D., Mates M., Robinson A., Califaretti N. et al. A multicentre, randomised trial comparing schedules of G-CSF (filgrastim) administration for primary prophylaxis of chemotherapy-induced febrile neutropenia in early stage breast cancer. Ann Oncol. 2020;31(7):951-957. https://doi.org/10.1016/j.annonc.2020.04.005.; Wang Y., Chen L., Liu F., Zhao N., Xu L., Fu B. et al. Efficacy and tolerability of granulocyte colony-stimulating factors in cancer patients after chemotherapy: A systematic review and Bayesian network meta-analysis. Sci Rep. 2019;9(1):15374. https://doi.org/10.1038/s41598-019-51982-4.; American Society of Clinical Oncology. Recommendations for the use of hematopoietic colony-stimulating factors: evidence-based, clinical practice guidelines. J Clin Oncol. 1994;12(11):2471-2508. https://doi.org/10.1200/JCO.1994.12.11.2471.; Truong J., Lee E.K., Trudeau M.E., Chan K.K.W. Interpreting febrile neutropenia rates from randomized, controlled trials for consideration of primary prophylaxis in the real world: a systematic review and meta-analysis. Ann Oncol. 2016;27(4):608-618. https://doi.org/10.1093/annonc/mdv619.; Scotte F., Simon H., Laplaige P., Antoine E.-C., Spasojevic C., Texier N. et al. Febrile neutropenia prophylaxis, G-CSF physician preferences: discretechoice experiment. BMJ Support Palliat Care. 2021:bmjspcare-2021-003082. https://doi.org/10.1136/bmjspcare-2021-003082.

  3. 3
  4. 4
    Academic Journal

    Συνεισφορές: Работа выполнена в рамках гранта Российского фонда фундаментальных исследований № 19-315-90001, а также за счет средств федерального бюджета на проведение фундаментальных научных исследований по теме «Обоснование и разработка новых технологий иммуномодуляции, стимуляции репаративных процессов и коррекции поведенческих и аддиктивных расстройств на основе использования миелоидных, лимфоидных и стволовых клеток и/или продуктов их секретома» (№ госрегистрации 122011800324-4).

    Πηγή: Medical Immunology (Russia); Том 24, № 5 (2022); 931-942 ; Медицинская иммунология; Том 24, № 5 (2022); 931-942 ; 2313-741X ; 1563-0625

