Εμφανίζονται 1 - 2 Αποτελέσματα από 2 για την αναζήτηση '"количественная флуоресцентная гибридизация in situ (Q-FISH)"', χρόνος αναζήτησης: 0,40δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: Bulletin of Siberian Medicine; Том 18, № 1 (2019); 164-174 ; Бюллетень сибирской медицины; Том 18, № 1 (2019); 164-174 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2019-18-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/2181/1547; Tsuji T., Aoshiba K., Nagai A. Alveolar cell senescence in patients with pulmonary emphysema. Am. J. Respir. Crit. Care Med. 2006; 174 (8): 886–893. DOI:10.1164/rccm.200509-1374OC.; Albrecht E., Sillanpää E., Karrasch S., Couto Alves A., Codd V., Hovatta I, Buxton J.L., Nelson C.P., Broer L., Hägg S., Mangino M., Willemsen G., Surakka I., Ferreira M.A.R., Amin N., Oostra B.A., Bäckmand H.M., Peltonen M., Sarna S., Rantanen T., Sipilд S., Korhonen T., Madden P.A., Gieger C., Jörres R.A., Heinrich J., Behr J., Huber R.M., Peters A., Strauch K., Wichmann H.E., Waldenberger M., Blakemore A.I., de Geus E.J., Nyholt D.R., Henders A.K., Piirilä P.L., Rissanen A., Magnusson P.K., Viсuela A., Pietiläinen K.H., Martin N.G., Pedersen N.L., Boomsma D.I., Spector T.D., van Duijn C.M., Kaprio J., Samani N.J., Jarvelin M.R., Schulz H. Telomere length in circulating leukocytes is associated with lung function and disease. Eur. Respir. J. 2014; 43 (4): 983–992. DOI:10.1183/09031936.00046213.; Birch J., Anderson R.K., Correia-Melo C., Jurk D., Hewitt G., Marques F.M., Green N.J., Moisey E., Birrell M.A., Belvisi M.G., Black F., Taylor J.J., Fisher A.J., De Soyza A., Passos J.F. DNA damage response at telomeres contributes to lung aging and chronic obstructive pulmonary disease. Am. J. Physiol. Lung. Cell Mol. Physiol. 2015; 309 (10): L1124–L1137. DOI:10.1152/ajplung.00293.2015.; Moyzis R.K., Buckingham J.M., Cram L.S., Dani M., Deaven L.L., Jones M.D., Meyne J., Ratliff R.L., Wu J.R. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc. Natl. Acad. Sci. USA. 1988; 85 (18): 6622–6626. DOI:10.1073/pnas.85.18.6622.; Hayflick L. The limited in vitro lifetime of human diploid strains. Exp. Cell Res. 1965; 37 (3): 614–636. DOI:10.1016/0014-4827(65)90211-9.; Rufer N., Brümmendorf T.H., Kolvraa S., Bischoff C., Christensen K., Wadsworth L., Schulzer M., Lansdorp P.M. Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. J. Exp. Med. 1999; 190 (2): 157–167. DOI:10.1084/jem.190.2.157.; Weng N. Levine B.L., June C.H., Hodes R.J. Human naive and memory T lymphocytes differ in telomeric length and replicative potential. Proc. Natl. Acad. Sci. USA. 1995; 92 (24): 11091–11094. DOI:10.1073/pnas.92.24.11091.; Burns J.B., Lobo S.T., Bartholomew B.D. In vivo reduction of telomere length in human antigen-reactive memory T cells. Eur. J. Immunol. 2000; 30 (7): 1894–1901. DOI:10.1002/1521-4141(200007)30:73.0.CO;2-N.; Andrews N.P., Fujii H., Goronzy J.J., Weyand C.M. Telomeres and immunological diseases of aging. Gerontology. 2010; 56 (4): 390–403. DOI:10.1159/000268620.; Schönland S.O., Lopez C., Widmann T., Zimmer J., Bryl E., Goronzy J.J., Weyand C.M. Premature telomeric loss in rheumatoid arthritis is genetically determined and involves both myeloid and lymphoid cell lineages. PNAS. 2003; 100 (23): 13471–13476. DOI:10.1073/pnas.2233561100.; Борисов В.