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/2525/1579; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2525/9537; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2525/9538; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2525/9539; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2525/9540; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2525/9541; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2525/9543; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2525/9544; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2525/9545; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2525/9546; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2525/9547; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2525/9548; Adhyatmika A., Putri K.S., Beljaars L., Melgert B.N. The elusive antifibrotic macrophage. Front. Med. (Lausanne), 2015, Vol. 2, 81. doi:10.3389/fmed.2015.00081.; Baranyi U., Winter B., Gugerell A., Hegedus B., Brostjan C., Laufer G., Messner B. Primary human fibroblasts in culture switch to a myofibroblast-like phenotype independently of TGF Beta. Cells, 2019, Vol. 8, no. 7, 721. doi:10.3390/cells8070721.; Beyer M., Mallmann M.R., Xue J., Staratschek-Jox A., Vorholt D., Krebs W., Sommer D., Sander J., Mertens C., Nino-Castro A., Schmidt S.V., Schultze J.L. High-resolution transcriptome of human macrophages. PLoS One, 2012, Vol. 7, no. 9, e45466. doi:10.1371/journal.pone.0045466.; Bogunovic M., Ginhoux F., Helft J., Shang L., Hashimoto D., Greter M., Liu K., Jakubzick C., Ingersoll M.A., Leboeuf M., Stanley R., Nussenzweig M., Lira S.A., Randolph G.J., Merad M. Origin of the lamina propria dendritic cell network. Immunity, 2009, Vol. 31, no. 3, pp. 513-525.; Borthwick L.A., Wynn T.A., Fisher A.J. Cytokine mediated tissue fibrosis. Biochim. Biophys. Acta, 2013, Vol. 1832, no. 7, pp. 1049-1060.; Duan J., Liu, X., Wang, H., Guo, S. W. The M2a macrophage subset may be critically involved in the fibrogenesis of endometriosis in mice. Reprod. Biomed. Online, 2018, Vol. 37, no. 3, pp. 254-268.; Fleetwood A.J., Dinh H., Cook A.D., Hertzog P.J., Hamilton J.A. GM-CSF- and M-CSF-dependent macrophage phenotypes display differential dependence on type I interferon signaling. J. Leukoc. Biol., 2009, Vol. 86, no. 2, pp. 411-421.; Gindele J.A., Mang S., Pairet N., Christ I., Gantner F. Schymeinsky J., Lamb D.J. Opposing effects of in vitro differentiated macrophages sub-type on epithelial wound healing. PLoS One, 2017, Vol. 12, no. 9, e0184386. doi:10.1371/journal.pone.0184386.; Glim J.E., Niessen F.B., Everts V., van Egmond M., Beelen R.H. Platelet derived growth factor-CC secreted by M2 macrophages induces alpha-smooth muscle actin expression by dermal and gingival fibroblasts. Immunobiology, 2013, Vol. 218, no. 6, pp. 924-929.; Hamilton J.A. Colony-stimulating factors in inflammation and autoimmunity. Nat. Rev. Immunol., 2008, no. 8, pp. 533-544.; Hamilton J.A., Anderson G.P. GM-CSF Biology. Growth Factors, 2004, Vol. 22, no. 4, pp. 225-231.; Jaguin M., Houlbert N., Fardel O., Lecureur V. Polarization profiles of human M-CSF-generated macrophages and comparison of M1-markers in classically activated macrophages from GM-CSF and M-CSF origin. Cell Immunol., 2013, Vol.281, no. 1, pp. 51-61.; Luzina I.G., Meng X.M., Nikolic-Paterson D.J., Lan H.Y. TGF-β: the master regulator of fibrosis. Nat. Rev. Nephrol., 2016, Vol. 12, no. 6, pp. 325-338.; Mescher AL. Macrophages and fibroblasts during inflammation and tissue repair in models of organ regeneration. Regeneration (Oxf.), 2017, Vol. 4, no. 2, pp. 39-53.; Orecchioni M., Ghosheh Y., Pramod A.B., Ley K. Macrophage Polarization: Different Gene Signatures in M1 (LPS+) vs. Classically and M2 (LPS-) vs. Alternatively Activated Macrophages. Front. Immunol., 2019, no. 10, 1084. doi:10.3389/fimmu.2019.01084.; Ploeger D.T., Hosper N.A., Schipper M., Koerts J.A., de Rond S., Bank R.A. Cell plasticity in wound healing: paracrine factors of M1/ M2 polarized macrophages influence the phenotypical state of dermal fibroblasts. Cell Commun. Signal., 2013, Vol. 11, no. 1, 29. doi:10.1186/1478-811X-11-29.; Shi Y., Liu C.H., Roberts A.I., Das J., Xu G., Ren G., Zhang Y., Zhang L., Yuan Z.R., Tan H.S., Das G., Devadas S. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and T-cell responses: what we do and don’t know. Cell Res., 2006, Vol. 16, no. 2, pp. 126-133.; Shibata Y., Berclaz P.Y., Chroneos Z.C., Yoshida M., Whitsett J.A., Trapnell B.C. GM-CSF regulates alveolar macrophage differentiation and innate immunity in the lung through PU.1. Immunity, 2001, Vol. 15, no. 4, pp. 557-567.; Shiomi A., Usui T. Pivotal roles of GM-CSF in autoimmunity and inflammation. Mediators Inflamm., 2015, Vol. 2015, 568543. doi:10.1155/2015/568543.; Shiratori H., Feinweber C., Luckhardt S., Linke B., Resch E., Geisslinger G., Weigert A., Parnham M.J. THP- 1 and human peripheral blood mononuclear cell-derived macrophages differ in their capacity to polarize in vitro. Mol. Immunol., 2017, Vol. 88, pp. 58-68.; Sierra-Filardi E., Nieto C., Domínguez-Soto A., Barroso R., Sánchez-Mateos P., Puig-Kroger A., López-Bravo M., Joven J., Ardavín C., Rodríguez-Fernández J.L., Sánchez-Torres C., Mellado M., Corbí A.L. CCL2 shapes macrophage polarization by GM-CSF and M-CSF: identification of CCL2/CCR2-dependent gene expression profile. J. Immunol., 2014, Vol. 192, no. 8, pp. 3858-3867.; Song E. Ouyang N., Hörbelt M., Antus B., Wang M., Exton M.S. Influence of alternatively and classically activated macrophages on fibrogenic activities of human fibroblasts. Cell. Immunol., 2000, Vol. 204, no. 1, pp. 19-28.; Spiller K.L., Wrona E.A., Romero-Torres S., Pallotta I., Graney P.L., Witherel C.E., Panicker L.M., Feldman R.A., Urbanska A.M., Santambrogio L., Vunjak-Novakovic G., Freytes D.O. Differential gene expression in human, murine, and cell line-derived macrophages upon polarization. Exp. Cell Res., 2016, Vol. 347, no. 1, pp. 1-13.; Tang L., Zhang H., Wang C., Li H., Zhang Q., Bai J. M2A and M2C macrophage subsets ameliorate inflammation and fibroproliferation in acute lung injury through interleukin 10 pathway. Shock, 2017, Vol. 48, no. 1, pp. 119-129.; Tarique A.A., Logan J., Thomas E., Holt P.G., Sly P.D., Fantino E. Phenotypic, functional, and plasticity features of classical and alternatively activated human macrophages. Am. J. Respir. Cell Mol. Biol., 2015, Vol. 53, no. 5, pp. 676-688.; Tedesco S., de Majo F., Kim J., Trenti A., Trevisi L., Fadini G.P., Bolego C., Zandstra P.W., Cignarella A., Vitiello L. Convenience versus biological significance: Are PMA-Differentiated THP-1 cells a reliable substitute for blood-derived macrophages when studying in vitro polarization? Front. Pharmacol., 2018, Vol. 9, 71. doi:10.3389/fphar.2018.00071.; Ushach I., Zlotnik A. Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage. J. Leukoc. Biol., 2016, Vol. 100, no. 3, pp. 481-489.; Verreck F.A., de Boer T., Langenberg D.M., van der Zanden L., Ottenhoff T.H. Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-gamma- and CD40L-mediated costimulation. J. Leukoc. Biol., 2006, Vol. 79, no. 2, pp. 285-293.; Vogel D.Y., Glim J.E., Stavenuiter A.W., Breur M., Heijnen P., Amor S., Dijkstra C.D., Beelen R.H. Human macrophage polarization in vitro: maturation and activation methods compared. Immunobiology, 2014, Vol. 219, no. 9, pp. 695-703.; Wicks I.P., Roberts A.W. Targeting GM-CSF in inflammatory diseases. Nat. Rev. Rheumatol., 2016, Vol. 12, no. 1, pp. 37-48.; Wynn T., Barron L. Macrophages: master regulators of inflammation and fibrosis. Semin. Liver. Dis., 2010, Vol. 30, no. 3, pp. 245-257.; Xu X., Gu S., Huang X., Ren J., Gu Y., Wei C., Lian X., Li H., Gao Y., Jin R., Gu B., Zan T., Wang Z. The role of macrophages in the formation of hypertrophic scars and keloids. Burns Trauma, 2020, Vol. 8, tkaa006. doi:10.1093/burnst/tkaa006.; Yankovskaya A.A., Shevela E.Y., Sakhno L.V., Tikhonova M.A., Dome A.S., Ostanin A.A., Chernykh E.R. Allostimulatory activity as a criterion of the functional phenotype of human macrophages. Hum. Immunol., 2019, Vol. 80, no. 10, pp. 890-896.; Zizzo G., Hilliard B.A., Monestier M., Cohen P.L. Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction. J. Immunol., 2012, Vol. 189., no. 7, pp. 3508-3520.; https://www.mimmun.ru/mimmun/article/view/2525

  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13