И., Демаков С.А., Непомнящих В.М., Леонова М.И., Баровская Н.А., Кожевников В.С. Сокращение теломерных районов ДНК в субпопуляциях CD4+ и CD8+ лимфоцитов при заболеваниях атопической природы. Омский научный вестник. 2007; 3 (61): 172– 174.; Борисов В.И., Демаков С.А., Непомнящих В.М., Леонова М.И., Демина Д.В., Баровская Н.А., Кожевников В.С. Особенности изменения средней длины теломер в лимфоцитах у больных бронхиальной астмой. Медицинская иммунология. 2009; 11 (6): 523– 530.; Kyoh S., Venkatesan N., Poon A.H., Nishioka M., Lin T., Baglole C.J., Eidelman D.H., Hamid Q. Are leukocytes in asthmatic patients aging faster? A study of telomere length and disease severity. J. Allergy Clin. Immunol. 2013; 132 (2): 480–482. DOI:10.1016/j.jaci.2013.02.010.; Belsky D.W., Shalev I., Sears M.R, Hancox R.J., Lee Harrington H., Houts R., Moffitt T.E., Sugden K., Williams B., Poulton R., Caspi A. Is chronic asthma associated with shorter leukocyte telomere length at midlife? Am. J. Respir. Crit. Care Med. 2014; 190 (4): 384–391. DOI:10.1164/rccm.201402-0370OC.; Lansdorp P.M.,Verwoerd N.P., van de Rijke F.M., Dragowska V., Little M.T., Dirks R.W., Raap A.K., Tanke H.J. Heterogeneity in telomere length of human chromosomes. Hum. Mol. Genet. 1996; 5 (5): 685–691. DOI:10.1093/hmg/5.5.685.; Graakjaer J.J., Der-Sarkissian H., Schmitz A., Bayer J., Kolvraa G.T.S., Londono-Vallejo J.A. Allele-specific relative telomere lengths are inherited. Hum. Genet. 2006; 119 (3): 344–350. DOI:10.1007/s00439-006-0137-x.; Xing J., Ajani J.А., Chen M., Izzo J., Lin J., Chen Z., Gu J., Wuet X. Constitutive short telomere length of chromosome 17p and 12q but not 11q and 2p are associated with an increased risk for esophageal cancer. Cancer Prev. Res. 2009; 2 (5): 459–465. DOI:10.1158/1940-6207.; Zheng Y.L., Zhou X., Loffredo C.A., Shields P.G., Sun B. Telomere deficiencies on chromosomes 9p, 15p, 15q and Xp: potential biomarkers for breast cancer risk. Hum. Mol. Genet. 2010; 20 (2): 378–386. DOI:10.1093/hmg/ddq461.; Blinova E.A., Zinnatova E.V., Barkovskaya M.Sh., Borisov V.I., Sizikov A.E., Kozhevnikov V.S., Rubtsov N.B., Kozlov V.A. Telomere length of individual chromosomes in patients with rheumatoid arthritis. Bull. Exp. Biol. Med. 2016; 160 (6): 779–782. DOI:10.1007/s10517-016-3308-3.; Bangs C.D., Donlon T.A. Metaphase chromosome preparation from cultured peripheral blood cells. Curr. Protoc. Hum. Genet. 2005; 45 (1): 4.1.1–4.1.19. DOI:10.1002/0471142905.hg0401s45.; Barkovskaya M.Sh., Bogomolov A.G., Knauer N.Yu., Rubtsov N.B., Kozlov V.A. Development of software and modification of Q-FISH protocol for estimation of individual telomere length in immunopathology. JBCB. 2017; 15 (2): 1650041. DOI:10.1142/s0219720016500414.; Costenbader K.H., Prescott J., Zee R.Y., DeVivo I. Immunoscenecence and rheumatoid arthritis: does telomere shortening predict impending disease? Autoimmun. Rev. 2011; 10 (9): 569–573. DOI:10.1016/j.autrev.2011.04.034.; Kaul Z., Cesare A.J., Huschtscha L.I., Neumann A.A., Reddel R.R. Five dysfunctional telomeres predict onset of senescence in human cells. EMBO Rep. 2011; 13 (1): 52–59. DOI:10.1038/embor.2011.227.; Baur J.A., Zou Y., Shay J.W., Wright W.E. Telomere position effect in human cells. Science. 2001; 292 (5524): 2075–2077. DOI:10.1126/science.1062329.; Lou Z., Jun W., Riethman H., Baur J.A., Voglauer R., 25. Shay J.W., Wright W.E. Telomere length regulates ISG15 expression in human cells. Aging. 2009; 1 (7): 608–621. DOI:10.18632/aging.100066.; Stadler G., Rahimov F., King O.D., Chen J., Robin J.D., Wagner K.R., Shay J.W., Emerson C.P., Wright W.E. Telomere position effect regulates DUX4 in human facioscapulohumeral muscular dystrophy. Nat. Struct. Mol. Biol. 2013; 20 (6): 671–678. DOI:10.1038/nsmb.2571.; Robin J.D., Ludlow A.T., Chen M., Magdinier F., Batten K., Holohan B., Stadler G., Wagner K.R., Shay J.W., Wright W.E. Telomere position effect: regulation of gene expression with progressive telomere shortening over long distances. Genes Dev. 2014; 28 (22): 2464–2476. DOI:10.1101/gad.251041.114.; Hakonarson H., Halapi E. Genetic analyses in asthma: current concepts and future directions. Am. J. Pharmacogenomics. 2002; 2 (3): 155–166. DOI:10.2165/00129785-200202030-00001.; Bonser L.R., Erle D.J. Airway mucus and asthma: the role of MUC5AC and MUC5B. J. Clin. Med. 2017; 6 (12): 112. DOI:10.3390/jcm6120112.; Njajou O.T., Cawthon R.M., Damcott C.M., Wu S.H., Ott S., Garant M.J., Blackburn E.H., Mitchel B.D., Shuldiner A.R., Hsueh W.C. Telomere length is paternally inherited and is associated with parental lifespan. PNAS. 2007; 104 (29): 12135–12139. DOI:10.1073/pnas.0702703104.; Broer L., Codd V., Nyholt D.R., Deelen J., Mangino M., Willemsen G., Albrecht E, Amin N., Beekman M., de Geus E.J.C., Henders A., Nelson C.P., Steves C.J., Wright M.J., de Craen A.J.M., Isaacs A., Matthews M., Moayyeri A., Montgomery G.W., Oostra B.A., Vink J.M., Spector T.D., Slagboom P.E., Martin N.G., Samani N.J., van Duijn C.M., Boomsma D.I. Meta-analysis of telomere length in 19,713 subjects reveals high heritability, stronger maternal inheritance and a paternal age effect. Eur. J. Hum. Genet. 2013; 21 (10): 1163–1168. DOI:10.1038/ejhg.2012.303.; Colmegna I., Diaz-Borjon A., Fujii H., Schaefer L., Goronzy J.J., Weyand C.M. Defective proliferative capacity and accelerated telomeric loss of hematopoietic progenitor cells in rheumatoid arthritis. Arthritis Rheum. 2008; 58 (4): 990–1000. DOI:10.1002/art.23287.; Martens U.M., Zijlmans J.M., Poon S.S., Dragowska W., Yui J., Chavez E.A., Ward R.K., Lansdorp P.M. Short telomeres on human chromosome 17p. Nat. Genet. 1998; 18 (1): 76–80. DOI:10.1038/ng0198-018.; Morrish T.A., Greider C.W. Short telomeres initiate telomere recombination in primary and tumor cells. PLoS Genet. 2009; 5 (1): 1–15. DOI:10.1371/journal.pgen.1000357.; Pickett H.А., Henson J.D., Au A.Y., Neumann A.A., Reddel R.R. Normal mammalian cells negatively regulate telomere length by telomere trimming. Hum. Mol. Genet. 2011; 20 (23): 46844692. DOI:10.1093/hmg/ddr402.; Zhdanova N.S., Rubtsov N.B. Telomere recombination in normal mammalian cells. Russian Journal of Genetics. 2016; 52 (1): 8–16. DOI:10.1134/S1022795416010142.; https://bulletin.tomsk.ru/jour/article/view/2181

  2. 2